TW201633708A - 用於在積體電路之n個相同相鄰區塊上同步分配數位信號的方法 - Google Patents

用於在積體電路之n個相同相鄰區塊上同步分配數位信號的方法 Download PDF

Info

Publication number
TW201633708A
TW201633708A TW104141744A TW104141744A TW201633708A TW 201633708 A TW201633708 A TW 201633708A TW 104141744 A TW104141744 A TW 104141744A TW 104141744 A TW104141744 A TW 104141744A TW 201633708 A TW201633708 A TW 201633708A
Authority
TW
Taiwan
Prior art keywords
block
signal
blocks
input
circuit
Prior art date
Application number
TW104141744A
Other languages
English (en)
Other versions
TWI679849B (zh
Inventor
布魯諾 迪斯派瑞
費德瑞克 巴比爾
Original Assignee
E2V半導體公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E2V半導體公司 filed Critical E2V半導體公司
Publication of TW201633708A publication Critical patent/TW201633708A/zh
Application granted granted Critical
Publication of TWI679849B publication Critical patent/TWI679849B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/15Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors
    • H03K5/15013Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs
    • H03K5/1506Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with parallel driven output stages; with synchronously driven series connected output stages
    • H03K5/1508Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with parallel driven output stages; with synchronously driven series connected output stages using a plurality of delay lines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/135Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of time reference signals, e.g. clock signals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本發明提出了一種在電子電路中將信號分配到一連串的N個相同設計的相鄰區塊中之每一區塊Bj之方法。該方法提出以對該等N個區塊中之每一區塊相同的方式執行下列步驟:將一時序延遲電路MUX-DELj設置在將一信號SC自該區塊的輸入INcj傳送到該區塊的一內部電節點Ndj之該信號Sc的路徑上;提供用於供應N個被延遲的信號之該時序延遲電路,該等N個被延遲的信號對應於以遞增之基本持續時間△t(該基本持續時間△t對應於通過被加入一導電線的一區塊之基本延遲△t)區分之N個不同的時序延遲△f1,...△fj,...,△fN;以及藉由傳播通過該等N個區塊之一索引信號而根據所考慮的區塊選擇對應於適用的時序延遲之被延遲的信號,其中該索引信號於通過每一區塊時遞增或遞減。

Description

用於在積體電路之N個相同相鄰區塊上同步分配數位信號的方法
本發明係有關在大尺寸半導體積體電路中之電信號(尤指數位信號)的分配。本發明尤其適用於大尺寸影像感測器。
半導體積體電路之製造使用微影技術(尤指光微影技術),以便產生該電路的各層。每一層有一對應的光罩(mask)。
一曝光可以製造的電路之最大尺寸被固定在一光罩的照射景域(exposure field)之最大尺寸,而使用現有技術時,該光罩的照射景域之最大尺寸被固定在倍縮光罩(reticle)之大約24毫米至30毫米的尺寸。
為了製造較大尺寸的電路,使用了一種被稱為光罩耦合(mask coupling)之可覆蓋將要被製造的電路的整個表面之微影技術。此種技術因而涉及將該電路的藍圖分成複 數個基本件;每一基本件有一對應組的微影光罩。當該電路包含複數個相同的基本件時,將使用單一組的光罩,其方式為根據要連續製造多少件相同的複製基本件,而沿著該電路的直交軸(rectangular axis)將該單一組的光罩重新定位多少次。
此種技術尤其適用於諸如工業視覺系統或航空航天領域中使用的那些大尺寸影像感測器等的大尺寸影像感測器之製造。大尺寸影像感測器的光偵測像素矩陣尤其適於此種被分成一些相同的基本件之方式。在本文件的其餘部分中,將使用基本區塊或更簡單的"區塊"之概念,且必須以特定電子功能的一藍圖("設計")之方式理解該"區塊",亦即,該"區塊"將被理解為具有被識別的信號輸入及信號輸出之一被識別件的電路,該等被識別的信號輸入及信號輸出分別是其他基本區塊的信號輸出及輸入,且在該等區塊的製造過程中,將使用被稱為光罩耦合的微影技術將該等基本區塊相互連接。
提醒一下,一電子電路佔用一半導體電路板上的基本上為矩形之一表面積。沿著該表面積的該等直交軸而完成將該電路分成一些基本區塊。沿著這兩軸中之一軸及/或另一軸實現光罩的攝影重複,且沿著不同的兩個直交軸標示該電路的該等基本區塊之各藍圖(設計)。區塊有一對應的藍圖,該藍圖被轉換為一組微影光罩,而該電路的每一製造步驟有一光罩。每一區塊是該電路板上被標示的一矩形表面積之同樣部分,且該矩形之最大尺寸對應於所使 用的倍縮光罩之最大尺寸。
第1圖示出沿著一大尺寸電路的一軸x將該電路分成一些基本區塊之一例子。在紙張平面上連續地自左方到右方,可看到一區塊A、一連串的N個相同的區塊B、以及另一區塊C。舉例而言,仍然以一影像感測器為例,該等區塊B可對應於該矩陣之一些組的光偵測單元(像素),且每一側的外圍區塊A及C可對應於將數位控制或定址信號供應到該等像素之功能。以各連續區塊間之覆蓋區界定該等光罩,以便保證信號用於自一區塊傳送到另一區塊的導體之連續性。這些觀點是熟悉此項技術者所習知的。
此種大尺寸電路環境下產生的問題是藉由通過這N個區塊的一導電線而施加到該等N個相同區塊中之每一區塊的一數位信號將不會在相同的時間上到達這N個區塊的每一區塊,這是由於該導電線因其長度導致的時間常數造成的。
第1圖示出區塊A供應的且藉由被安排成與該軸x平行的一配電線Lc而施加到該等N個區塊B中之每一區塊B的一信號SC。可看到區塊C供應的且藉由另一配電線Lc'而施加到該等N個區塊B的另一信號SC'。
該信號SC沿著方向X傳播;該信號SC首先到達第一區塊B之輸入,通過該第一區塊B,然後到達第二區塊B之輸入,通過該第二區塊B,其他依此類推,直到該信號SC到達第N個區塊之輸入。在每一區塊中,該區塊的輸入接收之該信號SC到被傳送到該區塊的為該信號而提供 之一內部電節點。以該圖式中之一箭頭示出該信號自該區塊之輸入傳送到該內部節點。△t被用於表示自該區塊B的輸入到次一區塊B的輸入之傳輸通過一區塊B之基本時間;此外,△i被用於表示信號SC自該信號輸入傳送到該區塊的該內部節點之基本時間。這些基本時間是只取決於用於將一信號分配且傳送到一區塊的導電線之時間常數及長度的已知內在時間(intrinsic time)。因此,可以與該信號SC到達該第一區塊的輸入的瞬間t0有關之方式決定該信號SC到達該等區塊的每一區塊的該內部節點之時刻。更精確而言,請參閱第2及3圖,Bj被用於表示自左方到右方的該等連續N個區塊中之秩(rank)j的區塊,其中j是自1至N之一整數;INcj被用於表示分配該信號SC的該線Lc在該區塊Bj上之輸入點;且Ndj被用於表示該區塊Bj之該信號SC所傳送到的內部節點。此外,t0被用於表示該信號SC到達區塊B1的輸入點INc1之瞬間。
在輸入點INcj上,該信號SC顯示與該瞬間t0有關之一延遲,該延遲等於(j-1)乘以△t(傳輸通過前j-1個區塊)加上△i(INcj與Ndj間之行程)。在該延遲中,考慮到該電路的時脈週期(clock period),該△t成分是不可忽略的。舉例而言,對於兩個連續的相同區塊的輸入之間之線Lc的長度等於20毫米(對應於一區塊的寬度)而言,使用現有技術時的相關聯之基本時間△t可等於5奈秒。在50百萬赫的時脈頻率下工作的一電路中,該信號SC在第五區塊的輸入上之與到達該第一區塊的該瞬間t0 有關之累積延遲將是一個時脈週期之數量級。在N=5個連續的相同區塊或更多的連續的相同區塊之情形中,該信號SC無法在相同的時脈週期中到達該等N個區塊。
因此,在可能至少包含8到10個連續的相同區塊之大尺寸電路中,考慮到該電路的工作時脈頻率,沿著一連串的N個相同基本區塊的分配線之延遲是不可忽略的,且造成了與這些區塊的信號同步/處理操作有關的一問題。
問題
本發明之目的在於解決該同步問題。
該問題是雙重的:可看出各相同的基本區塊同時(亦即,在相同的時脈週期中)接收一數位信號;此外,在該等N個相同區塊的每一區塊中藉由保持該等區塊的相同本質之一延遲管理電路取得該信號。
該問題係有關下列兩種情形:諸如第1及2圖中之信號SC等的一數位信號之分配,該信號被要求同時施加到該等N個連續區塊中之每一區塊;以及N個數位信號之分配,要求該等N個數位信號中之每一數位信號在該等N個區塊中之相同瞬間上被施加到該連串的N個區塊中之各別的區塊。該第一種情形可對應於控制該等區塊的操作之一數位信號,例如,可對應於控制一影像感測器的該等像素的初始化、積分、傳輸、及讀取的各階段之信號;此外,要求這些信號都在相同的時間到達該連串的區塊中之每一區塊;此外,該第二種情形可對應於係資料的一些數 位信號;此外,要求這些資料中之每一資料在這些N個區塊中之相同時刻上被該連串的N個區塊中之各別的區塊考慮到或處理。
如第4圖所示,在該信號SC被施加到該連串的N個相同區塊的內部節點之時刻上,與用於分配該信號SC的線Lc相關聯之時間常數導致分層,亦即,導致一固定的△t間隔之偏移。如果t0是在區塊B1的輸入INc1上接收到該信號SC之瞬間,則:在t1=△i上,於該區塊B1的內部節點Nd1上接收到該信號;在一時間週期△t之後,或在t2=t1+△t=△i+△t上,於次一區塊B2的內部節點Nd2上接收到該信號;在瞬間tj=△i+(j-1)△t上,於區塊Bj的內部節點Ndj上接收到該信號;在瞬間tN=△i+(N-1)△t上,於區塊BN的內部節點NdN上接收到該信號。
在本發明中,希望擺脫此種分層。要求該信號SC在相同的時間上於瞬間tf上被施加到所有的該等內部節點。這涉及將該信號施加到該等內部節點之時序至少延遲到最後的區塊本身在內部節點上已能夠接收到該信號為止。例如,這涉及:在該等N個相同區塊的每一區塊中實現該時序延遲,且保持該等N個區塊的藍圖之相同本質。亦即,需要能夠藉由該相同的單一組光罩之攝影重複而在每一區塊中實現(或針對每一區塊而實現)該時序延遲電路。為了克服該技術問題,本發明聰明地提議下列步驟:以一被 決定的時間取代在每一區塊內將該信號傳送到內部節點的該基本時間△i(該基本時間△i是該電路的一內在時間,且在考慮到該電路的工作頻率下是可忽略的),且由被置於將該信號自該區塊的輸入傳送到該區塊的內部節點的路徑上之一時序延遲電路施加該被決定的時間;由該時序延遲電路提供對應於以遞增之基本時間△t區分之N個不同的時序延遲之N個被延遲的信號;以及藉由傳播通過該等N個區塊且於通過每一區塊時遞增或遞減的一索引信號,根據所考慮的區塊而選擇對應於適用的時序延遲之延遲信號。
根據本發明而設計之該時序延遲電路因而不論區塊的秩為何都適用於該等區塊中之每一區塊,這是因為所考慮的區塊之索引值將挑出該區塊的該時序延遲電路之輸出。通常,區塊B1將有該信號SC之最長的時序延遲;區塊BN將有該信號SC之最短的時序延遲。
因而可使用相同組的光罩實現該等N個區塊Bj中之每一區塊的該時序延遲電路。實際上,當該時序延遲電路被整合在區塊B的電路中時,該組光罩可以是為該區塊B本身設計的一組光罩;或者,當該時序延遲電路構成另一基本電路區塊(例如,聚集複數個時序延遲電路以便延遲將被分配到該等區塊B的複數個信號的時序之一區塊)定義之一部分時,該組光罩可以是一唯一組的光罩。本發明也係有關一種將數位信號分配到電子電路的一連串對齊的N個相同的相鄰區塊中之每一區塊之方法,該方法利用沿 著該等N個區塊的對齊同軸(align axis)通過該等區塊之導電信號線,通過該等N個區塊中之每一區塊時將導致一基本延遲△t;且本發明也係有關一種對應的電子電路。
本發明之特徵在於:藉由一索引信號傳播通過該等N個區塊而自動建立該等區塊之索引,其中在通過每一區塊時遞增或遞減該索引值,自動建立索引之該步驟設定該連串的N個區塊中之每一區塊的各別索引值;將一信號的導電線與該信號被施加到的一內部電節點間之一信號時序延遲施加到每一區塊之輸入,且藉由為該區塊設定的索引值而自以遞增之基本持續時間△t(該基本持續時間△t對應於通過被加入一導電線的一區塊之基本延遲△t)區分之N個不同的時序延遲時間中選擇該被施加之時序延遲時間;且特徵在於藉由每一區塊之一時序延遲電路實施該時序延遲,每一區塊之該時序延遲電路是相同的,且被連接到該區塊的輸入與內部節點之間,且特徵在於包含N個延遲電路,以便供應該等N個時序延遲時間,該等延遲電路中之每一延遲電路被連接到該區塊的輸入與具有N個輸入通道及一輸出通道的一多工器的一各別的輸入通道之間,該輸出通道被連接到該區塊之內部節點,且為該區塊設定的該索引值被施加到該多工器作為一輸入通道選擇輸入,該方法包含下列步驟:對於任何j(j是自1至N的一整數)而言,由一各別的導電線傳輸且通過該連串的j-1個 先前區塊之後在該連串的第j個區塊的輸入上接收到之一數位信號在一時序延遲下被施加到該區塊之內部節點,該時序延遲比第(j+1)個區塊中之對應的時序延遲大△t,或比第(j-1)個區塊中之對應的時序延遲小△t。
當被應用於分配M個數位信號時(M是至少等於1的整數,且其中該等M個數位信號中之每一數位信號被分配到該連串的N個區塊的每一區塊中之一對應的內部電節點),在該等N個區塊的每一區塊中提供M個相同的時序延遲電路,用以接收自N個延遲中選擇一延遲之該索引信號。
當被應用於以通過該連串的N個區塊之N條導電線分配N個數位信號時(其中該等N個數位信號中之每一數位信號被施加到該連串的N個區塊中之單一各別區塊的一內部電節點),進一步包含下列步驟:在每一區塊內且於該區塊的N個輸入墊與N個輸出墊之間將該等N個信號佈線(routing),且每一區塊的該佈線步驟是相同的,其中係將在該等N個區塊上對齊的相同秩之輸入及輸出墊佈線,且一區塊的該等N個輸出墊被相應地連接到次一區塊的該等N個輸入墊,係以下列方式執行每一區塊內之該佈線步驟:該區塊之一第一輸入墊被連接到該區塊的一時序延遲電路之輸入;該區塊之其他N-1個輸入墊被連接到該區塊之前N-1個輸出墊,使秩k(其中k=2至N)之輸入墊被連接到秩 k-1之輸出墊;以及該區塊之第N個佈線輸出墊係參考一內部參考電壓。
在本發明的一實施例中,當形式為數位信號之索引信號沿著相同方向傳播時,在該索引信號通過每一區塊時,將該索引信號遞增一單位,或當該索引信號沿著相反方向傳播時,在該索引信號通過每一區塊時,將該索引信號遞減一單位。
SC,SC'‧‧‧信號
A,B1-BN,C‧‧‧區塊
Lc,Lc'‧‧‧分配線
INc1-INcN‧‧‧輸入點
Nd1-NdN‧‧‧內部節點
MUX-DEL1-MUX-DELN‧‧‧時序延遲電路
ID‧‧‧索引信號
Sel(vj)‧‧‧選擇輸入
SIN‧‧‧信號輸入
SOUT‧‧‧信號輸出
v1-vN‧‧‧輸入通道
i1-iN‧‧‧輸入墊
o1-oN‧‧‧輸出墊
X‧‧‧傳播方向
R1-RN‧‧‧佈線電路
z1至zN‧‧‧人造信號
前文的說明中已參照各附圖而呈現了本發明之其他特徵及優點,在該等附圖中:第1圖以示意圖示出將一片電路分成一列的連續區塊,該等區塊包含在兩個外圍區塊間之一連串的N個相同區塊;第2圖示出通過一區塊之內在基本時間△t、以及將一信號傳送到該區塊的一內部節點之基本時間△i;第3圖示出根據區塊之秩的在每一區塊內施加該信號的時序延遲之根據本發明之原理;第4圖是接收被分配到第1圖中之該連串的N個相同區塊的一信號SC之瞬間的時序偏移之一時序圖;第5圖是可同步在該等N個區塊中接收該信號SC的瞬間之根據本發明的時序延遲原理之一時序圖;第6圖示出一連串的N個相同區塊,每一區塊整合了根據本發明的一信號時序延遲電路; 第7圖詳細示出根據本發明的一時序延遲電路;第8圖示出將本發明應用於複數個不同的信號之時序延遲,該複數個不同的信號中之每一信號需要被同時施加到該等N個區塊中之每一區塊;以及第9圖示出另一種將本發明應用於複數個不同的信號之時序延遲,每一信號需要於同一時刻被施加到該連串的N個相同區塊中之各別的區塊。
本發明為每一區塊提供了用於數位信號之一時序延遲電路,且每一區塊之該時序延遲電路有相同的設計。該電路被設計成:將一區塊的輸入上接收的一信號施加到一對應的內部節點之瞬間延遲一被決定的時間,該被決定的時間係取決於一連串的N個相同區塊中之該區塊的秩。該措辭"內部節點"意指將該信號分配到該區塊的一元件之一點,而該信號在該點上觸發或產生一對應的預期效果(控制信號之情況),或者在該點上處理該信號(資料信號之情況)。
第5圖提供了根據本發明的時序延遲電路的操作之一簡化圖式,其中藉由該時序延遲電路而使信號SC於相同的瞬間tf到達該連串的N個區塊中之每一區塊的內部節點Ndj。該瞬間tf等於t0+△i+△t,亦即,該信號SC在相對於該信號到達第一區塊的輸入的瞬間t0之一個相同之延遲△i+△t下到達所有的內部節點,而進一步保持該等N個區 塊的相同本質。
根據本發明,該時序延遲電路被設計成:在該等N個區塊的每一區塊中分配一額外的延遲,該額外的延遲之持續時間係根據該區塊在該連串的N個區塊中之秩j且係根據通過一區塊的內在基本時間△t而為模組化持續時間。△fj被用於表示根據該區塊的秩之該模組化時序延遲時間。對於N個相同的區塊而言,有N個不同的時序延遲時間△f1,...△fj,...,△fN,且這些時間被遞增之基本持續時間△t(該基本持續時間△t對應於通過被加入一導電線的一區塊之基本延遲△t)區分。
下文中將更詳細地說明本發明,將以舉例之方式說明該時序延遲電路被設計成將該信號SC到達秩j的區塊Bj的內部節點之時間故意地延遲等於(N-j+1)乘以該內在基本時間週期△t的一時間△fj之一實施例。
第3圖根據所考慮的區塊之秩j而示出用於對應的信號SC的一時序延遲電路在每一區塊Bj之效果,其中在秩1(j=1)的第一區塊中,該時序延遲電路MUX-DEL1加入等於N.△t的一時間週期△f1。在秩j的區塊中,該時序延遲電路MUX-DELj加入等於(N-j+1).△t的一時間週期△fj。在秩N(j=N)的區塊中,該時序延遲電路MUX-DELN加入等於1.△t的一時間週期△fN
最後,該信號SC在相同的瞬間tf到達所有的節點Nd1,Nd2,...NdN(第3及5圖)。
將與在本發明之該時序延遲電路之前及/或之後的 (或在構成該時序延遲電路的電路元件之間的)導電線元件的特性相關聯之一"內在的"內部延遲加到該時序延遲電路在該等區塊的每一區塊中故意地施加之該模組化延遲。為了不使參考符號倍增,將繼續以△i表示該內在延遲;考慮到傳輸通過一區塊的內在時間△t,且尤其考慮到該時序延遲電路加入的等於△t的倍數之該故意的模組化延遲△fj,該內在延遲△t之持續時間仍然是可忽略的。
現在將參照第6及7圖而說明根據本發明的一時序延遲電路。△fID被用於表示所考慮的區塊中之時序延遲電路加入的模組化延遲,且ID被用於表示傳播通過該等N個區塊的一索引信號,且根據該索引信號沿著與被施加該時序延遲的信號相同的方向或相反的方向傳播,而在該索引信號通過每一區塊時遞增或遞減該索引信號。在第6及7圖中,該索引信號ID沿著與該信號SC相同的方向傳播;諸如藉由一加法器而在每一區塊中將該索引信號ID遞增一單位(+1)。
該索引信號是將幾個位元編碼之數位資料。如果該連串的區塊之數目N等於10,則4位元是足夠的。該等圖式中以一分配線示出該信號;然而,實際上,該線包含與資料位元的數目相同數目之導體。具有一初始值之該索引信號被施加到第一區塊。在該例子中,該初始值是零(0)。在該區塊的輸入上遞增該值,且該遞增後之值被施加到該區塊的時序延遲電路之選擇輸入Sel(vj),而且遞增後之值被傳輸到次一區塊之輸入。因此,在該例子中所 沿用的慣例下,被用於在該時序延遲電路中選擇模組化延遲之該索引值ID沿著該信號SC的傳播方向而自1改變至N(例如,該區塊之秩j)。
在所有的區塊上(針對所有的區塊)設定該索引信號ID,以便可以選擇每一區塊中之適用的延遲。舉例而言,在該電子電路的初始化階段中實現該索引信號的此種設定。
現在將參照第6及7圖且將使用前文所述之符號慣例及傳播方向慣例,而更詳細地說明本發明的一實施例。在不脫離本發明之範圍下,根據其他慣例之其他實施例也是可能的。舉例而言,可將該區塊的輸入上接收之索引值用來作為該區塊的時序延遲電路之一選擇輸入,且該索引的遞增後之值可被傳輸到次一區塊。在此種情形中,被用來作為選擇之該值ID自0改變到N-1。沿著與該信號的傳播方向相反的方向傳播該索引值也是可能的。後文中將提供一對應的例子。
因此,請參閱第6及7圖。根據本發明的一時序延遲電路被嵌入該連串的N個區塊中之每一區塊中。因而有N個以MUX-DELj表示之電路,其中j是自1改變到N的一整數,所有該等N個電路都是自相同組的微影光罩製造的(能夠自相同組的微影光罩製造的)完全相同的電路。
根據本發明的時序延遲電路MUX-DELj(第7圖)包含N個並聯的延遲電路、以及有N個輸入通道及一輸出通道之一多工器;每一延遲電路之輸出被連接到該多工器 之一各別的輸入通道。此外,該時序延遲電路有與該區塊介接的兩個輸入及一信號輸出:-一信號輸入SIN,被連接到該區塊的輸入INcj,信號SC藉由該信號輸入SIN而被施加到該等N個延遲電路之輸入;-以Sel(vj)表示之一選擇輸入,其可選擇將被連接到該多工器的輸出通道之該多工器的輸入通道;此輸入Sel(vj)接收索引信號ID;-一信號輸出SOUT,對應於該多工器的該輸出通道,該輸出通道被連接到該區塊之內部節點Ndj,該內部節點Ndj是該區塊中用於施加該信號SC之節點。
該等N個延遲電路被分別配置成將該區塊的輸入上接收的該信號SC延遲不同的時間,而在該例子中,將該信號SC延遲一倍、兩倍、...j倍、...N倍的傳輸通過一區塊之基本時間△t。
這N個延遲電路的每一延遲電路被配置在該區塊的信號輸入INcj與該多工器的N個輸入通道v1,v2,...vN中之一各別通道之間。實際上,以適當方式設計以便得到所需模組化延遲之類比延遲線(delay line)、串接的反相器、或電阻電容網路(RC network)製造這些延遲電路中之每一延遲電路。
根據本發明,被施加到該多工器的輸入作為一通道選擇信號Sel(vj)之該索引信號ID可被用於:根據區塊之秩j,以與所考慮的區塊的輸入上接收的該信號SC在該等N 個區塊上之傳播方向有關之方式(沿著該信號SC的傳播方向而使j自1增加到N),在每一區塊中選擇該多工器中對應於該信號SC的時序延遲之輸入通道。在該例子中,秩j的區塊的該時序延遲電路施加之時序延遲等於(N-j+1)乘以△t。
在第6及7圖所示之實施例中,該索引信號ID之有用值(被施加作為選擇輸入Sel(vj)之值)以如同j之方式而改變,亦即,沿著該信號SC之傳播方向而自1改變至N。在該例子中,v1,v2,...vN被用於表示該多工器的N個輸入通道;v1對應於有最長延遲的通道,具有被對應的延遲電路施加的一時序延遲,而該時序延遲於該例子中等於+N.△t;且vN對應於有最短延遲的通道,具有被對應的延遲電路施加的一時序延遲,而該時序延遲於該例子中等於+△t。對於秩j之區塊而言,在該電路MUX-DELj的選擇輸入Sel(vj)上,該索引信號ID被設定為值j,因而該電路MUX-DELj選擇通道vj,而供應延遲了在本例子中等於+(N-j+1).△t的時間之一信號。
如果在自區塊N開始的N個區塊(亦即,由於沿著與該信號SC的方向相反之方向傳播)中設定該索引信號;該此種假設下,該索引信號於傳播時,將自諸如等於N的一初始值開始而在每一區塊中被遞減一單位。因此,該多工器的該等輸入通道將按照與第7圖所示的順序相反之順序被連接到該等N個延遲電路之輸出,亦即,第1通道v1將對應於最短延遲+1.△t,且第N通道vN將對應於最 長延遲+N.△t,以便可根據該索引信號而選擇將被施加到該電路的輸出SOUT之適當的輸入通道。
根據該索引信號的初始值之實施例、信號的傳播方向、包括在遞增或遞減之前或之後的情況、以及該多工器的該等N個輸入通道的位址之考慮等的這些實踐上的考慮都是熟悉此項技術者易於了解的有用變形。因此,本發明不限於將被更明確示出的實施例。
尤其在所有的情況中,例如,由諸如第1圖中之區塊A或C等的一外圍區塊供應有一初始值的一索引信號,且在該等N個區塊上傳播該索引信號,其中係在該等N個區塊的每一區塊中提供一數位電路(一加法器或一減法器),該數位電路可設定這N個區塊的每一區塊之對應的有用索引值。
第8圖示出將本發明應用於複數個各別的信號(例如,用於控制該等區塊的各操作階段之信號)之時序延遲;各別的分配線沿著相同的傳播方向X將每一信號分配到該連串的N個區塊;且每一信號被施加到該等N個區塊的每一區塊中之各別的內部節點。在該例子中,各別的線Lc1,Lc2,...LcM將M個信號Sc1,Sc2,...ScM中之每一信號分配到該連串的N個區塊中之每一區塊。
根據本發明,在一時序延遲級Tj內提供每一區塊Bj,該時序延遲級Tj包含與將在內部被施加的不同的信號的數目相同數目之相同時序延遲電路。在該例子中,每一時序延遲級Tj包含以MUX-DELj1,...MUX-DELjM表示之 M個時序延遲電路,且該等M個時序延遲電路都被相同的索引信號ID控制;每一時序延遲電路接收在一區塊的輸入上接收的M個信號中之一信號,且將有被延遲的時序之一對應的信號供應到輸出、以及該區塊之一對應的內部節點(Ndj1,Ndj2,...NdjM)。
在該例子中,本發明可同時在每一區塊中啟動受各控制信號控制的各階段中之每一階段。
第9圖示出本發明的應用之另一例子。在該例子中,將N個不同的信號中之每一信號沿著相同的傳播方向分配到單一區塊。在該例子中,要求這些N個數位信號於相同的瞬間tf(在相同的週期中)在其各別的區塊中被考慮或被處理。舉例而言,這些N個信號是離開N個相同的電路區塊(例如,一影像感測器的N個像素區塊)之資料信號。該例子之目的在於同步N個相同的資料處理區塊中對這些N個數位信號的處理。
因此,提供了每一區塊中之一信號時序延遲電路;該等N個時序延遲電路都接收自自一區塊傳播到次一區塊時將遞減的該索引信號ID,且被該信號啟動,以便選擇適合每一區塊的△t的倍數之延遲。
此外,提供了用於每一區塊中之該等N個信號之一內部佈線電路,該內部佈線電路具有N個輸入墊i1至iN以及N個輸出墊o1至oN,且各區塊的佈線電路是相同的,亦即,連接該等N個輸入墊及該等N個輸出墊的連接線之型樣是相同的。更精確而言: 使每一輸入墊沿著該信號的傳播方向X對齊相同秩的輸出墊。一區塊的該佈線電路的該等N個輸出墊中之每一輸出墊被連接到次一區塊的該佈線電路的相同秩之輸入墊。在該例子中,該等墊之秩沿著與該信號的傳播軸正交之軸而改變。在該例子中,該等墊之秩沿著方向朝向紙張底部的Y軸而增加。該秩亦可沿著相反方向而改變。
秩1的第一輸入墊i1上接收之該信號被佈線到所考慮的該區塊之時序延遲電路,該佈線電路之第二、第三、第k、...、第N輸入墊上接收之該等信號被分別佈線到該區塊的該佈線電路之第一、第二、第三、第(k-1)、...、第(N-1)輸出墊。該佈線電路之第N輸出墊被連接到通常是接地電壓之一參考電壓,該參考電壓構成將自一區塊傳播到次一區塊之一第一人造信號z1,且在每一區塊中移動一個輸入墊秩,因而最後將被施加到最後的區塊BN的佈線電路RN之第一輸入墊。在每一區塊中,一新的人造信號被產生,且被施加到所考慮的佈線電路之最後的輸出墊oN。實際上,在該例子中,係在與用於執行其他佈線操作之該電路的導體層不同的一導體層上執行將該第一輸入墊i1上接收之信號佈線到該時序延遲電路。
考慮秩j之區塊Bj:區塊Bj之佈線電路Rj在第一輸入墊iI上接收目標為該區塊的內部節點Ndj之該信號Sj,且將該信號Sj施加到時序延遲電路MUX-DELj;該佈線電路Rj在各別的輸入墊i2至iN-j+1上接收仍然要被分配的(N-j)個信號,且該等(N-j)個信號被分別佈線到輸出墊o1 至oN-j;該佈線電路Rj在其餘的輸入墊iN-j+2至iN上接收j-1個人造信號z1至zj-j,且該等j-1個人造信號z1至zj-1將被分別佈線到輸出墊oN-j+1至oN-1;該佈線電路Rj產生將被傳送到輸出墊oN之第j個人造信號zj
最後的區塊之佈線電路RN因而在第一輸入墊i1上接收目標為該區塊的內部節點NdN之信號SN,且在其他的輸入墊i2至iN上接收N個人造信號z1至zN-1。該最後的區塊將N個人造信號z1至zN供應到輸出o1至oN
根據本發明的此種具有在每一區塊中都相同的時序延遲電路的一佈線電路與一索引信號ID之組合因而可同時且同步地將不同的信號施加到一連串的N個區塊中之每一區塊。
請注意,在第9圖之例子中,示出了沿著與信號S1至SN相反相的方向傳播一索引信號ID之一例子。在該例子中,該索引信號ID在區塊BN的輸入上有被設定為N的一初始值,且該索引信號ID於通過每一區塊時遞減。亦可如同第6圖而提供在索引遞增下之直接傳播。
舉例而言,藉由一加法器(或減法器)而實現該索引信號之此種遞增(或遞減)。在另一非限制性例子中,於該等輸入上使用以N個可能的索引值編碼之一多工表,且因而區塊接收索引值ID自該表選擇該等N個可用值中具有所需遞增或遞減之索引值作為輸出值。
最後,為了一些實際的原因,在整個全文的說明中,考慮到最後的區塊的時序延遲電路設定之延遲是△t。然 而,該延遲可以是零,或當然可以是任何延遲值,只要符合下列條件即可:前一區塊的延遲與該最後的區塊的延遲間之差異為△t,以及任何區塊(Bj)的延遲與次一區塊(Bj+1)的延遲間之差異為+△t且與前一區塊(Bj-1)的延遲間之差異為-△t。
已說明了本發明的一些實施及應用例子,本發明尤其適用於使用光罩耦合技術製造的大尺寸電路,其中可沿著該電路的各直交軸中之一直交軸將一或多件藍圖分成一連串的相同區塊。本發明可聰明地自動同步信號被施加到這些區塊的內部節點之時刻,且保持該等區塊的相同本質。
B1-BN‧‧‧區塊
Lc,Lc'‧‧‧分配線
INc1-INcN‧‧‧輸入點
Nd1-NdN‧‧‧內部節點
MUX-DEL1-MUX-DELN‧‧‧時序延遲電路

Claims (8)

  1. 一種用於將數位信號分配到電子電路的一連串對齊的N個相同的相鄰區塊中之每一區塊之方法,該方法利用沿著該等N個區塊的對齊軸線通過該等區塊之導電信號線,通過該等N個區塊中之每一區塊引入一基本延遲△t,其特徵在於該方法包含:藉由一索引信號(ID)傳播通過該等N個區塊而對該等區塊自動建立索引,其中在通過每一區塊時遞增或遞減該索引值,該自動建立索引設定該連串的N個區塊中之每一區塊的各別索引值;將一信號的導電線與該信號被施加到的一內部電節點間之一信號時序延遲施加到每一區塊之輸入,且藉由為該區塊設定的索引值而自以遞增之基本持續時間△t區分之N個不同的時序延遲時間中選擇該被施加之時序延遲時間,該基本持續時間△t對應於通過一區塊被引入一導電線的基本延遲△t;及藉由每區塊一個時序延遲電路來實施該時序延遲,每一區塊之該一個時序延遲電路是相同的,且被連接到該區塊的輸入與內部節點之間,且包含N個延遲電路,以便供應N個時序延遲時間,該等延遲電路中之每一延遲電路被連接到該區塊的輸入與具有N個輸入通道及一個輸出通道的一多工器的一各別的輸入通道之間,該輸出通道被連接到該區塊之內部節點,且為該區塊設定的該索引值被施加到該多工器作為一輸入通道選擇輸入(Sel(vj)),該方法 又包含:對於任意j(j是自1至N的一整數),由一各別的導電線傳輸且在通過該連串的j-1個先前區塊之後在該連串的第j個區塊(Bj)的輸入(INcj)上接收到之一數位信號在一時序延遲下被施加到該區塊之內部節點,該時序延遲比第(j+1)個區塊中之對應的時序延遲大△t,或比第(j-1)個區塊中之對應的時序延遲小△t。
  2. 如申請專利範圍第1項之分配方法,其被應用於分配M個數位信號(M是至少等於1的整數),其中該等M個數位信號中之每一數位信號被分配到該連串的N個區塊的每一區塊中之一對應的內部電節點,其中,由該等N個區塊的每一區塊中之M個相同的時序延遲電路提供該連串的N個區塊的每一區塊中之該等M個數位信號的每一數位信號之時序延遲,該等M個相同的時序延遲電路接收自N個延遲中選擇一延遲之該索引信號(ID)。
  3. 如申請專利範圍第1項之分配方法,其被應用於以通過該連串的N個區塊之N條導電線分配N個數位信號,其中該等N個數位信號中之每一數位信號被施加到該連串的N個區塊中之單一各別區塊的一內部電節點,該方法進一步包含:在每一區塊內且於該區塊的N個輸入墊i1至iN與N個輸出墊o1至oN之間將該等N個信號佈線,且每一區塊的該佈線步驟是相同的,相同秩之輸入及輸出墊佈線在該等N個區塊上被對齊,且一區塊的該等N個輸出墊被相應地連接到次一區塊的該等N個輸入墊,每一區塊內之該佈線使得: 該區塊之一第一輸入墊(i1)被連接到該區塊的一時序延遲電路之輸入;該區塊之其他N-1個輸入墊(i2至iN)被連接到該區塊之前N-1個輸出墊(o1至oN-1),使得秩k之輸入墊(其中k=2至N)被連接到秩k-1之輸出墊;以及該區塊之第N個佈線輸出墊(oN)係參考一內部參考電壓。
  4. 如申請專利範圍第1至3項中之任一項之方法,其中當該索引信號沿著與該一或多個數位信號相同方向傳播時,在該索引信號通過每一區塊時將該索引信號遞增一單位,或當該索引信號沿著相反方向傳播時,在該索引信號通過每一區塊時將該索引信號遞減一單位。
  5. 一種電子電路,具有至少一連串對齊的N個相同的相鄰區塊以及沿著該等N個區塊的對齊軸線通過該等區塊之一或多條導電線,該電子電路可將至少一個數位信號施加到該連串的N個區塊中之每一區塊的一輸入,以便將該信號傳輸到該區塊之一各別的內部電節點,其特徵在於每一區塊包含:一索引信號輸入,用以接收一索引信號(ID),且將該索引信號傳播通過該等N個區塊,其中在該索引信號通過區塊時遞增或遞減索引值,以便設定該連串的N個區塊中之每一區塊的各別索引值;每區塊一個信號時序延遲電路,且每一區塊之該信號時序延遲電路是相同的,該信號時序延遲電路被連接到該 區塊的輸入與該區塊的內部電節點之間,該時序延遲電路包含N個延遲電路,以便供應以遞增之基本持續時間△t區分之一連串的N個不同的時序延遲時間,該基本持續時間△t對應於通過一區塊被引入一導電線的基本延遲△t,其中該等N個延遲電路中之各者被連接於該區塊的輸入與具有N個輸入通道及一個輸出通道的一多工器的一各別的輸入通道之間,該輸出通道被連接到該區塊之內部節點,且為該區塊設定的該索引值被施加到該多工器作為一輸入通道選擇輸入(Sel(vj)),以便自N個延遲中選擇一延遲,使得對於該連串的區塊中之秩j的區塊而言(j是等於1至N的一整數),由一各別的導電線傳輸且通過該連串的j-1個先前區塊之後在該區塊(Bj)的輸入(INcj)上接收到之一數位信號在一延遲下被施加到該區塊之內部節點,該延遲相對於被施加在次一秩j+1的區塊中的延遲遞增了△t,或相對於被施加在前一秩j-1的區塊中的延遲遞減了△t。
  6. 如申請專利範圍第5項之電子電路,包含M條導電線,其將M個不同的數位信號傳送通過該連串的N個區塊,其中該等M個不同的數位信號經由M個相同的時序延遲電路而被施加到該連串的N個區塊的每一區塊中之M個內部電節點,且該等N個區塊的每一區塊中之該等M個時序延遲電路接收相同的索引信號。
  7. 如申請專利範圍第5項之電子電路,其中該區塊接 收N個不同的數位信號,該等N個不同的數位信號中之秩j的單一信號需要藉由該區塊之該時序延遲電路而被施加到秩j的該區塊之一內部電節點,該區塊進一步包含用於在每一區塊內且於該區塊的N個輸入墊i1至iN與N個輸出墊o1至oN之間將該等N個數位信號佈線之一電路,相同秩之輸入及輸出墊佈線在該等N個區塊上被對齊,一區塊的該等N個輸出墊中之每一輸出墊被連接到次一區塊的相同秩之輸入墊,該連串的N個區塊的每一區塊中之該佈線電路是相同的,使得:該區塊之一第一輸入墊(i1)被連接到該區塊的一時序延遲電路之輸入;該區塊之其他N-1個輸入墊(i2至iN)被連接到該區塊之前N-1個輸出墊(o1至oN-1),使得具有秩k之輸入墊(其中k=2至N)被連接到秩k-1之輸出墊;以及該區塊之第N個佈線輸出墊(oN)係參考一內部參考電壓。
  8. 如申請專利範圍第5至7項中之任一項之電路,其中該連串的N個區塊包含用於遞增該索引信號之一電路,且當該索引信號沿著與該一或多個數位信號相同方向傳播時,該電路是一遞增電路,以及當該索引信號沿著相反方向傳播時,該電路是一遞減電路。
TW104141744A 2014-12-11 2015-12-11 用於在積體電路之n個相同相鄰區塊上同步分配數位信號的方法 TWI679849B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1462253 2014-12-11
FR1462253A FR3030156B1 (fr) 2014-12-11 2014-12-11 Procede de distribution synchrone d'un signal numerique sur n blocs identiques adjacents d'un circuit integre

Publications (2)

Publication Number Publication Date
TW201633708A true TW201633708A (zh) 2016-09-16
TWI679849B TWI679849B (zh) 2019-12-11

Family

ID=53039509

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104141744A TWI679849B (zh) 2014-12-11 2015-12-11 用於在積體電路之n個相同相鄰區塊上同步分配數位信號的方法

Country Status (6)

Country Link
US (1) US10033363B2 (zh)
EP (1) EP3231173B1 (zh)
JP (1) JP6748103B2 (zh)
FR (1) FR3030156B1 (zh)
TW (1) TWI679849B (zh)
WO (1) WO2016091886A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445599B (zh) * 2019-06-29 2021-08-31 天津大学 一种面向内容的物联网组网数据通信的同步传输方法
US11411560B1 (en) * 2021-07-30 2022-08-09 Global Unichip Corporation Electronic system, integrated circuit die and operation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936424A (en) * 1996-02-02 1999-08-10 Xilinx, Inc. High speed bus with tree structure for selecting bus driver
US5847580A (en) * 1996-10-10 1998-12-08 Xilinx, Inc. High speed bidirectional bus with multiplexers
US6650190B2 (en) * 2001-04-11 2003-11-18 International Business Machines Corporation Ring oscillator with adjustable delay
US6874097B1 (en) * 2001-06-01 2005-03-29 Maxtor Corporation Timing skew compensation technique for parallel data channels
US6617876B1 (en) * 2002-02-01 2003-09-09 Xilinx, Inc. Structures and methods for distributing high-fanout signals in FPGAs using carry multiplexers
SE522231C2 (sv) * 2002-04-10 2004-01-27 Axis Ab Bildalstringsanordning och timinggenerator
TWI325227B (en) * 2003-05-09 2010-05-21 Hewlett Packard Development Co General purpose delay logic
US7555741B1 (en) * 2006-09-13 2009-06-30 Altera Corporation Computer-aided-design tools for reducing power consumption in programmable logic devices
JP5359611B2 (ja) * 2009-06-29 2013-12-04 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法および電子機器
JP2009296658A (ja) * 2009-09-17 2009-12-17 Sony Corp 固体撮像装置及び固体撮像素子の駆動方法
US9245825B2 (en) * 2014-01-23 2016-01-26 Sandisk Technologies Inc. I/O pin capacitance reduction using TSVS

Also Published As

Publication number Publication date
JP2018500861A (ja) 2018-01-11
EP3231173A1 (fr) 2017-10-18
FR3030156A1 (fr) 2016-06-17
FR3030156B1 (fr) 2016-12-30
WO2016091886A1 (fr) 2016-06-16
US10033363B2 (en) 2018-07-24
TWI679849B (zh) 2019-12-11
JP6748103B2 (ja) 2020-08-26
EP3231173B1 (fr) 2018-11-07
US20170331468A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
EP2871550B1 (en) Clocking for pipelined routing
US9170769B2 (en) Crosstalk mitigation in on-chip interfaces
US8422619B2 (en) Clock frequency divider circuit, clock distribution circuit, clock frequency division method, and clock distribution method
US10348307B2 (en) Clock distribution and generation architecture for logic tiles of an integrated circuit and method of operating same
TW201633708A (zh) 用於在積體電路之n個相同相鄰區塊上同步分配數位信號的方法
US9240791B2 (en) Clock distribution architecture for logic tiles of an integrated circuit and method of operation thereof
US3745472A (en) Synchronous digital system having a clock distribution system
JPS63228206A (ja) クロツク分配方式
ATE458333T1 (de) Routing-einrichtung für ein unterseeisches elektronikmodul
JP2010176519A (ja) 位相調整装置およびカメラ
DE60035373D1 (de) Vorrichtung und verfahren in einer halbleiterschaltung
US7181709B2 (en) Clock delay adjusting method of semiconductor integrated circuit device and semiconductor integrated circuit device formed by the method
US7205815B2 (en) Method and integrated circuit apparatus for reducing simultaneously switching output
EP1288769B1 (en) Distribution of signals in high-speed digital circuitry
JP6625363B2 (ja) 信号、特にクロック信号の伝搬遅延を補償する光学的反復集積回路
US6480534B1 (en) Apparatus and method for a reduced component equalizer circuit
US5936567A (en) Parallel charge signal delivery system, and filtering AD converter using the same
US7482960B2 (en) Arrangement for the synchronous output of analog signals generated in two or more digital-to-analog converters
US9667308B2 (en) Method and apparatus for generating a spread-spectrum clock
US7302027B2 (en) Synchronization circuits for the distribution of unique data to scattered locations
JPS5552653A (en) Clock distribution system
RU2414742C1 (ru) Устройство перепаковки потоков для ввода данных
JPH0532763B2 (zh)
CN111106922A (zh) 接收设备及其操作方法
Boddepalli Technologies of Multi Chip Module (MCMs)