TW201631858A - 具有改善的暫態響應的控制架構 - Google Patents

具有改善的暫態響應的控制架構 Download PDF

Info

Publication number
TW201631858A
TW201631858A TW105105000A TW105105000A TW201631858A TW 201631858 A TW201631858 A TW 201631858A TW 105105000 A TW105105000 A TW 105105000A TW 105105000 A TW105105000 A TW 105105000A TW 201631858 A TW201631858 A TW 201631858A
Authority
TW
Taiwan
Prior art keywords
auxiliary
main
transient
current
coupled
Prior art date
Application number
TW105105000A
Other languages
English (en)
Other versions
TWI713495B (zh
Inventor
黎堅
Original Assignee
線性科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 線性科技股份有限公司 filed Critical 線性科技股份有限公司
Publication of TW201631858A publication Critical patent/TW201631858A/zh
Application granted granted Critical
Publication of TWI713495B publication Critical patent/TWI713495B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一種供電系統,此供電系統包括:電源;負載裝置,經配置以自電源接收電力;及電力介面裝置,經耦接至電源及負載裝置且經配置以將由電源提供的第一電壓變為操作負載裝置的第二電壓。電力介面裝置包括:主開關轉換器,經配置以在第一開關頻率下操作並提供低頻電流至負載裝置;以及輔助開關轉換器,與主開關轉換器並聯耦接且經配置以在第二且不同開關頻率下操作並提供快速暫態高頻電流至負載裝置。

Description

具有改善的暫態響應的控制架構
本發明係關於具有改善的暫態響應的控制架構。
相關申請案之交互參照
本申請案主張於2015年2月20日提出申請且標題為「FAST TRANSIENT POWER SUPPLY WITH A FIRST CONTROL SIGNAL FOR A HIGHER FREQUENCY CURRENT AND A SECOND CONTROL SIGNAL FOR A LOWER FREQUENCY CURRENT」之美國臨時申請案第62/119,042號、於2015年2月27日提出申請且標題為「FAST TRANSIENT POWER SUPPLY WITH A FIRST CONTROL SIGNAL FOR A HIGHER FREQUENCY CURRENT AND A SECOND CONTROL SIGNAL FOR A LOWER FREQUENCY CURRENT」之美國臨時申請案第62/126,418號、於2015年2月20日提出申請且標題為「CONTROL ARCHITECTURE WITH IMPROVED TRANSIENT RESPONSE」之美國臨時申請案第62/119,078號及於2015年2月27日提出 申請且標題為「CONTROL ARCHITECTURE WITH IMPROVED TRANSIENT RESPONSE」之美國臨時申請案第62/126,421號之優先權,上述美國臨時申請案以引用之方式全部併入本文。
供電系統包括電源、負載裝置及耦接至電源及負載裝置的電力介面裝置。電源可包括蓄電池、電網、太陽能光伏電池、交流(AC)發電機及/或前端功率轉換器之輸出。電力介面裝置可經配置以升高或降低電源之電壓來為負載裝置提供適宜電壓。電力介面裝置可為升壓式轉換器或降壓式轉換器或任何其他轉換器。負載裝置可包括電阻負載、磁性負載、電容負載、加熱器。在一個實施方式中,負載裝置可為低電壓但高電流負載裝置,諸如例如電腦中央處理單元(central processing unit;CPU)。此類型之負載裝置可具有許多負載暫態狀態。
在負載暫態狀態期間,負載裝置之電流可在極短時間段內變化明顯。舉例而言,在暫態狀態期間,負載裝置之電流可在小於1微秒內自0A增加至100A或自100A減小至0A。電流的此等驟變可在負載裝置處產生大電壓變化並可引發輸出電壓振盪至負載裝置之調節操作窗外。
為最小化暫態變化,在一個實施方式中,可將大功率電容器添加至供電系統之輸出端。電容器可在 暫態狀態期間提供或降低必要電流且因此減小由負載暫態所引起的電壓變化。為此目的,輸出電容器用於補充電感器之緩慢上升的電流以滿足負載裝置對電流增大的需求。類似地,輸出電容器用於降低電流以滿足自負載裝置的電流的驟减。然而,電容器是昂貴的且因此可增加系統之成本或尺寸。
在另一實施方式中,可推動轉換器在較高頻寬下執行以迅速響應負載暫態。然而,開關模式轉換器頻寬受到其開關頻率限制。因此,為推動轉換器在較高頻寬下執行,轉換器不得不在較高開關頻率下操作。此意謂更多功率損耗,因為每次開關接通/斷開皆存在功率損耗。因此,供電系統亦受到電源與負載裝置之間置放的功率轉換器之功率損耗限制。
因此,需要一種能够在增加效率及减小成本與尺寸的同時提供對負載裝置之暫態狀態快速響應的供電系統。
在一個一般態樣中,本申請案描述了一種包括主開關轉換器的電力介面裝置,該主開關轉換器經配置以在輸入端子處接收第一電壓並在輸出端子處輸出第二且不同電壓。主開關轉換器包括第一主開關、第二主開關及主電感器。第一主開關在一端處耦接至輸入端子並在另一端處耦接至主節點。第二主開關在一端處耦接至主節點並在另一端處耦接至接地端子。主電感器在一 端處耦接至主節點並在另一端處耦接至輸出端子。電力介面裝置亦包括與主開關轉換器並聯耦接的輔助開關轉換器,且輔助開關轉換器經配置以在輸入端子處接收第一電壓並在輸出端子處輸出第二電壓。輔助開關轉換器包括第一輔助開關、第二輔助開關及輔助電感器。第一輔助開關在一端處耦接至輸入端子並在另一端處耦接至輔助節點。第二輔助開關在一端處耦接至輔助節點並在另一端處耦接至接地端子。輔助電感器在一端處耦接至輔助節點並在另一端處耦接至輸出端子。
電力介面裝置進一步包括輔助控制迴路電路,該輔助控制迴路電路在一端處耦接至輸出端子並在另一端處耦接至輔助開關轉換器。輔助控制迴路電路經配置以偵測輸出端子處的暫態且響應於暫態發出輔助控制訊號以便驅動輔助開關轉換器輸出快速暫態高頻電流至輸出端子。輔助控制迴路電路經配置以藉由使用電阻器及加法器電路防止與暫態關聯的暫態訊號之較低頻率分量進入輔助開關轉換器。電阻器在一端處耦接至輔助電感器並在另一端處耦接至加法器電路,加法器電路經耦接至輸出端子。輔助開關轉換器經配置以在與主開關轉換器之主開關頻率不同的輔助開關頻率下操作。
上述一般態樣可包括以下特徵中的一或更多者。主開關轉換器可包括複數個單相開關調節器,此等單相開關調節器在輸入端子與輸出端子之間彼此並聯耦接。單相開關調節器之各者可經配置以在比輔助開關頻 率低的主開關頻率下操作,以在輸出端子處提供穩定輸出。
電力介面裝置可進一步包括主控制迴路電路,該主控制迴路電路在一端處耦接至輸出端子並在另一端處耦接至主開關轉換器。主控制迴路電路可經配置以偵測輸出端子處的暫態且響應於暫態發出主控制訊號以便驅動主開關轉換器。主控制迴路電路可包括:主反饋感測電路,經配置以感測輸出端子處的輸出電壓並產生反饋電壓;主誤差運算放大器,經配置以接收反饋電壓及參考電壓並在反饋電壓與參考電壓彼此實質不相等時產生暫態訊號;以及主脈衝寬度調變器,經配置以自主開關轉換器接收暫態訊號及所感測低頻電感器電流並基於暫態訊號與所感測低頻電感器電流之間的差異發出主控制訊號。
主控制訊號可為脈衝寬度調變訊號,使得主開關轉換器能够提供低頻電流以追蹤暫態訊號且驅動輸出電流以滿足負載裝置處的增加負載電流。主反饋感測電路可包括複數個電阻器及電容器,此等電阻器及電容器經配置以感測輸出電壓並產生反饋電壓。主誤差運算放大器可經配置以在其反相端子處接收反饋電壓並在其非反相端子處接收參考電壓。
輔助控制迴路電路可進一步包括第一輔助誤差放大器,該第一輔助誤差放大器經配置以接收加法器電路之輸出及參考電壓並在加法器電路之輸出與參考電 壓彼此實質不相等時輸出誤差訊號。輔助控制迴路電路可進一步包括輔助脈衝寬度調變器,該輔助脈衝寬度調變器經配置以自輔助開關轉換器接收第一誤差訊號及所感測高頻電感器電流並基於第一誤差訊號與所感測高頻電感器電流之間的差異發出輔助控制訊號。第一誤差訊號可對應於暫態訊號之較高頻率分量。電阻器可使得輔助控制迴路電路能够僅吸收暫態訊號之較高頻率分量而不吸收暫態訊號之較低頻率分量。可僅當負載電流存在驟增或驟減時存在暫態訊號之較高頻率分量。
響應於輔助控制訊號,輔助開關轉換器可經配置以提供快速暫態高頻電流至輸出端子。快速暫態高頻電流可經配置以追蹤暫態訊號之較高頻率分量。輔助控制迴路電路可進一步包括第二輔助誤差放大器,該第二輔助誤差放大器經配置以接收所感測平均輔助電感器電流及零平均低頻電流並輸出第二誤差訊號。第一輔助誤差放大器經配置以基於加法器電路之輸出、參考電壓及第二誤差訊號輸出暫態訊號之較高頻率分量。
在另一一般態樣中,本申請案描述了一種供電系統,該供電系統包括:電源;負載裝置,經配置以自電源接收電力;以及電力介面裝置,經耦接至電源及負載裝置且經配置以將由電源提供的第一電壓變為操作負載裝置的第二電壓。電力介面裝置包括:主開關轉換器,經配置以在第一開關頻率下操作並提供低頻電流至負載裝置;以及輔助開關轉換器,與主開關轉換器並聯 耦接且經配置以在第二且不同開關頻率下操作並提供快速暫態高頻電流至負載裝置。供電系統進一步包括輔助控制迴路電路,該輔助控制迴路電路在一端處耦接至輔助開關轉換器並在另一端處耦接至負載裝置且輔助控制迴路電路經配置以使用電阻器及加法器電路吸收暫態訊號之較高頻率分量並基於暫態訊號之較高頻率分量操作輔助開關轉換器。
上述一般態樣可包括以下特徵中的一或更多者。輔助開關轉換器可包括第一輔助開關、第二輔助開關及輔助電感器。第一輔助開關可在一端處耦接至電源並可在另一端處耦接至輔助節點。第二輔助開關可在一端處耦接至輔助節點並可在另一端處耦接至接地端子。輔助電感器可在一端處耦接至輔助節點並可在另一端處耦接至負載裝置。
輔助控制迴路電路可進一步包括輔助誤差運算放大器及輔助脈衝寬度調變器。電阻器可在一端處耦接至輔助電感器並在另一端處耦接至加法器電路。加法器電路可經配置以將輸出電壓加至跨電阻器所偵測之電壓且輸出反饋電壓。輔助誤差放大器可經配置以接收反饋電壓及參考電壓並在反饋電壓與參考電壓彼此實質不相等時輸出暫態訊號之較高頻率分量。輔助脈衝寬度調變器可經配置以自輔助開關轉換器接收暫態訊號之較高頻率分量及所感測高頻電感器電流並基於暫態訊號之較 高頻率分量與所感測高頻電感器電流之間的差異發出輔助控制訊號。
可僅當負載電流存在驟增或驟減時存在較高頻率分量。響應於輔助控制訊號,輔助開關轉換器可經配置以僅在暫態期間提供快速暫態高頻電流至負載裝置。快速暫態高頻電流可經配置以追蹤暫態訊號之較高頻率分量。
輔助控制迴路電路可進一步包括第二輔助放大器,該第二輔助放大器經配置以接收所感測平均高頻電感器電流及零平均電流並輸出誤差訊號。輔助誤差放大器可經配置以基於參考電壓、反饋電壓及自第二輔助放大器的誤差訊號輸出暫態訊號之較高頻率分量。
主開關轉換器可包括複數個開關調節器,每一開關調節器包括第一主開關、第二主開關及主電感器。第一主開關可在一端處耦接至電源並可在另一端處耦接至主節點。第二主開關可在一端處耦接至主節點並可在另一端處耦接至接地端子。主電感器可在一端處連接至主節點並可在另一端處耦接至負載裝置。
供電系統可進一步包括主控制迴路電路,該主控制迴路電路在一端處耦接至負載裝置並在另一端處耦接至主開關轉換器。主控制迴路電路可經配置以偵測負載裝置處的暫態且響應於暫態發出主控制訊號以便在第一開關頻率下驅動主開關轉換器。
主開關轉換器中的複數個開關調節器可包括三個或更多個單相開關調節器,此等單相開關調節器在電源與負載裝置之間彼此並聯耦接。單相開關調節器之各者可經配置以在比第二開關頻率低的第一開關頻率下操作,以在電力介面裝置之輸出端子處提供穩定輸出。
主控制迴路電路可包括:主反饋感測電路,經配置以感測輸出端子處的輸出電壓且產生反饋電壓;主誤差運算放大器,經配置以接收反饋電壓及參考電壓並在反饋電壓與參考電壓彼此實質不相等時產生暫態訊號;以及主脈衝寬度調變器,經配置以自單相開關調節器之各者接收暫態訊號及所感測低頻電感器電流並基於暫態訊號與所感測低頻電感器電流之間的差異發出主控制訊號。主控制訊號可為脈衝寬度調變訊號,使得單相開關調節器之各者能够提供低頻電流以追蹤暫態訊號且驅動輸出電流以滿足負載裝置處的增加負載電流。
100‧‧‧供電系統
110‧‧‧電源
112‧‧‧負載裝置
114‧‧‧電力介面裝置/電力介面
116‧‧‧開關調節器電路
116a‧‧‧第一開關
116b‧‧‧第二開關
116c‧‧‧電感器
120‧‧‧第一節點
122‧‧‧輸出端子
200‧‧‧供電系統
210‧‧‧電源
212‧‧‧負載裝置
214‧‧‧電力介面裝置
215‧‧‧主開關轉換器
216‧‧‧單相開關調節器
216a‧‧‧第一開關
216b‧‧‧第二開關
216c‧‧‧電感器
218‧‧‧輔助開關轉換器
218a‧‧‧第一開關
218b‧‧‧第二開關
220‧‧‧第一節點
222‧‧‧輸出端子
230‧‧‧第一節點
300‧‧‧供電系統
315‧‧‧主開關轉換器
316‧‧‧單相開關調節器
316a‧‧‧第一開關
316b‧‧‧第二開關
316c‧‧‧電感器
318‧‧‧輔助開關轉換器
318a‧‧‧第一開關
318b‧‧‧第二開關
318c‧‧‧電感器
322‧‧‧輸出端子
324‧‧‧反饋控制機構/反饋控制與PWM調變器
324a‧‧‧誤差放大器
324b‧‧‧補償網路
324c‧‧‧PWM
326‧‧‧反饋控制機構/反饋控制與PWM調變器
326a‧‧‧R下降
326b‧‧‧加法器
326c‧‧‧運算放大器
326d‧‧‧PWM調變器
512‧‧‧輸出電壓漣波
514‧‧‧輸出電壓漣波
610‧‧‧電流
612‧‧‧電流
614‧‧‧電流波形
700‧‧‧供電系統
715‧‧‧主開關轉換器
716‧‧‧較慢開關請求器
718‧‧‧輔助開關轉換器
718a‧‧‧第一開關
718b‧‧‧第二開關
726‧‧‧第二反饋控制機構
726a‧‧‧R下降
726b‧‧‧加法器
726c‧‧‧運算放大器
726d‧‧‧PWM調變器
726e‧‧‧運算放大器
諸圖僅藉由舉例之方式而非藉由限制之方式描繪根據本發明教示之一或更多個實施方式。在圖式中,相同元件符號指示相同或相似元件。
第1圖圖示具有緩慢暫態響應的示例性供電系統;第2圖圖示具有快速暫態響應的示例性供電系統,此供電系統包括主開關轉換器及輔助開關轉換器; 第3圖圖示具有快速暫態響應的示例性供電系統,此供電系統包括具有第一反饋控制機構的主開關轉換器及具有第二且不同反饋控制機構的輔助開關轉換器;第4圖更詳細地圖示第3圖所示之第一反饋控制機構;第5圖針對25A之負載階躍將第1圖所示之供電系統之輸出電壓漣波與第3圖所示之供電系統之輸出電壓漣波相比較;第6圖圖示響應於25A負載階躍由第3圖所示之供電系統產生的示例性電流波形;以及第7圖圖示具有快速暫態響應的另一示例性供電系統,此供電系統包括具有第一反饋控制機構的主開關轉換器及具有第二且不同反饋控制機構的輔助開關轉換器。
在以下詳細描述中,藉由舉例之方式闡述眾多特定細節,以便提供相關教示之透徹理解。然而,對熟習此項技術者應顯而易見的是,可在無此類細節的情況下實施本發明教示。在其他情形中,已相對籠統地描述熟知方法、過程、組件及/或電路,而未詳述,以免不必要地模糊本發明教示之態樣。
第1圖圖示具有緩慢暫態響應的示例性供電系統100。供電系統100包括電源110、負載裝置112 及位於電源100與負載裝置112之間的電力介面裝置114。電源110經配置以輸出某一標準電壓。為此目的,電源110可為電插座。世界上的大部分單相交流電插座以210-240V或以100-120V供應電力。或者,電源110可包括其他類型電源,諸如例如蓄電池、太陽能光伏電池或交流發電機中的一或更多者。不管電源110之類型如何,電源110通常提供與負載裝置112的所需電壓不同的電壓。所提供電壓可比負載裝置112的所需電壓更高或更低。為匹配源電壓與負載電壓,供電系統100包括電力介面114。電力介面114經配置以使得電源110之電壓可與負載裝置112之電壓相容。
電力介面裝置114經配置以將電源110之電壓變為用於負載裝置112的適宜電壓。如上文所指出,負載裝置112的適宜電壓可比電源110之電壓更高或更低。在一個實施方式中,負載裝置112的適宜電壓比電源110之電壓更低。在一個特定範例中,電力介面裝置114經配置以將電源110之電壓自12伏特降低至用於負載裝置112的0.85伏特。自電力介面裝置114的輸出電流可為100A。
負載裝置112可包括電阻負載、磁性負載、電容負載、加熱器或其他電氣或電子裝置。大多數電子裝置需要1.5伏特與24伏特之間的DC。此等裝置可由蓄電池或者電力網任一者供電工作。在任一種情况中,電力介面裝置114可用於使此等電子裝置之電壓需求與自 電源110所提供的電壓相匹配。電力介面裝置114可位於負載裝置112內部或可位於負載裝置112外部。類似地,電力介面裝置114可位於電源110內部或可位於電源110外部。在另一實施方式中,電力介面裝置114可為獨立積體電路。
電力介面裝置114可包括變壓器、整流器或開關模式供電器。開關模式供電器已廣為分佈且比曾經通用的變壓器轉換器更小及更輕,並常常經設計以在100V與250V之間的任何電壓下由AC電力網供電工作。另外,由於開關模式供電器通常經整流以在DC電壓下操作,因此開關模式供電器最低程度地受到電力網頻率(50Hz對60Hz)的影響。上文描述假定電力介面裝置114包括開關模式供電器;然而,如上文所指出,電力介面裝置114可包括除開關模式供電器以外的電路。
如圖所示,電力介面裝置114包括四個單相開關調節器116,該單相開關調節器將電源110連接至負載裝置112。儘管特定範例圖示四個單相開關調節器,但電力介面裝置114可包括大於四個或小於四個單相開關調節器116。電力介面裝置114可經配置以在至少兩個操作模式下操作:高至中負載電流下的正常模式及低負載電流下的低功率模式。在正常模式中,所有四個開關調節器電路116可為接通,經由各別電感器將電流提供至負載裝置112,且每一相位可提供類似低頻電 流至負載裝置112。在低功率模式中,開關調節器電路116中的三個可為斷開而一個開關調節器電路116可為接通,提供電力介面裝置114之100%輸出電流。低功率模式可改善輕負載電流下電力介面裝置114的效率。這是因為低功率模式中處於接通的開關調節器電路116比正常模式中處於接通的開關調節器電路更少,且因此較低功率模式中的開關損耗更少。
單相開關調節器116可為包括電感器的電流模式開關調節器。單相開關調節器116可為同步開關調節器,但亦可為異步開關調節器。在一個特定範例中,單相開關調節器116可為降壓電流模式開關調節器,其中輸入電壓Vin大於輸出電壓Vout。為此目的,每一單相開關調節器116可包括第一開關116a、第二開關116b及電感器116c。第一開關116a及第二開關116b可為MOSFET開關。MOSFET開關可為n通道MOSFET或p通道MOSFET開關。
在單相開關調節器116之各者中,第一開關116a可在一端處連接至Vin並在另一端處連接至第一節點120;第二開關116b可在一端處連接至第一節點120並在另一端處連接至接地端子;且電感器116c可在一端處連接至第一節點120並在另一端處連接至輸出端子122。輸出端子122可連接至包括電阻器Rco及電容器Co的負載裝置112及負載電阻RL。
電力介面裝置114經配置以在調節電壓Vout下將輸出電流供應至負載裝置112。為此目的,單相開關調節器116之各者中的第一開關116a及第二開關116b由驅動器電路切換為接通及斷開。可驅動開關116a及116b相對於彼此失相,以將電流供應至耦接至輸出端子122的負載。儘管未圖示,但可將額外電路系統添加至電力介面114以在一個開關電晶體斷開時刻與另一開關電晶體接通時刻之間提供簡短空載時間或空白間隔。當開關116a為接通且開關116b為斷開時,電流自Vin穿過單相開關調節器116之各者中的電感器116c流動至輸出端子122。在此情境中,電感器電流116c隨時間推移之變化率可等於((Vin-Vout)/L)。當開關116a為斷開且開關116b為接通時,電流自接地穿過電感器116c流動至輸出端子122。在此情境中,電感器電流116c隨時間推移之變化率可等於(-Vout)/L。
在一個特定範例中,供電系統100可經配置以滿足以下標準:Vin=12V
Vout=0.85V,Iout_max=100A
△Vout=25%負載階躍下3%Vout
Fsw=500kHz
L=220nH(每相位)
Co=12*220uF(總計)
儘管未圖示,但驅動器電路可由反饋控制機構控制,該反饋控制機構經配置以設置峰電感器電流閾值。為此目的,當電感器電流超出電流閾值時,反饋控制機構經配置以發送訊號至驅動器電路以斷開第一開關116a及接通第二開關116b。隨後電流自接地穿過開關116b及電感器116c流動至輸出端子122。結果是,電感器116c中的電流遞減至電流閾值。
為提供較快暫態響應,供電系統100可不得不在較高頻率下執行其開關調節器116,從而導致效率下降,或者包括大輸出功率電容器,從而導致整個系統之複雜性、成本及尺寸增加。可需要供電電路儘可能輕且儘可能緊凑,同時亦儘可能長久且儘可能有效率地供電。
負載裝置可具有不同功率需求。此本質上意謂供電系統可不得不儘可能有效率地執行以减小尺寸且减小輸入功率,以便節能並增加效率。因此,在一個實施方式中,可實施供電系統,其中調節器116中的僅一者響應於暫態電流之較高頻率分量在較高頻率下執行而剩餘調節器116執行較低頻率,而不是全部在較高頻率下執行調節器116來提供對暫態狀態的快速響應或者將功率電容器添加至輸出端。
為此目的,供電系統可包括彼此並聯執行的主開關轉換器及輔助開關轉換器。主開關轉換器可在正常開關頻率下執行且因此具有高效率而不具有高暫態效 能。輔助開關轉換器可在比主開關轉換器快得多的開關頻率下執行。因此,輔助開關轉換器與主開關轉換器相比可具有較高開關損耗但具有較佳暫態效能。因此,可不使用輔助開關轉換器來向負載裝置提供主低頻功率。實情為,輔助開關轉換器可僅用於處理暫態狀態以在負載電流驟增或驟減時降低或提供額外電流。
第2圖圖示具有快速暫態響應的示例性供電系統200,此供電系統包括主開關轉換器及輔助開關轉換器。供電系統200包括電源210、負載裝置212及耦接至電源210及負載裝置212的電力介面裝置214。電源210及負載裝置212類似於電源110及負載裝置112,且因此為了簡便起見不再贅述。
電力介面裝置214包括主開關轉換器216及輔助開關轉換器218。主開關轉換器215包括四個單相開關調節器216。四個訊號相位開關調節器216類似於四個單相開關調節器116。四個單相開關調節器216彼此並聯連接。
單相開關調節器216之各者可包括第一開關216a、第二開關216b及電感器216c。第一開關216a及第二開關216b可為MOSFET開關。MOSFET開關可為n通道MOSFET或p通道MOSFET開關。第一開關216a可在一端處連接至Vin並在另一端處連接至第一節點220;第二開關216b可在一端處連接至第一節點220並在另一端處連接至接地端子;且電感器216c可在 一端處連接至第一節點220並在另一端處連接至輸出端子222。可將輸出端子222連接至輸出電容器Co及負載電阻RL
將輔助開關轉換器218與主開關轉換器216並聯連接。輔助開關轉換器218可包括第一開關218a、第二開關218b及電感器218c。第一開關218a及第二開關218b可為MOSFET開關。MOSFET開關可為n通道MOSFET或p通道MOSFET開關。第一開關218a可在一端處連接至Vin並在另一端處連接至第一節點230;第二開關218b可在一端處連接至第一節點230並在另一端處連接至接地端子;且電感器218c可在一端處連接至第一節點230並在另一端處連接至輸出端子222。
電力介面裝置214經配置以在調節電壓Vout下將輸出電流供應至耦接至輸出端子222的負載。為此目的,單相開關調節器216中的第一開關216a及第二開關216b之各者由第一驅動器電路切換為接通及斷開。可驅動開關216a及216b相對於彼此失相,以將電流供應至耦接至輸出端子222的負載。類似地,單相開關調節器218中的第一開關218a及第二開關218b由第二驅動器電路切換為接通及斷開。可驅動開關218a及218b相對於彼此失相,以將電流供應至耦接至輸出端子222的負載。開關216a及216b可經配置以在第一開關頻率下執行。開關218a及218b可經配置以在第二開關頻率下執行。
第二開關頻率可為與第一開關頻率相比的較快開關頻率(faster switching frequency;fsw)。為此目的,輔助開關轉換器218具有與主開關轉換器215相比的較高頻寬及與主開關轉換器215相比的對負載裝置212處暫態之較快暫態響應。由於輔助開關轉換器218具有比主開關轉換器215更高或更快的開關頻率,該輔助開關轉換器自然具有更大功率損耗。因此,輔助開關轉換器218可經配置以僅在暫態狀態期間對輸出端執行提供或降低電流且對暫態之較高頻率分量響應。第一開關頻率及第二開關頻率可對應於預定固定頻率。
為了增加效率,電力介面裝置214可經配置以控制輔助開關轉換器218來在暫態期間提供較高頻率電流,而不是在其他時間提供電流。相比之下,電力介面裝置214可經配置以控制主開關轉換器216來在暫態期間及在穩態操作期間提供較低頻率電流。為了啟用此控制,供電介面裝置214可包括兩個獨立控制反饋機構。第一控制反饋機構經配置以基於所感測輸出電壓或電流輸出控制主開關轉換器216。第二控制反饋機構經配置以基於所感測輸出電壓或電流輸出控制輔助開關轉換器218。為使得輔助開關轉換器218能够僅在暫態期間提供或降低較高頻率電流,第二控制機構可經配置以偵測暫態,產生相應暫態訊號,使暫態訊號之較高頻率分量與較低頻率分量分離,及僅響應於暫態訊號之較高 頻率分量執行輔助開關轉換器218。由於暫態訊號之較高頻率分量僅存在於暫態期間,輔助開關轉換器218可僅在暫態期間提供或降低較高頻率電流,而不在穩態操作期間提供或降低。在穩態操作期間,較高頻率電流可不存在且平均較低頻率(或DC)電流可為零。
暫態可包括一種情境,其中在負載電流或電壓中存在驟增或驟減。為說明一個範例,在輸出端處的25A電流負載階躍期間,暫態可對應於負載階躍之開始,其中在達到25A之增加位準處的第一穩態位準之前,負載電流存在驟增。類似地,暫態可對應於負載階躍之結束,在達到第二穩定位準之前,負載電流存在驟減。第二穩態可對應於25A電流負載階躍之前的一個狀態或比25A電流負載階躍之前的狀態更高或更低的新狀態。
在一個實施方式中,為使暫態訊號之較高頻率分量與較低頻率分量彼此分離,可使用濾波網路。此實施方式已在同時提出申請之標題為「FAST TRANSIENT POWER SUPPLY WITH A SEPERATED HIGH FREQUENCY AND LOW FREQUENCY PATH SIGNALS」之相關申請案中加以描述,上述申請案之內容以引用之方式併入。在另一實施方式中,為使暫態訊號之較高頻率分量與較低頻率分量彼此分離,可使用下降控制機構。
在下降控制機構中,類似於濾波網路,可使輔助開關轉換器的控制反饋迴路與主開關轉換器的控制反饋迴路分離。輔助開關轉換器的控制反饋迴路可包括Vout主動下降電阻(主動電壓定位(active voltage positioning;AVP)以防止暫態訊號之較低頻率分量自輸出端進入輔助開關轉換器。此可使得輔助開關轉換器能夠僅在暫態期間提供或降低較高頻率電流,而不在穩態操作期間提供或降低。此可導致主開關轉換器在穩態下提供高效率功率,同時輔助開關轉換器提供高暫態響應。在一個實施方式中,亦可防止暫態訊號之較高頻率分量自輸出端進入主開關轉換器。在另一實施方式中,主開關轉換器可接收暫態訊號之較高頻率分量及較低頻率分量兩者。
AVP可指示在取决於負載電流的點處設置供電輸出電壓。在最小負載下,可將輸出電壓設置為比標稱位準略高。在全負載下,可將輸出電壓設置為比標稱位準略低。實際上,可劣化DC負載調節,但可明顯改善負載暫態電壓偏差及暫態響應。為了實施AVP,可需要感測負載電流或電感器電流的方法。此可隨後轉換成電壓並用於在正確方向上移動輸出電壓。引發輸出電壓隨負載電流下降的最簡單方式是對輸出端添加一些電阻。為此目的,AVP路系統包括電阻器。電阻器經配置以使Vout下降達電阻器之電阻乘以負載電流的量值。此導致在暫態開始後不久使電感器之電流迅速歸零。
第3圖圖示具有快速暫態響應的示例性供電系統300,此供電系統包括具有第一反饋控制機構324的主開關轉換器315及具有第二且不同反饋控制機構326的輔助開關轉換器318。供電系統300類似於供電系統200且包括五個單相開關調節器。為了簡便起見,下文僅描述關於系統200時未描述的組件。
供電系統300包括兩個反饋控制與PWM調變器機構324及326。反饋控制與PWM調變器324在一端處連接至輸出端子322並在另一端處連接至單相開關調節器316之各者中的開關316a及316b。反饋控制與PWM調變器324經配置以偵測暫態狀態並控制開關316a及316b以儘可能快地提供穩定Vout。反饋控制與PWM調變器324輸出反映暫態電流量的暫態訊號並將此暫態訊號與調節器316之各者中所感測之電感器電流訊號相比較。若暫態訊號(例如,暫態訊號ITH)小於所感測電感器電流訊號,反饋控制與PWM調變器324設置新峰電感器電流閾值並輸出第一PWM訊號(例如,控制訊號)以滿足新峰電感器電流閾值。類似地,若暫態訊號(例如,暫態訊號ITH)大於所感測電感器電流訊號,反饋控制與PWM調變器324設置新峰電感器電流閾值並輸出第二PWM訊號(例如,控制訊號)以滿足新峰電感器電流閾值。
在所感測電感器電流小於暫態訊號ITH的情境中,反饋控制與PWM調變器324經配置以發送控制訊 號至開關調節器316中的一或更多者以接通第一開關316a並斷開第二開關316b。控制訊號可為第一PWM訊號,第一PWM訊號經配置以使得主開關調節器316能夠隨著增加的負載電流而提供額外電流至輸出。第一PWM訊號可為高頻訊號(high signal)。第一PWM訊號可直接用於接通第一開關316a且可經反轉以斷開第二開關316b。在時脈週期開始時,第一開關316a可接通並保持接通,直至達到歸因於暫態之新電流閾值。第二開關316b可斷開並保持斷開。可以先斷後合(break-before-make)方式在禁用第二開關316b後啟用第一開關316a。此避免了在將Vin直接連接至地面情況下的擊穿(shoot through)。
在第一開關316a接通的時間期間,低頻電流自電源Vin流動穿過第一開關316a及電感器316c至輸出端子322。結果是,電感器316c中的電流朝向新電流閾值遞增。以此方式,開關調節器316提供追蹤暫態訊號ITH的低頻電流以達到由暫態設置之新電流閾值。在一個實施方式中,在暫態期間,第一開關316a可保持接通且第二開關316b可保持斷開,直至達到由暫態設置之新電流閾值。為此目的,舉例而言,若第一開關316a的接通時間比循環時間T更長,可在暫態期間不維持開關316a、316b之固定開關頻率。
在一個實施方式中,反饋控制與PWM調變器324可啟動調節器316中的僅一者以提供必要電流至輸 出。在另一實施方式中,反饋控制與PWM調變器324可啟動一個以上但並非全部調節器316以提供必要電流至輸出。在又一實施方式中,反饋控制與PWM調變器324可啟動全部調節器316以提供必要電流至輸出。
當電感器電流超出電流閾值或輸出電壓超出所需輸出電壓時,反饋控制與PWM調變器324經配置以發送控制訊號至開關調節器316中的一或更多者以斷開第一開關316a並接通第二開關316b。控制訊號可為低頻訊號(low signal),該低頻訊號經配置以使得主開關調節器316能夠在負載電流減小時自輸出端降低電流。響應於低頻訊號,在時脈週期開始時,第一開關316a可斷開而第二開關316b可接通,直至達到由暫態設置之新電流閾值。可以先斷後合方式在禁用第一開關316a後啟用第二開關316b。此避免了在將Vin直接連接至地面情況下的擊穿。
在第二開關316b之接通時間期間,電感器316c中的電流朝向新電流閾值遞减。以此方式,主開關調節器316降低追蹤暫態訊號的低頻電流以達到新電流閾值。在一個實施方式中,在暫態期間,第一開關316a可保持斷開且第二開關316b可保持接通,直至達到由暫態設置之新電流閾值。為此目的,舉例而言,若第一開關316b的接通時間比循環時間T更長,可在暫態期間不維持開關316a、316b之固定開關頻率。
一旦暫態結束(例如,達到新電流閾值),主開關調節器316繼續提供及/或降低電流以根據固定開關頻率及工作循環維持Vout之穩定性。工作循環可基於輸出電壓與輸入電壓之比率决定且可經設置以維持開關316a、316b之固定頻率。基於工作循環決定開關316a、316b之接通時間及斷開時間。在一個特定範例中,工作循環可對應於暫態之前設置的工作循環。為此目的,開關調節器316經配置以在暫態與穩態操作兩者期間提供及/或降低電流。
在一個實施方式中,開關調節器316可為峰電流模式調節器。在此類型調節器中,藉由內部時鐘或計時器首先可斷開低側開關316b並隨後可接通高側開關316a,從而增加電感器316c之電流。在另一實施方式中,開關調節器316可為谷電流模式調節器。在此類型調節器中,藉由內部時鐘或計時器首先斷開高側開關316a並隨後接通低側開關316b,從而減小電感器316c之電流。在又一實施方式中,開關調節器316中的一些可為峰電流模式調節器而一些可為谷電流模式調節器。類似地,開關調節器318可為峰電流模式調節器或者谷電流模式調節器任一者。
反饋控制與PWM調變器326在一端處連接至輸出端子322並在另一端處連接至單相開關調節器318中的開關318a及318b。類似於反饋控制與PWM調變器324,反饋控制與PWM調變器326經配置以偵測暫 態並控制開關318a及318b來儘快提供穩定Vout。為此目的,反饋控制與PWM調變器326包括R下降326a、加法器326b、運算放大器326c及PWM調變器326d。
R下降326a經配置以防止暫態訊號ITH之低頻率分量進入輔助開關轉換器318。R下降326a在一端處連接至電感器318c並在另一端處連接至加法器326b。使用R下降326a,反饋控制與PWM調變器326可感測電感器318c電流iLX並計算跨R下降326a的電壓(V下降=iLX*R下降)。使用加法器326b將V下降加至輸出電壓Vout並對放大器326c之反相端子輸入加法器326b之輸出。對放大器326c之非反相端子輸入Vref。放大器326c可為電流輸出類型跨導放大器或者電壓輸出類型放大器中任一者。
誤差放大器326c監控加法器326b之輸出電壓,此輸出電壓應約等於參考電壓Vref。當此等兩個電壓不相等或實質上相等時,放大器326c在輸出端處提供誤差。誤差訊號可對應於暫態訊號ITH之較高頻率分量。此可因為R下降326a之添加。R下降326a可使得反饋控制與PWM調變器326能夠僅吸收暫態訊號ITH之較高頻率分量。
將誤差訊號以及所感測電感器318c電流施加至PWM調變器326d。在一個特定範例中,PWM調變器326d包括比較器。可將誤差訊號施加至比較器之非反相端子且可將所感測電感器318c電流施加至比較器之 反相端子。基於所感測電感器電流與暫態訊號ITH之較高頻率分量之間的差異,PWM調變器326d可發出控制訊號以使得輔助開關轉換器318能夠追蹤暫態訊號ITH之較高頻率分量。
若負載電流存在驟增,輸出電壓下降。此下降被反饋控制與PWM調變器326感測到及產生相應誤差訊號。誤差訊號對應於暫態訊號ITH之較高頻率分量。PWM調變器326d接收誤差訊號以及所感測高頻電感器318c電流。PWM調變器326d比較兩個訊號及基於兩者差異發出第一控制訊號或者第二控制訊號。
若暫態訊號ITH之較高頻率分量大於所感測電感器318c電流訊號,PWM調變器326d可輸出第一控制訊號至輔助開關轉換器318。與先前範例保持一致,第一控制訊號可為高訊號以接通高開關318a並斷開低開關318b。此使得輔助開關轉換器318能夠在負載電流增加時提供額外電流至輸出端子322。第一控制訊號可直接用於控制第一開關318a且可經反轉以控制第二開關318b。響應於第一控制訊號及在時脈周期開始時,第一開關318a可接通並保持接通,直至達到由暫態設置之新電流閾值。第二開關318b可保持斷開。可以先斷後合方式在禁用第二開關318b後啟用第一開關318a。此避免了不熄弧,其中將Vin直接連接至接地。
在第一開關318a接通時間期間,高頻電流自電源Vin流動穿過第一開關318a及電感器318c至輸出 端子322。結果是,電感器318c中的電流朝向新電流閾值遞增。以此方式,輔助開關轉換器318提供追蹤暫態訊號ITH之較高頻率分量的高頻電流以達到新電流閾值。所提供之高頻電流可短暫存在,且可僅在暫態期間存在而在穩態操作期間不存在。在穩態操作期間,輔助開關轉換器318可提供零電流至負載。
若暫態訊號ITH之較高頻率分量小於所感測高頻電感器318c電流訊號,PWM調變器326d可輸出第二控制訊號。第二控制訊號為低訊號,低訊號經配置以斷開第一開關318a及接通第二開關318b。響應於第二控制訊號,在時脈周期開始時,第一開關318a可斷開及第二開關318b可接通。可以先斷後合方式在禁用第一開關318a後啟用第二開關318b。此避免了不熄弧,其中將Vin直接連接至接地。
第二開關318b可保持接通,直至達到由暫態設置之新電流閾值。在第一開關318a之斷開時間及第二開關318b之接通時間期間,電感器318c中的電流朝向新電流閾值遞减。以此方式,輔助開關轉換器318降低追蹤暫態訊號ITH之較高頻率分量的高頻電流以達到新電流閾值。在一個實施方式中,在暫態期間,第一開關318a可保持斷開而第二開關318b可保持接通,直至達到由暫態設置之新電流閾值。為此目的,舉例而言,若開關318b的接通時間比循環時間T更長,在暫態期間可不維持開關318a、318b之固定開關頻率。
在加上R下降326a的情況下,較高頻率下對應於輔助開關轉換器318的通道之阻抗可小於對應於主開關轉換器316的通道之阻抗。因此,在暫態期間,其中負載電流存在驟增或驟減,暫態訊號ITH之較高頻率分量可由通道開關轉換器318吸收。暫態訊號ITH之較低頻率分量可由對應於主開關轉換器316的通道吸收,因為在較低頻率下此通道具有比對應於輔助開關轉換器318的通道更低的阻抗。
為進一步說明,在較低頻率下,對應於輔助開關轉換器318的通道之阻抗可對應於R下降之阻抗。在較高頻率下,輔助開關轉換器318之阻抗遵循電容器Cout之阻抗。相比之下,較低頻率下對應於主開關轉換器316的通道之阻抗可低於對應於輔助開關轉換器318的通道之阻抗。在較高頻率下,對應於主開關轉換器316的通道之阻抗可高於輔助開關轉換器通道318之阻抗。為此目的,輔助開關轉換器通道318可吸收暫態訊號ITH之較高頻率分量。
以此方式,輔助開關轉換器318可僅在暫態期間及響應於暫態訊號之較高頻率分量提供或降低電流且可在其他時間處不提供或降低電流。舉例而言,在穩態期間,來自輔助開關轉換器318的源電流可具有零平均值。一旦暫態訊號之較高頻率分量逐漸消失,輔助開關轉換器318可不提供額外電流至輸出來維持供電系統300的高效率。亦即,輔助開關轉換器318可僅響應於 暫態且可產生僅追蹤暫態訊號ITH之較高頻率分量的電流波形。如上文所指出,暫態可對應於與電流負載階躍之邊緣關聯的電流負載階躍之開始部分及結束部分。
主開關轉換器316可在暫態期間及在暫態之外的穩態操作期間操作。在暫態期間,主開關轉換器316可對暫態訊號ITH之較高頻率分量及較低頻率分量兩者響應。或者,主開關轉換器316可僅響應暫態訊號ITH之較低頻率分量而不響應暫態訊號ITH之較高頻率分量。在一個特定範例中,對應於主開關轉換器316的反饋控制與PWM調變器324可包括低通濾波器,該低通濾波器用於僅通過暫態訊號ITH之較低頻率分量以使得轉換器316能夠僅產生低頻電流波形。在另一實施方式中,反饋控制與PWM調變器324可經配置以提供暫態訊號ITH,其中較高頻率分量衰減及從而不明顯減小主開關轉換器316之效率。
第4圖更詳細地圖示第3圖所示之示例性反饋控制與PWM調變器324。反饋控制與PWM調變器324經配置以提供脈衝寬度調變法來控制第3圖所示之主開關轉換器316之暫態及穩態輸出。在一個特定範例中,藉由改變主開關轉換器316之工作循環實現此效果。亦可使用其他控制方法代替脈衝寬度調變法或同時使用兩者。此PWM方法感測輸出電壓並將輸出電壓與參考電壓相比較以產生小誤差訊號。此誤差訊號隨後與另一參考訊號相比較。參考訊號可為斜坡訊號。比較器比 較兩個訊號及發出操作主開關轉換器316的脈衝寬度訊號。若輸出電壓改變,誤差訊號亦改變且輸出脈衝寬度隨之改變。因此,取决於輸出之增加或减小,輸出脈衝寬度之工作循環增加或者减小以移動輸出電壓及减小誤差訊號至零。
反饋控制與PWM調變器324在一端處連接至輸出端子322並在另一端處連接至開關316a及316b以便驅動開關316a及316b。反饋控制與PWM調變器324經配置以偵測暫態並控制開關316a及316b以儘快提供穩定Vout。為此目的,反饋控制與PWM調變器324包括電阻器R1與R2、電容器C1、C2、放大器324a及頻率補償電路620b。
經由包括R1、R2、C1及C2的網路感測Vout。R1與R2形成電阻分壓器且按比例縮放訊號Vout以使得Vout與Vref成比例。提供電容器C1與C2以使得分壓器依賴頻率。此依賴頻率型分壓Vout可稱為反饋電壓Vfb。對誤差放大器gm(圖示為跨導(gm)放大器)324a輸入反饋電壓Vfb及參考電壓Vref。誤差放大器324a可為電流輸出類型跨導放大器或者電壓輸出類型放大器任一者。
誤差放大器324a監控反饋電壓Vfb,該Vfb在其反相輸入端處與Vout成比例。反饋電壓Vfb應約等於參考電壓Vref。當此等兩個電壓不相等時,放大器324a在輸出處提供暫態訊號ITH(小誤差訊號)。放大 器324a之暫態訊號ITH可對應於實際輸出電壓與所需輸出電壓之間的差異。將放大器324a之暫態訊號ITH饋送至補償網路324b。補償網路324b包括電阻器R3及電容器C3與C4。電阻器R3及電容器C3經串聯連接且在一端處連接至放大器324a之輸出端子並在另一端處連接至接地。將電阻器R3及電容器C3與電容器C4並聯連接。
對PWM 324c之非反相端子輸入補償暫態訊號。PWM 324c之反相端子自調節器316接收所感測電感器電流訊號。可經由與電感器316c串聯連接的電阻器識別所感測電感器電流。基於所感測電感器電流與補償暫態訊號ITH之間的差異,比較器發出控制訊號至調節器316以追蹤暫態狀態。
在所感測電感器電流小於暫態訊號ITH的情境中,PWM 324c經配置以發送控制訊號至調節器316以接通第一開關316a並斷開第二開關316b。控制訊號可為第一脈衝寬度訊號,該第一脈衝寬度訊號經配置以使得主開關調節器316能夠在負載電流增加時提供額外電流至輸出。第一PWM訊號可為高頻訊號。在時脈週期開始時,第一開關316a可接通並保持接通,直至達到歸因於暫態之新電流閾值。在第一開關316a接通時間期間,低頻電流自電源Vin流動穿過第一開關316a及電感器316c至輸出端子322。結果是,電感器316c中的電流朝向新的電流閾值遞增。以此方式,主開關調節器316 提供追蹤暫態訊號ITH的低頻電流以達到由暫態設置之新電流閾值。
當電感器電流超出電流閾值或輸出電壓超出所需輸出電壓時,PWM 324c經配置以發送控制訊號至調節器316以斷開第一開關316a並接通第二開關316b。控制訊號可為低頻訊號,該低頻訊號經配置以使得主開關調節器316能夠在負載電流减小時自輸出端降低電流。響應於低頻訊號,在時脈週期開始時,第一開關316a可斷開而第二開關316b可接通,直至達到由暫態設置之新電流閾值。在第二開關316b之接通時間期間,電感器316c中的電流朝向新電流閾值遞减。以此方式,主開關調節器316降低追蹤暫態訊號的低頻電流以達到由暫態設置之新電流閾值。
一旦暫態結束(例如,達到新電流閾值),主開關調節器316繼續提供及/或降低電流以根據固定開關頻率及工作循環維持Vout之穩定性。工作循環可基於輸出電壓與輸入電壓之比率决定且可經設置以維持開關316a、316b之固定頻率。基於工作循環決定開關316a、316b之接通時間及斷開時間。在一個特定範例中,工作循環可對應於暫態之前設置的工作循環。為此目的,主開關調節器316經配置以在暫態與穩態操作兩者期間提供及/或降低電流。
如上文所指出,反饋控制與PWM調變器324可經修改以包括低通濾波器。低通濾波器可經置放在補 償電路與PWM 324c之間且可經配置以僅允許主開關轉換器315中的暫態訊號ITH之較低頻率分量。
第5圖針對25A之負載階躍將第1圖所示之供電系統100之輸出電壓漣波與第3圖所示之供電系統300之輸出電壓漣波相比較。如圖所示,響應於25A之負載階躍的供電系統100之輸出電壓漣波512明顯大於響應於相同負載階躍的輸出電壓漣波514。在一個範例中,系統300中的漣波可比系統100中的漣波小約70%。在另一範例中,系統300中的漣波可比系統100中的漣波小約50%。此無需複雜控制方法或將額外AC電容器用於輸出端介於輸出端子與輔助開關轉換器的控制迴路之間便可完成。AC電容器經配置以防止DC或低頻電流進入輔助開關轉換器的控制迴路。AC電容器可增加供電系統之成本及尺寸。實情為,關於第3圖所描述之本申請案之供電系統防止DC或低頻電流經由網路進入輔助開關轉換器,此網路包括R下降電阻器、加法器及運算放大器。
第6圖圖示響應於25A負載階躍由第3圖所示之供電系統300產生的示例性電流波形。電流波形610圖示在暫態期間穿過電感器318c的電流。電流波形612圖示穿過主開關調節器316之各者中的電感器316c的電流。電流波形614圖示流動穿過電感器L1-L4的累積電流。
如圖所示,在暫態期間,當負載突然比先前汲取較多電流時,穿過電感器318c的電流610迅速遞增,而穿過主開關轉換器316之電感器316c的電流612緩慢遞增以響應暫態。由於本申請案之主動下降控制方法,在暫態後,穿過電感器318c的電流610歸零。特定而言,由於本申請案之主動下降控制方法,電流610經配置以追蹤暫態訊號ITH之較高頻率分量且因此一旦暫態結束且輸出電流達到穩態(在此情况中25A之高能態)便歸零。相比之下,電流612不追蹤暫態訊號ITH之較高頻率分量且響應於暫態設置的新電流閾值緩慢升高。一旦暫態結束,主開關轉換器繼續提供或降低電流以維持負載處的穩態狀態。舉例而言,一旦達到穩態狀態,主開關轉換器之工作循環可在負載電流的驟增或驟降之前返回至原始工作循環。
在暫態期間,當負載突然比先前汲取較少電流時,穿過電感器318c的電流610迅速遞減,而穿過主開關轉換器316之電感器316c的電流612緩慢遞減以響應暫態。由於AVP方法,在暫態結束後不久,穿過電感器318c的電流610歸零。結果是,穿過電感器L1-L4及Lx的累積電流產生快速且有效率的暫態響應,而無需額外輸出電容器來防止低頻電流進入輔助開關轉換器。
第7圖圖示具有快速暫態響應的另一示例性供電系統700,此供電系統包括具有第一反饋控制機構的主開關轉換器715及具有第二且不同反饋控制機構的 輔助開關轉換器718。第一反饋控制機構包括第一參考電壓及第二反饋控制機構包括第二參考電壓。第二參考電壓可與第一參考電壓不同;另外,第一反饋控制機構可與第3圖所示且第4圖更詳細描述之反饋控制機構324相同。第二反饋控制機構可與第3圖所示之反饋控制機構326相同。亦即,用於較慢開關請求器716的控制迴路可具有第一參考電壓而用於較快輔助開關調節器718的控制迴路可具有第二參考電壓。在此實施方式中,電壓反饋增益可因分量變化而不同。此等因素可造成輔助開關轉換器718中的非零低頻電流(DC電流)。因此,如圖所示,可添加額外伺服迴路以减小或消除輔助開關轉換器718中的低頻電流。
為此目的,第二反饋控制機構726包括R下降726a、加法器726b、運算放大器726c、PWM調變器726d及運算放大器726e。R下降726a經配置以防止暫態訊號ITH之低頻率分量進入輔助開關轉換器718。R下降726a在一端處連接至電感器Lx(或至輸出端子)並在另一端處連接至加法器726b。使用R下降726a,第二反饋控制機構726可感測電感器電流iLX並計算跨R下降726a的電壓(V下降=iLX*R下降)。使用加法器726b將V下降加至輸出電壓Vout並對放大器726c之反相端子輸入加法器726b之輸出。對放大器726c之非反相端子輸入第二參考電壓Vref2。放大器726c可為電流輸出類型跨導放大器或者電壓輸出類型放大器任一者。
放大器726c亦經配置以在其反相輸入端處接收放大器726e之輸出。放大器726e經配置以在其反相輸入端處接收平均高頻電感器Lx電流並在其非反相輸入端處接收參考電流。參考電流可為零平均低頻電流。當平均高頻電感器Lx電流實質上不等於零平均參考電流時,放大器726e產生第一誤差訊號。將第一誤差訊號提供至誤差放大器726c。放大器726c使用加法器726b之輸出、第二參考電壓Vref2及第一誤差訊號以產生第二誤差訊號。特定而言,放大器726c可將第一誤差訊號加至第二參考電壓及自加法器電路726b之輸出减去所得訊號以輸出第二誤差訊號。第二誤差訊號可對應於暫態訊號ITH之較高頻率分量。
將暫態訊號ITH之較高頻率分量以及所感測電感器Lx電流施加至PWM調變器726d。在一個特定範例中,PWM調變器726d包括比較器。可將暫態訊號ITH之較高頻率分量施加至比較器之非反相端子且可將所感測電感器Lx電流施加至比較器之反相端子。基於所感測電感器718c電流與暫態訊號ITH之較高頻率分量之間的差異,PWM調變器726d可發出脈衝寬度訊號以追蹤暫態訊號之較高頻率分量。脈衝寬度訊號可為高頻訊號或者低頻訊號任一者。高頻訊號接通第一開關718a並斷開第二開關718b。低頻訊號斷開第一開關718a並接通第二開關718b。
若暫態訊號ITH之較高頻率分量大於所感測高頻電感器718c電流訊號,則PWM調變器726d發出高頻訊號至輔助開關轉換器718以接通第一開關718a並斷開第二開關718b。當第一開關718a接通時,高頻電流自電源Vin流動穿過第一開關718a至電感器718c,從而增加電感器718c電流。高頻電流追蹤暫態訊號ITH之較高頻率分量且僅在暫態期間存在。
若暫態訊號ITH之較高頻率分量小於所感測高頻電感器718c電流訊號,則PWM調變器726d可輸出低頻訊號至輔助開關轉換器718以斷開第一開關718a並接通第二開關718b。當第一開關718a斷開而第二開關718b接通時,高頻電流自輸出端子流動穿過電感器718c及第二開關718b至接地,從而增加電感器718c電流。高頻電流追蹤暫態訊號之較高頻率分量且僅在暫態期間存在。
如上文所指出,在輔助開關轉換器718中存在零DC電流。因此,輔助開關轉換器718可僅用於處理暫態以在負載電流有驟增或驟降(例如,在負載階躍開始及結束時)時降低或提供額外電流。為此目的,一旦暫態訊號ITH之較高頻率分量逐漸消失,輔助開關轉換器718可對輸出端子不降低或提供額外電流。在此情境中提供至輸出端子的平均電流可為零。亦即,輔助開關轉換器718可僅對與電流負載階躍之邊緣關聯的暫態之開始部分及結束部分響應。
在一個特定範例中,Vin可為8V,Vout可為1V,電流負載階躍可為25A,主開關轉換器之開關頻率可為280kHz,輔助開關轉換器之開關頻率可為2.25MHz,R下降可為5mΩ,主開關轉換器中的電感器之電感可為6.8μH,輔助開關轉換器中的電感器之電感可為100nH,且Cout可為100μF。在另一特定範例中,Vin可為8V,Vout可為1V,電流負載階躍可為25A,主開關轉換器之開關頻率可為280kHz,輔助開關轉換器之開關頻率可為2.25MHz,R下降可為5mΩ,主開關轉換器中的電感器之電感可為6.8μH,輔助開關轉換器中的電感器之電感可為680nH,且Cout可為100μF。
在一個實施方式中,可在兩個獨立積體電路中提供主開關轉換器及輔助開關轉換器以及其各別控制機構。在另一實施方式中,可在單個積體電路中提供主開關轉換器及輔助開關轉換器以及其各別控制機構。在另一實施方式中,可在單個積體電路中提供主開關轉換器及輔助開關轉換器以及可在獨立積體電路中提供其各別控制機構。在又一實施方式中,可在單個積體電路上提供用於主開關轉換器及輔助開關轉換器兩者的開關以及用於開關的控制機構,且可將電感器安置在單個積體電路外部。在又一實施方式中,可在單個積體電路上提供用於主開關轉換器及輔助開關轉換器兩者的開關,且可將控制機構及電感器安置在單個積體電路外部。
儘管上文已描述視為最佳模式的範例及/或其他範例,但應理解,可在文中實行各種修改,且可在各種形式及範例中實施本文所揭示之標的,且可在衆多應用中應用教示,本文僅描述了此等教示中的一些。以下申請專利範圍意欲主張任何及所有應用、修改及變化,上述應用、修改及變化屬於本發明教示之真實範疇內。
除非另有陳述,否則在本說明書中所闡述且隨後申請專利範圍中所包括的所有量測、值、額定值、位置、量值、尺寸及其他規格為近似值,而非精確值。此等規格意欲具有合理範圍,此合理範圍符合規格相關的功能及符合所屬技術領域中的習知情况。
保護範疇僅受到現遵循之申請專利範圍的限制。當鑒於本說明書及下述申請史解讀時,彼範疇意欲且應被解讀為符合申請專利範圍中所使用語言之普通含義的寬泛性且包含所有結構及功能等效物。儘管如此,申請專利範圍皆不意欲包含未滿足專利法第101章、第102章或第103章之要求的標的,亦不應以此方式加以解讀。由此放弃主張此標的之任何非意欲包含物。
除了上文剛剛所陳述的以外,不存在已陳述或說明的意欲或應被解讀為引發任何組件、步驟、特徵、物件、益處、優勢或等效物對公衆的貢獻,與申請專利範圍中是否叙述無關。
應理解,除了本文已另外闡述特定含義之外,本文所用術語及表達具有符合關於調查及研究之相應各別區域的此類術語及表達的普通含義。諸如第一及第二等關係術語可僅用於使一個實體或動作與另一實體或動作區別,並非必需或暗示此類實體或動作之間的任何實際此種關係或次序。術語「包含(comprises/comprising)」或任何其他變型意欲覆蓋非排他性包含物,以使得包含一列元件的製程、方法、製品或設備不僅包括彼等元件,而且可包括並未明確列出或對於此製程、方法、製品或設備固有的其他元件。前置有「一(a/an)」且無進一步限制的元件排除了包含此元件的製程、方法、製品或設備中的額外相同元件之存在。
提供本發明之【摘要】以允許讀者迅速確定本技術發明之本質。提交此【摘要】之前提為,摘要將並不用於解釋或限制申請專利範圍之範疇或含義。另外,在上文【實施方式】中,可看出在各範例中將各特徵集合在一起以便使本發明連成整體。本揭示方法並不解讀為反映出申請專利範圍需要比每一請求項中明確叙述的更多的特徵之意圖。確切而言,如以下申請專利範圍反映的,本發明標的處於單個所揭示範例之不到全部特徵中。因此,以下申請專利範圍由此併入【實施方式】中,其中每一請求項獨立代表自身所主張之標的。
200‧‧‧供電系統
210‧‧‧電源
212‧‧‧負載裝置
214‧‧‧電力介面裝置
215‧‧‧主開關轉換器
216‧‧‧單相開關調節器
216a‧‧‧第一開關
216b‧‧‧第二開關
216c‧‧‧電感器
218‧‧‧輔助開關轉換器
218a‧‧‧第一開關
218b‧‧‧第二開關
220‧‧‧第一節點
222‧‧‧輸出端子
230‧‧‧第一節點

Claims (20)

  1. 一種電力介面裝置,包含:一主開關轉換器,經配置以在一輸入端子處接收一第一電壓並在一輸出端子處輸出一第二且不同電壓,該主開關轉換器包括一第一主開關、一第二主開關及一主電感器,其中該第一主關關在一端處耦接至該輸入端子並在另一端處耦接至一主節點,該第二主開關在一端處耦接至該主節點並在另一端處耦接至一接地端子,該主電感器在一端處耦接至該主節點並在另一端處耦接至該輸出端子;一輔助開關轉換器,與該主開關轉換器並聯耦接且經配置以在該輸入端子處接收該第一電壓並在該輸出端子處輸出該第二電壓,該輔助開關轉換器包括一第一輔助開關、一第二輔助開關及一輔助電感器,其中該第一輔助開關在一端處耦接至該輸入端子並在另一端處耦接至一輔助節點,該第二輔助開關在一端處耦接至該輔助節點並在另一端處耦接至一接地端子,該輔助電感器在一端處耦接至該輔助節點並在另一端處耦接至該輸出端子;以及一輔助控制迴路電路,該輔助控制迴路電路在一端處耦接至該輸出端子並在另一端處耦接至該輔助開關轉換器,該輔助控制迴路電路經配置以偵測該輸出 端子處的一暫態並響應於該暫態發出一輔助控制訊號以便驅動該輔助開關轉換器輸出快速暫態高頻電流至該輸出端子,其中:該輔助控制迴路電路經配置以藉由使用一電阻器及一加法器電路防止與該暫態關聯的一暫態訊號之一較低頻率分量進入該輔助開關轉換器,該電阻器在一端處耦接至該輔助電感器並在另一端處耦接至該加法器電路,該加法器電路經耦接至該輸出端子,以及該輔助開關轉換器經配置以在與該主開關轉換器之一主開關頻率不同的一輔助開關頻率下操作。
  2. 如請求項1所述之電力介面裝置,其中:該主開關轉換器包括複數個單相開關調節器,該等單相開關調節器在該輸入端子與該輸出端子之間彼此並聯耦接,以及該等單相開關調節器之各者經配置以在比該輔助開關頻率低的該主開關頻率下操作,以在該輸出端子處提供一穩定輸出。
  3. 如請求項1所述之電力介面裝置,進一步包含一主控制迴路電路,該主控制迴路電路在一端處耦接至該輸出端子並在另一端處耦接至該主開關轉換器,該主控制迴路電路經配置以偵測該輸出端子處的 該暫態並響應於該暫態發出一主控制訊號以便驅動該主開關轉換器,其中該主控制迴路電路包括:一主反饋感測電路,經配置以感測該輸出端子處的一輸出電壓並產生一反饋電壓,一主誤差運算放大器,經配置以接收該反饋電壓及一參考電壓並在該反饋電壓與該參考電壓彼此實質不相等時產生該暫態訊號,以及一主脈衝寬度調變器,經配置以自該主開關轉換器接收該暫態訊號及所感測低頻電感器電流並基於該暫態訊號與該所感測低頻電感器電流之間的一差異發出該主控制訊號。
  4. 如請求項3所述之電力介面裝置,其中該主控制訊號包括一脈衝寬度調變訊號,使得該主開關轉換器能够提供該低頻電流以追蹤該暫態訊號並驅動一輸出電流以滿足一負載裝置處的一增加負載電流。
  5. 如請求項3所述之電力介面裝置,其中:該主反饋感測電路包括複數個電阻器及電容器,該等電阻器及電容器經配置以感測該輸出電壓並產生該反饋電壓,以及該主誤差運算放大器經配置以在其反相端子處接收該反饋電壓並在其非反相端子處接收該參考電壓。
  6. 如請求項1所述之電力介面裝置,其中該輔助控制迴路電路進一步包括:一第一輔助誤差放大器,經配置以接收該加法器電路之一輸出及一參考電壓,並在該加法器電路之該輸出與該參考電壓彼此實質不相等時輸出一第一誤差訊號,以及一輔助脈衝寬度調變器,經配置以自該輔助開關轉換器接收該第一誤差訊號及所感測高頻電感器電流並基於該第一誤差訊號與該所感測高頻電感器電流之間的一差異發出該輔助控制訊號。
  7. 如請求項6所述之電力介面裝置,其中:該第一誤差訊號對應於該暫態訊號之該較高頻率分量,該電阻器使得該輔助控制迴路電路能够僅吸收該暫態訊號之該較高頻率分量而不吸收該暫態訊號之該較低頻率分量,以及僅當一負載電流存在一驟增或驟減時存在該暫態訊號之該較高頻率分量。
  8. 如請求項7所述之電力介面裝置,其中:響應於該輔助控制訊號,該輔助開關轉換器經配置以提供該快速暫態高頻電流至該輸出端子,以及該快速暫態高頻電流經配置以追蹤該暫態訊號之 該較高頻率分量。
  9. 如請求項7所述之電力介面裝置,其中:該輔助控制迴路電路進一步包括一第二輔助誤差放大器,該第二輔助誤差放大器經配置以接收該所感測平均輔助電感器電流及一零平均低頻電流並輸出一第二誤差訊號,以及該第一輔助誤差放大器經配置以基於該加法器電路之該輸出、該參考電壓及該第二誤差訊號輸出該暫態訊號之該較高頻率分量。
  10. 一種供電系統,包含:一電源;一負載裝置,經配置以自該電源接收電力;一電力介面裝置,經耦接至該電源及該負載裝置且經配置以將由該電源提供的一第一電壓變為操作該負載裝置的一第二電壓,該電力介面裝置包括:一主開關轉換器,經配置以在一第一開關頻率下操作並提供低頻電流至該負載裝置;以及一輔助開關轉換器,與該主開關轉換器並聯耦接且經配置以在一第二且不同開關頻率下操作並提供快速暫態高頻電流至該負載裝置;以及一輔助控制迴路電路,該輔助控制迴路電路在一端處耦接至該輔助開關轉換器並在另一端處耦接至該 負載裝置且該輔助控制迴路電路經配置以使用一電阻器及一加法器電路吸收一暫態訊號之一較高頻率分量並基於該暫態訊號之該較高頻率分量操作該輔助開關轉換器。
  11. 如請求項10所述之供電系統,其中:該輔助開關轉換器包括一第一輔助開關、一第二輔助開關及一輔助電感器,以及該第一輔助開關在一端處耦接至該電源並在另一端處耦接至一輔助節點,該第二輔助開關在一端處耦接至該輔助節點並在另一端處耦接至一接地端子,以且輔助電感器在一端處耦接至該輔助節點並在另一端處耦接至該負載裝置。
  12. 如請求項11所述之供電系統,其中:該輔助控制迴路電路進一步包括一輔助誤差運算放大器及一輔助脈衝寬度調變器,該電阻器在一端處耦接至該輔助電感器並在另一端處耦接至該加法器電路,該加法器電路經配置以將一輸出電壓加至跨該電阻器所偵測之一電壓並輸出一反饋電壓,該輔助誤差放大器經配置以接收該反饋電壓及一參考電壓並在該反饋電壓與該參考電壓彼此實質不相等時輸出該暫態訊號之該較高頻率分量,以及 該輔助脈衝寬度調變器經配置以自該輔助開關轉換器接收該暫態訊號之該較高頻率分量及該所感測高頻電感器電流並基於該暫態訊號之該較高頻率分量與該所感測高頻電感器電流之間的一差異發出一輔助控制訊號。
  13. 如請求項12所述之供電系統,其中:僅當該負載電流存在一驟增或驟減時存在該較高頻率分量。
  14. 如請求項13所述之供電系統,其中:響應於該輔助控制訊號,該輔助開關轉換器經配置以僅在該暫態期間提供該快速暫態高頻電流至該負載裝置,以及該快速暫態高頻電流經配置以追蹤該暫態訊號之該較高頻率分量。
  15. 如請求項12所述之供電系統,其中:該輔助控制迴路電路進一步包括一第二輔助放大器,該第二輔助放大器經配置以接收該所感測平均高頻電感器電流及一零平均電流並輸出一誤差訊號,以及該輔助誤差放大器經配置以基於該參考電壓、該反饋電壓及來自該第二輔助放大器的該誤差訊號輸出該暫態訊號之該較高頻率分量。
  16. 如請求項10所述之供電系統,其中:該主開關轉換器包括複數個開關調節器,每一開關調節器包括一第一主開關、一第二主開關及一主電感器,其中該第一主開關在一端處耦接至該電源並在另一端處耦接至一主節點,該第二主開關在一端處耦接至該主節點並在另一端處耦接至一接地端子,且該主電感器在一端處耦接至該主節點並在另一端處耦接至該負載裝置。
  17. 如請求項16所述之供電系統,進一步包含一主控制迴路電路,該主控制迴路電路在一端處耦接至該負載裝置並在另一端處耦接至該主開關轉換器,該主控制迴路電路經配置以偵測該負載裝置處的該暫態並響應於該暫態發出一主控制訊號以便在該第一開關頻率下驅動該主開關轉換器。
  18. 如請求項17所述之供電系統,其中:該主開關轉換器中的該複數個開關調節器包括三個或更多個單相開關調節器,該等單相開關調節器在該電源與該負載裝置之間彼此並聯耦接,以及該等單相開關調節器之各者經配置以在比該第二開關頻率低的該第一開關頻率下操作,以在該電力介面裝置之一輸出端子處提供一穩定輸出。
  19. 如請求項18所述之供電系統,其中該主 控制迴路電路包括:一主反饋感測電路,經配置以感測該輸出端子處的一輸出電壓並產生一反饋電壓,一主誤差運算放大器,經配置以接收該反饋電壓及一參考電壓並在該反饋電壓與該參考電壓彼此實質不相等時產生一暫態訊號,以及一主脈衝寬度調變器,經配置以自該等單相開關調節器之各者接收該暫態訊號及所感測低頻電感器電流並基於該暫態訊號與該所感測低頻電感器電流之間的一差異發出該主控制訊號。
  20. 如請求項19所述之供電系統,其中該主控制訊號包括一脈衝寬度調變訊號,使得該等單相開關調節器之各者能够提供該低頻電流以追蹤該暫態訊號並驅動一輸出電流以滿足該負載裝置處的一增加負載電流。
TW105105000A 2015-02-20 2016-02-19 具有改善的暫態響應的控制架構、裝置及系統 TWI713495B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201562119042P 2015-02-20 2015-02-20
US201562119078P 2015-02-20 2015-02-20
US62/119,042 2015-02-20
US62/119,078 2015-02-20
US201562126421P 2015-02-27 2015-02-27
US201562126418P 2015-02-27 2015-02-27
US62/126,421 2015-02-27
US62/126,418 2015-02-27

Publications (2)

Publication Number Publication Date
TW201631858A true TW201631858A (zh) 2016-09-01
TWI713495B TWI713495B (zh) 2020-12-21

Family

ID=56693218

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105105003A TWI614979B (zh) 2015-02-20 2016-02-19 具有分離的高頻及低頻路徑信號的快速暫態電力供應器
TW105105000A TWI713495B (zh) 2015-02-20 2016-02-19 具有改善的暫態響應的控制架構、裝置及系統

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW105105003A TWI614979B (zh) 2015-02-20 2016-02-19 具有分離的高頻及低頻路徑信號的快速暫態電力供應器

Country Status (3)

Country Link
US (3) US9627976B2 (zh)
CN (2) CN105915037B (zh)
TW (2) TWI614979B (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281315A (zh) * 2014-07-24 2016-01-27 中兴通讯股份有限公司 一种通信网的供电控制装置和方法
TWI614979B (zh) 2015-02-20 2018-02-11 線性科技股份有限公司 具有分離的高頻及低頻路徑信號的快速暫態電力供應器
US9722602B2 (en) * 2015-12-22 2017-08-01 SK Hynix Inc. Transmitter
US10050559B2 (en) * 2016-01-20 2018-08-14 Linear Technology Llc Control architecture with improved transient response
EP3414826A4 (en) * 2016-02-10 2019-10-09 B.G. Negev Technologies & Applications Ltd., at Ben-Gurion University ELECTRONIC CAPACITOR READY TO USE FOR APPLICATIONS TO MODULES VOLTAGE REGULATORS
KR101876027B1 (ko) * 2016-06-03 2018-07-06 현대자동차주식회사 친환경 차량의 ldc 제어 장치 및 그 방법
US10903746B2 (en) * 2016-08-05 2021-01-26 Texas Instruments Incorporated Load dependent in-rush current control with fault detection across Iso-barrier
US10594217B2 (en) * 2016-09-28 2020-03-17 Dialog Semiconductor (Uk) Limited Asymmetric two-stage DC-DC switching converter
US10924019B2 (en) * 2016-11-23 2021-02-16 Texas Instruments Incorporated Asynchronous clock pulse generation in DC-to-DC converters
WO2018198053A1 (en) * 2017-04-27 2018-11-01 Edge Electrons Limited Apparatus for minimizing peak power demand on inverter in power supply with one or more switched reactive loads
TWI642249B (zh) * 2017-06-06 2018-11-21 海韻電子工業股份有限公司 Power Supplier
US10128758B1 (en) * 2017-09-19 2018-11-13 Qualcomm Incorporated Automatic phase current balancing in multi-phase converters
JP6962379B2 (ja) * 2017-09-22 2021-11-05 株式会社村田製作所 蓄電装置
US11024589B2 (en) * 2017-10-13 2021-06-01 Oracle International Corporation Distributing on chip inductors for monolithic voltage regulation
US10256728B1 (en) * 2017-12-21 2019-04-09 Apple Inc. Multiphase interleaved pulse frequency modulation for a DC-DC converter
US10931147B2 (en) 2018-03-29 2021-02-23 Nuvolta Technologies (Hefei) Co., Ltd. Hybrid power converter
US10855166B2 (en) * 2019-03-11 2020-12-01 Infineon Technologies Ag Ripple shaping for switch-mode power supply using number of active phases
CN110456177B (zh) * 2019-07-02 2023-06-13 中电科思仪科技(安徽)有限公司 一种电压瞬变信号检测电路及方法
US11502594B2 (en) * 2020-05-19 2022-11-15 Analog Devices International Unlimited Company Switched-mode power converter with ripple attenuation
US11283351B2 (en) 2020-05-26 2022-03-22 Analog Devices, Inc. Load transient control for switched mode converter
CN111884507B (zh) * 2020-06-22 2021-12-03 杭州艾诺半导体有限公司 一种用于功率变换器的控制电路及其控制方法
CN112701881B (zh) * 2021-01-25 2022-03-18 上海雷诺尔科技股份有限公司 高压串联可控硅双电源触发系统
TWI778551B (zh) * 2021-03-23 2022-09-21 財團法人成大研究發展基金會 升壓轉換器
US11736016B2 (en) 2021-08-25 2023-08-22 Dialog Semiconductor (Uk) Limited Switching converter with improved load transient response and method of operating the same
US11824463B1 (en) * 2022-04-29 2023-11-21 Novatek Microelectronics Corp. Multiple output voltage generator
TWI825794B (zh) 2022-06-21 2023-12-11 群光電能科技股份有限公司 電源供應系統及其供電控制方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929692A (en) 1997-07-11 1999-07-27 Computer Products Inc. Ripple cancellation circuit with fast load response for switch mode voltage regulators with synchronous rectification
AU3103300A (en) * 1998-12-03 2000-06-19 Virginia Tech Intellectual Properties, Inc. Voltage regulator modules (vrm) with current sensing and current sharing
US6683441B2 (en) 2001-11-26 2004-01-27 Analog Devices, Inc. Multi-phase switching regulator
TW556385B (en) * 2002-01-29 2003-10-01 Delta Electronics Inc Control method and apparatus for power supply connected in parallel
US6984969B1 (en) 2003-03-20 2006-01-10 Analog Devices, Inc. High efficiency high speed low noise regulator
US7233130B1 (en) 2005-08-05 2007-06-19 Rf Micro Devices, Inc. Active ripple reduction switched mode power supplies
US7609040B1 (en) * 2005-10-31 2009-10-27 Chil Semiconductor Corporation Power supply and related circuits
JP4031507B2 (ja) * 2005-11-25 2008-01-09 株式会社リコー 同期整流型スイッチングレギュレータ、同期整流型スイッチングレギュレータの制御回路及び同期整流型スイッチングレギュレータの動作制御方法
US7454238B2 (en) * 2006-10-30 2008-11-18 Quantance, Inc. Power combining power supply system
CN101237183A (zh) * 2007-02-02 2008-08-06 曾东荣 高频开关式电源供应器
US7498793B2 (en) * 2007-03-09 2009-03-03 O2Micro International Ltd. Current-mode DC-to-DC-converter
TWI330441B (en) * 2007-04-13 2010-09-11 Ablerex Electronics Co Ltd Active power conditioner
US8148967B2 (en) 2008-08-05 2012-04-03 Intersil Americas Inc. PWM clock generation system and method to improve transient response of a voltage regulator
US8896279B2 (en) 2010-01-29 2014-11-25 Intersil Americals LLC Multi-phase non-inverting buck boost voltage converter
US8441242B2 (en) 2010-06-04 2013-05-14 Fuji Electric Co., Ltd. Digitally controlled integrated DC-DC converter with transient suppression
CN102347684B (zh) * 2010-07-28 2013-11-27 立锜科技股份有限公司 降低固定导通时间电源电路输出涟波的控制电路及其方法
US8896284B2 (en) * 2011-06-28 2014-11-25 Texas Instruments Incorporated DC-DC converter using internal ripple with the DCM function
CN102263505B (zh) * 2011-08-11 2013-08-07 无锡禾芯微电子有限公司 一种用于dc-dc转换器的平均电感电流的控制电路
US9136760B2 (en) * 2012-06-27 2015-09-15 Analog Devices Global Digital switched mode voltage regulator
TWM443878U (en) * 2012-07-23 2012-12-21 Richtek Technology Corp Multi-phase switching regulator and droop circuit therefor
US9348345B2 (en) * 2012-09-12 2016-05-24 Texas Instruments Incorporated Fixed frequency DC to DC converter control circuit with improved load transient response
TWI473397B (zh) * 2012-11-01 2015-02-11 Luxmill Electronic Co Ltd 應用於電源轉換器之電流控制電路及其控制方法
US9086708B2 (en) * 2012-12-31 2015-07-21 Gazelle Semiconductor Inc. High slew rate switching regulator circuits and methods
GB2511733B (en) 2013-02-01 2020-08-19 Snaptrack Inc 2G support for 2G and 3G/4G envelope tracking modulator
CN104052315A (zh) * 2013-03-13 2014-09-17 原景科技股份有限公司 降压式交直流转换器
US9256238B1 (en) * 2013-05-10 2016-02-09 Sridhar Kotikalapoodi Method and apparatus for fast, efficient, low noise power supply using multiple regulators
US9236347B2 (en) * 2013-10-09 2016-01-12 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Operating and manufacturing a DC-DC converter
EP2985899A1 (en) 2014-08-14 2016-02-17 Dialog Semiconductor (UK) Limited An apparatus and method for current sharing in a multi-phase switching regulator
US9716433B2 (en) 2015-01-15 2017-07-25 R2 Semiconductor, Inc. Control of conversion ratios of a power source block and a bidirectional active filter
TWI614979B (zh) 2015-02-20 2018-02-11 線性科技股份有限公司 具有分離的高頻及低頻路徑信號的快速暫態電力供應器

Also Published As

Publication number Publication date
US20160248327A1 (en) 2016-08-25
TWI713495B (zh) 2020-12-21
CN105915030A (zh) 2016-08-31
US20160248328A1 (en) 2016-08-25
CN105915030B (zh) 2019-12-03
TW201644170A (zh) 2016-12-16
US10135336B2 (en) 2018-11-20
US20170194863A1 (en) 2017-07-06
US9831781B2 (en) 2017-11-28
CN105915037B (zh) 2020-08-11
US9627976B2 (en) 2017-04-18
CN105915037A (zh) 2016-08-31
TWI614979B (zh) 2018-02-11

Similar Documents

Publication Publication Date Title
TWI713495B (zh) 具有改善的暫態響應的控制架構、裝置及系統
CN106992672B (zh) 具有改进的瞬态响应的控制结构
US10892686B2 (en) Hysteretic control for transformer based power converters
US10218256B2 (en) Primary side control of primary resonant flyback converters
CN103607111B (zh) 提高功率因数校正电路中的效率的方法和装置
US5726872A (en) AC to DC boost power converters
US8098055B2 (en) Step-up converter systems and methods
US9602001B1 (en) Buck converter with a variable-gain feedback circuit for transient responses optimization
JP2001190074A (ja) 電力変換装置及び方法
US10050519B2 (en) Control of buck-boost power converter with input voltage tracking
US11606043B2 (en) Balanced capacitor power converter
US8742734B2 (en) Active filtering device for a power supply
CN111758211A (zh) 包括输入控制元件的电压转换器布置及操作电压转换器布置的方法
Hirokawa et al. Improvement of transient response in high-current output DC-DC converters
CN114785122A (zh) 开关型电源控制电路