TW201630824A - Apparatus for making a glass article and methods - Google Patents

Apparatus for making a glass article and methods Download PDF

Info

Publication number
TW201630824A
TW201630824A TW105116331A TW105116331A TW201630824A TW 201630824 A TW201630824 A TW 201630824A TW 105116331 A TW105116331 A TW 105116331A TW 105116331 A TW105116331 A TW 105116331A TW 201630824 A TW201630824 A TW 201630824A
Authority
TW
Taiwan
Prior art keywords
conduit
glass
chamber
molten glass
flow
Prior art date
Application number
TW105116331A
Other languages
Chinese (zh)
Other versions
TWI565668B (en
Inventor
鮑登布拉德利菲德瑞克
加埃塔札哥卡達契奇
戈勒馬丁赫伯特
海得亞隆就夏
墨菲詹姆斯派翠克
Original Assignee
康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康寧公司 filed Critical 康寧公司
Publication of TW201630824A publication Critical patent/TW201630824A/en
Application granted granted Critical
Publication of TWI565668B publication Critical patent/TWI565668B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/182Stirring devices; Homogenisation by moving the molten glass along fixed elements, e.g. deflectors, weirs, baffle plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/187Stirring devices; Homogenisation with moving elements
    • C03B5/1875Stirring devices; Homogenisation with moving elements of the screw or pump-action type
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

Methods of making a glass article comprise the step of flowing molten glass into an inlet of a conduit (132, 136), wherein the molten glass entering the inlet includes a flow profile with a first quantity (182) traveling in the conduit at a lower elevation than a second quantity (184) traveling in the conduit. The method further includes the step of twisting the flow profile within the conduit such that the first quantity travels in the conduit at a higher elevation than the second quantity. In further examples, apparatus for making a glass article comprise a helical vane (170) nonrotatably fixed in a conduit (132, 136) and configured to twist a flow profile (180) of a molten glass flowing within the conduit.

Description

用於製造玻璃物件的設備與方法 Apparatus and method for manufacturing glass articles

本申請案依據專利法主張於2011年4月29日提出申請之美國臨時專利申請號第61/480,428號之優先權之利益,該專利參考文獻全體皆引用作為本說明書的揭示內容。 This application is based on the benefit of the priority of the U.S. Provisional Patent Application Serial No. 61/480,428, filed on Apr. 29, 2011, which is hereby incorporated by reference.

本揭示案大體上係關於用於製造玻璃物件的設備與方法,且更特別地,係關於用於將導管內之玻璃流體重新導向之設備,且係關於製造玻璃物件的方法,該方法包括以下步驟:將導管內之熔融玻璃的流體剖面(flow profile)重新導向。 The present disclosure relates generally to apparatus and methods for making glass articles, and more particularly to apparatus for redirecting glass fluid within a conduit, and to a method of making a glass article, the method comprising the following Step: Redirect the flow profile of the molten glass within the conduit.

玻璃製造系統通常用於使各樣玻璃物件成型,該等玻璃物件例如:可用於液晶顯示器(liquid crystal display;LED)之玻璃板。例如,習知上,將熔融玻璃流入等靜壓管(isopipe)、成型容器、浮標磚(debiteuse)或其他成型結構,其中玻璃帶(glass ribbon)係藉由下拉式製程所成型,例如熔融下拉式 (fusion down-draw)製程。然後可接著將玻璃帶分為多個板,例如:提供LCD玻璃板。 Glass manufacturing systems are commonly used to shape a variety of glass articles, such as glass sheets that can be used in liquid crystal displays (LEDs). For example, conventionally, molten glass is poured into an isopipe, a molding container, a debiteuse, or other molded structure in which a glass ribbon is formed by a pull-down process, such as melting down. formula (fusion down-draw) process. The glass ribbon can then be divided into a plurality of panels, for example: an LCD glass panel is provided.

用於平板玻璃應用(特別是用於LCD面板應用)的玻璃品質屬性需求越來越嚴格。有兩個相互關聯的屬性,兩者皆與在攪拌腔室中攪拌玻璃之製程相關:成品玻璃表面之平坦度的缺陷(習知上稱為「不均勻(mura)」或「痕(cord)」),及貴金屬粒子雜質(inclusions),該等貴金屬粒子雜質係藉由攪拌刃之腐蝕及攪拌腔室壁之腐蝕所造成。玻璃表面波紋(corrugation)-痕(cord)-常見於:在傳送成品前,玻璃同質性(homogeneity)不足或玻璃混合不足表現於成品中。所造成的面板厚度變化轉變為液晶間隙變化,該液晶間隙變化可造成LCD之錯誤運作。貴金屬雜質造成玻璃面板體的不連續,造成LCD成品的「黑點(black spot)」缺陷。 Glass quality attributes for flat glass applications (especially for LCD panel applications) are becoming more stringent. There are two interrelated properties, both of which are related to the process of agitating the glass in the mixing chamber: the defect in the flatness of the finished glass surface (known as "mura" or "cord"). "), and precious metal particle inclusions, which are caused by corrosion of the stirring blade and corrosion of the chamber wall. Corrugation-cord is common in the absence of glass homogeneity or insufficient glass mixing prior to delivery of the finished product. The resulting change in panel thickness translates into a change in the liquid crystal gap that can cause erroneous operation of the LCD. Precious metal impurities cause discontinuities in the glass panel body, causing "black spot" defects in the finished LCD.

攪拌系統的目的在於:減少玻璃中的化學變化,該等化學變化為熔化製程的異常生長物(artifact),該等熔化製程為:批量熔化、來自儲槽耐火料之分解產物等等。最佳玻璃攪拌為兩種現象之間的平衡行為:玻璃均質化(homogenization)及材料腐蝕,兩者均藉由以下方式加強:增加攪拌棒刃與攪拌腔室壁之間的剪力,對於成品玻璃品質而言,玻璃均質 化加強為優點,材料腐蝕為缺點。本發明人已經找到改良玻璃均質化的解決方案,而無須增加攪拌棒的速度。數值模型結果與油模型結果指出:從導管底部進入攪拌腔室的玻璃較少被攪拌器混合,該導管連接澄清器與攪拌腔室。此位置亦對應於具有最高度之不均勻性的玻璃:污泥層(sludge layer)。因此,可藉由以下方式,改良離開攪拌腔室之玻璃整體的同質性:將最不具同質性的進料玻璃重新導向至:以攪拌器中之經改良混合為特徵之位置。 The purpose of the agitation system is to reduce the chemical changes in the glass, which are abnormalities in the melting process, such as batch melting, decomposition products from the refractory of the sump, and the like. Optimal glass agitation is the equilibrium behavior between two phenomena: glass homogenization and material corrosion, both of which are enhanced by increasing the shear between the stir bar and the walls of the mixing chamber for the finished product. Glass quality, glass homogenization Strengthening is an advantage, and material corrosion is a disadvantage. The inventors have found a solution to improve glass homogenization without increasing the speed of the stir bar. The numerical model results and the oil model results indicate that the glass entering the agitation chamber from the bottom of the conduit is less mixed by the agitator, which connects the clarifier to the agitation chamber. This position also corresponds to the glass with the highest degree of non-uniformity: the sludge layer. Thus, the homogeneity of the overall glass exiting the agitation chamber can be improved by redirecting the least homogeneous feed glass to a location characterized by improved mixing in the agitator.

藉由將經界定的玻璃流片段重新導向,並藉由將該經界定的玻璃流片段導向攪拌腔室中的位置,將改良玻璃產品的痕品質,該經界定的玻璃流片段將在該位置被有效地混合。因此,可達成兩個目標:1.減少痕,以符合客戶對於玻璃表面平坦度的嚴格需求;以及2.為了在攪拌腔室中更有效的均質化,可能減少攪拌速度,以減少攪拌腔室中所產生的鉑粒子數目。 By redirecting the defined glass stream segment and directing the defined glass stream segment to a location in the agitation chamber, the trace quality of the glass product will be improved and the defined glass stream segment will be in that position It is effectively mixed. Therefore, two goals can be achieved: 1. reducing the mark to meet the customer's strict requirements for the flatness of the glass surface; and 2. for more efficient homogenization in the stirring chamber, it is possible to reduce the stirring speed to reduce the stirring chamber The number of platinum particles produced in the process.

根據一個態樣,提供一種製造玻璃物件的方法,該方法包含以下步驟:(I)在玻璃熔化器(glass melter)中熔化批量材料(batch material),以產生熔融玻璃;(II)將熔融玻璃送至澄清腔室(fining chamber)中;(III)由在澄清腔室中之熔融玻璃移除玻璃氣泡;(IV)將熔融玻璃由澄清腔室送經導管之入口,該導管在澄清腔室與攪拌腔室(stir chamber)之間提供流體 連通,其中進入入口之熔融玻璃包括:流體剖面(flow profile),該流體剖面具有:第一流量,該第一流量在比第二流量之更低高度處在導管內流動,該第二流量在第二導管內流動;(V)扭轉在導管內的流體剖面,使得第一流量在比第二流量之更高高度處,在導管內流動;(VI)將熔融玻璃由導管之出口送至攪拌腔室中;(VII)在攪拌腔室中攪拌熔融玻璃;以及(VIII)將熔融玻璃之流量由攪拌腔室送至成型容器(forming vessel),以使玻璃物件成型。 According to one aspect, a method of making a glass article is provided, the method comprising the steps of: (I) melting a batch material in a glass melter to produce molten glass; (II) melting the glass Delivered to a finning chamber; (III) removes glass bubbles from the molten glass in the clarification chamber; (IV) passes the molten glass from the clarification chamber to the inlet of the conduit, the conduit is in the clarification chamber Providing fluid between the stir chamber Connected, wherein the molten glass entering the inlet includes: a flow profile having a first flow rate that flows within the conduit at a lower elevation than the second flow, the second flow being Flowing in the second conduit; (V) twisting the fluid profile in the conduit such that the first flow rate flows within the conduit at a higher elevation than the second flow rate; (VI) sending the molten glass from the outlet of the conduit to the agitation (VII) agitating the molten glass in the agitation chamber; and (VIII) feeding the flow of molten glass from the agitation chamber to a forming vessel to shape the glass article.

根據第二態樣,提供如態樣1所述之方法,其中成型容器包含:等靜壓管(isopipe),且玻璃物件包含:玻璃板,該玻璃板係藉由熔融下拉式(fusion down-draw)製程所成型。 According to a second aspect, the method of aspect 1, wherein the shaped container comprises: an isopipe, and the glass article comprises: a glass plate by a fusion down- Draw) The process is formed.

根據第三態樣,提供如態樣1或態樣2所述之方法,其中步驟(V)包括:以裝置扭轉流體剖面,該裝置位於導管內。 According to a third aspect, the method of Aspect 1 or Aspect 2, wherein the step (V) comprises: twisting the fluid profile with the device, the device being located within the catheter.

根據第四態樣,提供如態樣1至3之任一者所述之方法,其中步驟(V)包括:以螺旋葉片(helical vane)扭轉流體剖面。 According to a fourth aspect, the method of any one of aspects 1 to 3, wherein the step (V) comprises: twisting the fluid profile with a helical vane.

根據第五態樣,提供如態樣4所述之方法,其中在步驟(V)期間內,當扭轉流體剖面時,螺旋葉片相對於導管維持不可旋轉之固定。 According to a fifth aspect, the method of aspect 4, wherein during the step (V), the helical blade maintains a non-rotatable fixation relative to the conduit when the fluid profile is twisted.

根據第六態樣,提供一種製造玻璃物件的方法,該方法包含以下步驟:(I)在玻璃熔化器中熔化批量材料,以產生熔融玻璃;(II)將熔融玻璃送經導管之入口,該導管在玻璃熔化器與澄清腔室之間提供流體連通,其中進入入口之熔融玻璃包括:流體剖面,該流體剖面具有:第一流量,該第一流量在比第二流量之更低高度處在導管內流動,該第二流量在該導管內流動;(III)扭轉在導管內的流體剖面,使得第一流量在比第二流量之更高高度處,在導管內流動;(IV)將熔融玻璃由導管之出口送至澄清腔室中;(V)由在澄清腔室中之熔融玻璃移除玻璃氣泡;(VI)將熔融玻璃由澄清腔室送至攪拌腔室中;(VII)在攪拌腔室中攪拌熔融玻璃;以及(VIII)將熔融玻璃之流量由攪拌腔室送至成型容器,以使玻璃物件成型。 According to a sixth aspect, there is provided a method of making a glass article, the method comprising the steps of: (I) melting a batch of material in a glass melter to produce molten glass; (II) passing molten glass through an inlet of the conduit, The conduit provides fluid communication between the glass melter and the clarification chamber, wherein the molten glass entering the inlet includes: a fluid profile having a first flow rate at a lower elevation than the second flow rate Flowing within the conduit, the second flow flows within the conduit; (III) twisting the fluid profile within the conduit such that the first flow is at a higher elevation than the second flow, flowing within the conduit; (IV) melting The glass is sent from the outlet of the conduit to the clarification chamber; (V) the glass bubbles are removed from the molten glass in the clarification chamber; (VI) the molten glass is sent from the clarification chamber to the agitation chamber; (VII) The molten glass is stirred in the stirring chamber; and (VIII) the flow rate of the molten glass is sent from the stirring chamber to the molding container to shape the glass article.

根據第七態樣,提供如態樣6所述之方法,其中成型容器包含:等靜壓管(isopipe),且玻璃物件包含:玻璃板,該玻璃板係藉由熔融下拉式(fusion down-draw)製程所成型。 According to a seventh aspect, the method of aspect 6, wherein the shaped container comprises: an isopipe, and the glass article comprises: a glass plate by a fusion down- Draw) The process is formed.

根據第八態樣,提供如態樣6或態樣7所述之方法,其中步驟(III)包括:以裝置扭轉流體剖面,該裝置位於導管內。 According to an eighth aspect, the method of Aspect 6 or Aspect 7, wherein the step (III) comprises: twisting the fluid profile with the device, the device being located within the catheter.

根據第九態樣,提供如態樣6至8之任一者所述之方法,其中步驟(III)包括:以螺旋葉片(helical vane)扭轉流體剖面。 According to a ninth aspect, the method of any one of aspects 6 to 8, wherein the step (III) comprises: twisting the fluid profile with a helical vane.

根據第十態樣,提供如態樣9所述之方法,其中在步驟(III)期間內,當扭轉流體剖面時,螺旋葉片相對於導管維持不可旋轉之固定。 According to a tenth aspect, the method of aspect 9, wherein the helical blade maintains a non-rotatable fixation relative to the catheter during the step of reversing the fluid profile during the step (III).

根據第十一態樣,提供一種用於製造玻璃物件的設備,該設備包含:玻璃熔化器,該玻璃熔化器係經設置,以將批量材料熔化成熔融玻璃;澄清腔室,該澄清腔室位於玻璃熔化器之下游,其中澄清腔室係經設置,以由玻璃熔化器接收熔融玻璃;攪拌腔室,該攪拌腔室位於澄清腔室之下游;導管,該導管係經設置,以提供使熔融玻璃由澄清腔室流至攪拌腔室之路徑;螺旋葉片,該螺旋葉片係不可旋轉地固定於導管中,且該螺旋葉片係經設置,以扭轉在導管中之熔融玻璃之流體剖面;以及成型容器,該成型容器位於攪拌腔室之下游,其中成型容器係經設置,以由攪拌腔室接收熔融玻璃並使玻璃物件成型。 According to an eleventh aspect, there is provided an apparatus for manufacturing a glass article, the apparatus comprising: a glass melter configured to melt a batch material into molten glass; a clarification chamber, the clarification chamber Located downstream of the glass melter, wherein the clarification chamber is configured to receive the molten glass by the glass melter; the agitating chamber is located downstream of the clarification chamber; the conduit is configured to provide a path through which the molten glass flows from the clarification chamber to the agitation chamber; a spiral blade that is non-rotatably fixed in the conduit, and the spiral blade is configured to twist a fluid profile of the molten glass in the conduit; A molding vessel is located downstream of the agitating chamber, wherein the forming vessel is configured to receive the molten glass from the agitating chamber and shape the glass article.

根據第十二態樣,提供如態樣11所述之設備,其中該成型容器包含:等靜壓管,該等靜壓管係經設置,以使玻璃物件由熔融玻璃熔融下拉而出。 According to a twelfth aspect, the apparatus of the aspect 11, wherein the molding container comprises: an isostatic tube configured to melt the glass member from the molten glass.

根據第十三態樣,提供如態樣11或態樣12所述之設備,其中螺旋葉片包括:上游端與下游端,其中葉片在上游端與下游端之間扭轉一角度,該角度在約90°至約270°之範圍中。 According to a thirteenth aspect, the apparatus of the aspect 11 or the aspect 12, wherein the spiral blade comprises: an upstream end and a downstream end, wherein the blade is twisted at an angle between the upstream end and the downstream end, the angle being about In the range of 90° to about 270°.

根據第十四態樣,提供如態樣11至13之任一者所述之設備,其中螺旋葉片更包括:上游邊緣,該上游邊緣位於:相對於水平軸傾斜約30°至約60°之傾斜角度處,該水平軸係垂直於導管之軸向流向。 The apparatus of any one of aspects 11 to 13, wherein the spiral blade further comprises: an upstream edge, the upstream edge being located at an inclination of about 30° to about 60° with respect to the horizontal axis. At the oblique angle, the horizontal axis is perpendicular to the axial flow direction of the catheter.

根據第十五態樣,提供一種用於製造玻璃物件的設備,該設備包含:玻璃熔化器,該玻璃熔化器係經設置,以將批量材料熔化成熔融玻璃;澄清腔室,該澄清腔室位於玻璃熔化器之下游;導管,該導管係經設置,以提供使熔融玻璃由玻璃熔化器流至澄清腔室之路徑;螺旋葉片,該螺旋葉片係不可旋轉地固定於導管中,且該螺旋葉片係經設置,以扭轉在導管中之熔融玻璃之流體剖面;攪拌腔室,該攪拌腔室位於玻璃熔化器之下游,其中攪拌腔室係經設置,以由澄清腔室接收熔融玻璃;以及成型容器,該成型容器位於攪拌腔室之下游,其中成型容器係經設置,以由攪拌腔室接收熔融玻璃並使玻璃物件成型。 According to a fifteenth aspect, there is provided an apparatus for manufacturing a glass article, the apparatus comprising: a glass melter configured to melt a batch material into molten glass; a clarification chamber, the clarification chamber Located downstream of the glass melter; a conduit disposed to provide a path for molten glass to flow from the glass melter to the clarification chamber; a spiral blade that is non-rotatably fixed in the conduit and the spiral The blade is configured to twist a fluid profile of the molten glass in the conduit; the agitating chamber is located downstream of the glass melter, wherein the agitation chamber is configured to receive the molten glass from the clarification chamber; A molding vessel is located downstream of the agitating chamber, wherein the forming vessel is configured to receive the molten glass from the agitating chamber and shape the glass article.

根據第十六態樣,提供如態樣15所述之設備,其中該成型容器包含:等靜壓管,該等靜壓管係經設置,以使玻璃物件由熔融玻璃熔融下拉而出。 According to a sixteenth aspect, the apparatus of aspect 15, wherein the shaped container comprises: an isostatic tube disposed to cause the glass article to be melted out of the molten glass.

根據第十七態樣,提供如態樣15或態樣16所述之設備,其中螺旋葉片包括:上游端與下游端,其中葉片在上游端與下游端之間扭轉一角度,該角度在約90°至約270°之範圍中。 According to a seventeenth aspect, the apparatus of aspect 15 or aspect 16, wherein the spiral blade comprises: an upstream end and a downstream end, wherein the blade is twisted at an angle between the upstream end and the downstream end, the angle being about In the range of 90° to about 270°.

根據第十八態樣,提供如態樣17所述之設備,其中角度約為180°。 According to an eighteenth aspect, the apparatus of aspect 17 is provided, wherein the angle is about 180°.

根據第十九態樣,提供如態樣15至18之任一者所述之設備,其中螺旋葉片更包括:上游邊緣,該上游邊緣位於:相對於水平軸傾斜約30°至約60°之傾斜角度處,該水平軸係垂直於導管之軸向流向。 The apparatus of any one of aspects 15 to 18, wherein the spiral blade further comprises: an upstream edge located at an inclination of about 30° to about 60° with respect to the horizontal axis. At the oblique angle, the horizontal axis is perpendicular to the axial flow direction of the catheter.

根據第二十態樣,提供如態樣19所述之設備,其中傾斜角度相對於水平軸約為45°。 According to a twentieth aspect, the apparatus of aspect 19 is provided wherein the angle of inclination is about 45° with respect to the horizontal axis.

102‧‧‧熔融下拉設備 102‧‧‧Melt pull down equipment

104‧‧‧玻璃帶 104‧‧‧glass ribbon

106‧‧‧玻璃熔化器 106‧‧‧ glass melter

108‧‧‧批量材料 108‧‧‧ batch materials

110‧‧‧儲存槽 110‧‧‧ storage tank

112‧‧‧批量傳送裝置 112‧‧‧Batch conveyor

114‧‧‧馬達 114‧‧‧Motor

116‧‧‧選擇性控制器 116‧‧‧Selective controller

118‧‧‧箭頭 118‧‧‧ arrow

120‧‧‧探測器 120‧‧‧ detector

122‧‧‧高度 122‧‧‧ Height

124‧‧‧熔融玻璃 124‧‧‧Solid glass

126‧‧‧豎管 126‧‧‧

128‧‧‧通訊線路 128‧‧‧Communication lines

130‧‧‧澄清腔室 130‧‧‧Clarification chamber

132‧‧‧第一導管 132‧‧‧First catheter

132a‧‧‧導管之較低部分 132a‧‧‧lower part of the catheter

134‧‧‧攪拌腔室 134‧‧‧ stirring chamber

136‧‧‧第二導管 136‧‧‧second catheter

136a‧‧‧導管之較低部分 136a‧‧‧lower part of the catheter

137‧‧‧入口 137‧‧‧ entrance

138‧‧‧混合元件 138‧‧‧Mixed components

139‧‧‧出口 139‧‧ Export

140‧‧‧可轉動軸 140‧‧‧Rotatable shaft

142‧‧‧箭頭 142‧‧‧ arrow

144‧‧‧傳送容器 144‧‧‧Transport container

146‧‧‧第三導管 146‧‧‧ third catheter

148‧‧‧降流管 148‧‧‧ downflow tube

150‧‧‧入口 150‧‧‧ entrance

152‧‧‧成型容器 152‧‧‧Molding container

154‧‧‧箭頭 154‧‧‧ arrow

156‧‧‧成型楔形體 156‧‧‧Formed wedges

158‧‧‧成型表面部分 158‧‧‧Molded surface part

160‧‧‧成型表面部分 160‧‧‧Molded surface part

162‧‧‧下游方向 162‧‧‧ downstream direction

164‧‧‧根部 164‧‧‧ root

166‧‧‧抽拉平面 166‧‧‧ pulling plane

170‧‧‧螺旋葉片 170‧‧‧Spiral blades

172a‧‧‧上游端 172a‧‧‧ upstream end

172b‧‧‧下游端 172b‧‧‧ downstream end

173a‧‧‧螺旋邊緣 173a‧‧‧Spiral edge

173b‧‧‧螺旋邊緣 173b‧‧‧Spiral edge

174a‧‧‧上游邊緣 174a‧‧‧ upstream edge

174b‧‧‧下游邊緣 174b‧‧‧ downstream edge

176‧‧‧截面軸 176‧‧‧ section axis

180‧‧‧流體剖面 180‧‧‧Fluid profile

182‧‧‧第一流量 182‧‧‧First flow

184‧‧‧第二流量 184‧‧‧Second flow

190‧‧‧軸向流向 190‧‧‧Axial flow

192‧‧‧水平軸 192‧‧‧ horizontal axis

200‧‧‧上游位置 200‧‧‧Upstream location

202‧‧‧下游位置 202‧‧‧downstream location

204‧‧‧垂直軸 204‧‧‧ vertical axis

206‧‧‧氣泡 206‧‧‧ bubbles

208‧‧‧入口 208‧‧‧ entrance

210‧‧‧出口 210‧‧‧Export

212‧‧‧電凸緣 212‧‧‧Electric flange

I‧‧‧象限 I‧‧‧ quadrant

II‧‧‧象限 II‧‧‧ quadrant

III‧‧‧象限 III‧‧‧ quadrant

IV‧‧‧象限 IV‧‧‧ quadrant

α‧‧‧角度 ‧‧‧‧ angle

β‧‧‧角度 ‧‧‧‧ angle

當參考隨附圖式閱讀以上之本發明實施方式,可更好地理解本發明之以上與其他特徵、態樣及優點,在該等隨附圖式中: The above and other features, aspects and advantages of the present invention will become better understood from the <RTIgt;

第1圖為用於製造玻璃物件之範例設備的示意圖;第2圖為第1圖的設備沿著線2-2的示意圖,該示意圖圖示部分設備; 第3圖為第1圖之設備的放大部分;第4圖為範例螺旋葉片的放大圖,該螺旋葉片不可旋轉地固定於導管中;第5圖為第4圖之導管沿著線5-5之剖面圖,該剖面圖圖示螺旋葉片之上游邊緣;第6圖為第4圖之導管沿著線6-6之剖面圖,該剖面圖圖示螺旋葉片之下游邊緣;第7圖為第4圖之螺旋葉片之上游右上透視圖;第8圖為電腦模型之示意圖,該電腦模型圖示:當安裝螺旋葉片時,將熔融玻璃之流體剖面重新導向,使得上游邊緣位於沿著導管之水平軸;第9圖為電腦模型之示意圖,該電腦模型圖示:當安裝螺旋葉片時,將熔融玻璃之流體剖面重新導向,使得上游邊緣位於相對於導管之水平軸之約45°之角度處。 1 is a schematic view of an exemplary apparatus for manufacturing a glass article; and FIG. 2 is a schematic view of the apparatus of FIG. 1 along line 2-2, which shows a partial device; Figure 3 is an enlarged view of the apparatus of Figure 1; Figure 4 is an enlarged view of an example spiral blade that is non-rotatably fixed in the conduit; Figure 5 is a conduit of Figure 4 along line 5-5. a cross-sectional view showing the upstream edge of the spiral blade; Fig. 6 is a cross-sectional view of the catheter of Fig. 4 along line 6-6, the cross-sectional view showing the downstream edge of the spiral blade; The upper right perspective view of the spiral blade of Fig. 4; Fig. 8 is a schematic diagram of the computer model. The computer model shows that when the spiral blade is installed, the fluid profile of the molten glass is redirected so that the upstream edge is at the level along the conduit. Axis; Figure 9 is a schematic illustration of a computer model showing that when the helical blade is installed, the fluid profile of the molten glass is redirected such that the upstream edge is at an angle of about 45 to the horizontal axis of the catheter.

第10圖為用於製作玻璃物件的另一範例設備之示意圖。 Figure 10 is a schematic illustration of another example apparatus for making a glass article.

現在將參考隨附圖式,更全面地於下文中描述本發明,在該等隨附圖式中,圖示所主張發明之範例實施例。在圖式中,相同的元件符號儘可能地用來代表相同或相似的部分。然而,可以許多不同形式實施所主 張發明,且所主張發明不應被闡釋為限制於本文所載之實施例。提供該等範例實施例,使得本揭示案將為詳盡而全面的,且該等範例實施例將把所主張發明之範疇完全地傳達給本發明領域中具有通常知識者。 The invention will now be described more fully hereinafter with reference to the accompanying drawings, in which FIG. In the drawings, the same element symbols are used to represent the same or similar parts as much as possible. However, the implementation can be implemented in many different forms. The invention is not limited to the embodiments set forth herein. The exemplifications are provided so that this disclosure will be thorough and comprehensive, and the scope of the claimed embodiments will fully convey the scope of the claimed invention to those of ordinary skill in the art.

第1圖圖示用於將玻璃帶104熔融下拉之熔融下拉設備102之示意圖,該玻璃帶104接著用於處理成玻璃板。熔融下拉設備102可包括:玻璃熔化器(glass melter)106,該玻璃熔化器106係經設置,以由儲存槽(storage bin)110接收批量材料(batch material)108,並將批量材料108熔化成熔融玻璃124。可藉由批量傳送裝置112引入批量材料108,該批量傳送裝置112係藉由馬達114所供電。選擇性控制器116可經設置,以啟動馬達114,以將所希望之量的批量材料108引入玻璃熔化器106中,如箭頭118所指示的。可使用探測器120以在豎管(standpipe)126之內量測熔融玻璃124之高度(level)122,並藉由通訊線路128,將所量測資訊通訊給控制器116。 Figure 1 illustrates a schematic of a molten pull down device 102 for melting a glass ribbon 104, which is then used to process a glass sheet. The melt down draw apparatus 102 can include a glass melter 106 that is configured to receive a batch material 108 from a storage bin 110 and melt the batch material 108 into Molten glass 124. The batch material 108 can be introduced by the batch transfer device 112, which is powered by the motor 114. The selectivity controller 116 can be configured to activate the motor 114 to introduce a desired amount of batch material 108 into the glass melter 106 as indicated by arrow 118. Detector 120 can be used to measure the level 122 of molten glass 124 within standpipe 126 and communicate the measured information to controller 116 via communication line 128.

熔融下拉設備102亦可包括:位於玻璃熔化器106下游之澄清腔室(fining chamber)130(例如,澄清管)。澄清腔室130係經設置,以由玻璃熔化器106接收熔融玻璃124。例如,在一個範例中,熔融下拉設備102包括:第一導管132,該第一導管132係經設置,以為熔融玻璃124提供路徑,以由玻璃熔化器106流至澄清腔室130。 The melt down draw apparatus 102 can also include a fining chamber 130 (eg, a clarification tube) located downstream of the glass melter 106. The clarification chamber 130 is configured to receive the molten glass 124 by the glass melter 106. For example, in one example, the melt down device 102 includes a first conduit 132 that is configured to provide a path for the molten glass 124 to flow from the glass melter 106 to the clarification chamber 130.

熔融下拉設備102可進一步包括:位於澄清腔室130下游之攪拌腔室(stir chamber)134。攪拌腔室134係經設置以以由澄清腔室130接收熔融玻璃124。例如,熔融下拉設備102可包括:第二導管136,該第二導管136係經設置,以為熔融玻璃124提供路徑,以由澄清腔室130流至攪拌腔室134。在一個範例中,攪拌腔室134可包括:複數個混合元件138,該等複數個混合元件138安裝於可轉動軸140,以繞著可轉動軸140之軸旋轉,如轉動箭頭142所指示。 The melt down draw apparatus 102 can further include a stir chamber 134 located downstream of the clarification chamber 130. The agitation chamber 134 is configured to receive the molten glass 124 from the clarification chamber 130. For example, the melt down draw apparatus 102 can include a second conduit 136 that is configured to provide a path for the molten glass 124 to flow from the clarification chamber 130 to the agitation chamber 134. In one example, the agitation chamber 134 can include a plurality of mixing elements 138 that are mounted to the rotatable shaft 140 for rotation about the axis of the rotatable shaft 140, as indicated by the turning arrow 142.

如圖所示,成型容器(forming vessel)152可位於攪拌腔室134下游,其中成型容器150係經設置,以由攪拌腔室134接收熔融玻璃124,並使玻璃物件成型。例如,熔融下拉設備102可包括:位於攪拌腔室134下游之傳送容器(delivery vessel)144,例如槽池(bowl)。該傳送容器144可經設置以由攪拌腔室134接收熔融玻璃124。例如,熔融下拉設備102可包括:第三導管146,該第三導管146係經設置,以為熔融玻璃124提供路徑,以由攪拌腔室134流至傳送容器144。 As shown, a forming vessel 152 can be located downstream of the agitation chamber 134, wherein the forming vessel 150 is configured to receive the molten glass 124 from the agitation chamber 134 and shape the glass article. For example, the melt down draw apparatus 102 can include a delivery vessel 144, such as a bowl, located downstream of the agitation chamber 134. The transfer container 144 can be configured to receive the molten glass 124 from the agitation chamber 134. For example, the melt down device 102 can include a third conduit 146 that is configured to provide a path for the molten glass 124 to flow from the agitation chamber 134 to the transfer vessel 144.

如更進一步所圖示的,熔融下拉設備102亦可包括:降流管(downcomer)148,該降流管148係經定位,以將熔融玻璃124由傳送容器144傳送至成型容器152之入口150,如箭頭154所指示。 As further illustrated, the smelting down apparatus 102 can also include a downcomer 148 that is positioned to convey the molten glass 124 from the transfer vessel 144 to the inlet 150 of the forming vessel 152. As indicated by arrow 154.

可視特定應用,根據本揭示案之態樣使用各樣成型容器。例如,可使用成型容器以提供玻璃物件,該等玻璃物件具有:用於不同光學應用的大範圍設置。例如,可設計成型容器,以提供玻璃透鏡或其他光學玻璃組件。僅在一個範例中,成型容器可包含:用於處理玻璃帶的設備。此種成型容器可包含:下拉式(down-draw)、上拉式(up-draw)、浮動式(float)、熔融式(fusion)、壓滾式(press rolling)、流孔抽出式(slot draw)或其他用於生產玻璃物件的成型容器。在一個範例中,可設計成型容器以提供可用於各樣應用的玻璃帶。例如,可進一步處理由成型容器所提供的玻璃帶,以併入至以下應用中:液晶顯示器、電泳顯示器、有機發光二極體顯示器、電漿顯示器面板或其他顯示器或發光應用。 Various shaped containers can be used in accordance with the aspects of the present disclosure, depending on the particular application. For example, shaped containers can be used to provide glass articles having a wide range of settings for different optical applications. For example, a shaped container can be designed to provide a glass lens or other optical glass assembly. In just one example, the shaped container can include: a device for processing the glass ribbon. Such a shaped container may include: down-draw, up-draw, float, fusion, press rolling, and slot extraction (slot) Draw) or other shaped containers used to produce glass objects. In one example, a shaped container can be designed to provide a glass ribbon that can be used in a variety of applications. For example, the glass ribbon provided by the shaped container can be further processed for incorporation into the following applications: liquid crystal displays, electrophoretic displays, organic light emitting diode displays, plasma display panels, or other displays or lighting applications.

在一個非限制性的範例中,第2圖圖示範例成型容器152,該範例成型容器152可選擇性地包含:等靜壓管,該等靜壓管係經設置以(例如)由熔融玻璃熔融下拉出玻璃物件。例如,第2圖為用於熔融下拉設備102之範例等靜壓管沿著第1圖中之線2-2的截面透視圖。如圖所示,成型容器152包括:成型楔形體156,該成型楔形體156包含:一對向下傾斜的成型表面部分158、160,該等成型表面部分158、160在成型楔形體156的相對末端之間延伸。該對向下傾斜的成型表面部分158、160沿著下游方向162匯合,以形成根部164。 抽拉平面166延伸穿過根部164,其中可在下游方向162上沿著抽拉平面166拉出玻璃帶104。如圖所示,抽拉平面166可將根部164平分,儘管抽拉平面166可於相對於根部164的其他方向上延伸。 In one non-limiting example, FIG. 2 illustrates an example shaped container 152 that can optionally include: isostatic tubes that are configured, for example, from molten glass Melt out the glass object. For example, Figure 2 is a cross-sectional perspective view of an exemplary isostatic tube for the melt down device 102 taken along line 2-2 of Figure 1. As shown, the forming vessel 152 includes a contoured wedge 156 that includes a pair of downwardly angled contoured surface portions 158, 160 that are opposite the contoured wedges 156. Extend between the ends. The pair of downwardly inclined profiled surface portions 158, 160 merge in a downstream direction 162 to form a root 164. The draw plane 166 extends through the root 164 where the glass ribbon 104 can be pulled along the pull plane 166 in the downstream direction 162. As shown, the pull plane 166 can bisect the root 164, although the pull plane 166 can extend in other directions relative to the root 164.

如第4圖所圖示,在第一導管132與第二導管136內的熔融玻璃124包括:流體剖面180,該流體剖面180具有:第一流量182,該第一流量182在比第二流量184之更低高度處在導管內流動,該第二流量184在導管內流動。在一個範例中,第一流量182可沿著導管之較低部分132a、136a流動,且第二流量184可在第一流量182之上流動。因此,第一流量182可位於第二流量184與導管之較低部分132a、136a之間。在進一步的範例中,第二流量184可於導管內在比第一流量182較高的高度流動並橫向偏移於第一流量182,而非位於第一流量182之上。 As illustrated in FIG. 4, the molten glass 124 within the first conduit 132 and the second conduit 136 includes a fluid profile 180 having a first flow rate 182 that is greater than the second flow rate. The lower height of 184 flows within the conduit, and the second flow 184 flows within the conduit. In one example, the first flow 182 can flow along the lower portions 132a, 136a of the conduit, and the second flow 184 can flow over the first flow 182. Thus, the first flow rate 182 can be between the second flow rate 184 and the lower portion 132a, 136a of the conduit. In a further example, the second flow rate 184 can flow within the conduit at a higher elevation than the first flow 182 and laterally offset from the first flow 182 rather than above the first flow 182.

熔融下拉設備102可選擇性地包括:第一導管132及(或)第二導管136內的結構,該結構係經設置以扭轉導管中的流體剖面180,使得第一流量182於導管內在比第二流量184較高的高度流動。例如,在一個範例中,第二流量184可在第一流量182之下流動,使得第二流量184可位於第一流量182與導管之較低部分132a、136a之間。在進一步的範例中,第一流量182可於導管內在比第二流量184較高的高度流動並橫向偏移於第二流量184,而非位於第二流量184之上。 The melt down draw apparatus 102 can optionally include a structure within the first conduit 132 and/or the second conduit 136 that is configured to twist the fluid profile 180 in the conduit such that the first flow 182 is within the conduit The second flow 184 has a higher altitude flow. For example, in one example, the second flow rate 184 can flow below the first flow rate 182 such that the second flow rate 184 can be between the first flow rate 182 and the lower portion 132a, 136a of the conduit. In a further example, the first flow rate 182 can flow within the conduit at a higher elevation than the second flow rate 184 and laterally offset from the second flow rate 184 rather than above the second flow rate 184.

在一個範例中,結構可包括:位於導管內的裝置,以扭轉流體剖面。例如,裝置可包含:螺旋葉片(helical vane)170,該螺旋葉片170係經設置,以使流體剖面180重新導向。如圖所示,螺旋葉片170可被不可旋轉地固定於第一導管132中(如第10圖所圖示)及(或)第二導管136中(如第1圖與第3圖所圖示)。如第4圖與第7圖所圖示,若提供螺旋葉片170,則該螺旋葉片170可經設置,以扭轉導管132、136中的熔融玻璃124之流體剖面180。 In one example, the structure can include a device located within the conduit to reverse the fluid profile. For example, the apparatus can include a helical vane 170 that is configured to redirect the fluid profile 180. As shown, the helical blade 170 can be non-rotatably secured in the first conduit 132 (as illustrated in FIG. 10) and/or in the second conduit 136 (as illustrated in Figures 1 and 3). ). As illustrated in Figures 4 and 7, if a helical blade 170 is provided, the helical blade 170 can be configured to twist the fluid profile 180 of the molten glass 124 in the conduits 132, 136.

螺旋葉片170可包括:大範圍之設置。如第4圖與第7圖所圖示,螺旋葉片170可包含:平滑螺旋設置,以避免死流區(dead flow zone),並使導管中所建立的壓力最小化。平滑螺旋設置可進一步避免:當玻璃流被扭轉時,玻璃流的沉降(ebbing)或其他擾動。因此,當以螺旋葉片170扭轉流體剖面時,平滑螺旋設置可允許流體流動之扭轉,同時使層流之流體流動之擾動最小化。更進一步地,螺旋葉片170包含:具有平滑設置之簡單結構,該具有平滑設置之簡單結構可允許任何氣泡穿越,該等氣泡可能無法離開穿經導管的熔融玻璃。雖然在直覺上,可在流體路徑中用重新導向裝置立即移除氣泡,但出乎意料的是,允許玻璃氣泡自由地穿越事實上可簡化後續移除熔融玻璃中玻璃氣泡。其實,嘗試用置於熔融玻璃路徑上的重新導向裝置使氣泡消散事實上可導致:氣泡之累積或聚集,這可使得在將玻璃 物件成型之前氣泡之後續移除變得複雜。因此,螺旋葉片170之簡單幾何形狀可協助任何無法在熔融玻璃路徑上穿越的氣泡穿越。葉片之螺旋本質可因此不可預期地藉由以下方式協助移除熔融玻璃中的任何氣泡:藉由允許使穿越螺旋葉片170之氣泡的擾動最小化的方式。 The spiral blade 170 can include a wide range of settings. As illustrated in Figures 4 and 7, the helical blade 170 can include a smooth spiral arrangement to avoid a dead flow zone and minimize the pressure build up in the conduit. A smooth spiral arrangement can further avoid ebbing or other disturbances in the flow of glass as it is twisted. Thus, when the fluid profile is twisted with the helical blade 170, a smooth helical arrangement can allow for torsion of the fluid flow while minimizing disturbances in the fluid flow of the laminar flow. Still further, the spiral blade 170 comprises: a simple structure with a smooth arrangement that allows for the passage of any air bubbles that may not be able to leave the molten glass that passes through the conduit. While it is intuitively possible to remove the bubbles immediately with the redirecting device in the fluid path, it is surprising that allowing the glass bubbles to freely traverse can actually simplify subsequent removal of the glass bubbles in the molten glass. In fact, attempting to dissipate the bubbles by means of a redirecting device placed on the path of the molten glass can in fact lead to the accumulation or accumulation of bubbles, which can make the glass Subsequent removal of the bubbles prior to object formation becomes complicated. Thus, the simple geometry of the helical blade 170 assists in the passage of any bubbles that cannot pass through the path of the molten glass. The helical nature of the blade may thus undesirably assist in the removal of any air bubbles in the molten glass by: allowing the disturbance of the bubbles passing through the spiral blade 170 to be minimized.

如圖所示,螺旋葉片170可包括上游端172a1與下游端172b,該等上游端172a與下游端172b界定介於其中的連續螺旋片段。儘管並未圖示,但可連續在導管中堆疊複數個片段,以視特定應用,產生所希望之流體剖面180之重新導向。 As shown, the helical blade 170 can include an upstream end 172a1 and a downstream end 172b that define a continuous helical segment therebetween. Although not shown, a plurality of segments can be stacked continuously in the catheter to produce a desired redirect of the fluid profile 180, depending on the particular application.

如在第7圖中更進一步所圖示的,螺旋葉片170可包含兩個螺旋邊緣173a、173b,該等螺旋邊緣173a、173b可協助螺旋葉片170安裝於導管內。在一個範例中,螺旋邊緣173a、173b係壓合於導管內,雖然螺旋邊緣可焊接地或機械地附接於導管,使得螺旋葉片170不可旋轉地安裝於導管中。 As further illustrated in FIG. 7, the helical blade 170 can include two helical edges 173a, 173b that can assist in the installation of the helical blade 170 within the catheter. In one example, the helical edges 173a, 173b are press fit into the catheter, although the helical edges may be welded or mechanically attached to the catheter such that the helical blade 170 is non-rotatably mounted in the catheter.

如更進一步所圖示的,上游端172a可包括上游邊緣174a,且下游端172b可包括下游邊緣174b。在所圖示的範例中,邊緣大體上為平的,但一個或兩個邊緣可為圓的。此外,如圖所示,邊緣大體上為直的,但邊緣可具有:彎曲形狀,例如S形(在更進一步的範例中)。 As further illustrated, the upstream end 172a can include an upstream edge 174a and the downstream end 172b can include a downstream edge 174b. In the illustrated example, the edges are generally flat, but one or both of the edges may be round. Moreover, as shown, the edges are generally straight, but the edges can have a curved shape, such as an S shape (in still further examples).

如第7圖所圖示,在一個範例中,螺旋葉片170可包含:形狀,該形狀係藉由在軸向流向190上於 上游邊緣174a與下游邊緣174b之間順時鐘旋轉截面軸176所產生。在更進一步的範例中,亦可藉由以下方式產生螺旋葉片170之形狀:藉由在第一邊緣與第二邊緣之間逆時鐘旋轉截面軸。截面軸176可在上游端172a與下游端172b之間以大範圍之角度旋轉。例如,截面軸176可被旋轉,使得螺旋葉片170在上游端172a與下游端172b之間扭轉一角度,該角度在約90°至約360°之範圍中,例如在約90°至約270°,或在約90°至約180°。如第7圖所圖示,且由第5圖和第6圖可明顯地看出,在一個範例中,螺旋葉片170可在上游端172a與下游端172b之間扭轉約180°之角度。 As illustrated in FIG. 7, in one example, the helical blade 170 can include a shape that is flowwise in the axial direction 190. A clockwise rotational section axis 176 is created between the upstream edge 174a and the downstream edge 174b. In a still further example, the shape of the helical blade 170 can also be produced by rotating the cross-sectional axis counterclockwise between the first edge and the second edge. The section axis 176 is rotatable at a wide range of angles between the upstream end 172a and the downstream end 172b. For example, the section shaft 176 can be rotated such that the helical blade 170 twists an angle between the upstream end 172a and the downstream end 172b, the angle being in the range of from about 90° to about 360°, such as from about 90° to about 270°. , or at about 90° to about 180°. As illustrated in Fig. 7, and as is apparent from Figs. 5 and 6, in one example, the helical blade 170 can be twisted by an angle of about 180 between the upstream end 172a and the downstream end 172b.

亦可安裝具有上游邊緣之螺旋葉片170,該上游邊緣相對於水平軸192成大範圍之角度α,該水平軸192垂直於軸向流向190。例如,上游邊緣可傾斜由0°至180°角度α,例如相對於水平軸192由約30°至約60°。如第5圖所圖示,上游邊緣174a位於相對於水平軸192之約45°之角度α處。如圖所示,在第6圖中,隨著180°之螺旋扭轉,下游邊緣174b亦可位於約45°之角度β處。如第5圖所進一步圖示,當由導管截面觀察,並看入軸向流向190時,可觀察到四個象限I、II、III與IV,其中上游邊緣174a對角地在象限I與象限III之間延伸。 A helical blade 170 having an upstream edge may also be mounted that is at a wide angle a relative to the horizontal axis 192 that is perpendicular to the axial flow direction 190. For example, the upstream edge may be inclined by an angle a from 0° to 180°, such as from about 30° to about 60° with respect to the horizontal axis 192. As illustrated in FIG. 5, the upstream edge 174a is located at an angle a of about 45° with respect to the horizontal axis 192. As shown, in Figure 6, the downstream edge 174b can also be at an angle β of about 45° with a 180° helical twist. As further illustrated in Figure 5, four quadrants I, II, III and IV are observed when viewed from the cross-section of the conduit and looking at the axial flow direction 190, with the upstream edge 174a diagonally in quadrant I and quadrant III. Extend between.

第8圖與第9圖展示:使用相似於第7圖中所圖示葉片之螺旋葉片的電腦模型,其中葉片在上游端172a與下游端172b之間扭轉約180°之角度,伴隨軸向 流向190中截面軸176之順時針旋轉所產生之形狀。第8圖展示:沿著水平軸192安裝的上游邊緣174a。電腦模型顯示:當熔融玻璃124由螺旋葉片170之上游端172a處的上游位置200向下游流經螺旋葉片170至螺旋葉片170之下游端172b處的下游位置202時,流體剖面180之第一流量182被扭轉。如虛線所圖示,流體剖面180之第一流量182被重新導向而位於較高的高度,且位於象限II與象限III之內。 Figures 8 and 9 show a computer model using a helical blade similar to the blade illustrated in Figure 7, wherein the blade is twisted by an angle of about 180 between the upstream end 172a and the downstream end 172b, with axial The flow produces a shape resulting from a clockwise rotation of the section axis 176 in 190. Figure 8 shows the upstream edge 174a mounted along the horizontal axis 192. The computer model shows that when the molten glass 124 flows downstream from the upstream position 200 at the upstream end 172a of the helical blade 170 through the spiral blade 170 to the downstream position 202 at the downstream end 172b of the helical blade 170, the first flow of the fluid profile 180 182 was reversed. As illustrated by the dashed lines, the first flow rate 182 of the fluid profile 180 is redirected to a higher elevation and is within quadrant II and quadrant III.

第9圖展示:安裝具有上游邊緣174a之螺旋葉片的結果,該上游邊緣174a位於相對於水平軸192具約45°之角度α處。然而,與第5圖不同,電腦模型之安裝提供上游邊緣174a,該上游邊緣對角地在象限II與象限IV之間延伸。如圖所示,電腦模型顯示:當熔融玻璃124由上游端172a處的上游位置200向下游流經螺旋葉片170至下游端172b處的下游位置202時,流體剖面180之第一流量182被重新導向。如圖所示,以約45°之角度α安裝可移動下游位置202,使得下游位置202被重新導向而位於較高的高度,且大體上沿著垂直軸204而高於上游位置200,該垂直軸204係垂直於水平軸192。如圖所示,下游位置可為導管之整體高度的約50%高度。在進一步的範例中,高度可比導管高度的50%高或低。 Figure 9 shows the result of installing a helical blade having an upstream edge 174a that is at an angle a of about 45 with respect to the horizontal axis 192. However, unlike Figure 5, the installation of the computer model provides an upstream edge 174a that extends diagonally between quadrant II and quadrant IV. As shown, the computer model shows that when the molten glass 124 flows downstream from the upstream position 200 at the upstream end 172a through the spiral blade 170 to the downstream position 202 at the downstream end 172b, the first flow 182 of the fluid profile 180 is re guide. As shown, the movable downstream position 202 is mounted at an angle a of about 45° such that the downstream position 202 is redirected to a higher height and generally along the vertical axis 204 and above the upstream position 200, the vertical The shaft 204 is perpendicular to the horizontal axis 192. As shown, the downstream location can be about 50% of the height of the overall height of the catheter. In a further example, the height may be higher or lower than 50% of the height of the catheter.

如圖所示,玻璃熔化器106、澄清腔室130、攪拌腔室134、傳送容器144及成型容器152係玻璃熔 融位置之範例,該等玻璃熔融位置可沿著熔融下拉設備102連續被安置。 As shown, the glass melter 106, the clarification chamber 130, the agitation chamber 134, the transfer container 144, and the molding container 152 are glass melted. As an example of a melt location, the glass melt locations can be continuously placed along the melt down device 102.

玻璃熔化器106典型地由耐火材料構成,例如耐火(陶瓷)磚。熔融下拉設備102可更包括:典型地由鉑或包含鉑的金屬所構成的組件,該等包含鉑的金屬例如:鉑-銠,鉑-銥或鉑-銠與鉑-銥的組合,但該等組件亦可包含:例如以下之耐火金屬:鉬,鈀,錸,鉭,鈦,鎢,釕,鋨,鋯與該等金屬之合金及(或)二氧化鋯。包含鉑的組件可包括:以下之一或更多者:第一導管132、澄清腔室130(例如,較細管)、第二導管136、豎管126、攪拌腔室134(例如,攪拌腔室)、混合元件138與可轉動軸140、第三導管146、傳送容器144(例如,槽池)、降流管148、入口150以及螺旋葉片170。成型容器152亦由耐火材料所構成,且經設計以形成玻璃帶104。在進一步的範例中,成型容器152可由其他材料構成,該等其他材料可不必為耐火材料。例如,成型容器152可包含:所有金屬或金屬鍍層,儘管在進一步的範例中可使用其他材料。 The glass melter 106 is typically constructed of a refractory material, such as a refractory (ceramic) brick. The melt down-draw device 102 may further comprise: a component typically composed of platinum or a metal comprising platinum, such as platinum-ruthenium, platinum-ruthenium or a combination of platinum-ruthenium and platinum-ruthenium, but The components may also include, for example, the following refractory metals: molybdenum, palladium, rhodium, iridium, titanium, tungsten, rhenium, iridium, zirconium and alloys of the metals and/or zirconium dioxide. The platinum-containing component can include one or more of the following: a first conduit 132, a clarification chamber 130 (eg, a thinner tube), a second conduit 136, a riser 126, a stirring chamber 134 (eg, a stirring chamber) The mixing element 138 is coupled to the rotatable shaft 140, the third conduit 146, the transfer container 144 (eg, the trough), the downcomer 148, the inlet 150, and the helical blade 170. The forming vessel 152 is also constructed of a refractory material and is designed to form a glass ribbon 104. In a further example, the forming vessel 152 may be constructed of other materials that may not necessarily be refractory materials. For example, the forming vessel 152 can comprise: all metal or metal coatings, although other materials may be used in further examples.

現在將描述製造玻璃物件之方法。如第1圖所圖示,該方法可包括:在玻璃熔化器106中熔化批量材料108以產生熔融玻璃124之步驟。如第3圖所圖示,(例如)藉由第一導管132,熔融玻璃124接著被送至澄清腔室130中。該方法接著包括:由澄清腔室130中之熔融玻璃124移除氣泡206之步驟,及將熔融玻璃 124由澄清腔室130送經第二導管136之入口137之步驟,該第二導管136在澄清腔室130與攪拌腔室134之間提供流體連通(fluid communication)。 A method of manufacturing a glass article will now be described. As illustrated in FIG. 1, the method can include the steps of melting the batch material 108 in a glass melter 106 to produce molten glass 124. As illustrated in FIG. 3, the molten glass 124 is then sent to the clarification chamber 130, for example, by the first conduit 132. The method then includes the steps of removing the bubbles 206 from the molten glass 124 in the clarification chamber 130, and the molten glass The step 124 is directed by the clarification chamber 130 through the inlet 137 of the second conduit 136 which provides fluid communication between the clarification chamber 130 and the agitation chamber 134.

如第3圖與第4圖所圖示,進入入口137之熔融玻璃124包括:具有第一流量182之流體剖面180,該第一流量182在比第二流量184之更低高度處在第二導管136內流動,該第二流量184在第二導管136內流動。如進一步所圖示,該方法亦可包括:將第二導管136內之流體剖面180重新導向之步驟,使得第一流量182在比第二流量184之更高高度處在第二導管136內流動。 As illustrated in Figures 3 and 4, the molten glass 124 entering the inlet 137 includes a fluid profile 180 having a first flow rate 182 that is at a second lower level than the second flow rate 184. Flowing within the conduit 136, the second flow rate 184 flows within the second conduit 136. As further illustrated, the method can also include the step of redirecting the fluid profile 180 within the second conduit 136 such that the first flow rate 182 flows within the second conduit 136 at a higher elevation than the second flow rate 184. .

該方法亦包含將熔融玻璃124由第二導管136之出口139送至攪拌腔室134中之步驟。熔融玻璃124接著在攪拌腔室134中被攪拌。例如,可轉動軸140可如轉動箭頭142所指而被轉動,以轉動混合元件138(示意地圖示於第3圖中)。藉由攪拌腔室134的動作,可在將熔融玻璃之流量由攪拌腔室送至成型容器以使玻璃物件成型之前,將熔融玻璃124均質化。 The method also includes the step of delivering molten glass 124 from the outlet 139 of the second conduit 136 to the agitation chamber 134. The molten glass 124 is then stirred in the agitation chamber 134. For example, the rotatable shaft 140 can be rotated as indicated by the turning arrow 142 to rotate the mixing element 138 (shown schematically in Figure 3). By the action of the stirring chamber 134, the molten glass 124 can be homogenized before the flow rate of the molten glass is sent from the stirring chamber to the molding container to shape the glass article.

將理解,攪拌腔室134係被設計以減少熔融玻璃124中的化學變化,該等化學變化係源自熔化製程。例如,將批量材料熔化,及部分設備102(例如耐火材料)的分解,為可造成熔融玻璃124中化學變化之來源的範例。希望達成攪拌腔室134中熔融玻璃的最佳混合,以使離開攪拌腔室至成型容器之熔融玻璃124的 均質化最佳化。最佳攪拌為玻璃均質化之間的平衡,該玻璃均質化可藉由以下方式加強:增加攪拌元件138與攪拌腔室134的壁之間的剪力。另一方面,增加剪力亦可增加攪拌腔室134內的材料腐蝕,因此增加不希望的來自部分攪拌腔室之分解的化學成分。 It will be appreciated that the agitation chamber 134 is designed to reduce chemical changes in the molten glass 124 that are derived from the melting process. For example, melting the batch material, and decomposition of some of the equipment 102 (e.g., refractory), is an example of a source that can cause chemical changes in the molten glass 124. It is desirable to achieve an optimum mixing of the molten glass in the agitation chamber 134 to allow the molten glass 124 exiting the agitation chamber to the forming vessel. Homogenization is optimized. The optimum agitation is the balance between the homogenization of the glass, which can be enhanced by increasing the shear between the agitating element 138 and the wall of the agitating chamber 134. On the other hand, increasing the shear force can also increase the corrosion of the material within the agitation chamber 134, thereby increasing the undesirable chemical composition from the decomposition of the partially agitated chamber.

據信,如上述所論述的將流體剖面180重新導向,可導致改良玻璃均質化,而不增加混合元件138在攪拌腔室134中的轉動速度。在進一步的範例中,將流體剖面180重新導向可允許相同或經增加的均質化,而伴隨較慢的混合元件之轉動速度;從而減少由剪力所造成的分解,該剪力介於混合元件138與攪拌腔室134之壁之間。 It is believed that redirecting the fluid profile 180 as discussed above can result in improved glass homogenization without increasing the rotational speed of the mixing element 138 in the agitation chamber 134. In a further example, redirecting the fluid profile 180 may allow for the same or increased homogenization, accompanied by a slower rotational speed of the mixing element; thereby reducing the decomposition caused by shear forces that are interposed between the mixing elements 138 is between the wall of the agitation chamber 134.

建模結果指出:接近流體剖面底部進入攪拌腔室的熔融玻璃124傾向位於較少被攪拌腔室134混合之位置。因為缺陷傾向落於沿著「污泥層」處,所以流體剖面之底部位置相應於熔融玻璃124中最大程度的非同質性。因此,當進入攪拌腔室134時,將位於流體剖面180之第一流量182處之污泥層重新導向於較高高度處,可增加離開攪拌腔室134之熔融玻璃124的整體同質性。 The modeling results indicate that the molten glass 124 entering the agitation chamber near the bottom of the fluid profile tends to be less in a position where it is less mixed by the agitation chamber 134. Since the defect tends to fall along the "sludge layer", the bottom position of the fluid profile corresponds to the greatest degree of heterogeneity in the molten glass 124. Thus, when entering the agitation chamber 134, redirecting the sludge layer at the first flow rate 182 of the fluid profile 180 to a higher elevation increases the overall homogeneity of the molten glass 124 exiting the agitation chamber 134.

接著,返回第1圖,熔融玻璃124的均質混合可送經第三導管146與傳送容器144,經過降流管148並進入成型容器152之入口150中。如第2圖所圖示,成型容器可包含:等靜壓管,該等靜壓管係經設計以熔融 下拉出玻璃帶104,以接著用於處理玻璃板。當由更為均質的熔融玻璃124將玻璃帶104成型時,可製造玻璃板,該等玻璃板具有經增加之成品玻璃表面平坦度,且該等玻璃板避免包含貴金屬粒子,該等貴金屬粒子可另外由以下方式所創造:攪拌器刃與攪拌腔室壁之腐蝕,伴隨著較不有效的混合程序。 Next, returning to Figure 1, the homogeneous mixing of the molten glass 124 can be passed through the third conduit 146 and the transfer vessel 144, through the downcomer 148 and into the inlet 150 of the forming vessel 152. As illustrated in Figure 2, the shaped vessel may comprise: isostatic tubes designed to melt The glass ribbon 104 is pulled down for subsequent processing of the glass sheet. When the glass ribbon 104 is formed from a more homogeneous molten glass 124, glass sheets can be fabricated having increased surface flatness of the finished glass, and the glass sheets are protected from precious metal particles, and the precious metal particles can be It is also created by the corrosion of the agitator blade and the walls of the agitating chamber, with a less efficient mixing procedure.

如第4圖與第7圖所圖示,將玻璃混合重新導向可藉由以下方式達成:藉由用螺旋葉片170扭轉流體剖面180。再者,當螺旋葉片170扭轉流體剖面180時,螺旋葉片170可保持相對於第二導管136不可旋轉地固定。 As illustrated in Figures 4 and 7, the redirection of the glass mixture can be achieved by twisting the fluid profile 180 with the helical blade 170. Moreover, when the helical blade 170 twists the fluid profile 180, the helical blade 170 can remain non-rotatably fixed relative to the second conduit 136.

實驗證據顯示:可藉由將第一導管132處或第二導管136處之流體剖面180重新導向,而達成加強混合。第10圖圖示另一範例設備102,在該另一範例設備102中,流體剖面在第一導管132中被重新導向。在此種範例中,該方法包括:在玻璃熔化器中將批量材料熔化以產生熔融玻璃之起始步驟。熔融玻璃接著被送經第一導管132之入口208,該第一導管132提供玻璃熔化器106與澄清腔室130之間的流體連通。如圖所示,進入入口208之熔融玻璃124包括:具有第一流量182之流體剖面,該第一流量182在比第二流量184之更低高度處在第一導管132內流動,該第二流量184在第一導管132內流動。該方法接著包括將第一導管132內之 流體剖面重新導向之步驟,使得第一流量182在比第二流量184之更高高度處在第一導管132內流動。 Experimental evidence indicates that enhanced mixing can be achieved by redirecting the fluid profile 180 at the first conduit 132 or at the second conduit 136. FIG. 10 illustrates another example device 102 in which a fluid profile is redirected in a first conduit 132. In such an example, the method includes the initial step of melting the batch material in a glass melter to produce molten glass. The molten glass is then passed through an inlet 208 of a first conduit 132 that provides fluid communication between the glass melter 106 and the clarification chamber 130. As shown, the molten glass 124 entering the inlet 208 includes a fluid profile having a first flow rate 182 that flows within the first conduit 132 at a lower elevation than the second flow rate 184, the second Flow 184 flows within first conduit 132. The method then includes including the first conduit 132 The step of redirecting the fluid profile causes the first flow rate 182 to flow within the first conduit 132 at a higher elevation than the second flow rate 184.

可藉由以下方式達成將第一導管132中的流體剖面重新導向,例如藉由前述之螺旋葉片170。在一個範例中,螺旋葉片170可位於電凸緣(electrical flanges)212之外,該等電凸緣212係經設計,以提供電子加熱電路,該電子加熱電路在電凸緣212之間經過第一導管132提供阻抗加熱。因此,將螺旋葉片170至少部分地置於玻璃熔化器106中,可能可避免與阻抗加設電路之干擾。第一導管132內之螺旋葉片170亦對此導管132提供額外的結構穩定性,該導管132可易於隨著時間而變形。此實施例可具有額外的好處:藉由以下方式增加熔化器耐火石之溶解速率:藉由降低耐火化學成分在圍繞該等耐火化學成分之玻璃中的飽和。 The fluid profile in the first conduit 132 can be redirected by, for example, the aforementioned helical blade 170. In one example, the spiral vanes 170 can be located outside of electrical flanges 212 that are designed to provide an electronic heating circuit that passes between the electrical flanges 212 A conduit 132 provides impedance heating. Therefore, placing the spiral blade 170 at least partially in the glass melter 106 may avoid interference with the impedance addition circuit. The helical vanes 170 within the first conduit 132 also provide additional structural stability to the conduit 132, which can be easily deformed over time. This embodiment may have the added benefit of increasing the dissolution rate of the refractory stone of the melter by reducing the saturation of the refractory chemical composition in the glass surrounding the refractory chemical composition.

接著藉由以下方式進行該方法:藉由將熔融玻璃由第一導管132之出口210送至澄清腔室130中。接著由澄清腔室130中的熔融玻璃124移除氣泡206。然後將熔融玻璃送至攪拌腔室134中。如圖所示,當材料182之第一流量進入攪拌腔室134時,材料182之第一流量仍可位於第二導管136之上部。因此,可達成增加熔融玻璃之同質性並增加玻璃物件之品質。 The method is then carried out by feeding molten glass from the outlet 210 of the first conduit 132 into the clarification chamber 130. The bubbles 206 are then removed by the molten glass 124 in the clarification chamber 130. The molten glass is then sent to the agitation chamber 134. As shown, when the first flow of material 182 enters the agitation chamber 134, the first flow of material 182 can still be located above the second conduit 136. Therefore, it is possible to increase the homogeneity of the molten glass and increase the quality of the glass article.

如上所述,藉由將流體剖面重新導向,可在玻璃物件(例如,玻璃板)中觀察到經增加的表面平坦度。亦可能減少攪拌腔室134中混合元件138的攪拌速 度,從而提供較少腐蝕,並因此在攪拌腔室內提供更多均質化。更進一步地,增加混合效率可允許減少攪拌腔室134之大小,從而顯著地減少製造攪拌腔室134的成本,該攪拌腔室134典型地係由貴金屬所製造。 As noted above, increased surface flatness can be observed in glass articles (e.g., glass sheets) by redirecting the fluid profile. It is also possible to reduce the agitation speed of the mixing element 138 in the agitation chamber 134. Degree, thereby providing less corrosion and thus providing more homogenization within the agitation chamber. Still further, increasing the mixing efficiency may allow the size of the agitation chamber 134 to be reduced, thereby significantly reducing the cost of manufacturing the agitation chamber 134, which is typically fabricated from a precious metal.

對本發明技術領域中具有通常知識者而言,顯然地,可對本發明進行各樣修改與變化,而不致偏離本發明之精神與範疇。因此,本發明意欲涵蓋此發明之修改與變化,若該等修改與變化落於隨附申請專利範圍之範疇中及該等隨附申請專利範圍之均等之範疇中。 It will be apparent to those skilled in the art that the invention may be Therefore, the invention is intended to cover the modifications and alternatives of the invention, and the scope of the scope of the appended claims and the scope of the accompanying claims.

124‧‧‧熔融玻璃 124‧‧‧Solid glass

132‧‧‧第一導管 132‧‧‧First catheter

132a‧‧‧導管之較低部分 132a‧‧‧lower part of the catheter

136‧‧‧第二導管 136‧‧‧second catheter

136a‧‧‧導管之較低部分 136a‧‧‧lower part of the catheter

170‧‧‧螺旋葉片 170‧‧‧Spiral blades

172a‧‧‧上游端 172a‧‧‧ upstream end

172b‧‧‧下游端 172b‧‧‧ downstream end

174a‧‧‧上游邊緣 174a‧‧‧ upstream edge

174b‧‧‧下游邊緣 174b‧‧‧ downstream edge

180‧‧‧流體剖面 180‧‧‧Fluid profile

182‧‧‧第一流量 182‧‧‧First flow

184‧‧‧第二流量 184‧‧‧Second flow

190‧‧‧軸向流向 190‧‧‧Axial flow

Claims (12)

一種製造一玻璃物件的方法,該方法包含以下步驟:(I)在一玻璃熔化器(glass melter)中熔化批量材料(batch material),以產生熔融玻璃;(II)將該熔融玻璃送經一第一導管之一入口(inlet),該第一導管在該玻璃熔化器與一澄清腔室(fining chamber)之間提供流體連通(fluid communication),其中進入該入口之該熔融玻璃包括:一流體剖面(flow profile),該流體剖面具有:一第一流量,該第一流量在比一第二流量之一更低高度處在該第一導管內流動,該第二流量在該第一導管內流動;(III)將該熔融玻璃由該第一導管之一出口送至該澄清腔室中;(IV)由在該澄清腔室中之該熔融玻璃移除玻璃氣泡;(V)將該熔融玻璃由該澄清腔室送經一第二導管之一入口,該第二導管在該澄清腔室與一攪拌腔室(stir chamber)之間提供流體連通,其中進入該第二導管之該入口之該熔融玻璃包括:一流體剖面(flow profile),該流體剖面具有:一第一流量, 該第一流量在比一第二流量之一更低高度處在該第二導管內流動,該第二流量在該第二導管內流動;(VI)將該熔融玻璃由該第二導管之一出口送至該攪拌腔室中;(VII)在該攪拌腔室中攪拌該熔融玻璃;(VIII)將該熔融玻璃之流量由該攪拌腔室送至一成型容器(forming vessel),以使該玻璃物件成型;以及(IX)以複數個螺旋葉片(helical vane)扭轉在該第一導管與該第二導管之一者內的該流體剖面,其中在以該等複數個螺旋葉片扭轉該流體剖面之後,該第一流量在比該第二流量之一更高高度處,在該第一導管與該第二導管之該一者內流動。 A method of manufacturing a glass article, the method comprising the steps of: (I) melting a batch material in a glass melter to produce molten glass; (II) passing the molten glass through a An inlet of the first conduit, the first conduit providing fluid communication between the glass melter and a fining chamber, wherein the molten glass entering the inlet comprises: a fluid a flow profile having a first flow rate that flows within the first conduit at a lower elevation than one of the second flow rates, the second flow rate being within the first conduit Flowing; (III) delivering the molten glass from one of the outlets of the first conduit to the clarification chamber; (IV) removing glass bubbles from the molten glass in the clarification chamber; (V) melting the glass The glass is passed from the clarification chamber through an inlet of a second conduit, the second conduit providing fluid communication between the clarification chamber and a stir chamber, wherein the inlet to the second conduit The molten glass includes: a fluid section a flow profile having a first flow rate, The first flow rate flows within the second conduit at a lower elevation than one of the second flow rates, the second flow rate flowing within the second conduit; (VI) the molten glass is from the second conduit The outlet is sent to the stirring chamber; (VII) the molten glass is stirred in the stirring chamber; (VIII) the flow rate of the molten glass is sent from the stirring chamber to a forming vessel so that the Forming a glass article; and (IX) twisting the fluid profile in one of the first conduit and the second conduit with a plurality of helical vanes, wherein the fluid profile is twisted with the plurality of helical vanes Thereafter, the first flow rate flows in the one of the first conduit and the second conduit at a higher elevation than one of the second flows. 如請求項1所述之方法,進一步包含以下步驟:加熱該第一導管與該第二導管之該一者。 The method of claim 1, further comprising the step of heating the one of the first conduit and the second conduit. 如請求項1所述之方法,其中該等複數個螺旋葉片中之每一者包括二個螺旋邊緣,該等螺旋邊緣協助該螺旋葉片安裝於該第一導管與該第二導管中之一者內。 The method of claim 1, wherein each of the plurality of helical blades comprises two helical edges, the helical edges assisting the helical blade to be mounted to one of the first conduit and the second conduit Inside. 如請求項1所述之方法,其中該成型容器包含:一等靜壓管(isopipe),且該玻璃物件包含: 一玻璃板,該玻璃板係藉由一熔融下拉式(fusion down-draw)製程所成型。 The method of claim 1, wherein the shaped container comprises: an isopipe, and the glass article comprises: A glass plate formed by a fusion down-draw process. 如請求項1所述之方法,其中在步驟(IX)期間內,當扭轉該流體剖面時,該螺旋葉片相對於該第一導管與該第二導管之該一者維持不可旋轉之固定。 The method of claim 1, wherein during the step (IX), the helical blade maintains a non-rotatable fixation relative to the one of the first conduit and the second conduit when the fluid profile is reversed. 一種用於製造一玻璃物件的設備,該設備包含:一玻璃熔化器,該玻璃熔化器係經設置,以將一批量材料熔化成一熔融玻璃;一澄清腔室,該澄清腔室位於該玻璃熔化器之下游,其中該澄清腔室係經設置,以由該玻璃熔化器接收熔融玻璃;一攪拌腔室,該攪拌腔室位於該澄清腔室之下游;一導管,該導管係經設置,以提供使熔融玻璃由該玻璃熔化器流至該澄清腔室之一路徑,或提供使熔融玻璃由該澄清腔室流至該攪拌腔室之一路徑;複數個螺旋葉片,該等複數個螺旋葉片係不可旋轉地固定於該導管中,且該螺旋葉片係經設置,以扭轉在該導管中之該熔融玻璃之一流體剖面;以及一成型容器,該成型容器位於該攪拌腔室之下游,其中該成型容器係經設置,以由該攪拌腔室接收熔融 玻璃並使該玻璃物件成型。 An apparatus for manufacturing a glass article, the apparatus comprising: a glass melter configured to melt a batch of material into a molten glass; a clarification chamber, the clarification chamber being located in the glass Downstream of the device, wherein the clarification chamber is configured to receive molten glass from the glass melter; an agitation chamber located downstream of the clarification chamber; a conduit configured to Providing a path for flowing molten glass from the glass melter to the clarification chamber, or providing a path for molten glass to flow from the clarification chamber to the agitation chamber; a plurality of spiral blades, the plurality of spiral blades Is non-rotatably fixed in the conduit, and the spiral blade is configured to twist a fluid profile of the molten glass in the conduit; and a shaped container located downstream of the agitating chamber, wherein The forming container is configured to receive melting from the stirring chamber The glass is shaped and shaped. 如請求項6所述之設備,進一步包含:一電加熱電路,該電加熱電路位於該導管中。 The apparatus of claim 6 further comprising: an electrical heating circuit, the electrical heating circuit being located in the conduit. 如請求項6或7所述之設備,其中該等複數個螺旋葉片中之每一者包括一第一螺旋邊緣與一第二螺旋邊緣,該等螺旋邊緣固定於該第一導管與該第二導管之該一者中。 The apparatus of claim 6 or 7, wherein each of the plurality of spiral blades includes a first spiral edge and a second spiral edge, the spiral edges being fixed to the first conduit and the second Among the ones of the catheters. 如請求項6所述之設備,其中該成型容器包含:一等靜壓管,該等靜壓管係經設置,以使該玻璃物件由該熔融玻璃熔融下拉而出。 The apparatus of claim 6, wherein the shaped container comprises: an isostatic tube configured to cause the glass article to be melted out of the molten glass. 如請求項6或7所述之設備,其中該螺旋葉片包括:一上游端與一下游端,其中該葉片在該上游端與該下游端之間扭轉一角度,該角度在約90。至約270°之一範圍中。 The apparatus of claim 6 or 7, wherein the helical blade comprises: an upstream end and a downstream end, wherein the blade is twisted at an angle between the upstream end and the downstream end, the angle being about 90. Up to about 270°. 如請求項10所述之設備,其中該角度約為180°。 The device of claim 10, wherein the angle is about 180°. 如請求項6或7所述之設備,其中該螺旋葉片更包括:一上游邊緣,該上游邊緣位於:相對於一水平軸傾斜約30°至約60°之一傾斜角度處,該水平軸係垂直於該導管之一軸向流向。 The apparatus of claim 6 or 7, wherein the spiral blade further comprises: an upstream edge, the upstream edge being located at an inclination angle of about 30° to about 60° with respect to a horizontal axis, the horizontal axis system It flows axially perpendicular to one of the conduits.
TW105116331A 2011-04-29 2012-04-03 Apparatus for making a glass article and methods TWI565668B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161480428P 2011-04-29 2011-04-29

Publications (2)

Publication Number Publication Date
TW201630824A true TW201630824A (en) 2016-09-01
TWI565668B TWI565668B (en) 2017-01-11

Family

ID=47072992

Family Applications (2)

Application Number Title Priority Date Filing Date
TW101111852A TWI541208B (en) 2011-04-29 2012-04-03 Apparatus for making a glass article and methods
TW105116331A TWI565668B (en) 2011-04-29 2012-04-03 Apparatus for making a glass article and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW101111852A TWI541208B (en) 2011-04-29 2012-04-03 Apparatus for making a glass article and methods

Country Status (5)

Country Link
JP (1) JP5993444B2 (en)
KR (1) KR101761457B1 (en)
CN (1) CN103502161B (en)
TW (2) TWI541208B (en)
WO (1) WO2012148642A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8956484B2 (en) 2012-11-26 2015-02-17 Corning Incorporated Method for bonding zircon substrates
JP2015174806A (en) * 2014-03-17 2015-10-05 日本電気硝子株式会社 Flow displacement member for molten glass
JP6133958B2 (en) * 2014-10-31 2017-05-24 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
TW201711967A (en) * 2015-08-26 2017-04-01 美商.康寧公司 Glass melting system and method for increased homogeneity
JP2018538228A (en) * 2015-11-23 2018-12-27 コーニング インコーポレイテッド Glass melting system and method for improving batch melting and glass homogeneity
CN107986604B (en) * 2017-12-26 2023-10-20 中建材玻璃新材料研究院集团有限公司 Stirring rod of electronic display glass platinum channel
TWI826432B (en) * 2018-04-06 2023-12-21 美商康寧公司 Exhaust conduits for glass melt systems
CN113480150A (en) * 2021-06-30 2021-10-08 陕西彩虹工业智能科技有限公司 Flexible glass preparation system and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408893A (en) * 1982-04-28 1983-10-11 Luwa A.G. Motionless mixing device
JP2001259393A (en) * 2000-03-23 2001-09-25 Snow Brand Milk Prod Co Ltd Method and device for agitating fluid substance
JP2001353431A (en) * 2000-06-12 2001-12-25 Noritake Co Ltd Static mixer element, device and method using the same and heat exchanging device and method
JP4318542B2 (en) * 2003-12-22 2009-08-26 株式会社オハラ Spherical glass manufacturing apparatus and spherical glass manufacturing method
US20060120214A1 (en) * 2004-11-08 2006-06-08 Red Valve Company, Inc. Mixing device
WO2006059575A1 (en) 2004-12-01 2006-06-08 Nippon Sheet Glass Company, Limited Glass production apparatus and process for producing glass
JP5370902B2 (en) * 2007-08-30 2013-12-18 日本電気硝子株式会社 FIXED Fused Glass Replacement Member and Glass Article Manufacturing Method
US20100083704A1 (en) * 2008-10-08 2010-04-08 Paul Richard Grzesik Methods and apparatus for manufacturing glass sheet
TWI388519B (en) * 2008-11-24 2013-03-11 Corning Inc Isopipe material outgassing
US8117868B2 (en) * 2009-07-27 2012-02-21 Corning Incorporated Apparatus and methods for making glass

Also Published As

Publication number Publication date
KR101761457B1 (en) 2017-07-25
JP2014514239A (en) 2014-06-19
CN103502161A (en) 2014-01-08
KR20140025396A (en) 2014-03-04
WO2012148642A3 (en) 2013-02-28
TWI565668B (en) 2017-01-11
TWI541208B (en) 2016-07-11
WO2012148642A2 (en) 2012-11-01
JP5993444B2 (en) 2016-09-14
TW201242919A (en) 2012-11-01
CN103502161B (en) 2016-08-17

Similar Documents

Publication Publication Date Title
TWI565668B (en) Apparatus for making a glass article and methods
KR101589420B1 (en) Molten glass delivery apparatus for optical quality glass
KR20150110619A (en) Process and appratus for refining molten glass
US8616025B2 (en) Method of manufacturing glass, and stirring device
TW201223903A (en) Method for manufacturing glass substrate, and stirring device
JP5510446B2 (en) Molten glass stirring device
JP2010100462A (en) Agitating blade and agitating device for molten glass
WO2016168109A1 (en) Apparatus and methods for cooling molten _glass material
WO2012011419A1 (en) Molten glass conveying device and method of producing glass using molten glass conveying device
CN109415235A (en) Device and method for glass conveying orientation
KR101778377B1 (en) Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
JP6639522B2 (en) Apparatus and method for tempering molten glass
JP4793581B2 (en) Molten glass supply apparatus and method for producing glass molded product
CN109070029A (en) Device and method for mixed melting glass
JP5793919B2 (en) Stirring apparatus and stirring method for molten glass
JP2016033099A (en) Method for manufacturing glass plate, and agitator
TW202204272A (en) Apparatus and method for reducing defects in glass melt systems
JP2010235446A (en) Method for manufacturing glass formed article