TW201242919A - Apparatus for making a glass article and methods - Google Patents

Apparatus for making a glass article and methods Download PDF

Info

Publication number
TW201242919A
TW201242919A TW101111852A TW101111852A TW201242919A TW 201242919 A TW201242919 A TW 201242919A TW 101111852 A TW101111852 A TW 101111852A TW 101111852 A TW101111852 A TW 101111852A TW 201242919 A TW201242919 A TW 201242919A
Authority
TW
Taiwan
Prior art keywords
glass
conduit
chamber
molten glass
flow
Prior art date
Application number
TW101111852A
Other languages
Chinese (zh)
Other versions
TWI541208B (en
Inventor
Bradley Frederick Bowden
Zagorka Dacic Gaeta
Martin Herbert Goller
Aaron Joshua Hade
James Patrick Murphy
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW201242919A publication Critical patent/TW201242919A/en
Application granted granted Critical
Publication of TWI541208B publication Critical patent/TWI541208B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/182Stirring devices; Homogenisation by moving the molten glass along fixed elements, e.g. deflectors, weirs, baffle plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/187Stirring devices; Homogenisation with moving elements
    • C03B5/1875Stirring devices; Homogenisation with moving elements of the screw or pump-action type
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass

Abstract

Methods of making a glass article comprise the step of flowing molten glass into an inlet of a conduit (132, 136), wherein the molten glass entering the inlet includes a flow profile with a first quantity (182) traveling in the conduit at a lower elevation than a second quantity (184) traveling in the conduit. The method further includes the step of twisting the flow profile within the conduit such that the first quantity travels in the conduit at a higher elevation than the second quantity. In further examples, apparatus for making a glass article comprise a helical vane (170) nonrotatably fixed in a conduit (132, 136) and configured to twist a flow profile (180) of a molten glass flowing within the conduit.

Description

201242919 六、發明說明: 本申請案依據專利法主張於2011年4月29曰提出申 請之美國臨時專利申請號第61/480,428號之優先權之利 益’該專利參考文獻全體皆引用作為本説明書的揭示内 容。 【發明所屬之技術領域】 本揭示案大體上係關於用於製造玻璃物件的設備與方 法’且更特別地’係關於用於將導管内之玻璃流體重新 導向之設備,且係關於製造玻璃物件的方法’該方法包 括以下步驟:將導管内之熔融玻璃的流體剖面(fl〇w profile )重新導向。 【先前技術】 玻璃製造系統通常用於使各樣玻璃物件成型,該等玻 璃物件例如.可用於液晶顯示器(丨iqUid cryStai diSpiay ; LED )之玻璃板。例如,習知上,將熔融玻璃流入等靜 壓管(isopipe)、成型容器、浮標磚(debiteuse)或其他 成型結構,其中玻璃帶(glass ribb〇n )係藉由下拉式製 程所成型,例如熔融下拉式(fusi〇n d〇wn_draw)製程。然 後可接著將玻璃帶分為多個板,例如:提供LCD玻璃板。 用於平板玻璃應用(特別是用於LCD面板應用)的玻 201242919 璃°°資屬性需求越來越嚴格。有兩個相互關聯的屬性, 兩者皆與在攪拌腔室中攪拌玻璃之製程相關:成品玻璃 表面之平坦度的缺陷(習知上稱為「不均勻(mura)」 或「痕(cord)」),及貴金屬粒子雜質(inclusi〇ns),該 等責金屬粒子雜質係藉由攪拌刀之腐蝕及攪拌腔室壁之 腐勉所造成。玻璃表面波紋(corrugati〇n )—痕(c〇rd )— 常見於:在傳送成品前,玻璃同質性(h〇m〇genehy)不 足或玻璃混合不足表現於成品中。所造成的面板厚度變 化轉變為液晶間隙變化,該液晶間隙變化可造成之 錯誤運作。貴金屬雜質造成玻璃面板體的不連續,造成 LCD成品的「黑點(bIacJcsp〇t)j缺陷。 【發明内容】 攪拌系統的目的在於:減少玻璃中的化學變化,該等 化學變化為熔化製程的異常生長物(artifact),該等熔 化製程為:批量熔化、來自儲槽耐火料之分解產物等等。 最佳玻璃攪拌為兩種現象之間的平衡行為:破璃均質化 (h〇m〇genizati〇n )及材料腐蝕,兩者均藉由以下方式 加強:增加攪拌棒刃與攪拌腔室壁之間的剪力,對於= 品玻璃品質而言,玻璃均質化加強為優點,材料腐蝕為 缺點。本發a月人已經找到改良玻璃均質化的解決方案: 而無須增加擾拌棒的速度。數值模型結果與油模型 指出·從導管底部進人搜拌腔室的玻璃較少被授掉器屍 5 201242919201242919 VI. INSTRUCTIONS: This application is based on the benefit of the priority of the U.S. Provisional Patent Application No. 61/480,428, filed on Apr. 29, 2011. Revealing content. TECHNICAL FIELD The present disclosure relates generally to apparatus and methods for fabricating glass articles 'and more particularly to apparatus for redirecting glass fluid within a conduit, and to fabricating glass articles. Method 'The method comprises the steps of redirecting the fluid profile of the molten glass within the conduit. [Prior Art] A glass manufacturing system is generally used for molding various glass articles such as glass plates for liquid crystal displays (丨iqUid cryStai diSpiay; LED). For example, conventionally, molten glass is poured into an isopipe, a molding container, a debiteuse, or other molded structure in which a glass ribbon (glass ribb〇n) is formed by a pull-down process, for example, Melt pull-down (fusi〇nd〇wn_draw) process. The glass ribbon can then be divided into a plurality of panels, for example: an LCD glass panel is provided. Glass for use in flat glass applications (especially for LCD panel applications) 201242919 Glass is increasingly demanding. There are two interrelated properties, both of which are related to the process of agitating the glass in the mixing chamber: the defect in the flatness of the finished glass surface (known as "mura" or "cord" "), and precious metal particle impurities (inclusi〇ns), these metal particle impurities are caused by the corrosion of the stirring knife and the corrosion of the stirring chamber wall. Corrugati〇n—c痕rd—common in: the glass homogeneity (h〇m〇genehy) is insufficient or the glass is insufficiently mixed in the finished product before the finished product is delivered. The resulting change in panel thickness translates into a change in the liquid crystal gap, which can cause erroneous operation. The impurity of the precious metal causes the discontinuity of the glass panel body, resulting in a defect of the black spot (bIacJcsp〇t) j of the finished LCD product. [Area] The purpose of the stirring system is to reduce the chemical change in the glass, and the chemical changes are the melting process. Abnormal growth processes: batch melting, decomposition products from refractory sump, etc. Optimal glass agitation is the equilibrium behavior between the two phenomena: homogenization of broken glass (h〇m〇 Both genizati〇n) and material corrosion, both of which are enhanced by increasing the shear between the stirrer blade and the wall of the agitating chamber. For the quality of the glass, the glass homogenization is enhanced and the material is corroded. Disadvantages: A month, people have found a solution to improve glass homogenization: without increasing the speed of the stir bar. The numerical model results and the oil model indicate that the glass entering the mixing chamber from the bottom of the conduit is less authorized. Corpse 5 201242919

m s:導S連接澄清器與攪拌腔室。此位置亦對應於具 有取网度之不均勻性的玻璃:污泥層。iaye。。 因此,可藉& |V 下方式,改良離開攪拌腔室之玻璃整體 的同質性:將最不具同質性的進料玻璃重新導向至:以 授拌器中之經改良混合為特徵之位置。 藉由將、-呈界疋的玻璃流片段重新導向,並藉由將該經 界定的玻璃流片段導向攪拌腔室中的位置,將改良玻璃 產品的痕A f,該經界定的玻璃流片段將在該位置被有 效地混合。因此,可達成兩個目標:丄.減少痕,以符合 客戶對於玻璃表面平坦度的嚴格需求;以及2為了在攪 拌腔室中更有效的均質化,可能減少攪拌速度,以減少 授拌腔室中所產生的鉑粒子數目。 根據一個態樣,提供一種製造玻璃物件的方法,該方 法包含以下步驟: (I) 在玻璃熔化器(glass melter)中熔化枇量材料(batch material),以產生熔融玻璃; (II) 將炼融玻璃送至澄清腔室(fining chamber)中; (III) 由在澄清腔室中之熔融玻璃移除玻璃氣泡; (IV) 將熔融玻璃由澄清腔室送經導管之入口,該導管 在澄清腔室與授拌腔室(stir chamber )之間提供流體連 通’其中進入入口之熔融玻璃包括:流體剖面(fl〇w profile )’該流體剖面具有:第一流量,該第一流量在比 第二流量之更低高度處在導管内流動,該第二流量在第 二導管内流動; 6 201242919 (v)扭轉在導管内的流體剖面,使得第一流量在比第二 流量之更高高度處’在導管内流動; (VI) 將溶融玻璃由導管之出口送至搜摔腔室中; (VII) 在授拌腔室中授拌熔融玻璃;以及 (VIII) 將熔融玻璃之流量由攪拌腔室送至成型容器 (forming vessel ),以使玻璃物件成型。 根據第二態樣,提供如態樣1所述之方法,其中成型 谷器包含:等靜壓管(is〇pipe ),且玻璃物件包含:玻璃 板,該玻璃板係藉由熔融下拉式(fusi〇n d〇wn draw)製程 所成型。 根據第三態樣,提供如態樣1或態樣2所述之方法, 其中步驟(V)包括:以裝置扭轉流體剖面,該裝置位於導 管内。 根據第四態樣,提供如態樣1至3之任一者所述之方 法,其中步驟(v)包括:以螺旋葉片(helical vane)扭轉 流體剖面。 根據第五態樣,提供如態樣4所述之方法,其中在步 驟(V)期間内,當扭轉流體剖面時,螺旋葉片相對於導管 維持不可旋轉之固定。 根據第六態樣,提供一種製造玻璃物件的方法,該方 法包含以下步驟: (I)在玻璃熔化器中熔化批量材料,以產生熔融玻璃; (Π)將熔融玻璃送經導管之入口,該導管在玻璃熔化器 與澄清腔室之間提供流體連通,其中進入入口之熔融玻 201242919 璃包括:流體剖面,該流體剖面具有:第一流量,該第 一流直在比第一流里之更低南度處在導管内流動,該第 二流量在該導管内流動; (III) 扭轉在導管内的流體剖面’使得第一流量在比第 二流里之更南高度處,在導管内流動; (IV) 將熔融玻璃由導管之出口送至澄清腔室中; (V) 由在澄清腔室中之熔融玻璃移除玻璃氣泡; (VI) 將熔融玻璃由澄清腔室送至攪拌腔室中; (VII) 在攪拌腔室中攪拌熔融玻璃;以及 (VIII) 將炫融玻璃之流量由攪拌腔室送至成型容器,以 使玻璃物件成型。 根據第七態樣,提供如態樣6所述之方法,其中成型 谷器包含:等靜壓管(isopipe )’且玻璃物件包含:玻璃 板’《亥玻璃板係藉由溶融下拉式(fusi〇n down_draw)製程 所成型。 根據第八態樣’提供如態樣6或態樣7所述之方法, 其中步驟(III)包括:以裝置扭轉流體剖面,該裝置位於 導管内。 根據第九態樣’提供如態樣6至8之任一者所述之方 法’其中步驟(III)包括:以螺旋葉片(helical vane)扭 轉流體剖面。 根據弟十態樣,提供如態樣9所述之方法,其中在步 驟(UI)期間内’當扭轉流體剖面時,螺旋葉片相對於導 官維持不可旋轉之固定。 201242919 根據第十一態樣,提供一種用於製造玻璃物件的咬 備’該設備包含: 玻璃熔化器,該玻璃熔化器係經設置,以將批量材料 炼化成炫融玻璃; 澄清腔室’該澄清腔室位於玻璃溶化器之下游,其中 澄清腔室係經設置’以由玻璃熔化器接收熔融玻璃; 攪拌腔室’該攪拌腔室位於澄清腔室之下游; 導管,該導管係經設置,以提供使熔融破璃由澄清腔 室流至擾拌腔室之路徑; 螺旋葉片’該螺旋葉片係不可旋轉地固定於導管中, 且該螺旋葉片係經設置,以扭轉在導管中之熔融玻璃之 流體剖面;以及 成型容器,該成型容器位於攪拌腔室之下游,其中成 -谷器係乂。又置’以由擾拌腔室接收熔融玻璃並使玻璃 物件成型。 根據第十二態樣,提供如態樣11所述之設備,其中該 成型令器包含:等靜壓管,該等靜壓管係經設置,以使 玻璃物件由熔融玻璃熔融下拉而出。 根據第十三態樣,提供如態樣11或態樣12所述之設 備其中螺旋葉片包括:上游端與下游端,其中葉片在 上游端與下游端之間扭轉一角度,該角度在約90。至·約 。之範圍中。 據第十四態樣,提供如態樣11至13之任一者所述 之叹備,其中螺旋葉片更包括:上游邊緣,該上游邊緣 201242919 位於.相對於水平軸傾斜約3〇。至約6〇。之傾斜角度處, 該水平軸係垂直於導管之軸向流向。 根據第十五態樣’提供—種用於製造玻璃物件的設 備,該設備包含: 玻璃炼化器,3亥玻璃溶化器係經設置以將批量材料 溶化成溶融玻璃; 澄β腔室,該澄清腔室位於玻璃熔化器之下游; 導s該導管係經設置,以提供使熔融玻璃由玻璃熔 化器流至澄清腔室之路徑; 累方疋葉片,5亥螺旋葉片係不可旋轉地固定於導管中, 且该螺旋葉片係經設置,以扭轉在導管中之熔融玻璃之 流體剖面; 攪拌腔室,該攪拌腔室位於玻璃熔化器之下游,其中 柷拌腔至係經設置,以由澄清腔室接收熔融玻璃;以及 成型容器,該成型容器位於攪拌腔室之下游,其中成 ^谷器係L β又置,以由搜拌腔室接收溶融玻璃並使玻璃 物件成型。 根據第十六態樣,提供如態樣15所述之設備,其中該 成型容器包含:等靜壓管,該等靜壓管係經設置,以使 玻璃物件由熔融玻璃熔融下拉而出。 根據第十七態樣,提供如態樣15或態樣16所述之設 備,其中螺旋葉片包括:上游端與下游端,其中葉片在 上游端與下游端之間扭轉一角度,該角度在約90。至約 27〇°之範圍中。 201242919 根據第十八態樣,提供如態樣丨7所述之設備’其中角 度約為1 8Q。。 根據第十九態樣’提供如態樣Μ炱18之任一者所述 之設備,其中螺旋葉片更包括:上游邊緣,該上游邊緣 位於:相對於水平軸傾斜約3〇。至約6〇。之傾斜角度處’ 該水平軸係垂直於導管之軸向流向。 根據第二十態樣,提供如態樣丨9所述之設備,其中傾 斜角度相對於水平軸約為45。。 【實施方式】 現在將參考隨附圖式’更全面地於下文中描述本發 明,在該等隨附圖式中,圖示所主張發明之範例實施例。 在圖式中’相同的元件符號儘可能地用來代表相同或相 似的。卩分。然而,可以許多不同形式實施所主張發明, 且所主張發明不應被闡釋為限制於本文所载之實施例。 提供該等範例實施例,使得本揭示案將為詳盡而全面 的,且該等範例實施例將把所主張發明之範疇完全地傳 達給本發明領域中具有通常知識者。 第1圖圖示用於將玻璃帶104熔融下拉之熔融下拉設 備102之示意圖,驾 熔融下拉設備102 106,該玻璃炼化 圖,该玻璃帶104接著用於處理成玻璃板。 1〇2可包括:玻璃熔化器(glassme丨m s: The guide S is connected to the clarifier and the agitation chamber. This position also corresponds to the glass with the unevenness of the netness: the sludge layer. Iaye. . Thus, the homogeneity of the glass exiting the agitating chamber can be improved by the & |V method: redirecting the least homogenous feed glass to a location characterized by improved mixing in the agitator. By redirecting the --bounded glass stream segment and directing the defined glass stream segment to a location in the agitation chamber, the trace A of the glass product will be modified, the defined glass stream segment Will be effectively mixed at this location. Therefore, two goals can be achieved: 丄 reducing the mark to meet the customer's strict requirements for the flatness of the glass surface; and 2 for more efficient homogenization in the mixing chamber, possibly reducing the stirring speed to reduce the mixing chamber The number of platinum particles produced in the process. According to one aspect, there is provided a method of making a glass article, the method comprising the steps of: (I) melting a batch material in a glass melter to produce a molten glass; (II) The molten glass is sent to a finishing chamber; (III) the glass bubbles are removed from the molten glass in the clarification chamber; (IV) the molten glass is passed from the clarification chamber to the inlet of the conduit, the conduit being clarified Providing fluid communication between the chamber and the stir chamber, wherein the molten glass entering the inlet includes: a fluid profile (fl〇w profile) having a first flow rate, the first flow rate being The lower flow of the second flow flows within the conduit, the second flow flows within the second conduit; 6 201242919 (v) torsion of the fluid profile within the conduit such that the first flow is at a higher elevation than the second flow ' flowing in the conduit; (VI) sending the molten glass from the outlet of the conduit to the search chamber; (VII) mixing the molten glass in the mixing chamber; and (VIII) passing the flow of molten glass from the mixing chamber Room delivery Molded container (forming vessel), so that the molded glass article. According to a second aspect, the method of aspect 1, wherein the shaped barr comprises: an isopipe, and the glass article comprises: a glass plate, the glass plate being melted by a pull-down type ( The fusi〇nd〇wn draw) process is formed. According to a third aspect, the method of Aspect 1 or Aspect 2, wherein the step (V) comprises: twisting the fluid profile with the device, the device being located within the catheter. According to a fourth aspect, the method of any one of aspects 1 to 3, wherein the step (v) comprises: twisting the fluid profile with a helical vane. According to a fifth aspect, the method of aspect 4, wherein the helical blade maintains a non-rotatable fixation relative to the catheter during the torsional fluid profile during the step (V). According to a sixth aspect, there is provided a method of making a glass article, the method comprising the steps of: (I) melting a batch of material in a glass melter to produce molten glass; (Π) passing the molten glass through an inlet of the conduit, The conduit provides fluid communication between the glass melter and the clarification chamber, wherein the molten glass entering the inlet 201242919 comprises: a fluid profile having a first flow rate that is lower than the first flow a degree of flow within the conduit, the second flow flowing within the conduit; (III) twisting the fluid profile within the conduit such that the first flow is at a more souther level than in the second flow, flowing within the conduit; IV) feeding the molten glass from the outlet of the conduit to the clarification chamber; (V) removing the glass bubbles from the molten glass in the clarification chamber; (VI) feeding the molten glass from the clarification chamber to the agitation chamber; (VII) stirring the molten glass in the stirring chamber; and (VIII) feeding the flow of the molten glass from the stirring chamber to the molding container to shape the glass article. According to a seventh aspect, the method of aspect 6, wherein the shaped trough comprises: an isopipe and the glass object comprises: a glass plate, and the glass plate is melted by a pull-down type (fusi) 〇n down_draw) The process is formed. The method of Aspect 6 or Aspect 7 is provided according to the eighth aspect, wherein the step (III) comprises: twisting the fluid profile with the device, the device being located within the catheter. The method of any one of Aspects 6 to 8 is provided according to the ninth aspect, wherein the step (III) comprises: twisting the fluid profile with a helical vane. According to a tenth aspect, the method of aspect 9, wherein the spiral blade maintains a non-rotatable fixation with respect to the guide when the fluid profile is reversed during the step (UI). 201242919 According to an eleventh aspect, there is provided a bite for manufacturing a glass article. The apparatus comprises: a glass melter configured to refine a batch material into a glazed glass; a clarification chamber The clarification chamber is located downstream of the glass melter, wherein the clarification chamber is configured to 'receive the molten glass by the glass melter; the agitating chamber is located downstream of the clarification chamber; the conduit is configured to Providing a path for the molten glass to flow from the clarification chamber to the scramble chamber; the spiral blade is non-rotatably fixed in the conduit, and the spiral blade is configured to twist the molten glass in the conduit a fluid profile; and a shaped vessel positioned downstream of the agitating chamber, wherein the granule is entangled. It is again placed to receive the molten glass from the scramble chamber and to shape the glass article. According to a twelfth aspect, the apparatus of the aspect 11, wherein the molding device comprises: an isostatic tube configured to cause the glass member to be melted out of the molten glass. According to a thirteenth aspect, the apparatus of the aspect 11 or the aspect 12, wherein the spiral blade comprises: an upstream end and a downstream end, wherein the blade is twisted at an angle between the upstream end and the downstream end, the angle being about 90 . To·about. In the scope. According to the fourteenth aspect, the sigh as described in any one of the aspects 11 to 13, wherein the spiral blade further comprises: an upstream edge, the upstream edge 201242919 being located, inclined by about 3 相对 with respect to the horizontal axis. Up to about 6 baht. At the oblique angle, the horizontal axis is perpendicular to the axial flow direction of the catheter. According to the fifteenth aspect, a device for manufacturing a glass article is provided, the device comprising: a glass refiner, the 3H glass dissolver is configured to dissolve the batch material into a molten glass; The clarification chamber is located downstream of the glass melter; the conduit is configured to provide a path for the molten glass to flow from the glass melter to the clarification chamber; the squeezing blade, the 5 Helical blade is non-rotatably fixed to In the conduit, the spiral blade is configured to twist a fluid profile of the molten glass in the conduit; the agitating chamber is located downstream of the glass melter, wherein the mixing chamber is configured to be clarified The chamber receives the molten glass; and a shaped container is located downstream of the agitating chamber, wherein the sizing system L β is again disposed to receive the molten glass from the scavenging chamber and shape the glass article. According to a sixteenth aspect, the apparatus of aspect 15, wherein the shaped container comprises: an isostatic tube configured to cause the glass article to be melted out of the molten glass. According to a seventeenth aspect, the apparatus of aspect 15 or aspect 16, wherein the spiral blade comprises: an upstream end and a downstream end, wherein the blade is twisted at an angle between the upstream end and the downstream end, the angle being about 90. In the range of approximately 27 〇 °. 201242919 According to the eighteenth aspect, the apparatus as described in the aspect 丨7 is provided, wherein the angle is about 18Q. . The apparatus of any one of the preceding aspects, wherein the spiral blade further comprises: an upstream edge, the upstream edge being: inclined about 3 相对 with respect to the horizontal axis. Up to about 6 baht. The angle of inclination is 'the horizontal axis is perpendicular to the axial flow direction of the duct. According to a twentieth aspect, the apparatus of the aspect 9 is provided, wherein the tilt angle is about 45 with respect to the horizontal axis. . The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which FIG. In the drawings, the same element symbols are used as much as possible to represent the same or similar. Score. However, the claimed invention may be embodied in many different forms and the claimed invention should not be construed as being limited to the embodiments set forth herein. The exemplifications are provided so that this disclosure will be thorough and comprehensive, and such exemplary embodiments will fully convey the scope of the claimed invention to those of ordinary skill in the field of the invention. Figure 1 shows a schematic view of a molten down-draw device 102 for melting a glass ribbon 104 down, driving a melt down device 102 106, which is then used to process a glass sheet. 1〇2 may include: glass melter (glassme丨

bm) 11〇接收批量材料(batchmaterial) ι⑽,並將批量 201242919 材料108熔化成熔融玻璃124。可藉由批量傳送裝置U2 引入批量材料1〇8,該批量傳送裝置112係藉由馬達n4 所供電。選擇性控制器116可經設置,以啟動馬達114, 以將所希望之量的批量材料108引入玻璃溶化器1〇6 中’如箭頭118所指示的。可使用探測器12〇以在豎管 (StandpiPe ) 126之内量測熔融玻璃124之高度(ievel ) 122 ’並藉由通訊線路128 ’將所量測資訊通訊給控制器 116。 溶融下拉設備1〇2亦可包括:位於玻璃熔化器1〇6下 游之澄清腔室(fining chamber) 130 (例如,澄清管)。 澄清腔室130係經設置,以由玻璃溶化器1〇6接收炫融 玻璃124。例如,在一個範例中,熔融下拉設備1〇2包 括.第一導管132,該第一導管132係經設置,以為熔 融玻璃124提供路徑,以由玻璃熔化器j〇6流至澄清腔 室 130。 熔融下拉設備102可進一步包括:位於澄清腔室 下游之攪拌腔室(stir chamber ) 134。攪拌腔室134係 經設置以以由澄清腔室130接收熔融玻璃ι24。例如, 熔融下拉設備102可包括:第二導管ι36,該第二導管 136係經設置’以為熔融玻璃124提供路徑,以由澄产 腔室130流至授拌腔室134 ^在一個範例中,攪拌腔^ 134可包括:複數個混合元件138,該等複數個混合元件 138安裝於可轉動軸140’以繞著可轉動軸14〇之細旋 轉,如轉動箭頭142所指示。 12 201242919 如圖所示,成型容器(forming vessel ) 152可位於授 掉腔室134下游,其中成型容器ι5〇係經設置,以由授 掉腔室134接收熔融玻璃124,並使玻璃物件成型。例 如,熔融下拉設備102可包括:位於攪拌腔室134下游 之傳送容器(delivery vessel ) 144,例如槽池(b〇wl )。 該傳送容器144可經設置以由攪拌腔室134接收熔融玻 璃124。例如’熔融下拉設備102可包括:第三導管146, °亥第二導管146係經設置,以為溶融玻璃124提供路徑, 以由攪拌腔室I34流至傳送容器144。 如更進一步所圖示的’熔融下拉設備1〇2亦可包括: 降流管(dOWncomer) 148,該降流管148係經定位以 將熔融玻璃124由傳送容器144傳送至成型容器152之 入口 150 ’如箭頭154所指示。 可視特定應用,根據本揭示案之態樣使用各樣成型容 器。例如,可使用成型容器以提供玻璃物件,該等玻璃 物件具有:用於不同光學應用的大範圍設置。例如,可 設计成型容器,以提供玻璃透鏡或其他光學玻璃組件。 僅在一個乾例中,成型容器可包含:用於處理玻璃帶的 设備。此種成型容器可包含:下拉式(d〇wndraw )、上 拉式(up-draw)、浮動式(fi〇at)、熔融式(fusi〇n)、壓 滾式(press rolling )、流孔抽出式(sl〇t draw)或其他 用於生產玻璃物件的成型容器。在一個範例中,可設計 成型容器以提供可用於各樣應用的玻璃帶。例如,可進 —步處理由成型容器所提供的玻璃帶,以併入至以下應 13 201242919 用中.液晶顯示器、電泳顯示器、有機發光二極體顯示 器、電毁顯示器面板或其他顯示器或發光應用。 在一個非限制性的範例中,第2圖圖示範例成型容器 152,該範例成型容器152可選擇性地包含:等靜壓管, 該等靜壓管係經設置以(例如)由熔融玻璃熔融下拉出 玻璃物件。例如’第2圖為用於熔融下拉設備1〇2之範 例等靜壓管沿著第i圖中之線2_2的截面透視圖。如圖 所不,成型容器152包括:成型楔形體156,該成型楔 开^/粗156包含:一對向下傾斜的成型表面部分 該等成型表面部分158、16〇在成型楔形體156的相對末 端之間延伸。該對向下傾斜的成型表面部分158、16〇 者下游方向162匯合,以形成根部164。抽拉平面166 延伸穿過根部164,其中可在下游方肖162上沿著抽拉 平面166拉出玻璃帶如圖所示,抽拉平面166可 將根°卩I64平分’儘管抽拉平面166可於相對於根部164 的其他方向上延伸。 如第4圖所圖示,在第一導管132與第二導管136内 0熔融玻璃124包括.流體剖面18〇,該流體剖面 具有:第一流量182,該第一流量182在比第二流量184 之更低鬲度處在導管内流動,該第二流量184在導管内 流動。在一個範例中,第一流量182可沿著導管之較低 P刀132a 136a流動,且第二流量184可在第一流量 182之上流動。因此’第一流量182可位於第二流量184 與導管之較低部分132a、136a之間。在進一步的範例 14 201242919 甲,第二流量184可於導管内在比第一流量182較高的 高度流動並橫向偏移於第一流量182,而非位於第一流 量182之上。 熔融下拉設備102可選擇性地包括:第一導管ΐ32及 (或)第二導管136内的結構,該結構係經設置以扭轉 導管中的流體剖面180,使得第一流量182於導管内在 比第二流量184較高的高度流動。例如,在一個範例中, 第一抓量184可在第-流量182之下流動,使得第二流 量184可位於第一流量182與導管之較低部分i32a、 136a之間。在進一步的範例中,第一流量i82可於導管 内在比第二流量184較高的高度流動並橫向偏移於第二 流量184,而非位於第二流量184之上。 在一個範例中,結構可包括:位於導管内的裝置,以 扭轉流體剖面。例如’裝置可包含:螺旋葉片 vane) 170’該螺旋葉片17〇係經設置,以使流體剖面 180重新導向。如圖所示,螺旋葉片17〇可被不可旋轉 地固定於第-導管132 + (如第1G圖所圖示)及(或) 第一導管136中(如第1圖與第3圖所圖示)。如第4 圖與第7圖所圊不’若提供螺旋葉片170,則該螺旋葉 片170可經設置’以扭轉導管132、136 +的溶融玻璃 12 4之流體剖面18 〇。 螺旋葉片17G可包括:大範圍之設置。如第4圖與第 7圖所圖不’螺旋葉片170可包含:平滑螺旋設置,以 避免死流區(dead fl〇w zone ),並使導管中所建立的壓 15 201242919 力最小化。平滑螺旋設置可進一步避免:當玻璃流被扭 轉時,玻璃流的沉降(ebbing)或其他擾動。因此,當 以螺旋葉片170扭轉流體剖面時,平滑螺旋設置可允許 流體流動之扭轉,同時使層流之流體流動之擾動最小 化。更進一步地,螺旋葉片170包含:具有平滑設置之 簡單結構’該具有平滑設置之簡單結構可允許任何氣泡 穿越,該等氣泡可能無法離開穿經導管的熔融玻璃。雖 然在直覺上’可在流體路徑中用重新導向裝置立即移除 氣泡’但出乎意料的是,允許玻璃氣泡自由地穿越事實 上可簡化後續移除熔融玻璃中玻璃氣泡。其實,嘗試用 置於熔融玻璃路徑上的重新導向裝置使氣泡消散事實上 可導致:氣泡之累積或聚集,這可使得在將玻璃物件成 型之前氣泡之後續移除變得複雜。因此,螺旋葉片17〇 之簡單幾何形狀可協助任何無法在熔融玻璃路徑上穿越 的氣泡穿越。葉片之螺旋本質可因此不可預期地藉由以 下方式協助移除熔融玻璃中的任何氣泡:藉由允許使穿 越螺旋葉片170之氣泡的擾動最小化的方式。 如圖所示,螺旋葉片170可包括上游端1723與下游端 172b,該等上游端172a與下游端172b界定介於其中的 連續螺旋片段。儘管並未圖示,但可連續在導管中堆疊 複數個片段’以視特定應用,產生所希望之流體剖面180 之重新導向。 如在第7圖中更進一步所圖示的,螺旋葉片17〇可包 含兩個螺旋邊緣該等螺旋邊緣1733、17补 16 201242919 可協助螺旋葉片i 7()安 其 旋邊緣171 /裝於導s内。在-個範例中,螺 烊接地# 3 173Ϊ&gt; #’合於導管内,雖'㈣旋邊緣可 ==機械地附接於導管,使得螺旋葉片⑺不可旋 轉地女裝於導管中。 ”:更進-步所圖示的,上游端ma可包括上游邊緣 的二Γ下游端㈣可包括下游邊緣㈣。在所圖示 邊緣大體上為平的,但—個或兩個邊緣可為 且古°此外’如®所示’邊緣大體上為直的,但邊緣可 -有.’f曲形狀,例如S形(在更進一步的範例”。 人如第7圖所圓示’在—個範例中,螺旋葉片170可包 形狀’該形狀係藉由在軸向流向19()上於上游邊緣 4a與下游邊緣IWb之間順時鐘旋轉截面轴⑺所產 =在更進-步的範例中,亦可藉由以下方式產生螺旋 &gt; 17〇之形狀:#由在第一邊緣與第二邊緣之間逆時 疋轉截面軸。截面軸176可在上游端i72a與下游端 ”2b之間以大範圍之角度旋轉。例如,截面車由176可被 疋轉使侍螺旋葉片170在上游端172a與下游端172b 之間扭轉—角度,該角度在約90。至約360。之範圍令, 4如在約90。至約270。,或在約9〇。至約18〇。。如第7 圖所圖不’且由第5圖和第6圖可明顯地看出,在一個 例中,螺旋葉片170可在上游端172a與下游端172b 之間扭轉約180。之角度。 亦可安裝具有上游邊緣之螺旋葉片17〇,該上游邊緣 子於水平軸192成大範圍之角度α,該水平軸192垂 17 201242919 直於轴向流向190。例如,上游邊緣可傾斜由〇。至18〇。 角度α,例如相對於水平轴192由約3〇。至約6〇。。如第s 圖所圖不’上游邊緣174¾从 这豕174a位於相對於水平軸192之約 W之角度4。如圖所示,在第6圖中,隨著18〇。之螺 旋扭轉,下游邊緣l74b亦可位於約45。之角度β處。如 第5圖所進一步圖示,當由導管截面觀察,並看入轴向 流向190時’可觀察到四個象限j、π、出與,其中 上游邊緣174a對角地在象限工與象限πι之間延伸。 第8圖與第9圖展示:使用相似於第7圖中所圖示葉 片之螺旋葉片的電腦模型’其中葉片在上游端i72a與下 游端172b之間扭轉約⑽。之角度,伴隨轴向流向州 中截面軸176之順時針旋轉所產生之形狀。第8圖展示: 二著水平轴192安裝的上游邊緣174”電腦模型顯示: 當熔融玻璃124由螺旋葉片17〇之上游端172&amp;處的上游 位置200向下游流經螺旋葉片17〇至螺旋葉片之下 游端172b處的下游位置2〇2時,流體剖面18〇之第— 机量182被扭轉。如虛線所圖示,流體剖面之第— 流量182被重新導向而位於較高的高度,且位於象限η 與象限III之内。 第9圖展不:安裝具有上游邊緣174a之螺旋葉片的結 果’該上游邊緣174a位於相對於水平軸192具約45。之 角度α處。然而,與第5圖不同,電腦模型之安裝提供上 游邊緣174a,該上游邊緣對角地在象限π與象限ιν之 伸如圊所示,電腦模型顯示··當溶融玻璃12 4由 18 201242919 上游端17 2 a處的上游位置2 0 0向下游流經螺旋葉片17 〇 至下游端172b處的下游位置202時,流體剖面18〇之 第一流量182被重新導向。如圖所示,以約45。之角度α 安裝可移動下游位置202,使得下游位置202被重新導 向而位於較高的高度,且大體上沿著垂直軸204而高於 上游位置200,該垂直轴204係垂直於水平轴192。如圖 所示’下游位置可為導管之整體高度的約5〇%高度。在 進一步的範例中,高度可比導管高度的50%高或低。 如圖所示,玻璃熔化器1〇6、澄清腔室130、攪拌腔室 134、傳送容器144及成型容器ι52係玻璃熔融位置之範 例’該等玻璃熔融位置可沿著熔融下拉設備1〇2連續被 安置。 玻璃熔化器106典型地由耐火材料構成,例如耐火(陶 瓷)磚。熔融下拉設備1〇2可更包括:典型地由鉑或包 含鉑的金屬所構成的組件,該等包含鉑的金屬例如:鉑_ 铑,鉑-銥或鉑-鍺與鉑-銥的組合,但該等組件亦可包 含:例如以下之耐火金屬:鉬,鈀,銖,钽,鈦,嫣, 釕,餓,锆與該等金屬之合金及(或)二氧化锆。包含 敍的組件可包括:以下之_或更多者:第—導f HZ、 澄清腔室13〇(例如,較細管)、第二導管136、豎管126、 攪拌腔至134 (例如,攪拌腔室)、混合元件138與可轉 動軸140、第三導管146、傳送容器144 (例如,槽池)、 降流管148、Α η , Μ 150以及螺旋葉片170。成型容器152 亦由财火材料所構成’且經設計以形成玻璃| 104。在 19 201242919 進-步的範例中,成型容器152可由其他材料構成,該 等其他材料可不必為耐火材料。例如,成型容器152可 包3 .所有金屬或金屬鍍層,儘管在進一步的範例中可 使用其他材料。 見在將描述製造玻璃物件之方法。如第丨圖所圖示, 該方法可包括.在玻璃熔化器1〇6中熔化批量材料 以產生熔融玻璃124之步驟。如第3圖所圖示,(例如) 藉由第-導管132’熔融麵124接著被送至澄清腔室 130中。該方法接著包括:由澄清腔室13❶申之熔融玻 璃124移除氣泡206之步驟,及將熔融玻璃124由澄清 腔至130送經第二導官136之入口 13&lt;7之步驟,該第二 導管136在澄清腔室13〇與攪拌腔室134之間提供流體 連通(fluid communication) 〇 如第3圖與第4圖所圖示,進入入口 137之熔融玻璃 124包括.具有第一流量182之流體剖面18〇,該第一流 直182在比第二流量184之更低高度處在第二導管 内流動,該第二流量184在第二導管136内流動。如進 一步所圖不,該方法亦可包括:將第二導管136内之流 體剖面180重新導向之步驟,使得第一流量182在比第 二流量184之更高高度處在第二導管136内流動。 该方法亦包含將熔融玻璃124由第二導管136之出口 139送至攪拌腔室134中之步驟。熔融玻璃124接著在 攪拌腔室134中被攪拌。例如,可轉動軸14〇可如轉動 箭頭142所指而被轉動,以轉動混合元件138 (示意地 20 201242919 圖,F於第3圖中)。藉由攪拌腔室134的動作,可在將熔 融玻璃之流量由攪拌腔室送至成型容器以使玻璃物件成 型之前,將熔融玻璃124均質化。 將理解,攪拌腔室134係被設計以減少熔融玻璃124 中的化學變化,該等化學變化係源自熔化製程❶例如, 將批量材料熔化,及部分設備1〇2 (例如耐火材料)的 分解,為可造成熔融玻璃124中化學變化之來源的範 例希望達成授拌腔室134中熔融玻璃的最佳混合,以 使離開攪拌腔室至成型容器之熔融玻璃124的均質化最 佳化。最佳攪拌為玻璃均質化之間的平衡,該玻璃均質 化可藉由以下方式加強:增加攪拌元件138與攪拌腔室 134的壁之間的剪力。另一方面,增加剪力亦可增加搜 拌腔室134内的材料腐蝕,因此增加不希望的來自部分 攪拌腔室之分解的化學成分。 據信’如上述所論述的將流體剖面j8〇重新導向,可 導致改良玻璃均質化’而不增加混合元件138在攪拌腔 至134中的轉動速度。在進一步的範例中,將流體剖面 180重新導向可允許相同或經增加的均質化,而伴隨較 慢的混合元件之轉動速度;從而減少由剪力所造成的分 解,該剪力介於混合元件138與攪拌腔室134之壁之間。 建模結果指出:接近流體剖面底部進入攪拌腔室的熔 融玻璃124傾向位於較少被攪拌腔室j34混合之位置。 因為缺陷傾向落於沿著「污泥層」處,所以流體剖面之 底部位置相應於熔融玻璃124中最大程度的非同質性。 21 201242919 因此,當進入攪拌腔室134時,將位於流體剖面18〇之 第一流量182處之污泥層重新導向於較高高度處,可增 加離開攪拌腔室134之熔融玻璃124的整體同質性。 接著,返回第1圖,熔融玻璃124的均質混合可送經 第二導管146與傳送容器144,經過降流管148並進入 成型容器152之入口 15〇中。如第2圖所圖#,成型容 器可包含:等靜壓管,該等靜壓管係經設計以熔融下拉 出玻璃帶104,以接著用於處理玻璃板。當由更為均質 的熔融玻璃124將玻璃帶1〇4成型0夺,可製造玻璃板, 該等玻璃板具有經增加之成品玻璃表面平坦度,且該等 玻璃板避免包含貴金屬粒子’該等貴金屬粒子可另外由 以下方式所創造:攪拌器刃與攪拌腔室壁之腐蝕,伴隨 著較不有效的混合程序。 如第4圖與第7圖所圖示,將玻璃混合重新導向可藉 由以下方式達成:藉由用螺、旋葉# 17〇才丑轉流體剖面 再者,當螺旋葉片17〇扭轉流體剖面180時,螺旋 葉:17〇可保持相對於第二導管136不可旋轉地固定。 實驗證據顯示:可藉由將第一導管132處或第二導管 ⑶處之流體剖面18()重新導向,而達成加強混合。第 1〇圖圖示另-範例設備跡在該另一範例設備1〇2中, 流體剖面在莖_ ^ ^ ^ ^ ^ , 導s 132中被重新導向。在此種範例 中’ 5玄方法包括:在玻璃熔化器中將批量材料熔化以產 1 生熔融玻璃之起始步驟。熔融玻璃接著被送經第一導管 132之入口 208 ’該第一導管132提供玻璃熔化器1〇6 22 201242919 與也/月腔至130之間的流體連通。如圖所示,進入入口 熔融玻璃124包括:具有第一流4 182之流體剖 X第桃量182在比第二流量184之更低高度處在 第一導管132内流動1第二流量184在第—導管132 内流動。該方法接著包括將第一導管132内之流體剖面 重新導向之步驟,伟;{呈# θ 于第一流:!: 182在比第二流量ι84 之更高高度處在第一導管132内流動。 可藉由以下方式達成將第一導管132中的流體剖面重 新導向,例如藉由前述之螺旋葉片17G。在—個範例中, 螺旋葉片170可位於電凸緣(士价&amp;^的㈣)212之 外,該等電凸緣212係經設計,以提供電子加熱電路, 該電子加熱電路在電凸緣212之間經過第_導管132提 供阻抗加熱°因此’將螺旋葉片17G至少部分地置於玻 璃熔化器m中’可能可避免與阻抗加設電路之干擾。 第導Β 132内之螺旋葉片170亦對此導管132提供額 外的結構穩定性,該導f 132可易於隨著時間而變形。 此實施例可具有額外的好處:藉由以下方式增加炼化器 对火石之溶解速率:藉由降低耐火化學成分在圍繞該等 耐火化學成分之玻璃中的飽和。 接著藉由以下方式進行該方法:藉由將熔融玻璃由第 一導管132之出口 21〇送至澄清腔室13〇 +。接著由澄 清腔室130中的熔融玻璃124移除氣泡2〇6。然後將:: 融玻璃送域拌腔室134卜如圖所示,當材料M2之 第-流量進入攪拌腔室134時,材料182之第一流量仍 23 201242919 可位於第二導管136之上部。因此,可達成增加熔融玻 璃之同質性並增加玻璃物件之品質。 如上所述,藉由將流體剖面重新導向,可在玻璃物件 (例如,玻璃板)中觀察到經增加的表面平坦度。亦可 月b減;攪拌腔室134中混合元件138的攪拌速度,從而 提供較少腐蝕,並因此在攪拌腔室内提供更多均質化。 更進一步地,增加混合效率可允許減少攪拌腔室134之 大小,從而顯著地減少製造攪拌腔室134的成本,該攪 拌腔室134典型地係由貴金屬所製造。 對本發明技術領域中具有通常知識者而言,顯然地, 可對本發明進行各樣修改與變化,而不致偏離本發明之 精神與範疇。因此,本發明意欲涵蓋此發明之修改與變 化,若該等修改與變化落於隨附申請專利範圍之範疇中 及該等隨附申請專利範圍之均等之範鳴中。 【圖式簡單說明】 當參考隨附圖式閱讀以上之本發明實施方式,可更好 地理解本發明之以上與其他特徵、態樣及優點,在該等 隨附圖式中: 第1圖為用於製造玻璃物件之範例設備的示意圖; 第2圖為第1圖的設備沿著線2-2的示意圖,該示意 圖圖示部分設備; 第3圖為第1圖之設備的放大部分; 24 201242919 第4圖為範例% t 幻螺麵葉片的放大圖,該螺旋葉片 轉地固定於導管中; 个了旋 第5圖為第4 圖圖示螺旋葉片 圖之導管沿著線 之上游邊緣; 5-5之剖面圖 ,該剖面 第6圖為第4圖之導管沿著線 圖圖示螺旋葉片之下游邊緣; 6-6之剖面圖 ,該剖面 第7圖為第4圖之螺旋葉片之上游右上透視圖; #第8圖為電腦模型之示意圖,該電腦模型圖示:當安 1螺紅葉片時,將熔融玻璃之流體剖面重新導向,使得 上游邊緣位於沿著導管之水平軸; 第9圖為電腦模型之示意圖,該電腦模型圖示:當安 裝螺旋葉片時,將熔融玻璃之流體剖面重新導向,使得 上游邊緣位於相對於導管之水平軸之約45。之角度處。 第圖為用於製作玻璃物件的另—範例設備之示意 圖0 【主要元件符號說明】 102 熔融下拉設備 104 玻璃帶 106 玻璃熔化器 108 批量材料 110 儲存槽 112 批量傳送裝置 114 馬達 116 選擇性控制器 118 箭頭 120 探測器 122 古 ώ: Ν度 124 熔融玻璃 126 豎管 128 通訊線路 130 澄清腔室 132 第一導管 25 201242919 132a 導管之較低部分 134 攪拌腔室 136 第二導管 136a 導管之較低部分 137 入口 138 混合元件 139 出口 140 可轉動轴 142 箭頭 144 傳送容器 146 第三導管 148 降流管 150 入口 152 成型容器 154 箭頭 156 成型楔形體 158 成型表面部分 160 成型表面部分 162 下游方向 164 根部 166 抽拉平面 170 螺旋葉片 172a 上游端 172b 下游端 173 a 螺旋邊緣 173b 螺旋邊緣 174a 上游邊緣 174b 下游邊緣 176 截面軸 180 流體剖面 182 第一流量 184 第二流量 190 軸向流向 192 水平軸 200 上游位置 202 下游位置 204 垂直軸 206 氣泡 208 入口 210 出口 212 電凸緣 I 象限 II 象限 III 象限 IV 象限 a 角度 β 角度 26Bm) 11〇 Receive batch material ι(10) and melt the batch 201242919 material 108 into molten glass 124. The batch material 1 〇 8 can be introduced by the batch transfer device U2, which is powered by the motor n4. The selectivity controller 116 can be configured to activate the motor 114 to introduce a desired amount of batch material 108 into the glass melter 1 6 as indicated by arrow 118. The detector 12 can be used to measure the height of the molten glass 124 (ievel) 122&apos; within the standpipe (126) and communicate the measured information to the controller 116 via the communication line 128'. The melt down draw apparatus 1〇2 may also include a fining chamber 130 (e.g., a clarification tube) located below the glass melter 1〇6. The clarification chamber 130 is arranged to receive the glazed glass 124 by the glass dissolver 1〇6. For example, in one example, the smelting down apparatus 1 〇 2 includes a first conduit 132 that is configured to provide a path for the molten glass 124 to flow from the glass melter j 〇 6 to the clarification chamber 130 . The melt down draw apparatus 102 can further include a stir chamber 134 located downstream of the clarification chamber. The agitation chamber 134 is configured to receive the molten glass ι 24 from the clarification chamber 130. For example, the melt down device 102 can include a second conduit 136 that is configured to provide a path for the molten glass 124 to flow from the yielding chamber 130 to the mixing chamber 134. In one example, The agitation chamber ^ 134 can include a plurality of mixing elements 138 mounted to the rotatable shaft 140' for fine rotation about the rotatable shaft 14'', as indicated by the turning arrow 142. 12 201242919 As shown, a forming vessel 152 can be located downstream of the retrieval chamber 134, wherein the forming vessel ι5 is configured to receive the molten glass 124 from the dispensing chamber 134 and shape the glass article. For example, the melt down apparatus 102 can include a delivery vessel 144, such as a tank (b〇wl), located downstream of the agitation chamber 134. The transfer container 144 can be configured to receive the molten glass 124 from the agitation chamber 134. For example, the &apos;melt pull down device 102 can include a third conduit 146 that is disposed to provide a path for the molten glass 124 to flow from the agitation chamber I34 to the transfer vessel 144. As further illustrated, the 'melt pull down apparatus 1 〇 2 may also include: a downcomer 148 that is positioned to transport the molten glass 124 from the transfer vessel 144 to the inlet of the forming vessel 152 150 ' as indicated by arrow 154. A variety of shaped containers can be used in accordance with the present disclosure, depending on the particular application. For example, shaped containers can be used to provide glass articles having a wide range of settings for different optical applications. For example, a shaped container can be designed to provide a glass lens or other optical glass assembly. In only one dry case, the shaped container may comprise: a device for processing the glass ribbon. Such a molded container may include: a pull-down type (d〇wndraw), an up-draw type, a floating type (fi〇at), a molten type (fusi〇n), a roll-type (press rolling), a flow hole. Slotted draw or other shaped container for the production of glass articles. In one example, a shaped container can be designed to provide a glass ribbon that can be used in a variety of applications. For example, the glass ribbon provided by the molded container can be further processed to be incorporated into the following 13 201242919. Liquid crystal display, electrophoretic display, organic light emitting diode display, electrosonic display panel or other display or lighting application . In one non-limiting example, FIG. 2 illustrates an example shaped container 152 that can optionally include: isostatic tubes that are configured, for example, from molten glass Melt out the glass object. For example, Fig. 2 is a cross-sectional perspective view of the isostatic pressing tube for the example of the molten pull-down device 1〇2 along the line 2_2 in the i-th figure. As shown, the shaped container 152 includes a shaped wedge 156 that includes: a pair of downwardly sloping contoured surface portions of the contoured surface portions 158, 16 that are formed in the shaped wedge 156. Extend between the ends. The pair of downwardly inclined forming surface portions 158, 16 are merged in a downstream direction 162 to form a root portion 164. The drawing plane 166 extends through the root 164, wherein the glass ribbon can be pulled along the drawing plane 166 on the downstream square 162 as shown, and the drawing plane 166 can bisect the root 卩I64 'although the drawing plane 166 It can extend in other directions relative to the root 164. As illustrated in FIG. 4, the molten glass 124 in the first conduit 132 and the second conduit 136 includes a fluid profile 18〇 having a first flow rate 182 that is greater than the second flow rate. The lower temperature of 184 flows within the conduit, and the second flow 184 flows within the conduit. In one example, the first flow 182 can flow along the lower P-knife 132a 136a of the conduit and the second flow 184 can flow over the first flow 182. Thus, the first flow rate 182 can be between the second flow rate 184 and the lower portion 132a, 136a of the conduit. In a further example 14 201242919 A, the second flow 184 can flow within the conduit at a higher elevation than the first flow 182 and laterally offset from the first flow 182 rather than above the first flow 182. The melt down draw apparatus 102 can optionally include: a structure within the first conduit 32 and/or the second conduit 136 that is configured to twist the fluid profile 180 in the conduit such that the first flow 182 is within the conduit The second flow 184 has a higher altitude flow. For example, in one example, the first grip 184 can flow below the first flow 182 such that the second flow 184 can be between the first flow 182 and the lower portion i32a, 136a of the conduit. In a further example, the first flow rate i82 can flow at a higher elevation than the second flow rate 184 within the conduit and laterally offset from the second flow rate 184 rather than above the second flow rate 184. In one example, the structure can include a device located within the conduit to twist the fluid profile. For example, the device may include: a helical blade vane 170' which is configured to redirect the fluid section 180. As shown, the helical blade 17A can be non-rotatably secured to the first conduit 132+ (as illustrated in FIG. 1G) and/or the first conduit 136 (as illustrated in Figures 1 and 3). Show). As shown in Figures 4 and 7, if a helical blade 170 is provided, the helical blade 170 can be configured to reverse the fluid profile 18 of the molten glass 124 of the conduit 132, 136+. The spiral blade 17G may include a wide range of settings. As shown in Figures 4 and 7, the spiral blade 170 may comprise a smooth spiral arrangement to avoid dead fl〇w zones and to minimize the build-up of the pressure 15 201242919 in the conduit. The smoothing of the spiral arrangement further avoids ebbing or other disturbances in the flow of the glass as it is twisted. Thus, when twisting the fluid profile with the helical blade 170, the smoothing of the spiral arrangement allows for torsion of the fluid flow while minimizing disturbances in the fluid flow of the laminar flow. Further, the spiral blade 170 includes: a simple structure having a smooth arrangement. The simple structure having a smooth arrangement allows any air bubbles to pass through, and the bubbles may not be able to leave the molten glass passing through the duct. Although it is intuitively possible to remove the bubbles immediately by the redirecting means in the fluid path, it is surprising that allowing the glass bubbles to pass freely can, in fact, simplify the subsequent removal of glass bubbles in the molten glass. In fact, attempting to dissipate the bubbles with a redirecting device placed on the path of the molten glass can in fact lead to the accumulation or accumulation of bubbles which can complicate the subsequent removal of the bubbles prior to shaping the glass article. Thus, the simple geometry of the helical vanes 17〇 assists in the passage of any bubbles that cannot pass through the path of the molten glass. The helical nature of the blade may thus undesirably assist in the removal of any bubbles in the molten glass by: allowing the disturbance of the bubbles passing through the helical blade 170 to be minimized. As shown, the helical blade 170 can include an upstream end 1723 and a downstream end 172b that define a continuous helical segment therebetween. Although not shown, a plurality of segments can be stacked continuously in the catheter to produce a desired redirect of the fluid profile 180, depending on the particular application. As further illustrated in Fig. 7, the helical blade 17A can comprise two helical edges, the helical edges 1733, 17 complement 16 201242919 can assist the helical blade i 7 () with its spiral edge 171 / mounted on the guide s inside. In one example, the screw ground #3 173Ϊ&gt;#' fits into the catheter, although the '(4) spin edge can be == mechanically attached to the catheter such that the helical blade (7) is non-rotatably worn in the catheter. As shown in the further step, the upstream end ma may comprise a downstream edge of the upstream edge (four) may comprise a downstream edge (four). The illustrated edge is substantially flat, but one or both edges may be And the ancient ° addition 'as shown in the 'edge' is generally straight, but the edge can be -. 'f curved shape, such as S shape (in a further example). People as shown in Figure 7 'in- In one example, the helical blade 170 may be in the shape of a shape which is produced by a clockwise rotation of the section axis (7) between the upstream edge 4a and the downstream edge IWb in the axial flow direction 19 (). In the following, the shape of the spiral &gt; 17〇 can also be generated by: # 由 turning the section axis between the first edge and the second edge. The section axis 176 can be at the upstream end i72a and the downstream end "2b" Rotating at a wide range of angles. For example, the section car 176 can be twisted to twist the angle between the upstream end 172a and the downstream end 172b of the auger blade 170, the angle being between about 90 and about 360. 4, such as at about 90. to about 270., or at about 9 〇. to about 18 〇. As shown in Figure 7 As is apparent from Figures 5 and 6, in one example, the helical blade 170 can be twisted between the upstream end 172a and the downstream end 172b by an angle of about 180. A helical blade 17 having an upstream edge can also be installed. That is, the upstream edge has a wide range of angles a from the horizontal axis 192, and the horizontal axis 192 hangs 17 201242919 straight to the axial flow direction 190. For example, the upstream edge can be tilted from 〇 to 18 〇. The angle α, for example, relative to The horizontal axis 192 is from about 3 〇 to about 6 〇. As shown in Fig. s, the 'upstream edge 1743' is located from the 豕 174a at an angle of about 4 with respect to the horizontal axis 192. As shown, at the sixth In the figure, with a helical twist of 18 〇, the downstream edge 144b can also be at an angle β of about 45. As further illustrated in Figure 5, when viewed from the cross-section of the conduit and looking into the axial flow direction 190' Four quadrants j, π, and out are observed, wherein the upstream edge 174a extends diagonally between the quadrant and the quadrant. Figures 8 and 9 show the use of blades similar to those illustrated in Figure 7. Computer model of spiral blade 'where the blade is at the upstream end i72a and the downstream end 17 The angle between 2b is about (10). The angle is the shape produced by the clockwise rotation of the axial section to the central section axis 176. Figure 8 shows: The upstream edge of the horizontal axis 192 is mounted 174" computer model shows: when melting When the glass 124 flows downstream from the upstream position 200 at the upstream end 172 &amp; of the spiral blade 17 流 through the spiral blade 17 to the downstream position 2 〇 2 at the downstream end 172b of the spiral blade, the first section of the fluid profile 18 〇 182 is reversed. As indicated by the dashed line, the first flow-rate 182 of the fluid profile is redirected to a higher height and is within quadrant η and quadrant III. Figure 9 is a view showing the result of mounting a spiral blade having an upstream edge 174a. The upstream edge 174a is located at about 45 with respect to the horizontal axis 192. At angle α. However, unlike Figure 5, the installation of the computer model provides an upstream edge 174a, which is diagonally shown in the quadrants π and quadrants, and the computer model shows that when the molten glass 12 4 is from 18 201242919 upstream end When the upstream position 210 at 17 a flows downstream through the spiral blade 17 to the downstream position 202 at the downstream end 172b, the first flow rate 182 of the fluid profile 18 is redirected. As shown, it is about 45. The angle a mounts the movable downstream position 202 such that the downstream position 202 is redirected to a higher height and generally along the vertical axis 204 and above the upstream position 200, the vertical axis 204 being perpendicular to the horizontal axis 192. As shown in the figure, the downstream position may be about 5% of the height of the overall height of the catheter. In a further example, the height may be higher or lower than 50% of the height of the catheter. As shown, the glass melter 1〇6, the clarification chamber 130, the agitation chamber 134, the transfer vessel 144, and the forming vessel ι52 are examples of glass melting positions. The glass melting positions can be along the molten down-draw apparatus 1〇2 Being placed in succession. The glass melter 106 is typically constructed of a refractory material, such as a refractory (ceramic) brick. The molten down-draw apparatus 1〇2 may further comprise: an assembly typically composed of platinum or a metal comprising platinum, such as platinum-ruthenium, platinum-ruthenium or a combination of platinum-ruthenium and platinum-ruthenium, However, such components may also include, for example, the following refractory metals: molybdenum, palladium, rhodium, iridium, titanium, ruthenium, osmium, hungry, alloys of zirconium with such metals and/or zirconium dioxide. The included components may include: _ or more of the following: a first guide f HZ, a clarification chamber 13 〇 (eg, a thinner tube), a second conduit 136, a standpipe 126, a stirring chamber to 134 (eg, agitation) The chamber), the mixing element 138 and the rotatable shaft 140, the third conduit 146, the transfer container 144 (e.g., the trough), the downcomer 148, the ηn, the crucible 150, and the spiral vane 170. The shaped container 152 is also constructed of a phoenix material&apos; and is designed to form a glass|104. In the example of the advancement of 19 201242919, the forming container 152 may be constructed of other materials, which may not necessarily be refractory materials. For example, the forming vessel 152 can comprise 3. all metal or metal coatings, although other materials may be used in further examples. See the method of manufacturing a glass article. As illustrated in the figure, the method may include the step of melting the batch material in the glass melter 1〇6 to produce the molten glass 124. As illustrated in Figure 3, the molten surface 124 is then sent to the clarification chamber 130, for example, by the first conduit 132'. The method then includes the steps of removing the bubble 206 by the clarification chamber 13 from the molten glass 124, and the step of passing the molten glass 124 from the clarification chamber 130 to the inlet 13 &lt;7 of the second guide 136, the second The conduit 136 provides fluid communication between the clarification chamber 13A and the agitation chamber 134. As illustrated in Figures 3 and 4, the molten glass 124 entering the inlet 137 includes a first flow rate 182. The fluid profile 18A, the first flow straight 182 flows within the second conduit at a lower elevation than the second flow 184, and the second flow 184 flows within the second conduit 136. As further illustrated, the method can also include the step of redirecting the fluid profile 180 in the second conduit 136 such that the first flow rate 182 flows within the second conduit 136 at a higher elevation than the second flow rate 184. . The method also includes the step of delivering molten glass 124 from the outlet 139 of the second conduit 136 to the agitation chamber 134. The molten glass 124 is then stirred in the agitation chamber 134. For example, the rotatable shaft 14A can be rotated as indicated by the turning arrow 142 to rotate the mixing element 138 (shown schematically at 2012 20124291, F in Figure 3). By the action of the stirring chamber 134, the molten glass 124 can be homogenized before the flow rate of the molten glass is sent from the stirring chamber to the molding container to shape the glass article. It will be appreciated that the agitation chamber 134 is designed to reduce chemical changes in the molten glass 124 that are derived from the melting process, for example, melting the batch material, and decomposition of some equipment 1 (e.g., refractory). An example of a source of chemical change in the molten glass 124 is desired to achieve optimal mixing of the molten glass in the mixing chamber 134 to optimize homogenization of the molten glass 124 exiting the agitating chamber to the forming vessel. The optimum agitation is the balance between the homogenization of the glass which can be enhanced by increasing the shear between the agitating element 138 and the wall of the agitating chamber 134. On the other hand, increasing the shear force can also increase the corrosion of the material in the search chamber 134, thereby increasing the undesirable chemical composition from the decomposition of the partially stirred chamber. It is believed that &apos;redirecting the fluid profile j8〇 as discussed above can result in improved glass homogenization&apos; without increasing the rotational speed of the mixing element 138 in the agitation chamber 134. In a further example, redirecting the fluid profile 180 may allow for the same or increased homogenization, accompanied by a slower rotational speed of the mixing element; thereby reducing the decomposition caused by shear forces that are interposed between the mixing elements 138 is between the wall of the agitation chamber 134. The modeling results indicate that the molten glass 124 entering the agitating chamber near the bottom of the fluid profile tends to be less in a position where it is less mixed by the agitating chamber j34. Since the defect tends to fall along the "sludge layer", the bottom position of the fluid profile corresponds to the greatest degree of heterogeneity in the molten glass 124. 21 201242919 Thus, when entering the agitation chamber 134, redirecting the sludge layer at the first flow rate 182 of the fluid profile 18〇 to a higher elevation increases the overall homogeneity of the molten glass 124 exiting the agitation chamber 134. Sex. Next, returning to Fig. 1, the homogeneous mixing of the molten glass 124 can be passed through the second conduit 146 and the transfer vessel 144, through the downcomer 148 and into the inlet 15 of the forming vessel 152. As shown in Fig. 2, the forming container may comprise: isostatic tubes designed to melt down the glass ribbon 104 for subsequent processing of the glass sheet. When the glass ribbon 1〇4 is formed from a more homogeneous molten glass 124, glass sheets can be produced which have an increased flatness of the finished glass surface, and the glass sheets avoid the inclusion of precious metal particles. Precious metal particles can additionally be created by corrosion of the agitator blade and the walls of the agitating chamber with a less efficient mixing procedure. As illustrated in Figures 4 and 7, the re-directing of the glass mixture can be achieved by using a screw, a rotary vane, and a swirling fluid profile, and again, when the spiral blade 17 is twisted, the fluid profile is reversed. At 180 o'clock, the helical leaf: 17 turns can remain non-rotatably fixed relative to the second conduit 136. Experimental evidence shows that enhanced mixing can be achieved by redirecting the fluid profile 18() at the first conduit 132 or at the second conduit (3). Figure 1 illustrates another example device trace. In the other example device 1〇2, the fluid profile is redirected in stem _ ^ ^ ^ ^ ^ , guide s 132. In this example, the '5" method includes the initial step of melting the batch material in a glass melter to produce a molten glass. The molten glass is then passed through an inlet 208' of the first conduit 132. The first conduit 132 provides fluid communication between the glass melter 1〇6 22 201242919 and the me/month chamber to 130. As shown, entering the inlet molten glass 124 includes a fluid profile X having a first flow 4 182. The first amount 182 is flowing within the first conduit 132 at a lower elevation than the second flow 184. - Flow inside the conduit 132. The method then includes the step of redirecting the fluid profile within the first conduit 132, </ RTI> {# θ at the first flow: !: 182 flowing within the first conduit 132 at a higher elevation than the second flow ι 84. The fluid profile in the first conduit 132 can be redirected by, for example, the aforementioned helical blade 17G. In an example, the helical blade 170 can be located outside of an electrical flange ((4)) 212 that is designed to provide an electronic heating circuit that is electrically convex. The provision of impedance heating between the rims 212 via the first conduit 132 thus 'places the helical vanes 17G at least partially in the glass melter m' may avoid interference with the impedance addition circuitry. The helical blade 170 within the first guide 132 also provides additional structural stability to the conduit 132, which can be easily deformed over time. This embodiment may have the additional benefit of increasing the rate of dissolution of the refiner to the flint by: reducing the saturation of the refractory chemical composition in the glass surrounding the refractory chemical composition. The method is then carried out by feeding the molten glass from the outlet 21 of the first conduit 132 to the clarification chamber 13 〇 + . The bubbles 2〇6 are then removed by the molten glass 124 in the clarification chamber 130. Then: the molten glass is fed to the mixing chamber 134. As shown, when the first flow of material M2 enters the agitating chamber 134, the first flow of material 182 is still 23 201242919 which may be located above the second conduit 136. Therefore, it is possible to increase the homogeneity of the molten glass and increase the quality of the glass article. As noted above, increased surface flatness can be observed in glass articles (e.g., glass sheets) by redirecting the fluid profile. It is also possible to reduce the month b; the agitation speed of the mixing element 138 in the agitating chamber 134 to provide less corrosion and thus provide more homogenization within the agitation chamber. Still further, increasing the mixing efficiency may allow for a reduction in the size of the agitation chamber 134, which significantly reduces the cost of manufacturing the agitation chamber 134, which is typically fabricated from a precious metal. It will be apparent to those skilled in the <Desc/Clms Page number> Thus, it is intended that the present invention cover the modifications and variations of the invention, and the modifications and variations thereof are within the scope of the appended claims and the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other features, aspects and advantages of the present invention will become better understood from the <RTIgt; 2 is a schematic view of an apparatus for manufacturing a glass article; FIG. 2 is a schematic view of the apparatus of FIG. 1 along line 2-2, the schematic diagram illustrates a portion of the apparatus; and FIG. 3 is an enlarged portion of the apparatus of FIG. 1; 24 201242919 Figure 4 is an enlarged view of the example % t snail blade, which is rotatably fixed in the conduit; the fifth rotation is the fourth diagram showing the spiral blade diagram along the upstream edge of the line 5-5 sectional view, the sixth drawing of the section is the fourth embodiment of the conduit along the line diagram showing the downstream edge of the spiral blade; 6-6 sectional view, the sectional view 7 is the spiral blade of the fourth figure Upstream top right perspective view; #第8图 is a schematic diagram of a computer model, the computer model shows: when the 1 screw red blade, the fluid profile of the molten glass is redirected so that the upstream edge is located along the horizontal axis of the catheter; Figure 9 is a schematic diagram of a computer model, Computer model illustration: When installing a spiral blade, the fluid profile of the molten glass is redirected such that the upstream edge is about 45 relative to the horizontal axis of the conduit. The angle. The figure is a schematic diagram of another example device for making a glass object. [Main component symbol description] 102 Melt down device 104 Glass ribbon 106 Glass melter 108 Batch material 110 Storage tank 112 Batch conveyor 114 Motor 116 Selective controller 118 Arrow 120 Detector 122 Ancient ώ: Ν degree 124 molten glass 126 standpipe 128 communication line 130 clarification chamber 132 first conduit 25 201242919 132a lower portion of the conduit 134 agitating chamber 136 second conduit 136a lower portion of the conduit 137 inlet 138 mixing element 139 outlet 140 rotatable shaft 142 arrow 144 transfer container 146 third conduit 148 downcomer 150 inlet 152 forming container 154 arrow 156 forming wedge 158 forming surface portion 160 forming surface portion 162 downstream direction 164 root 166 pumping Pull plane 170 spiral blade 172a upstream end 172b downstream end 173 a spiral edge 173b spiral edge 174a upstream edge 174b downstream edge 176 section axis 180 fluid profile 182 first flow 184 second flow 190 axial flow direction 192 horizontal axis 200 upstream position 202 The vertical position of shaft 206 204 208 bubble outlet 212 inlet 210 electric flange quadrant quadrant I II III IV quadrant a quadrant angle β angle of 26

Claims (1)

201242919 七、申請專利範圍. 1. 一種製造一玻璃物件的方法,該方法包含以下步驟· (I)在一玻璃熔化器(glass me丨ter)中溶化批量材料 (batch material)’以產生熔融玻璃; (π)將該熔融玻璃送經一第一導管之一入口( inlet), 該第一導管在該玻璃熔化器與一澄清腔室(fining chamber )之間提供流體連通(fiuid communication),其中 進入該入口之該熔融玻璃包括:一流體剖面(fl〇w profile )’該流體剖面具有:一第一流量,該第一流量在比 一第二流量之一更低高度處在該第一導管内流動,該第二 流量在該第一導管内流動; (III) 將該熔融玻璃由該第一導管之一出口送至該澄 清腔室中; (IV) 由在該澄清腔室中之該熔融玻璃移除玻璃氣泡; (V) 將該熔融玻璃由該澄清腔室送經一第二導管之一 入口 ,該第二導管在該澄清腔室與一攪拌腔室(Stir chamber)之間提供流體連通,其中進入該第二導管之該入 口之該熔融玻璃包括:一流體剖面(flow profile ),該流體 剖面具有:一第一流量,該第一流量在比一第二流量之一 更低高度處在該第二導管内流動,該第二流量在該第二導 管内流動; (VI) 將該熔融玻璃由該第二導管之一出口送至該攪 拌腔室中; 27 201242919 (VII) 在該攪拌腔室中攪拌該熔融玻璃; (VIII) 將該溶融玻璃之流量由該授拌腔室送至一成型 容器(forming vessel)’以使該玻璃物件成型;以及 (IX) 扭轉在該第一導管與該第二導管之一者内的該 流體剖面,使得該第一流量在比該第二流量之一更高高度 處’在該第一導管與該第二導管之該一者内流動。 2' 如請求項1所述之方法,其中該成型容器包含:一等 靜壓管(isopipe),且該玻璃物件包含:一玻璃板’該玻璃 板係藉由一熔融下拉式(fusion d〇wn_draw)製程所成型。 3,如清求項1所述之方法,其中步驟(IX)包括以下步 驟:以一裝置扭轉該流體剖面,該裝置位於該第一導管與 該第二導管之該一者内。 4.如喷求項1所述之方法,其中步驟(IX)包括以下步 驟:以-螺旋葉片(helical van〇扭轉該流體剖面。 如明求項4所述之方法,其中在步驟(ιχ)期間内,當 扭轉:流體剖面時,該螺旋葉片相對於該第一導管與該第 二導管之該一者維持不可旋轉之固定。 -種用於製造-玻璃物件的設備,該設備包含: -玻璃炫化器’該玻璃溶化器係經設置,以將一批量 28 6. 201242919 材料溶化成一炼融玻璃; 一澄清腔室’該澄清腔室位於該玻璃炫化器之下游, 其中該澄清腔室係經設置,以由該玻璃熔化器接收熔融玻 璃; 揽摔腔至’該授掉腔室位於該澄清腔室之下游; 一導官’該導管係經設置’以提供使炫融玻璃由該玻 璃熔化器流至該澄清腔室之一路徑,或提供使熔融玻璃由 該澄清腔室流至該攪拌腔室之一路徑; 一螺%葉片,該螺旋葉片係不可旋轉地固定於該導管 中,且該螺旋葉片係經設置,以扭轉在該導管中之該熔融 玻璃之一流體剖面;以及 成型谷器,該成型容器位於該搜拌腔室之下游,其 中該成型容器係經設置,以由該攪拌腔室接收熔融玻璃並 使該玻璃物件成型。 7, 如請求項6所述之設備,其中該成型容器包含:一等 靜壓管,該等靜壓管係經設置,以使該玻璃物件由該熔融 玻璃熔融下拉而出。 8· 如請求項6或7所述之設備,其中該螺旋葉片包括: -上游端與一下游端’纟中該葉片在該上游端與該下游端 之間扭轉一角度,該角度在約9〇。至約27〇。之—範圍中 9. 如請求項8所述之設備,其中該角度約為18〇。。 29 201242919 10. 如請求項6或7所述之設備,其中該螺旋葉片更包 括:一上游邊緣,該上游邊緣位於:相對於一水平轴傾斜 約3 0°至約60°之一傾斜角度處,該水平軸係垂直於該導管 之一轴向流向。 30201242919 VII. Patent application scope 1. A method for manufacturing a glass article, the method comprising the following steps: (I) melting a batch material in a glass melter to produce molten glass (π) feeding the molten glass through an inlet of a first conduit that provides fluid communication between the glass melter and a fining chamber, wherein The molten glass entering the inlet includes: a fluid profile having a first flow rate at a lower elevation than one of the second flow rates at the first conduit Internal flow, the second flow flows in the first conduit; (III) the molten glass is sent from the outlet of the first conduit to the clarification chamber; (IV) by the clarification chamber The molten glass removes the glass bubbles; (V) passing the molten glass from the clarification chamber through an inlet of a second conduit, the second conduit being provided between the clarification chamber and a Stir chamber Fluid communication The molten glass entering the inlet of the second conduit includes: a flow profile having a first flow rate at a lower elevation than one of the second flow rates Flowing in the second conduit, the second flow is flowing in the second conduit; (VI) sending the molten glass from the outlet of the second conduit to the stirring chamber; 27 201242919 (VII) Stirring the molten glass in the stirring chamber; (VIII) sending the flow of the molten glass from the mixing chamber to a forming vessel' to shape the glass article; and (IX) twisting at the first The fluid profile in the conduit and one of the second conduits causes the first flow to flow within the one of the first conduit and the second conduit at a higher elevation than one of the second flows. The method of claim 1, wherein the molding container comprises: an isopipe, and the glass article comprises: a glass plate, wherein the glass plate is melted and pulled (fusion d〇) The wn_draw) process is formed. 3. The method of claim 1, wherein the step (IX) comprises the step of twisting the fluid profile with a device located in the one of the first conduit and the second conduit. 4. The method of claim 1, wherein the step (IX) comprises the step of: twisting the fluid profile with a helical vane. The method of claim 4, wherein at step (ι) During the period of twisting: the fluid profile, the helical blade maintains a non-rotatable fixation relative to the one of the first conduit and the second conduit. - A device for manufacturing a glass object, the device comprising: - Glass concentrator's glass dissolver is configured to melt a batch of material 28.6, 201242919 into a smelting glass; a clarification chamber 'the clarification chamber is located downstream of the glass screed, wherein the clarification chamber The chamber is configured to receive the molten glass from the glass melter; the chamber is dropped to the 'the authorized chamber is located downstream of the clarification chamber; a guide 'the conduit is set' to provide a glazed glass The glass melter flows to a path of the clarification chamber or provides a path for molten glass to flow from the clarification chamber to the agitation chamber; a snail blade that is non-rotatably fixed to the guide And the spiral blade is configured to twist a fluid profile of the molten glass in the conduit; and a shaped vessel positioned downstream of the mixing chamber, wherein the shaped container is configured The apparatus of claim 6, wherein the molding container comprises: an isostatic tube, the isostatic tubes are configured to allow the molten glass to be formed by the agitating chamber. The glass article is melted and pulled out by the molten glass. The apparatus of claim 6 or 7, wherein the spiral blade comprises: - an upstream end and a downstream end, wherein the blade is at the upstream end and the downstream The angle between the ends is an angle of between about 9 Torr and about 27 〇. The apparatus of claim 8, wherein the angle is about 18 〇.. 29 201242919 10. The apparatus of claim 6 or 7, wherein the spiral blade further comprises: an upstream edge, the upstream edge being located at an inclination angle of about 30° to about 60° with respect to a horizontal axis, the horizontal axis being perpendicular to One axial flow of the conduit To. 30
TW101111852A 2011-04-29 2012-04-03 Apparatus for making a glass article and methods TWI541208B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161480428P 2011-04-29 2011-04-29

Publications (2)

Publication Number Publication Date
TW201242919A true TW201242919A (en) 2012-11-01
TWI541208B TWI541208B (en) 2016-07-11

Family

ID=47072992

Family Applications (2)

Application Number Title Priority Date Filing Date
TW101111852A TWI541208B (en) 2011-04-29 2012-04-03 Apparatus for making a glass article and methods
TW105116331A TWI565668B (en) 2011-04-29 2012-04-03 Apparatus for making a glass article and methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105116331A TWI565668B (en) 2011-04-29 2012-04-03 Apparatus for making a glass article and methods

Country Status (5)

Country Link
JP (1) JP5993444B2 (en)
KR (1) KR101761457B1 (en)
CN (1) CN103502161B (en)
TW (2) TWI541208B (en)
WO (1) WO2012148642A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8956484B2 (en) * 2012-11-26 2015-02-17 Corning Incorporated Method for bonding zircon substrates
JP2015174806A (en) * 2014-03-17 2015-10-05 日本電気硝子株式会社 Flow displacement member for molten glass
JP6133958B2 (en) * 2014-10-31 2017-05-24 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
TW201711967A (en) * 2015-08-26 2017-04-01 美商.康寧公司 Glass melting system and method for increased homogeneity
CN108290761A (en) * 2015-11-23 2018-07-17 康宁股份有限公司 Glass melting system and method for increasing batch of material dissolving and glass uniformity
CN107986604B (en) * 2017-12-26 2023-10-20 中建材玻璃新材料研究院集团有限公司 Stirring rod of electronic display glass platinum channel
TWI826432B (en) * 2018-04-06 2023-12-21 美商康寧公司 Exhaust conduits for glass melt systems
CN113480150A (en) * 2021-06-30 2021-10-08 陕西彩虹工业智能科技有限公司 Flexible glass preparation system and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408893A (en) * 1982-04-28 1983-10-11 Luwa A.G. Motionless mixing device
JP2001259393A (en) * 2000-03-23 2001-09-25 Snow Brand Milk Prod Co Ltd Method and device for agitating fluid substance
JP2001353431A (en) * 2000-06-12 2001-12-25 Noritake Co Ltd Static mixer element, device and method using the same and heat exchanging device and method
JP4318542B2 (en) * 2003-12-22 2009-08-26 株式会社オハラ Spherical glass manufacturing apparatus and spherical glass manufacturing method
US20060120214A1 (en) * 2004-11-08 2006-06-08 Red Valve Company, Inc. Mixing device
WO2006059575A1 (en) * 2004-12-01 2006-06-08 Nippon Sheet Glass Company, Limited Glass production apparatus and process for producing glass
JP5370902B2 (en) * 2007-08-30 2013-12-18 日本電気硝子株式会社 FIXED Fused Glass Replacement Member and Glass Article Manufacturing Method
US20100083704A1 (en) * 2008-10-08 2010-04-08 Paul Richard Grzesik Methods and apparatus for manufacturing glass sheet
TWI388519B (en) * 2008-11-24 2013-03-11 Corning Inc Isopipe material outgassing
US8117868B2 (en) * 2009-07-27 2012-02-21 Corning Incorporated Apparatus and methods for making glass

Also Published As

Publication number Publication date
CN103502161A (en) 2014-01-08
CN103502161B (en) 2016-08-17
KR20140025396A (en) 2014-03-04
JP2014514239A (en) 2014-06-19
TWI541208B (en) 2016-07-11
KR101761457B1 (en) 2017-07-25
TW201630824A (en) 2016-09-01
WO2012148642A3 (en) 2013-02-28
TWI565668B (en) 2017-01-11
WO2012148642A2 (en) 2012-11-01
JP5993444B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
TW201242919A (en) Apparatus for making a glass article and methods
TWI419855B (en) Molten glass delivery apparatus for optical quality glass
TWI480249B (en) Glass substrate manufacturing method and stirring device
TWI452023B (en) Glass manufacturing method and mixing device
JP6418455B2 (en) Process and apparatus for clarifying molten glass
TW201124352A (en) Molten glass supply device
TW201038499A (en) Device for stirring molten glass
KR20130024889A (en) Apparatus for making a glass article and methods
WO2016168109A1 (en) Apparatus and methods for cooling molten _glass material
WO2012011419A1 (en) Molten glass conveying device and method of producing glass using molten glass conveying device
JP7108230B2 (en) Method for manufacturing stirring stirrer and glass plate
JP6133958B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2020063189A (en) Device and method for refining molten glass
JP2019519362A (en) Apparatus and method for mixing molten glass
JPH11513972A (en) Method and apparatus for modifying and homogenizing a glass melt
JP2016050148A (en) Method and apparatus for manufacturing glass plate
JP5793919B2 (en) Stirring apparatus and stirring method for molten glass
JP2016033099A (en) Method for manufacturing glass plate, and agitator
JP2012036063A (en) Stirring device and stirring method for molten glass
CN1970476A (en) Method for reducing platinum particle content in glass substrate