WO2006059575A1 - Glass production apparatus and process for producing glass - Google Patents

Glass production apparatus and process for producing glass Download PDF

Info

Publication number
WO2006059575A1
WO2006059575A1 PCT/JP2005/021813 JP2005021813W WO2006059575A1 WO 2006059575 A1 WO2006059575 A1 WO 2006059575A1 JP 2005021813 W JP2005021813 W JP 2005021813W WO 2006059575 A1 WO2006059575 A1 WO 2006059575A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
molten glass
barrier
molten
manufacturing apparatus
Prior art date
Application number
PCT/JP2005/021813
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Koyama
Junji Kurachi
Hiromitsu Seto
Kazuhiro Yamamoto
Daisuke Miyabe
Yutaka Senshu
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Publication of WO2006059575A1 publication Critical patent/WO2006059575A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/182Stirring devices; Homogenisation by moving the molten glass along fixed elements, e.g. deflectors, weirs, baffle plates

Definitions

  • the present invention relates to a glass manufacturing apparatus and a glass manufacturing method using a vacuum clarification method for reducing bubbles contained in a molten glass under a reduced pressure atmosphere.
  • glass is formed by melting a glass raw material into a molten glass (melting process), and reducing the compositional deviation in the molten glass as necessary (homogenization process) (molding process).
  • melting process melting process
  • homogenization process melting process
  • molding process reducing the compositional deviation in the molten glass as necessary
  • molten glass there are innumerable bubbles formed by chemical decomposition of raw materials.
  • bubbles may affect the optical properties of the product after molding.
  • glass or the like used for a display substrate is required to be substantially free of bubbles that affect the properties of the substrate. For this reason, the process of reducing bubbles in glass melt (clarification process) is very important in the glass manufacturing process.
  • a vacuum clarification method is known as one of the clarification methods!
  • molten glass is introduced into the vacuum clarification part in a reduced pressure atmosphere from the molten part to reduce bubbles contained in the molten glass.
  • Examples of a glass production apparatus using a vacuum clarification method are disclosed in, for example, Japanese Patent Laid-Open Nos. 5-58646 and 5-208830.
  • a decompression treatment tank which is a depressurization and clarification section, is arranged at a higher position than a melting tank, which is a melting section, and both tanks use risers. Connected.
  • a screw is placed in the riser pipe, and pressure is applied in the direction in which the molten glass is pushed back to the molten part. The height difference between the melting part and the vacuum clarification part provided in the production apparatus of the publication is reduced.
  • a stirrer is arranged in the flow path of the molten glass, and the efficiency of removing the bubbles by homogenizing the molten glass and generating bubbles by stirring the molten glass is achieved.
  • the glass manufacturing apparatus disclosed in Japanese Patent Laid-Open No. 5-208830 has the above-described height difference.
  • To reduce the difference in height such as using a screw to reduce the glass, and using a stirrer to generate bubbles in the molten glass, rotation is performed in order to reduce the height difference and to generate molten glass and Z or bubbles.
  • the screw stirrer while the screw stirrer is rotating, it may come into contact with the riser or the inner wall of the vacuum clarification tank (vacuum defoaming tank), causing damage to the production equipment or contamination.
  • the glass manufacturing apparatus of the present invention includes a melting part that melts a glass raw material to form a molten glass, the molten glass is transferred via a pipe, and bubbles contained in the transferred molten glass are reduced in a reduced-pressure atmosphere.
  • the glass manufacturing apparatus includes a vacuum clarification part (vacuum degassing part) to be reduced in step 1 and a molding part for molding the molten glass in which the bubbles are reduced, and a barrier for changing the flow of the molten glass.
  • the bubbles are disposed in the flow path of the molten glass until the bubbles reach the ground surface of the molten glass, and the barrier is selected from the molten part, the pipe, and the reduced pressure clarification part. Supported by at least one.
  • the method for producing glass of the present invention includes a melting step in which a glass raw material is melted in a melting part to form a molten glass, and the molten glass is transferred to a reduced pressure clarification part in a reduced pressure atmosphere via a pipe.
  • a method for producing glass comprising a reduced-pressure clarification step (vacuum defoaming step) for reducing bubbles contained in the molten glass at a reduced-pressure clarification portion and a molding step for forming the molten glass with reduced bubbles.
  • the flow of the molten glass is changed by arranging a barrier in the flow path of the molten glass. The barrier is disposed in the flow path until the bubbles reach the ground surface of the molten glass in the vacuum clarification unit, and at least one selected from the melting unit, the pipe, and the vacuum clarification unit. It is supported by one.
  • the flow of the molten glass is changed by the rear supported by at least one of the melting part, the piping, and the reduced pressure clarification part force.
  • pressure loss can be generated without relying only on the screw, and for example, the difference in height between the melting part and the reduced pressure clarification part in the glass manufacturing apparatus can be reduced.
  • stirrer The molten glass can be mixed without relying on only one, and for example, the compositional deviation of the molten glass can be reduced.
  • mixing of the foreign material to molten glass can be suppressed.
  • FIG. 1 is a schematic view showing an example of a glass manufacturing apparatus of the present invention.
  • FIG. 2A is a schematic diagram showing an example of a static mixer used as a rear in the glass manufacturing apparatus of the present invention.
  • FIG. 2B is a schematic diagram showing an example of an element of a static mixer used as a rear in the glass manufacturing apparatus of the present invention.
  • FIG. 3 is a schematic view showing another example of the glass manufacturing apparatus of the present invention.
  • FIG. 4 is a schematic view showing still another example of the glass manufacturing apparatus of the present invention.
  • FIG. 5 is a schematic view showing an example of a barrier in the glass manufacturing apparatus of the present invention.
  • FIG. 6 is a schematic view showing still another example of the glass manufacturing apparatus of the present invention.
  • FIG. 7 is a schematic view showing another example of the glass manufacturing apparatus of the present invention different from the above.
  • FIG. 8 is a schematic view showing an example different from the above of the glass manufacturing apparatus of the present invention.
  • FIG. 9 is a schematic view showing an example different from the above of the glass manufacturing apparatus of the present invention.
  • a glass manufacturing apparatus 1 shown in FIG. 1 includes a melting part (melting tank 2) that melts a glass raw material to form a molten glass 4, and a vacuum clarification part that reduces bubbles contained in the molten glass 4 in a reduced-pressure atmosphere.
  • a vacuum clarification tank 3 and a chamber 31 A vacuum clarification tank 3 and a chamber 31
  • the molten glass 4 is transferred to the vacuum clarification tank 3 through a pipe 6 disposed between the melting tank 2 and the vacuum clarification tank 3.
  • a static mixer element 5 (hereinafter also simply referred to as “element 5”) is arranged as a noria for changing the flow of the molten glass 4.
  • the element 5 is supported by the pipe 6 and constitutes a static mixer together with the pipe 6.
  • the molten gas with reduced air bubbles The lath 4 is supplied to the forming unit 12 through the adjustment tank 11.
  • the element 5 can play the same role as a screw or stirrer in the flow path of the molten glass.
  • the element 5 becomes a flow path resistance against the flow of the molten glass 4, and pressure loss can be generated in the region of the pipe 6 where the element 5 is arranged.
  • the above pressure loss can reduce the height difference to be provided between the melting tank 2 and the vacuum clarification tank 3.
  • the ground surface of the molten glass 4 in the melting tank 2 and the ground surface of the molten glass 4 in the vacuum clarification tank 3 are substantially at the same height, and the molten glass 4 is in the horizontal direction. Be transported.
  • Such a glass manufacturing apparatus can be made smaller than the glass manufacturing apparatus disclosed in Japanese Patent Laid-Open No. 5-58646. However, as long as the molten glass 4 can be transferred from the melting tank 2 to the vacuum clarification tank 3, a height difference may be provided between both tanks.
  • bubbles can be generated in the molten glass 4 flowing in the flow path.
  • bubbles can be reduced more efficiently in the vacuum clarification tank 3.
  • the element 5 does not require a drive unit required for a screw or a stirrer, and the drive unit is disposed outside the flow path of the molten glass 4 or the chamber 31 and is connected to the drive unit. Does not need to be formed on the flow path and the wall of Z or chamber 31. For this reason, the flow path of the molten glass 4 can be substantially sealed, and for example, the pressure fluctuation in the vacuum clarification tank 3 and the mixing of foreign matters into the vacuum clarification tank 3 can be suppressed.
  • the element 5 is fixed inside the pipe 6 (that is, in the flow path of the molten glass 4), and does not actively operate by the power of external force.
  • FIG. 2A shows an example of the arrangement of the elements 5 in the pipe 6.
  • a plurality of elements 5 are arranged in the pipe 6 (more specifically, two kinds of elements 21 and 22 are alternately connected).
  • 5 is supported by the inner wall of the pipe 6 through the blanket 23 and fixed to the pipe 6.
  • a static mixer 20 is configured by the pipe 6 and the element 5 arranged in the pipe 6.
  • the elements 21 and 22 are norias having a structure in which the molten glass flowing in the pipe 6 is rotated in the opposite directions (clockwise or clockwise with respect to the traveling direction of the molten glass, respectively). (See arrow in Figure 2A).
  • the elements 21 and 22 are arranged so that the phases thereof are different from each other by 90 ° at the connection surface between the elements when viewed in the traveling direction of the molten glass.
  • the position where the element 5 is arranged is not limited to the inside of the pipe 6 connecting the melting tank 2 and the vacuum clarification tank 3, but until the bubbles reach the ground surface of the molten glass 4 in the vacuum clarification tank 3. It only has to be arranged in the flow path of the molten glass 4.
  • the element 5 may be disposed in the flow path 8 of the molten glass provided in the vacuum clarification clarification tank 3.
  • the flow path 8 in FIG. 3 is located until the bubbles 7 reach the ground surface of the molten glass 4.
  • the element 5 may be disposed in the flow path 8 of the molten glass 4 provided inside the melting tank 2.
  • a plurality of elements 5 may be arranged dispersed in a plurality of regions.
  • the element 5 is divided into an upstream side (melting tank 2 side) and a downstream side (vacuum clarification tank 3 side) of the pipe 6. May be arranged.
  • the element 5 as a barrier may be supported by at least one selected from the melting tank 2, the pipe 6, and the vacuum clarification section (the vacuum clarification tank 3 and the chamber 31) force.
  • the method and structure for supporting the element 5 are not particularly limited.
  • the element 5 may be supported by a blanket 23 fixed to the inner wall of the pipe 6, or the pipe 6 or the chamber 31 may be supported. It may be supported by a member that penetrates the wall surface. Supported by a member that penetrates the wall Even in this case, unlike the case where the drive shaft of the screw or stirrer is passed through, the space between the wall surface and the member can be sealed, so that the flow path of the molten glass 4 can be substantially sealed. From the viewpoint of ensuring the sealing more reliably, it is preferable that the element 5 is supported by at least one inner wall selected from the melting tank 2, the pipe 6, and the vacuum clarification section as in the example using the blanket 23. ,.
  • the specific structure of the element 5 is not particularly limited. If the shape and arrangement of element 5 are arbitrarily set according to the characteristics required for element 5.
  • the material used for the element 5 is not particularly limited as long as it has heat resistance and resistance to the molten glass 4.
  • a metal having heat resistance and corrosion resistance to the molten glass 4 may be used.
  • the viscosity of the molten glass 4 flowing in the region where the element 5 is disposed may be in the range of, for example, 100 d-Pa-sec (poise) to: L 0 4 d ⁇ Pa ⁇ sec (poise). 100d ⁇ Pa ⁇ sec (poise) ⁇ : L 0 3 d ⁇ P a ′ sec (poise) is preferable. Since element 5 has a lower load than a screw or stirrer, the temperature range of molten glass 4 flowing in the flow path can be set wider.
  • the number of the elements 5 is not particularly limited, the required pressure loss, the viscosity, density, flow rate, Reynolds of the molten glass 4 flowing in the area where the elements 5 are arranged. It may be determined according to the number. For example, the range of 4 to 36 including the two types of elements 21 and 22 is preferable. In general, the length of the element 5 is 1.5 times the element diameter a (1.5a), as shown in FIG. 2B.
  • the noria in the glass manufacturing apparatus 1 of the present invention is not limited to the form shown in FIG. It is arranged in the flow path of the molten glass 4 until the bubbles reach the ground surface of the molten glass 4 in the pressure reducing clarification tank 3, and is supported by at least one selected from the melting tank 2, the pipe 6, and the vacuum clarification force.
  • the structure and configuration of the barrier are not particularly limited.
  • a plate-like barrier 24 disposed inside the pipe 6 as shown in FIG. 5 may be used.
  • the materials used for Noria, The viscosity and temperature of the molten glass 4 that flows through the region where the a is placed are the same as in the case of the static mixer element 5.
  • the number of barriers disposed in the flow path of the molten glass is not particularly limited, and a single barrier may be disposed, or two or more barriers may be disposed as shown in FIG. 2A and FIG. Also good. Among these, it is preferable to arrange two or more nozzles. For example, the pressure loss value generated in the barrier can be optimized and the generation of bubbles can be controlled more easily.
  • the arrangement method of the noria is not particularly limited, and may be arbitrarily arranged according to the characteristics required for the noria. In particular, as shown in FIG. 2A and FIG. 5, it is preferable that the flow paths overlap with each other when viewed in the direction of progress of the molten glass.
  • the control range of the pressure loss value and the amount of generated bubbles can be made wider.
  • overlapping each other means that at least a part of the barrier overlaps
  • the direction of molten glass travel means that the molten glass travels through the flow path when the barrier is removed. It is for the direction.
  • the static mixer element 5 When the static mixer element 5 is used as the noria, the molten glass 4 can be mixed in the flow path to reduce the compositional deviation of the molten glass 4. For this reason, depending on the shape and arrangement method of the element 5, it is possible to more efficiently reduce bubbles in the vacuum clarification tank 3, and to simplify the homogenization process when homogenization is performed after vacuum clarification. .
  • the barrier may have a movable part as long as it operates passively according to the flow of the molten glass 4 or the like, which is not necessarily fixed to the flow path.
  • the structure, configuration and the like of the melting tank 2 are not particularly limited as long as the glass raw material can be melted by heating, and may be the same structure and structure as those of a melting tank generally used as a glass manufacturing apparatus.
  • the structure and configuration of the vacuum clarification section are not particularly limited as long as the inside of the vacuum clarification tank 3 can be maintained in a reduced pressure atmosphere, and has the same structure and configuration as the vacuum clarification section generally used as a glass manufacturing apparatus. I just need it.
  • the vacuum clarification tank 3 is accommodated in a chamber 31 having a strength that can withstand a reduced pressure atmosphere, and the pressure reduction mechanism 32 is provided in the chamber 31.
  • the decompression mechanism 32 may include an exhaust pump.
  • the reduced-pressure clarification tank 3 includes, for example, a refractory brick! Do it! /.
  • the inner wall of the vacuum clarification tank 3 is coated with a metal having heat resistance and corrosion resistance to molten glass.
  • the metal exemplified as the material used for the element 5 may be used. Since these metals have high resistance to molten glass, the durability of the production apparatus can be improved.
  • the pressure in the vacuum clarification tank 3 at the time of vacuum clarification is not particularly limited as long as vacuum clarification can be performed, and may be maintained in a range of, for example, 0.05 atm to 0.5 atm.
  • the melting tank 2 is shown as the melting part
  • the vacuum clarification tank 3 and the chamber 31 are shown as the vacuum clarification part.
  • the glass raw material is used. As long as it can be melted by heating, and the bubbles contained in the molten glass can be reduced in a reduced-pressure atmosphere, it can be a melting part and a reduced-pressure clarification part having an arbitrary structure and configuration, respectively.
  • the method for transferring the molten glass 4 to the vacuum clarification tank 3 is not particularly limited.
  • the molten glass 4 may be introduced in the horizontal direction with respect to the ground surface of the molten glass 4 in the vacuum clarification tank 3.
  • the molten glass 4 may be introduced from the upper part of the vacuum clarification tank 3, or as shown in FIG. 7, the molten glass 4 is introduced from the lower cover of the vacuum clarification tank 3. Also good. A similar effect can be obtained in each case.
  • the method of transferring the molten glass 4 from the vacuum clarification tank 3 to the adjustment tank 11 (the adjustment tank 11 can be omitted, and in that case, the molding unit 12 and the homogenization mechanism 13 described later) is particularly effective.
  • the flow rate adjusting mechanism (e.g., a plunger) is provided at the inlet and Z or outlet of each tank, such as the outlet to the piping 6 in the melting tank 2 and the outlet to the adjusting tank 11 in the vacuum clarification tank 3. ) May be arranged.
  • the flow rate adjustment mechanism By arranging the flow rate adjustment mechanism, conditions such as pressure in each tank can be made closer to the optimum values.
  • a plurality of pipes 6 for transferring the molten glass 4 to the vacuum clarification tank 3 may be arranged.
  • two pipes 6 are arranged in parallel, two in the vertical direction and two in the back of the two pipes 6 shown.
  • the flow rate control of the molten glass 4 transferred to the vacuum clarification tank 3 can be controlled. It can be carried out.
  • the inner diameter of each pipe 6 can be reduced, when the static mixer element 5 is arranged in the pipe 6, for example, the number of elements 5 required to obtain the same pressure loss can be reduced, and the length of the pipe 6 can be reduced. Can be shorter.
  • the pipe 6 may be configured with a member force capable of conducting heating.
  • the temperature of the molten glass 4 flowing in the pipe 6 can be adjusted, and the flow rate of the molten glass 4 transferred to the vacuum clarification tank 3 can be controlled.
  • the barrier is arranged in the pipe 6, the barrier itself is heated as the pipe 6 is energized and heated, so that the molten glass flowing in the pipe 6 is compared to the case where the noria is not arranged. 4 can be adjusted more easily.
  • the effect is great when a noria composed of members that can be heated by electric current is disposed.
  • the structure and configuration of the adjusting tank 11 and the forming unit 12 are not particularly limited, and may be the same structure and configuration as the adjusting tank and the forming unit that are generally used as a glass manufacturing apparatus. As described above, the adjustment tank 11 can be omitted.
  • FIG. 9 shows another example of the glass manufacturing apparatus of the present invention.
  • the glass manufacturing apparatus 1 shown in FIG. 9 there is a homogenization mechanism 13 between the vacuum clarification tank 3 and the forming part 12 for reducing the compositional deviation of the molten glass 4 in which bubbles are reduced in the vacuum clarification tank 3.
  • a manufacturing apparatus 1 can manufacture glass with reduced striae.
  • the structure, configuration and the like of the homogenization mechanism 13 are not particularly limited, and may be the same structure and configuration as those of a homogenization mechanism generally used as a glass manufacturing apparatus.
  • a homogenization mechanism 13 having a stirring mechanism 14 such as a stirrer may be used.
  • the glass manufacturing method of the present invention can be carried out, for example, by the glass manufacturing apparatus of the present invention described above.
  • the flow of molten glass in the flow path is changed by disposing noria in the flow path for transferring the molten glass from the melting process to the vacuum clarification process.
  • Noria is arranged in the flow path of the molten glass until the bubbles reach the ground surface of the molten glass in the vacuum clarification part, and is supported by at least one selected from the melting part, the piping, and the vacuum clarification part force.
  • the barrier used in the manufacturing method of the present invention does not require a drive unit, and the drive unit is disposed outside the melting unit, piping, and vacuum clarification unit. There is no need to connect to the barrier.
  • piping and a reduced pressure clarification part can be sealed substantially, and the pressure fluctuation in a reduced pressure clarification process and the mixing of the foreign material to a molten glass can be suppressed. That is, by using the production method of the present invention, it becomes easy to continuously produce glass with stable quality.
  • pressure loss can be generated, bubbles can be generated in the molten glass, or the molten glass can be mixed.
  • a barrier that generates a pressure loss the difference in height between the melting part (for example, the melting tank) and the reduced pressure clarification part (for example, the reduced pressure clarification tank) can be reduced.
  • the compositional deviation of the molten glass can be reduced.
  • the specific structure and configuration of the barrier may be the same as those of the above-described Noria in the glass manufacturing apparatus of the present invention.
  • the manufacturing method of the present invention by selecting the shape and arrangement method of the barrier, the degree of load applied to the barrier structurally compared to the case of using a stirring mechanism such as a screw or a stirrer !, Therefore, the temperature range of the molten glass to be transferred can be set wider.
  • the method of transferring the molten glass to the melted part force reduced pressure clarified part is not particularly limited.
  • the viscosity of the molten glass flowing in the region where the barrier is disposed is, for example, in the range of lOOd 'Pa' sec (poise) to: L0 4 d 'Pa' sec (poise) 100d
  • the conditions for the vacuum clarification are not particularly limited if a general method and apparatus are used in the vacuum clarification process.
  • the pressure in the vacuum clarification section may be in the range of about 0.05 atm to 0.5 atm.
  • the melting process and the molding process are not particularly limited, and are generally used for glass production.
  • a method and an apparatus may be used. Specifically, it can be applied to various glass production methods such as a float method, a roll-out method, a Colburn method, and a fusion method.
  • a homogenization process for reducing the deviation in the composition of the molten glass after the reduction of bubbles in the vacuum clarification process is further performed between the vacuum clarification process and the molding process. May be included. Since the striae can be reduced by the homogenization process, glass with more stable quality can be obtained.
  • the homogenization process is not particularly limited, and a general homogenization method and apparatus may be used.
  • the molten glass may be stirred using a stirring mechanism such as a stirrer to homogenize the molten glass.
  • the production method of the present invention can be applied regardless of the type of glass.
  • application to glass containing diboron trioxide (B 2 O 3) is effective.
  • Diboron trioxide is clarified under reduced pressure
  • the volatilization amount of nitrous acid triboron is easily affected by pressure fluctuations in the vacuum clarification section.
  • the raw material is melted in advance taking into consideration the volatilization amount of diboron trioxide.
  • the volatilization amount of boron trioxide is varied, the quality of the resulting glass will be reduced. It becomes difficult to keep it constant.
  • the pressure fluctuation in the vacuum clarification part can be reduced, and the bubbles contained in the molten glass can be reduced more efficiently. Therefore, a highly volatile component such as triboron trioxide is used.
  • a glass containing for example, in the case of producing a glass containing 5 mol% or more of niobium trioxide, it becomes easier to produce a glass having a stable quality.
  • the flow of the molten glass is changed by the noria supported by at least one selected from the melting part, the piping, and the vacuum clarification part, in the vacuum clarification of the molten glass, Rather than relying solely on a stirrer or screw, for example, reducing the height difference between the molten part and the vacuum clarified part, homogenizing the molten glass, and The efficiency of removing bubbles due to the generation can be improved.
  • the glass production apparatus and the glass production method of the present invention can be applied regardless of the type of glass, and in particular, can be applied to glass containing a highly volatile component (eg, niobium triacid). It is effective.
  • a highly volatile component eg, niobium triacid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

A glass production apparatus making use of vacuum clarification technique; and a relevant process for producing glass. There is provided a glass production apparatus that without relying on stirrers and screws only, is capable of enhancing of air bubble removing efficiency through, for example, reduction of any vertical interval between melting unit and vacuum clarification unit, homogenization of molten glass and/or air bubble generation, and provided a process for producing glass with the use of the apparatus. In particular, there is provided a glass production apparatus comprising a melting unit capable of melting a glass raw material into a molten glass; a vacuum clarification unit capable of transferring the molten glass via piping and reducing any air bubbles trapped in the transferred molten glass in vacuum atmosphere; and a molding unit capable of molding the molten glass having any air bubbles reduced, wherein a barrier for changing the flow of molten glass is disposed in a flow channel of molten glass up to reaching of air bubbles to a flux line of molten glass in the vacuum clarification unit and is supported by at least one member selected from among the melting unit, the piping and the vacuum clarification unit.

Description

明 細 書  Specification
ガラス製造装置とガラスの製造方法  Glass manufacturing apparatus and glass manufacturing method
技術分野  Technical field
[0001] 本発明は、熔融ガラスに含まれる気泡を減圧雰囲気下にて減少させる減圧清澄法 を用いたガラス製造装置とガラスの製造方法とに関する。  TECHNICAL FIELD [0001] The present invention relates to a glass manufacturing apparatus and a glass manufacturing method using a vacuum clarification method for reducing bubbles contained in a molten glass under a reduced pressure atmosphere.
背景技術  Background art
[0002] 一般にガラスは、ガラス原料を熔融して熔融ガラスとし (熔融工程)、熔融ガラス中の 組成の偏りを必要に応じて低減させた (均質化工程)後に、成形されて (成形工程) 製品となる。通常、熔融ガラスには、原料の化学的分解などによって形成された気泡 が無数に存在する。このような気泡は成形後の製品の光学特性などに影響を及ぼす 可能性がある。なかでもディスプレイの基板に用いるガラスなどでは、基板としての特 性に影響を及ぼす気泡が実質的に存在しないことが要求される。このため、熔融ガラ ス中の気泡を減少させる工程 (清澄工程)がガラスの製造プロセスにおいて非常に重 要である。  [0002] Generally, glass is formed by melting a glass raw material into a molten glass (melting process), and reducing the compositional deviation in the molten glass as necessary (homogenization process) (molding process). Become a product. Usually, in molten glass, there are innumerable bubbles formed by chemical decomposition of raw materials. Such bubbles may affect the optical properties of the product after molding. In particular, glass or the like used for a display substrate is required to be substantially free of bubbles that affect the properties of the substrate. For this reason, the process of reducing bubbles in glass melt (clarification process) is very important in the glass manufacturing process.
[0003] 従来、清澄方法の一つとして減圧清澄法が知られて!/ヽる。減圧清澄法では、減圧 雰囲気にある減圧清澄部に熔融部から熔融ガラスを導入し、熔融ガラスに含まれて いる気泡を低減させる。減圧清澄法を用いたガラス製造装置の例は、例えば、特開 平 5-58646号公報ゃ特開平 5-208830号公報に開示されている。  [0003] Conventionally, a vacuum clarification method is known as one of the clarification methods! In the vacuum clarification method, molten glass is introduced into the vacuum clarification part in a reduced pressure atmosphere from the molten part to reduce bubbles contained in the molten glass. Examples of a glass production apparatus using a vacuum clarification method are disclosed in, for example, Japanese Patent Laid-Open Nos. 5-58646 and 5-208830.
[0004] 特開平 5-58646号公報に開示のガラス製造装置では、熔融部である熔融槽よりも減 圧清澄部である減圧処理槽を高い位置に配置し、双方の槽を上昇管を用いて接続 している。特開平 5-208830号公報に開示のガラス製造装置では、上昇管にスクリュ 一を配置し、熔融ガラスを熔融部へ押し戻す方向に圧力を加える構造とすることによ つて、特開平 5-58646号公報の製造装置に設けられていた熔融部と減圧清澄部との 間の高低差の低減が図られている。また、熔融ガラスの流路にスターラーを配置し、 熔融ガラスの均質化や、熔融ガラスを撹拌して気泡を発生させることによる気泡の除 去の効率ィ匕が図られている。  [0004] In the glass manufacturing apparatus disclosed in Japanese Patent Application Laid-Open No. 5-58646, a decompression treatment tank, which is a depressurization and clarification section, is arranged at a higher position than a melting tank, which is a melting section, and both tanks use risers. Connected. In the glass manufacturing apparatus disclosed in Japanese Patent Laid-Open No. 5-208830, a screw is placed in the riser pipe, and pressure is applied in the direction in which the molten glass is pushed back to the molten part. The height difference between the melting part and the vacuum clarification part provided in the production apparatus of the publication is reduced. In addition, a stirrer is arranged in the flow path of the molten glass, and the efficiency of removing the bubbles by homogenizing the molten glass and generating bubbles by stirring the molten glass is achieved.
[0005] しかし、特開平 5-208830号公報に開示されているガラス製造装置は、上記高低差 の低減にはスクリューを用い、熔融ガラスの均質ィ匕ゃ気泡の発生にはスターラーを用 いるなど、高低差の低減、ならびに、熔融ガラスの均質ィ匕および Zまたは気泡の発生 のために、回転部を有する撹拌機構のみを用いる構成である。このような構成では、 撹拌機構に加わる負荷が大きぐ装置の耐久性に問題がある。また、スクリューゃスタ 一ラーが回転中に、上昇管や減圧清澄槽 (減圧脱泡槽)の内壁と接触し、製造装置 が破損したり、異物が混入したりすることがある。 [0005] However, the glass manufacturing apparatus disclosed in Japanese Patent Laid-Open No. 5-208830 has the above-described height difference. To reduce the difference in height, such as using a screw to reduce the glass, and using a stirrer to generate bubbles in the molten glass, rotation is performed in order to reduce the height difference and to generate molten glass and Z or bubbles. It is the structure which uses only the stirring mechanism which has a part. With such a configuration, there is a problem in the durability of the apparatus that places a large load on the stirring mechanism. In addition, while the screw stirrer is rotating, it may come into contact with the riser or the inner wall of the vacuum clarification tank (vacuum defoaming tank), causing damage to the production equipment or contamination.
発明の開示  Disclosure of the invention
[0006] 本発明のガラス製造装置は、ガラス原料を熔融して熔融ガラスとする熔融部と、配 管を介して前記熔融ガラスが移送され、前記移送された熔融ガラスに含まれる気泡を 減圧雰囲気にて減少させる減圧清澄部 (減圧脱泡部)と、前記気泡を減少させた熔 融ガラスを成形する成形部とを備えるガラス製造装置であって、前記熔融ガラスの流 れを変化させるバリアが、前記減圧清澄部において前記気泡が前記熔融ガラスの素 地面に到達するまでの前記熔融ガラスの流路に配置されており、前記バリアは、前記 熔融部、前記配管および前記減圧清澄部から選ばれる少なくとも一つによって支持 されている。  [0006] The glass manufacturing apparatus of the present invention includes a melting part that melts a glass raw material to form a molten glass, the molten glass is transferred via a pipe, and bubbles contained in the transferred molten glass are reduced in a reduced-pressure atmosphere. The glass manufacturing apparatus includes a vacuum clarification part (vacuum degassing part) to be reduced in step 1 and a molding part for molding the molten glass in which the bubbles are reduced, and a barrier for changing the flow of the molten glass. In the reduced pressure clarification part, the bubbles are disposed in the flow path of the molten glass until the bubbles reach the ground surface of the molten glass, and the barrier is selected from the molten part, the pipe, and the reduced pressure clarification part. Supported by at least one.
[0007] 本発明のガラスの製造方法は、熔融部においてガラス原料を熔融して熔融ガラスと する熔融工程と、減圧雰囲気にある減圧清澄部に配管を介して前記熔融ガラスを移 送し、前記減圧清澄部にて前記熔融ガラスに含まれる気泡を減少させる減圧清澄ェ 程 (減圧脱泡工程)と、前記気泡を減少させた熔融ガラスを成形する成形工程とを含 むガラスの製造方法であって、前記熔融ガラスの流路にバリアを配置することによつ て前記熔融ガラスの流れを変化させている。前記バリアは、前記減圧清澄部におい て前記気泡が前記熔融ガラスの素地面に到達するまでの前記流路に配置され、か つ、前記熔融部、前記配管および前記減圧清澄部から選ばれる少なくとも一つによ つて支持されている。  [0007] The method for producing glass of the present invention includes a melting step in which a glass raw material is melted in a melting part to form a molten glass, and the molten glass is transferred to a reduced pressure clarification part in a reduced pressure atmosphere via a pipe. A method for producing glass, comprising a reduced-pressure clarification step (vacuum defoaming step) for reducing bubbles contained in the molten glass at a reduced-pressure clarification portion and a molding step for forming the molten glass with reduced bubbles. The flow of the molten glass is changed by arranging a barrier in the flow path of the molten glass. The barrier is disposed in the flow path until the bubbles reach the ground surface of the molten glass in the vacuum clarification unit, and at least one selected from the melting unit, the pipe, and the vacuum clarification unit. It is supported by one.
[0008] 本発明では、熔融ガラスの流れを、熔融部、配管および減圧清澄部力も選ばれる 少なくとも一つによって支持されるノ《リアにより変化させている。このため、例えば、ス クリューのみに頼ることなく圧力損失を発生させることができ、例えば、ガラス製造装 置における熔融部と減圧清澄部との間の高低差を低減できる。また例えば、スターラ 一のみに頼ることなく熔融ガラスを混合することができ、例えば、熔融ガラスの組成の 偏りを低減できる。さらに、スクリューやスターラーのように、回転部を有する撹拌機構 を用いる場合に比べて、熔融ガラスへの異物の混入を抑制できる。 [0008] In the present invention, the flow of the molten glass is changed by the rear supported by at least one of the melting part, the piping, and the reduced pressure clarification part force. For this reason, for example, pressure loss can be generated without relying only on the screw, and for example, the difference in height between the melting part and the reduced pressure clarification part in the glass manufacturing apparatus can be reduced. For example, stirrer The molten glass can be mixed without relying on only one, and for example, the compositional deviation of the molten glass can be reduced. Furthermore, compared with the case where the stirring mechanism which has a rotation part like a screw and a stirrer is used, mixing of the foreign material to molten glass can be suppressed.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、本発明のガラス製造装置の一例を示す模式図である。  FIG. 1 is a schematic view showing an example of a glass manufacturing apparatus of the present invention.
[図 2A]図 2Aは、本発明のガラス製造装置にノ《リアとして用いるスタティックミキサーの 一例を示す模式図である。  FIG. 2A is a schematic diagram showing an example of a static mixer used as a rear in the glass manufacturing apparatus of the present invention.
[図 2B]図 2Bは、本発明のガラス製造装置にノ《リアとして用いるスタティックミキサーの 素子の一例を示す模式図である。  FIG. 2B is a schematic diagram showing an example of an element of a static mixer used as a rear in the glass manufacturing apparatus of the present invention.
[図 3]図 3は、本発明のガラス製造装置の別の一例を示す模式図である。 FIG. 3 is a schematic view showing another example of the glass manufacturing apparatus of the present invention.
[図 4]図 4は、本発明のガラス製造装置のまた別の一例を示す模式図である。  FIG. 4 is a schematic view showing still another example of the glass manufacturing apparatus of the present invention.
[図 5]図 5は、本発明のガラス製造装置におけるバリアの一例を示す模式図である。  FIG. 5 is a schematic view showing an example of a barrier in the glass manufacturing apparatus of the present invention.
[図 6]図 6は、本発明のガラス製造装置のさらにまた別の一例を示す模式図である。  FIG. 6 is a schematic view showing still another example of the glass manufacturing apparatus of the present invention.
[図 7]図 7は、本発明のガラス製造装置の上記とは別の一例を示す模式図である。  FIG. 7 is a schematic view showing another example of the glass manufacturing apparatus of the present invention different from the above.
[図 8]図 8は、本発明のガラス製造装置の上記とは別の一例を示す模式図である。  FIG. 8 is a schematic view showing an example different from the above of the glass manufacturing apparatus of the present invention.
[図 9]図 9は、本発明のガラス製造装置の上記とは別の一例を示す模式図である。 発明を実施するための最良の形態  FIG. 9 is a schematic view showing an example different from the above of the glass manufacturing apparatus of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の 説明では、同一の部材に同一の符号を付し、重複する説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals are assigned to the same members, and duplicate descriptions may be omitted.
[0011] 最初に、本発明のガラス製造装置について説明する。 [0011] First, the glass manufacturing apparatus of the present invention will be described.
[0012] 図 1に示すガラス製造装置 1は、ガラス原料を熔融して熔融ガラス 4とする熔融部( 熔融槽 2)と、減圧雰囲気において熔融ガラス 4に含まれる気泡を減少させる減圧清 澄部 (減圧清澄槽 3およびチャンバ一 31)と、気泡を減少させた熔融ガラス 4を成形 する成形部 12とを備えている。熔融ガラス 4は、熔融槽 2と減圧清澄槽 3との間に配 置された配管 6を介して減圧清澄槽 3へ移送される。配管 6の内部には、熔融ガラス 4 の流れを変化させるためのノリアとしてスタティックミキサー素子 5 (以下、単に「素子 5 」ともいう)が配置されている。素子 5は配管 6によって支持されており、配管 6とともに スタティックミキサーを構成して 、る。減圧清澄槽 3にお 、て気泡を減少させた熔融ガ ラス 4は、調整槽 11を介して成形部 12に供給される。 [0012] A glass manufacturing apparatus 1 shown in FIG. 1 includes a melting part (melting tank 2) that melts a glass raw material to form a molten glass 4, and a vacuum clarification part that reduces bubbles contained in the molten glass 4 in a reduced-pressure atmosphere. (A vacuum clarification tank 3 and a chamber 31) and a molding part 12 for molding the molten glass 4 in which bubbles are reduced. The molten glass 4 is transferred to the vacuum clarification tank 3 through a pipe 6 disposed between the melting tank 2 and the vacuum clarification tank 3. Inside the pipe 6, a static mixer element 5 (hereinafter also simply referred to as “element 5”) is arranged as a noria for changing the flow of the molten glass 4. The element 5 is supported by the pipe 6 and constitutes a static mixer together with the pipe 6. In the vacuum clarification tank 3, the molten gas with reduced air bubbles The lath 4 is supplied to the forming unit 12 through the adjustment tank 11.
[0013] 素子 5は、熔融ガラスの流路におけるスクリューやスターラーと同様の役割を果たす ことができる。例えば、素子 5の形状や配置方法によっては、素子 5が熔融ガラス 4の 流れに対する流路抵抗となり、配管 6における素子 5が配置されている領域に圧力損 失を発生させることができる。熔融槽 2と減圧清澄槽 3との間には圧力差が存在する 力 上記圧力損失によって、熔融槽 2と減圧清澄槽 3との間に設けるべき高低差を低 減できる。素子 5の形状や配置方法をより詳細に選択することによって、上記高低差 をほぼなくすことも可能である。例えば、図 1に示す例では、熔融槽 2における熔融ガ ラス 4の素地面と、減圧清澄槽 3における熔融ガラス 4の素地面とがほぼ同一の高さ にあり、熔融ガラス 4は水平方向に移送される。このようなガラス製造装置は、特開平 5-58646号公報に示すガラス製造装置に比べてより小型化が可能である。ただし、熔 融槽 2から減圧清澄槽 3へ熔融ガラス 4を移送できる限り、双方の槽の間に高低差が 設けられていてもよい。 [0013] The element 5 can play the same role as a screw or stirrer in the flow path of the molten glass. For example, depending on the shape and arrangement method of the element 5, the element 5 becomes a flow path resistance against the flow of the molten glass 4, and pressure loss can be generated in the region of the pipe 6 where the element 5 is arranged. There is a pressure difference between the melting tank 2 and the vacuum clarification tank 3. The above pressure loss can reduce the height difference to be provided between the melting tank 2 and the vacuum clarification tank 3. By selecting the shape and arrangement method of the element 5 in more detail, the above height difference can be almost eliminated. For example, in the example shown in FIG. 1, the ground surface of the molten glass 4 in the melting tank 2 and the ground surface of the molten glass 4 in the vacuum clarification tank 3 are substantially at the same height, and the molten glass 4 is in the horizontal direction. Be transported. Such a glass manufacturing apparatus can be made smaller than the glass manufacturing apparatus disclosed in Japanese Patent Laid-Open No. 5-58646. However, as long as the molten glass 4 can be transferred from the melting tank 2 to the vacuum clarification tank 3, a height difference may be provided between both tanks.
[0014] また例えば、素子 5の形状や配置方法によっては、流路を流れる熔融ガラス 4に気 泡を発生させることができる。適度に気泡を発生させた場合、減圧清澄槽 3において 、より効率よく気泡を減少できる。  [0014] For example, depending on the shape and arrangement method of the element 5, bubbles can be generated in the molten glass 4 flowing in the flow path. When bubbles are generated appropriately, bubbles can be reduced more efficiently in the vacuum clarification tank 3.
[0015] 素子 5には、スクリューやスターラーに必要な駆動部が不要であり、熔融ガラス 4の 流路またはチャンバ一 31の外部に駆動部を配置し、上記駆動部と接続するための 貫通孔を流路および Zまたはチャンバ一 31の壁面に形成する必要がない。このため 、熔融ガラス 4の流路を実質的に密封することができ、例えば、減圧清澄槽 3内の圧 力変動や、減圧清澄槽 3への異物の混入を抑制できる。また、素子 5は、配管 6の内 部に(即ち、熔融ガラス 4の流路に)固定されており、また、外部力 の動力によって 能動的に動作しない。このため、配管 6の内壁や回転部の破損などによる装置の破 損や、これに伴う熔融ガラス 4への異物の混入を抑制でき、また、スターラーやスクリ ユーに比べて耐久性に優れている。即ち、本発明のガラス製造装置を用いることによ つて、品質が安定したガラスを連続的に製造することが容易となる。なかでも、ガラス が高揮散性の物質 (例えば、三酸化二硼素 (B O ) )を成分として含む場合に効果が  [0015] The element 5 does not require a drive unit required for a screw or a stirrer, and the drive unit is disposed outside the flow path of the molten glass 4 or the chamber 31 and is connected to the drive unit. Does not need to be formed on the flow path and the wall of Z or chamber 31. For this reason, the flow path of the molten glass 4 can be substantially sealed, and for example, the pressure fluctuation in the vacuum clarification tank 3 and the mixing of foreign matters into the vacuum clarification tank 3 can be suppressed. The element 5 is fixed inside the pipe 6 (that is, in the flow path of the molten glass 4), and does not actively operate by the power of external force. For this reason, it is possible to suppress damage to the equipment due to damage to the inner wall and rotating part of the pipe 6 and the resulting contamination of the molten glass 4, and it is more durable than stirrers and screws. . That is, by using the glass manufacturing apparatus of the present invention, it becomes easy to continuously manufacture glass with stable quality. Particularly effective when glass contains a highly volatile substance (for example, diboron trioxide (B 2 O 3)) as a component.
2 3  twenty three
大きい。高揮散性物質は減圧清澄槽 3内の圧力変動によって揮散量が変動しやすく 、また、流路の壁面に貫通孔が形成されている場合、貫通孔の近傍に揮散した物質 が堆積して異物混入の原因になりうるからである。 large. High volatility substances are likely to change volatility due to pressure fluctuations in the vacuum clarification tank 3. In addition, when a through-hole is formed in the wall surface of the flow path, a volatilized substance accumulates in the vicinity of the through-hole and may cause contamination.
[0016] 図 2Aに、配管 6内における素子 5の配置の一例を示す。図 2Aに示す例では、配 管 6内に複数の素子 5が配置されており(より具体的には、 2種類の素子 21および 22 が交互に接続された状態で配置されており)、素子 5は (素子 21および 22は)、ブラ ンケット 23を介して配管 6の内壁によって支持され、配管 6に対して固定されている。 また、配管 6と、配管 6内に配置された素子 5とによって、スタティックミキサー 20が構 成されている。  FIG. 2A shows an example of the arrangement of the elements 5 in the pipe 6. In the example shown in FIG. 2A, a plurality of elements 5 are arranged in the pipe 6 (more specifically, two kinds of elements 21 and 22 are alternately connected). 5 (elements 21 and 22) is supported by the inner wall of the pipe 6 through the blanket 23 and fixed to the pipe 6. Further, a static mixer 20 is configured by the pipe 6 and the element 5 arranged in the pipe 6.
[0017] 素子 21および 22は、配管 6の内部を流れる熔融ガラスを、それぞれ逆向きに (熔融 ガラスの進行方向に対して、それぞれ左回りあるいは右回りに)回転させる構造を有 するノリアである(図 2A中における矢印を参照)。また、素子 21および 22は、熔融ガ ラスの進行方向へ見て、素子同士の接続面で位相が互いに 90° 異なるように配列し ている。  [0017] The elements 21 and 22 are norias having a structure in which the molten glass flowing in the pipe 6 is rotated in the opposite directions (clockwise or clockwise with respect to the traveling direction of the molten glass, respectively). (See arrow in Figure 2A). In addition, the elements 21 and 22 are arranged so that the phases thereof are different from each other by 90 ° at the connection surface between the elements when viewed in the traveling direction of the molten glass.
[0018] 素子 5が配置される位置は、熔融槽 2と減圧清澄槽 3とを接続する配管 6の内部に 限定されず、減圧清澄槽 3において気泡が熔融ガラス 4の素地面に到達するまでの 熔融ガラス 4の流路に配置されていればよい。例えば、図 3に示すように、減圧清澄 槽 3の内部に設けられた熔融ガラスの流路 8に素子 5が配置されて 、てもよ 、。図 3に おける流路 8は、気泡 7が熔融ガラス 4の素地面に到達するまでの位置にある。また、 図 4に示すように、熔融槽 2の内部に設けられた熔融ガラス 4の流路 8に素子 5が配置 されていてもよい。配管 6に素子 5を配置した場合、素子 5の形状や配列の最適化や メンテナンスが容易である。複数の素子 5を、複数の領域に分散させて配置してもよく 、例えば、配管 6の上流側 (熔融槽 2側)と下流側 (減圧清澄槽 3側)とに分割して素 子 5を配置してもよい。  [0018] The position where the element 5 is arranged is not limited to the inside of the pipe 6 connecting the melting tank 2 and the vacuum clarification tank 3, but until the bubbles reach the ground surface of the molten glass 4 in the vacuum clarification tank 3. It only has to be arranged in the flow path of the molten glass 4. For example, as shown in FIG. 3, the element 5 may be disposed in the flow path 8 of the molten glass provided in the vacuum clarification clarification tank 3. The flow path 8 in FIG. 3 is located until the bubbles 7 reach the ground surface of the molten glass 4. Further, as shown in FIG. 4, the element 5 may be disposed in the flow path 8 of the molten glass 4 provided inside the melting tank 2. When element 5 is placed in pipe 6, optimization and maintenance of the shape and arrangement of element 5 are easy. A plurality of elements 5 may be arranged dispersed in a plurality of regions. For example, the element 5 is divided into an upstream side (melting tank 2 side) and a downstream side (vacuum clarification tank 3 side) of the pipe 6. May be arranged.
[0019] バリアである素子 5は、熔融槽 2、配管 6および減圧清澄部 (減圧清澄槽 3およびチ ヤンバー 31)力 選ばれる少なくとも一つによって支持されていればよい。素子 5を支 持する方法、構造などは特に限定されず、例えば、図 2Aに示すように、配管 6の内 壁に固定されたブランケット 23によって支持してもよいし、配管 6やチャンバ一 31の 壁面を貫通する部材によって支持してもよ 、。壁面を貫通する部材によって支持する 場合においても、スクリューやスターラーの駆動軸を貫通させる場合とは異なり、壁面 と上記部材との間を密封することが可能であるため、熔融ガラス 4の流路を実質的に 密封できる。より確実に密封を確保する観点からは、ブランケット 23を用いた例のよう に、素子 5が、熔融槽 2、配管 6および減圧清澄部から選ばれる少なくとも一つの内 壁によって支持されることが好ま 、。 [0019] The element 5 as a barrier may be supported by at least one selected from the melting tank 2, the pipe 6, and the vacuum clarification section (the vacuum clarification tank 3 and the chamber 31) force. The method and structure for supporting the element 5 are not particularly limited. For example, as shown in FIG. 2A, the element 5 may be supported by a blanket 23 fixed to the inner wall of the pipe 6, or the pipe 6 or the chamber 31 may be supported. It may be supported by a member that penetrates the wall surface. Supported by a member that penetrates the wall Even in this case, unlike the case where the drive shaft of the screw or stirrer is passed through, the space between the wall surface and the member can be sealed, so that the flow path of the molten glass 4 can be substantially sealed. From the viewpoint of ensuring the sealing more reliably, it is preferable that the element 5 is supported by at least one inner wall selected from the melting tank 2, the pipe 6, and the vacuum clarification section as in the example using the blanket 23. ,.
[0020] 素子 5の具体的な構造は特に限定されな 、。素子 5として必要な特性に応じて、素 子 5の形状や配列を任意に設定すればょ 、。  [0020] The specific structure of the element 5 is not particularly limited. If the shape and arrangement of element 5 are arbitrarily set according to the characteristics required for element 5.
[0021] 素子 5に用いる材料は、耐熱性および熔融ガラス 4に対する耐性を有する限り特に 限定されず、例えば、耐熱性、および、熔融ガラス 4に対する耐蝕性を有する金属を 用いればよい。具体的には、例えば、融点が 1700°C以上の金属あるいは合金を用 いればよぐより具体的には、白金、タングステン、モリブデン、イリジウム、または、こ れらの金属を含む合金、あるいは、これらの金属とロジウムとを含む合金などを用い ればよい。  The material used for the element 5 is not particularly limited as long as it has heat resistance and resistance to the molten glass 4. For example, a metal having heat resistance and corrosion resistance to the molten glass 4 may be used. Specifically, for example, it is sufficient to use a metal or alloy having a melting point of 1700 ° C or higher. More specifically, platinum, tungsten, molybdenum, iridium, or an alloy containing these metals, or An alloy containing these metals and rhodium may be used.
[0022] 素子 5が配置されている領域を流れる熔融ガラス 4の粘度は、例えば、 100d- Pa- se c (poise)〜: L 04d · Pa · sec (poise)の範囲であればよく、 100d - Pa - sec (poise)〜: L 03d · P a ' sec (poise)の範囲が好ましい。なお、素子 5はスクリューやスターラーよりも低負荷 であることから、流路を流れる熔融ガラス 4の温度範囲を、より幅広く設定できる。 [0022] The viscosity of the molten glass 4 flowing in the region where the element 5 is disposed may be in the range of, for example, 100 d-Pa-sec (poise) to: L 0 4 d · Pa · sec (poise). 100d − Pa − sec (poise) ˜: L 0 3 d · P a ′ sec (poise) is preferable. Since element 5 has a lower load than a screw or stirrer, the temperature range of molten glass 4 flowing in the flow path can be set wider.
[0023] 複数の素子 5を配置する場合、素子 5の個数は特に限定されず、必要な圧力損失 の大きさ、素子 5を配置する領域を流れる熔融ガラス 4の粘度、密度、流量、レイノル ズ数などに応じて決定すればよい。例えば、 2種類の素子 21および 22を含めて、 4 個〜 36個の範囲が好ましい。なお、素子 5の長さは一般に、図 2Bに示すように、素 子の径 aの 1. 5倍(1. 5a)である力 必要に応じて適宜変更してもよい。  [0023] When a plurality of elements 5 are arranged, the number of the elements 5 is not particularly limited, the required pressure loss, the viscosity, density, flow rate, Reynolds of the molten glass 4 flowing in the area where the elements 5 are arranged. It may be determined according to the number. For example, the range of 4 to 36 including the two types of elements 21 and 22 is preferable. In general, the length of the element 5 is 1.5 times the element diameter a (1.5a), as shown in FIG. 2B.
[0024] 本発明のガラス製造装置 1におけるノリアは、図 1に示す形態に限定されない。減 圧清澄槽 3において気泡が熔融ガラス 4の素地面に到達するまでの熔融ガラス 4の 流路に配置されており、熔融槽 2、配管 6および減圧清澄部力 選ばれる少なくとも 一つによって支持されており、かつ、熔融ガラス 4の流れを変化させることが出来る限 り、バリアの構造、構成などは特に限定されない。例えば、図 5に示すような配管 6の 内部に配置された板状の障壁 24であってもよい。また、ノリアに用いる材料や、バリ ァが配置されて 、る領域を流れる熔融ガラス 4の粘度や温度は、スタティックミキサー 素子 5の場合と同様にするとよ 、。 The noria in the glass manufacturing apparatus 1 of the present invention is not limited to the form shown in FIG. It is arranged in the flow path of the molten glass 4 until the bubbles reach the ground surface of the molten glass 4 in the pressure reducing clarification tank 3, and is supported by at least one selected from the melting tank 2, the pipe 6, and the vacuum clarification force. As long as the flow of the molten glass 4 can be changed, the structure and configuration of the barrier are not particularly limited. For example, a plate-like barrier 24 disposed inside the pipe 6 as shown in FIG. 5 may be used. In addition, the materials used for Noria, The viscosity and temperature of the molten glass 4 that flows through the region where the a is placed are the same as in the case of the static mixer element 5.
[0025] 熔融ガラスの流路に配置されるバリアの数は特に限定されず、単独のバリアを配置 してもよいし、図 2Aや図 5に示すように、 2以上のバリアを配置してもよい。なかでも、 2以上のノ リアを配置することが好ましぐ例えば、バリアにおいて生じる圧力損失値 の最適化や、気泡発生の制御をより容易に行うことができる。 2以上のバリアを配置す る場合、ノ リアの配置方法は特に限定されず、ノリアとして必要な特性に応じて任意 に配置すればよい。なかでも、図 2Aや図 5に示すように、流路を熔融ガラスの進行方 向へ見たときに、互いに重複するように配置することが好ましい。このような配置方法 では、例えば、圧力損失値や、気泡の発生量の制御範囲をより幅広くすることができ る。なお、「互いに重複する」とは、バリアの少なくとも一部が重複していればよぐ「熔 融ガラスの進行方向」とは、バリアを取り除いた際に、熔融ガラスが流路を進行する方 向である。 [0025] The number of barriers disposed in the flow path of the molten glass is not particularly limited, and a single barrier may be disposed, or two or more barriers may be disposed as shown in FIG. 2A and FIG. Also good. Among these, it is preferable to arrange two or more nozzles. For example, the pressure loss value generated in the barrier can be optimized and the generation of bubbles can be controlled more easily. When two or more barriers are arranged, the arrangement method of the noria is not particularly limited, and may be arbitrarily arranged according to the characteristics required for the noria. In particular, as shown in FIG. 2A and FIG. 5, it is preferable that the flow paths overlap with each other when viewed in the direction of progress of the molten glass. With such an arrangement method, for example, the control range of the pressure loss value and the amount of generated bubbles can be made wider. Note that “overlapping each other” means that at least a part of the barrier overlaps, and “the direction of molten glass travel” means that the molten glass travels through the flow path when the barrier is removed. It is for the direction.
[0026] ノリアとしてスタティックミキサー素子 5を用いた場合、熔融ガラス 4を流路内におい て混合し、熔融ガラス 4の組成の偏りを低減できる。このため、素子 5の形状や配置方 法によっては、減圧清澄槽 3における気泡の減少をより効率的に行うことができ、また 、減圧清澄後に均質化を行う場合に均質化工程を簡略化できる。  When the static mixer element 5 is used as the noria, the molten glass 4 can be mixed in the flow path to reduce the compositional deviation of the molten glass 4. For this reason, depending on the shape and arrangement method of the element 5, it is possible to more efficiently reduce bubbles in the vacuum clarification tank 3, and to simplify the homogenization process when homogenization is performed after vacuum clarification. .
[0027] バリアは流路に対して固定されている必要は必ずしもなぐ熔融ガラス 4の流れなど に応じて受動的に動作する限り、可動部分を有して 、てもよ 、。  [0027] The barrier may have a movable part as long as it operates passively according to the flow of the molten glass 4 or the like, which is not necessarily fixed to the flow path.
[0028] 熔融槽 2の構造、構成などは、ガラス原料を加熱して熔融できる限り特に限定され ず、ガラス製造装置として一般的に用いられる熔融槽と同様の構造、構成であればよ い。  [0028] The structure, configuration and the like of the melting tank 2 are not particularly limited as long as the glass raw material can be melted by heating, and may be the same structure and structure as those of a melting tank generally used as a glass manufacturing apparatus.
[0029] 減圧清澄部の構造、構成などは、減圧清澄槽 3の内部を減圧雰囲気に保持できる 限り特に限定されず、ガラス製造装置として一般的に用いられる減圧清澄部と同様 の構造、構成であればよい。図 1、図 3〜4、および、以降の図 6〜図 9に示す例では 、減圧雰囲気に耐えうる強度を有するチャンバ一 31内に減圧清澄槽 3を収容し、チ ヤンバー 31に減圧機構 32を接続することによって、減圧清澄槽 3の内部を減圧雰囲 気に保持している。減圧機構 32は、例えば、排気ポンプを備えていればよい。 [0030] 減圧清澄槽 3は、例えば、耐火レンガカも構成されて!、ればよ!/、。なかでも、減圧 清澄槽 3の内壁が、耐熱性、および、熔融ガラスに対する耐蝕性を有する金属によつ て被覆されていることが好ましい。具体的には、素子 5に用いる材料として例示した金 属を用いればよい。これらの金属は熔融ガラスに対する耐性が高いため、製造装置 の耐久'性を向上できる。 [0029] The structure and configuration of the vacuum clarification section are not particularly limited as long as the inside of the vacuum clarification tank 3 can be maintained in a reduced pressure atmosphere, and has the same structure and configuration as the vacuum clarification section generally used as a glass manufacturing apparatus. I just need it. In the examples shown in FIGS. 1, 3 to 4 and the following FIGS. 6 to 9, the vacuum clarification tank 3 is accommodated in a chamber 31 having a strength that can withstand a reduced pressure atmosphere, and the pressure reduction mechanism 32 is provided in the chamber 31. By connecting, the inside of the vacuum clarification tank 3 is maintained in a vacuum atmosphere. For example, the decompression mechanism 32 may include an exhaust pump. [0030] The reduced-pressure clarification tank 3 includes, for example, a refractory brick! Do it! /. In particular, it is preferable that the inner wall of the vacuum clarification tank 3 is coated with a metal having heat resistance and corrosion resistance to molten glass. Specifically, the metal exemplified as the material used for the element 5 may be used. Since these metals have high resistance to molten glass, the durability of the production apparatus can be improved.
[0031] 減圧清澄時における減圧清澄槽 3内の圧力は、減圧清澄を実施できる限り特に限 定されず、例えば、 0. 05気圧〜 0. 5気圧程度の範囲に保持すればよい。  [0031] The pressure in the vacuum clarification tank 3 at the time of vacuum clarification is not particularly limited as long as vacuum clarification can be performed, and may be maintained in a range of, for example, 0.05 atm to 0.5 atm.
[0032] 図 1に示す例では、熔融部として熔融槽 2が、減圧清澄部として減圧清澄槽 3およ びチャンバ一 31が示されているが、本発明のガラス製造装置では、ガラス原料をカロ 熱して熔融できる限り、また、熔融ガラスに含まれる気泡を減圧雰囲気にて減少でき る限り、それぞれ、任意の構造、構成を有する熔融部および減圧清澄部とすることが できる。  In the example shown in FIG. 1, the melting tank 2 is shown as the melting part, and the vacuum clarification tank 3 and the chamber 31 are shown as the vacuum clarification part. In the glass manufacturing apparatus of the present invention, the glass raw material is used. As long as it can be melted by heating, and the bubbles contained in the molten glass can be reduced in a reduced-pressure atmosphere, it can be a melting part and a reduced-pressure clarification part having an arbitrary structure and configuration, respectively.
[0033] 減圧清澄槽 3への熔融ガラス 4の移送方法は特に限定されない。例えば、図 1に示 すように、減圧清澄槽 3内における熔融ガラス 4の素地面に対して水平方向に熔融ガ ラス 4を導入してもよい。また、図 6に示すように、減圧清澄槽 3の上部から熔融ガラス 4を導入してもよいし、図 7に示すように、減圧清澄槽 3の下部カゝら熔融ガラス 4を導入 してもよい。それぞれの場合において同様の効果を得ることができる。なお、減圧清 澄槽 3から調整槽 11 (調整槽 11は省略可能であり、その場合は、成形部 12や後述 する均質化機構 13)への熔融ガラス 4の移送方法にっ ヽても特に限定されな!、。な お、熔融槽 2における配管 6への出口や減圧清澄槽 3における調整槽 11への出口な ど、各槽の入口および Zまたは出口に、必要に応じて流量調整機構 (例えば、プラン ジャーなど)を配置してもよい。流量調整機構を配置することによって、各槽における 圧力などの条件をより最適値に近づけることができる。  [0033] The method for transferring the molten glass 4 to the vacuum clarification tank 3 is not particularly limited. For example, as shown in FIG. 1, the molten glass 4 may be introduced in the horizontal direction with respect to the ground surface of the molten glass 4 in the vacuum clarification tank 3. Moreover, as shown in FIG. 6, the molten glass 4 may be introduced from the upper part of the vacuum clarification tank 3, or as shown in FIG. 7, the molten glass 4 is introduced from the lower cover of the vacuum clarification tank 3. Also good. A similar effect can be obtained in each case. Note that the method of transferring the molten glass 4 from the vacuum clarification tank 3 to the adjustment tank 11 (the adjustment tank 11 can be omitted, and in that case, the molding unit 12 and the homogenization mechanism 13 described later) is particularly effective. Not limited! The flow rate adjusting mechanism (e.g., a plunger) is provided at the inlet and Z or outlet of each tank, such as the outlet to the piping 6 in the melting tank 2 and the outlet to the adjusting tank 11 in the vacuum clarification tank 3. ) May be arranged. By arranging the flow rate adjustment mechanism, conditions such as pressure in each tank can be made closer to the optimum values.
[0034] また、本発明のガラス製造装置 1では、図 8に示すように、減圧清澄槽 3へ熔融ガラ ス 4を移送する配管 6を複数配置してもよい。図 8に示す製造装置 1では、上下に並 列して 2本、図示されている 2本の配管 6の奥に 2本、計 4本の配管 6が配置されてい る。複数の配管 6を配置した場合、例えば、熔融ガラス 4を移送する配管 6の本数を 適宜選択することなどによって、減圧清澄槽 3へ移送する熔融ガラス 4の流量制御を 行うことができる。また、それぞれの配管 6の内径を小さくできることから、配管 6内に スタティックミキサー素子 5を配置する場合、例えば同じ圧力損失を得るために必要 な素子 5の個数を減少でき、配管 6の長さをより短くできる。 In the glass manufacturing apparatus 1 of the present invention, as shown in FIG. 8, a plurality of pipes 6 for transferring the molten glass 4 to the vacuum clarification tank 3 may be arranged. In the manufacturing apparatus 1 shown in FIG. 8, two pipes 6 are arranged in parallel, two in the vertical direction and two in the back of the two pipes 6 shown. When multiple pipes 6 are arranged, for example, by appropriately selecting the number of pipes 6 for transferring the molten glass 4, the flow rate control of the molten glass 4 transferred to the vacuum clarification tank 3 can be controlled. It can be carried out. In addition, since the inner diameter of each pipe 6 can be reduced, when the static mixer element 5 is arranged in the pipe 6, for example, the number of elements 5 required to obtain the same pressure loss can be reduced, and the length of the pipe 6 can be reduced. Can be shorter.
[0035] 本発明のガラス製造装置 1では、配管 6が、通電加熱が可能な部材力 構成されて いてもよい。配管 6を通電加熱した場合、配管 6内を流れる熔融ガラス 4の温度を調 整でき、減圧清澄槽 3へ移送する熔融ガラス 4の流量制御を行うことができる。このと き、配管 6内にバリアが配置されていると、配管 6の通電加熱に伴ってバリア自体も加 熱されるため、ノリアが配置されていない場合に比べて、配管 6内を流れる熔融ガラ ス 4の温度をより容易に調整できる。なかでも、通電加熱可能な部材から構成された ノリアが配置されている場合に、効果が大きい。  [0035] In the glass manufacturing apparatus 1 of the present invention, the pipe 6 may be configured with a member force capable of conducting heating. When the pipe 6 is energized and heated, the temperature of the molten glass 4 flowing in the pipe 6 can be adjusted, and the flow rate of the molten glass 4 transferred to the vacuum clarification tank 3 can be controlled. At this time, if the barrier is arranged in the pipe 6, the barrier itself is heated as the pipe 6 is energized and heated, so that the molten glass flowing in the pipe 6 is compared to the case where the noria is not arranged. 4 can be adjusted more easily. In particular, the effect is great when a noria composed of members that can be heated by electric current is disposed.
[0036] 調整槽 11および成形部 12の構造、構成などは特に限定されず、ガラス製造装置と して一般的に用いられる調整槽、成形部と同様の構造、構成であればよい。上述し たように、調整槽 11は省略可能である。  [0036] The structure and configuration of the adjusting tank 11 and the forming unit 12 are not particularly limited, and may be the same structure and configuration as the adjusting tank and the forming unit that are generally used as a glass manufacturing apparatus. As described above, the adjustment tank 11 can be omitted.
[0037] 本発明のガラス製造装置の別の一例を図 9に示す。図 9に示すガラス製造装置 1で は、減圧清澄槽 3と成形部 12との間に、減圧清澄槽 3において気泡を減少させた熔 融ガラス 4の組成の偏りを低減させる均質化機構 13が配置されている。このような製 造装置 1では、脈理などがより低減されたガラスを製造できる。  FIG. 9 shows another example of the glass manufacturing apparatus of the present invention. In the glass manufacturing apparatus 1 shown in FIG. 9, there is a homogenization mechanism 13 between the vacuum clarification tank 3 and the forming part 12 for reducing the compositional deviation of the molten glass 4 in which bubbles are reduced in the vacuum clarification tank 3. Has been placed. Such a manufacturing apparatus 1 can manufacture glass with reduced striae.
[0038] 均質化機構 13の構造、構成などは特に限定されず、ガラス製造装置として一般的 に用いられる均質化機構と同様の構造、構成であればよい。例えば、図 9に示すよう に、スターラーなどの撹拌機構 14を備えた均質化機構 13であればよい。  [0038] The structure, configuration and the like of the homogenization mechanism 13 are not particularly limited, and may be the same structure and configuration as those of a homogenization mechanism generally used as a glass manufacturing apparatus. For example, as shown in FIG. 9, a homogenization mechanism 13 having a stirring mechanism 14 such as a stirrer may be used.
[0039] 次に、本発明のガラスの製造方法について説明する。本発明のガラスの製造方法 は、例えば、上述した本発明のガラス製造装置によって実施できる。  [0039] Next, a method for producing the glass of the present invention will be described. The glass manufacturing method of the present invention can be carried out, for example, by the glass manufacturing apparatus of the present invention described above.
[0040] 本発明のガラスの製造方法では、熔融工程カゝら減圧清澄工程へ熔融ガラスを移送 する流路にノリアを配置することによって、上記流路における熔融ガラスの流れを変 化させている。ノリアは、減圧清澄部において気泡が熔融ガラスの素地面に到達す るまでの熔融ガラスの流路に配置されており、かつ、熔融部、配管および減圧清澄部 力 選ばれる少なくとも一つによって支持されている。本発明の製造方法に用いるバ リアは駆動部が不要であり、熔融部、配管および減圧清澄部の外部に駆動部を配置 してバリアと接続させる必要がない。このため、配管や減圧清澄部を実質的に密封す ることができ、減圧清澄工程における圧力変動や、熔融ガラスへの異物の混入を抑 制できる。即ち、本発明の製造方法とすることによって、品質が安定したガラスを連続 的に製造することが容易となる。 [0040] In the glass manufacturing method of the present invention, the flow of molten glass in the flow path is changed by disposing noria in the flow path for transferring the molten glass from the melting process to the vacuum clarification process. . Noria is arranged in the flow path of the molten glass until the bubbles reach the ground surface of the molten glass in the vacuum clarification part, and is supported by at least one selected from the melting part, the piping, and the vacuum clarification part force. ing. The barrier used in the manufacturing method of the present invention does not require a drive unit, and the drive unit is disposed outside the melting unit, piping, and vacuum clarification unit. There is no need to connect to the barrier. For this reason, piping and a reduced pressure clarification part can be sealed substantially, and the pressure fluctuation in a reduced pressure clarification process and the mixing of the foreign material to a molten glass can be suppressed. That is, by using the production method of the present invention, it becomes easy to continuously produce glass with stable quality.
[0041] また、ノ リアの形状や配置方法によっては、圧力損失を発生させたり、熔融ガラスに 気泡を発生させたり、熔融ガラスを混合したりできる。圧力損失を発生させるバリアの 場合、熔融部 (例えば熔融槽)と減圧清澄部 (例えば減圧清澄槽)との間に設けるベ き高低差を低減できる。ノ リアの形状や配置方法をより詳細に選択することによって、 高低差を設けることなく双方の工程を連続的に行うことも可能である。熔融ガラスに気 泡を発生させるバリアの場合、発生させる気泡の量にもよる力 減圧清澄工程におけ る気泡の減少をより効率よく行うことができる。熔融ガラスを混合するバリアの場合、熔 融ガラスの組成の偏りを低減できる。このとき、ノ《リアの形状や配置方法によっては、 減圧清澄工程における気泡の減少をより効率的に行うことができ、また、減圧清澄ェ 程後に均質ィ匕工程を行う場合に均質ィ匕工程を簡略ィ匕できる。バリアの具体的な構造 、構成などは、上述した本発明のガラス製造装置におけるノリアと同様であればよい  [0041] Depending on the shape and arrangement method of the nozzle, pressure loss can be generated, bubbles can be generated in the molten glass, or the molten glass can be mixed. In the case of a barrier that generates a pressure loss, the difference in height between the melting part (for example, the melting tank) and the reduced pressure clarification part (for example, the reduced pressure clarification tank) can be reduced. By selecting the shape and arrangement method of the nozzles in more detail, it is possible to carry out both processes continuously without providing a height difference. In the case of a barrier that generates bubbles in the molten glass, the force depending on the amount of bubbles generated can reduce bubbles more efficiently in the vacuum clarification process. In the case of a barrier mixed with molten glass, the compositional deviation of the molten glass can be reduced. At this time, depending on the shape and arrangement method of the rear, it is possible to more efficiently reduce the bubbles in the vacuum clarification process, and when performing the homogenization process after the vacuum clarification process, Can be simplified. The specific structure and configuration of the barrier may be the same as those of the above-described Noria in the glass manufacturing apparatus of the present invention.
[0042] 本発明の製造方法では、バリアの形状や配置方法を選択することによって、スクリュ 一やスターラーなどの撹拌機構を用いた場合に比べて、構造的にバリアに加わる負 荷の度合!、を低減できるため、移送する熔融ガラスの温度範囲をより幅広く設定でき る。ここで、熔融部力 減圧清澄部へ熔融ガラスを移送する方法は特に限定されない [0042] In the manufacturing method of the present invention, by selecting the shape and arrangement method of the barrier, the degree of load applied to the barrier structurally compared to the case of using a stirring mechanism such as a screw or a stirrer !, Therefore, the temperature range of the molten glass to be transferred can be set wider. Here, the method of transferring the molten glass to the melted part force reduced pressure clarified part is not particularly limited.
[0043] 本発明の製造方法では、バリアが配置されて 、る領域を流れる熔融ガラスの粘度 は、例えば、 lOOd' Pa' sec (poise)〜: L04d' Pa' sec (poise)の範囲であればよく、 100d[0043] In the production method of the present invention, the viscosity of the molten glass flowing in the region where the barrier is disposed is, for example, in the range of lOOd 'Pa' sec (poise) to: L0 4 d 'Pa' sec (poise) 100d
•Pa ' sec (poise)〜: LO d · Pa · sec (poise)の範囲が好まし!/ヽ。 • Pa 'sec (poise) ~: The range of LO d · Pa · sec (poise) is preferred! / ヽ.
[0044] 減圧清澄工程には一般的な方法、装置を用いればよぐ減圧清澄の条件も特に限 定されない。減圧清澄部内の圧力は、例えば、 0. 05気圧〜 0. 5気圧程度の範囲で あればよい。 [0044] The conditions for the vacuum clarification are not particularly limited if a general method and apparatus are used in the vacuum clarification process. For example, the pressure in the vacuum clarification section may be in the range of about 0.05 atm to 0.5 atm.
[0045] 熔融工程および成形工程も特に限定されず、ガラスの製造に一般的に用いられる 方法、装置を用いればよい。具体的には、例えば、フロート法、ロールアウト法、コル バーン法、フュージョン法などの各種ガラス製造方法に適用できる。 [0045] The melting process and the molding process are not particularly limited, and are generally used for glass production. A method and an apparatus may be used. Specifically, it can be applied to various glass production methods such as a float method, a roll-out method, a Colburn method, and a fusion method.
[0046] 本発明の製造方法では、減圧清澄工程と成形工程との間に、減圧清澄工程にお いて気泡を減少させた後の熔融ガラスの組成の偏りを減少させる均質ィ匕工程をさら に含んでいてもよい。均質ィ匕工程によって脈理を低減することができるため、より品質 が安定したガラスを得ることができる。均質ィ匕工程は特に限定されず、一般的な均質 化の方法、装置を用いればよい。例えば、スターラーなどの撹拌機構を用いて熔融 ガラスを撹拌し、熔融ガラスの均質ィ匕を行えばよい。  [0046] In the production method of the present invention, a homogenization process for reducing the deviation in the composition of the molten glass after the reduction of bubbles in the vacuum clarification process is further performed between the vacuum clarification process and the molding process. May be included. Since the striae can be reduced by the homogenization process, glass with more stable quality can be obtained. The homogenization process is not particularly limited, and a general homogenization method and apparatus may be used. For example, the molten glass may be stirred using a stirring mechanism such as a stirrer to homogenize the molten glass.
[0047] 本発明の製造方法は、ガラスの種類を問わず適用することができる。なかでも三酸 化二硼素 (B O )を含むガラスへの適用が効果的である。三酸化二硼素は減圧清澄  [0047] The production method of the present invention can be applied regardless of the type of glass. In particular, application to glass containing diboron trioxide (B 2 O 3) is effective. Diboron trioxide is clarified under reduced pressure
2 3  twenty three
時における揮散性が高い。このため、三酸ィ匕ニ硼素の揮散量は減圧清澄部内の圧 力変動の影響を受けやすい。ガラスを製造する際には、予め、三酸化二硼素の揮散 量を考慮に入れて原料を熔融するが、三酸ィ匕ニ硼素の揮散量に変動があると、得ら れるガラスの品質を一定に保つことが困難となる。本発明の製造方法では、減圧清 澄部内の圧力変動を低減でき、熔融ガラスに含まれる気泡をより効率よく減少させる ことができるため、三酸ィ匕ニ硼素のように揮散性が高い成分を含むガラスを製造する 場合、例えば、三酸ィ匕ニ硼素を 5モル%以上含むガラスを製造する場合においても 、品質が安定したガラスを製造することがより容易となる。  High volatility at the time. For this reason, the volatilization amount of nitrous acid triboron is easily affected by pressure fluctuations in the vacuum clarification section. When manufacturing glass, the raw material is melted in advance taking into consideration the volatilization amount of diboron trioxide. However, if the volatilization amount of boron trioxide is varied, the quality of the resulting glass will be reduced. It becomes difficult to keep it constant. In the production method of the present invention, the pressure fluctuation in the vacuum clarification part can be reduced, and the bubbles contained in the molten glass can be reduced more efficiently. Therefore, a highly volatile component such as triboron trioxide is used. In the case of producing a glass containing, for example, in the case of producing a glass containing 5 mol% or more of niobium trioxide, it becomes easier to produce a glass having a stable quality.
[0048] 本発明は、その意図および本質的な特徴力 逸脱しない限り、他の実施形態に適 用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであ つてこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによ つて示されており、クレームと均等な意味および範囲にあるすベての変更はそれに含 まれる。 [0048] The present invention can be applied to other embodiments without departing from the intent and essential characteristics thereof. The embodiments disclosed in this specification are illustrative in all respects and are not limited thereto. The scope of the present invention is shown not by the above description but by the appended claims, and all modifications that are equivalent in meaning and scope to the claims are included therein.
産業上の利用可能性  Industrial applicability
[0049] 本発明によれば、熔融ガラスの流れを、熔融部、配管および減圧清澄部から選ば れる少なくとも一つによって支持されているノリアにより変化させているため、熔融ガ ラスの減圧清澄において、スターラーやスクリューのみに頼ることなぐ例えば、熔融 部と減圧清澄部との間の高低差の低減、熔融ガラスの均質化および Zまたは気泡の 発生による気泡の除去の効率ィ匕を図ることができる。 [0049] According to the present invention, since the flow of the molten glass is changed by the noria supported by at least one selected from the melting part, the piping, and the vacuum clarification part, in the vacuum clarification of the molten glass, Rather than relying solely on a stirrer or screw, for example, reducing the height difference between the molten part and the vacuum clarified part, homogenizing the molten glass, and The efficiency of removing bubbles due to the generation can be improved.
本発明のガラス製造装置およびガラスの製造方法は、ガラスの種類を問わずに適 用でき、なかでも、揮散性が高い成分 (例えば、三酸ィ匕ニ硼素)を含むガラスへの適 用が効果的である。  The glass production apparatus and the glass production method of the present invention can be applied regardless of the type of glass, and in particular, can be applied to glass containing a highly volatile component (eg, niobium triacid). It is effective.

Claims

請求の範囲 The scope of the claims
[1] ガラス原料を熔融して熔融ガラスとする熔融部と、  [1] a melting part that melts a glass raw material to form a molten glass;
配管を介して前記熔融ガラスが移送され、前記移送された熔融ガラスに含まれる気 泡を減圧雰囲気にて減少させる減圧清澄部と、  The molten glass is transferred through a pipe, and a reduced pressure clarification unit that reduces bubbles contained in the transferred molten glass in a reduced pressure atmosphere,
前記気泡を減少させた熔融ガラスを成形する成形部とを備えるガラス製造装置であ つて、  A glass manufacturing apparatus comprising a molding unit for molding the molten glass with reduced bubbles.
前記熔融ガラスの流れを変化させるバリアが、前記減圧清澄部にぉ 、て前記気泡 が前記熔融ガラスの素地面に到達するまでの前記熔融ガラスの流路に配置されてお り、  A barrier that changes the flow of the molten glass is disposed in the flow path of the molten glass until the bubbles reach the ground surface of the molten glass after the reduced-pressure clarified portion.
前記バリアは、前記熔融部、前記配管および前記減圧清澄部から選ばれる少なくと も一つによって支持されていることを特徴とするガラス製造装置。  The glass manufacturing apparatus, wherein the barrier is supported by at least one selected from the melting section, the pipe, and the vacuum clarification section.
[2] 前記バリアが、前記配管の内部に配置されている請求項 1に記載のガラス製造装 置。  [2] The glass manufacturing apparatus according to [1], wherein the barrier is disposed inside the pipe.
[3] 前記バリアが、 2以上配置されている請求項 1に記載のガラス製造装置。  [3] The glass manufacturing apparatus according to claim 1, wherein two or more of the barriers are arranged.
[4] 前記 2以上のバリアが、前記流路を前記熔融ガラスの進行方向へ見たときに、互い に重複するように配置されて 、る請求項 3に記載のガラス製造装置。  [4] The glass manufacturing apparatus according to claim 3, wherein the two or more barriers are arranged so as to overlap each other when the flow path is viewed in the traveling direction of the molten glass.
[5] 前記バリアが、前記流路に対して固定されている請求項 1に記載のガラス製造装置 5. The glass manufacturing apparatus according to claim 1, wherein the barrier is fixed with respect to the flow path.
[6] 前記バリアが、スタティックミキサー素子である請求項 1に記載のガラス製造装置。 6. The glass manufacturing apparatus according to claim 1, wherein the barrier is a static mixer element.
[7] 前記減圧清澄部と前記成形部との間に、 [7] Between the reduced pressure clarification part and the molding part,
前記気泡を減少させた熔融ガラスの組成の偏りを低減させる均質化機構をさらに備 える請求項 1に記載のガラス製造装置。  The glass manufacturing apparatus according to claim 1, further comprising a homogenization mechanism that reduces a deviation in a composition of the molten glass in which the bubbles are reduced.
[8] 熔融部においてガラス原料を熔融して熔融ガラスとする熔融工程と、 [8] a melting process in which a glass raw material is melted in the melting part to form a molten glass;
減圧雰囲気にある減圧清澄部に配管を介して前記熔融ガラスを移送し、前記減圧 清澄部にて前記熔融ガラスに含まれる気泡を減少させる減圧清澄工程と、  A vacuum clarification step of transferring the molten glass through a pipe to a vacuum clarification part in a reduced pressure atmosphere, and reducing bubbles contained in the molten glass in the vacuum clarification part;
前記気泡を減少させた熔融ガラスを成形する成形工程とを含むガラスの製造方法 であって、  A glass manufacturing method comprising a molding step of molding the molten glass with reduced bubbles,
前記熔融ガラスの流路にバリアを配置することによって前記熔融ガラスの流れを変 化させ、 The flow of the molten glass is changed by arranging a barrier in the flow path of the molten glass. Let
前記バリアを、前記減圧清澄部にお!、て前記気泡が前記熔融ガラスの素地面に到 達するまでの前記流路に配置し、かつ、前記熔融部、前記配管および前記減圧清澄 部から選ばれる少なくとも一つによって支持することを特徴とするガラスの製造方法。  The barrier is disposed in the flow path until the bubble reaches the ground surface of the molten glass, and is selected from the molten part, the pipe, and the reduced pressure clarified part. A method for producing glass, wherein the glass is supported by at least one.
[9] 前記バリアを前記配管の内部に配置することによって、前記配管を流れる前記熔融 ガラスの流れを変化させる請求項 8に記載のガラスの製造方法。  9. The glass manufacturing method according to claim 8, wherein the flow of the molten glass flowing through the pipe is changed by arranging the barrier inside the pipe.
[10] 前記バリアを、 2以上配置する請求項 8に記載のガラスの製造方法。 10. The method for producing glass according to claim 8, wherein two or more barriers are arranged.
[11] 前記 2以上のバリアを、前記流路を前記熔融ガラスの進行方向へ見たときに、互い に重複するように配置する請求項 10に記載のガラスの製造方法。 11. The glass manufacturing method according to claim 10, wherein the two or more barriers are arranged so as to overlap each other when the flow path is viewed in the traveling direction of the molten glass.
[12] 前記バリアを、前記流路に対して固定する請求項 8に記載のガラスの製造方法。 12. The glass manufacturing method according to claim 8, wherein the barrier is fixed to the flow path.
[13] 前記バリアが、スタティックミキサー素子である請求項 8に記載のガラスの製造方法 13. The method for producing glass according to claim 8, wherein the barrier is a static mixer element.
[14] 前記減圧清澄工程と前記成形工程との間に、 [14] Between the reduced pressure clarification step and the molding step,
前記気泡を減少させた熔融ガラスの組成の偏りを低減させる均質ィヒ工程をさらに含 む請求項 8に記載のガラスの製造方法。  9. The method for producing glass according to claim 8, further comprising a homogenization step of reducing the compositional deviation of the molten glass in which the bubbles are reduced.
[15] 前記ガラスが、三酸化二硼素 (B O )を含む請求項 8に記載のガラスの製造方法。 15. The method for producing glass according to claim 8, wherein the glass contains diboron trioxide (B 2 O 3).
PCT/JP2005/021813 2004-12-01 2005-11-28 Glass production apparatus and process for producing glass WO2006059575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004348383 2004-12-01
JP2004-348383 2004-12-01

Publications (1)

Publication Number Publication Date
WO2006059575A1 true WO2006059575A1 (en) 2006-06-08

Family

ID=36565009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021813 WO2006059575A1 (en) 2004-12-01 2005-11-28 Glass production apparatus and process for producing glass

Country Status (1)

Country Link
WO (1) WO2006059575A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120667A (en) * 2006-10-20 2008-05-29 Ohara Inc Nozzle and method for producing optical glass gob using it
JP2009057218A (en) * 2007-08-30 2009-03-19 Nippon Electric Glass Co Ltd Fixed type member for displacing molten glass and method for producing glass article
JP2010184861A (en) * 2009-02-11 2010-08-26 Schott Ag Apparatus and method for manufacturing glass for display
WO2012132472A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass plate
JP2013166697A (en) * 2007-08-08 2013-08-29 Corning Inc Molten glass delivery apparatus for optical quality glass
CZ304299B6 (en) * 2012-01-11 2014-02-19 Vysoká škola chemicko-technologická v Praze Device for refining molten glass by centrifuging
JP2014514239A (en) * 2011-04-29 2014-06-19 コーニング インコーポレイテッド Apparatus and method for making glass articles
KR101426545B1 (en) 2010-12-07 2014-08-06 주식회사 엘지화학 Apparatus for homogenizing molten glass
JP2015174806A (en) * 2014-03-17 2015-10-05 日本電気硝子株式会社 Flow displacement member for molten glass
JP2017014067A (en) * 2015-07-01 2017-01-19 日本電気硝子株式会社 Method for manufacturing glass article
JP2018528922A (en) * 2015-08-26 2018-10-04 コーニング インコーポレイテッド Glass melting system and method for enhancing homogeneity
CN113435718A (en) * 2021-06-15 2021-09-24 北京百度网讯科技有限公司 Glass generation method and device, electronic device and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362290U (en) * 1989-10-24 1991-06-18
JPH05208830A (en) * 1992-01-30 1993-08-20 Asahi Glass Co Ltd Production of glass and device therefor
JPH05262530A (en) * 1992-01-20 1993-10-12 Asahi Glass Co Ltd Method for vacuum refining and its apparatus
JPH1182861A (en) * 1997-09-16 1999-03-26 Ishikawajima Harima Heavy Ind Co Ltd Piping structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362290U (en) * 1989-10-24 1991-06-18
JPH05262530A (en) * 1992-01-20 1993-10-12 Asahi Glass Co Ltd Method for vacuum refining and its apparatus
JPH05208830A (en) * 1992-01-30 1993-08-20 Asahi Glass Co Ltd Production of glass and device therefor
JPH1182861A (en) * 1997-09-16 1999-03-26 Ishikawajima Harima Heavy Ind Co Ltd Piping structure

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120667A (en) * 2006-10-20 2008-05-29 Ohara Inc Nozzle and method for producing optical glass gob using it
JP2016128384A (en) * 2007-08-08 2016-07-14 コーニング インコーポレイテッド Molten glass delivery device for optical quality glass
JP2013166697A (en) * 2007-08-08 2013-08-29 Corning Inc Molten glass delivery apparatus for optical quality glass
JP2009057218A (en) * 2007-08-30 2009-03-19 Nippon Electric Glass Co Ltd Fixed type member for displacing molten glass and method for producing glass article
JP2010184861A (en) * 2009-02-11 2010-08-26 Schott Ag Apparatus and method for manufacturing glass for display
KR101426545B1 (en) 2010-12-07 2014-08-06 주식회사 엘지화학 Apparatus for homogenizing molten glass
JPWO2012132472A1 (en) * 2011-03-31 2014-07-24 AvanStrate株式会社 Manufacturing method of glass plate
JP5616450B2 (en) * 2011-03-31 2014-10-29 AvanStrate株式会社 Manufacturing method of glass plate
WO2012132472A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass plate
JP2014514239A (en) * 2011-04-29 2014-06-19 コーニング インコーポレイテッド Apparatus and method for making glass articles
KR101761457B1 (en) 2011-04-29 2017-07-25 코닝 인코포레이티드 Apparatus for making a glass article and methods
CZ304299B6 (en) * 2012-01-11 2014-02-19 Vysoká škola chemicko-technologická v Praze Device for refining molten glass by centrifuging
JP2015174806A (en) * 2014-03-17 2015-10-05 日本電気硝子株式会社 Flow displacement member for molten glass
JP2017014067A (en) * 2015-07-01 2017-01-19 日本電気硝子株式会社 Method for manufacturing glass article
JP2018528922A (en) * 2015-08-26 2018-10-04 コーニング インコーポレイテッド Glass melting system and method for enhancing homogeneity
CN113435718A (en) * 2021-06-15 2021-09-24 北京百度网讯科技有限公司 Glass generation method and device, electronic device and storage medium
CN113435718B (en) * 2021-06-15 2024-04-16 北京百度网讯科技有限公司 Glass generating method and device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
WO2006059575A1 (en) Glass production apparatus and process for producing glass
US8499584B2 (en) Molten glass delivery apparatus for optical quality glass
JP4890776B2 (en) Method for preventing bubble formation on precious metal components
KR101951071B1 (en) Apparatus for use in direct resistance heating of platinum-containing vessels
JP6821603B2 (en) Equipment and methods for adjusting molten glass
US8347654B2 (en) Vacuum degassing apparatus and vacuum degassing method for molten glass
JP6418455B2 (en) Process and apparatus for clarifying molten glass
KR102615608B1 (en) Method for decreasing bubble lifetime on a glass melt surface
JP2010184861A (en) Apparatus and method for manufacturing glass for display
JP2018528922A (en) Glass melting system and method for enhancing homogeneity
CN110088051B (en) Method and apparatus for controlling glass flow into a glass forming machine
KR101761457B1 (en) Apparatus for making a glass article and methods
WO2012133230A1 (en) Method for producing glass plate
US10633276B2 (en) Apparatus and method for heating a metallic vessel
JP4446283B2 (en) Glass melting furnace
US4504302A (en) Homogenizing apparatus glass making furnace and method of homogenizing glass
US9586846B2 (en) Apparatus and methods for processing molten material
TW201641451A (en) Apparatus and method for conditioning molten glass
JP2022507801A (en) How to shorten the bubble life on the surface of glass melt
JP2020522455A (en) Readjustment method for glass manufacturing system
CN1200713A (en) Process and apparatus for modifying and homogenizing glass melts
WO2023100688A1 (en) Glass article manufacturing method
CN109070029A (en) Device and method for mixed melting glass
EP0108768A1 (en) Homogenizing apparatus and glass making furnace
KR20220161355A (en) Apparatus and method for reducing defects in glass melting systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP