TW201627666A - 分析蜂蜜中之液態香料之方法 - Google Patents

分析蜂蜜中之液態香料之方法 Download PDF

Info

Publication number
TW201627666A
TW201627666A TW104101722A TW104101722A TW201627666A TW 201627666 A TW201627666 A TW 201627666A TW 104101722 A TW104101722 A TW 104101722A TW 104101722 A TW104101722 A TW 104101722A TW 201627666 A TW201627666 A TW 201627666A
Authority
TW
Taiwan
Prior art keywords
honey
analyzing
minutes
liquid fragrance
adsorption
Prior art date
Application number
TW104101722A
Other languages
English (en)
Other versions
TWI530681B (zh
Inventor
陳立偉
曾俊茂
王威基
陳克廉
Original Assignee
統一企業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 統一企業股份有限公司 filed Critical 統一企業股份有限公司
Priority to TW104101722A priority Critical patent/TWI530681B/zh
Application granted granted Critical
Publication of TWI530681B publication Critical patent/TWI530681B/zh
Publication of TW201627666A publication Critical patent/TW201627666A/zh

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本發明係揭露一種分析蜂蜜中之液態香料之方法。此方法包含將蜂蜜以一預熱溫度及一預熱時間進行預熱;使用吸附纖維,並且在一吸附溫度及一吸附時間下吸附蜂蜜之一氣相揮發物,其中該氣相揮發物係包含乙基麥芽醇、乙基香草醛、丙二醇、三乙酸甘油酯或其組合;將氣相揮發物進行氣相層析;以及進行鑑定氣相揮發物之離子片段。藉由此方法分析蜂蜜中所添加之乙基麥芽醇、乙基香草醛、丙二醇、三乙酸甘油酯或其組合。

Description

分析蜂蜜中之液態香料之方法
本發明是有關於一種分析液態香料之方法,特別是有關於一種分析蜂蜜中之液態香料之方法。
蜂蜜產量主要受到氣候的限制,如忽冷忽熱的異常氣候或者花開時遇到雨季,把花朵打落,導致花粉減少,造成蜜蜂採集不到花粉,因此蜂蜜的產量大幅減少。此外,人為因素也會影響蜂蜜的產量,例如果農噴灑農藥可能導致蜜蜂中毒死亡,或者蜜蜂接觸到有農藥的花粉後,回巢餵食幼蜂,幼蜂吃到農藥後,會影響幼蜂的神經系統,降低其採蜜的能力,進而造成蜂蜜產量的減少。當蜂蜜產量供不應求時,部分商人便會以高果糖糖漿添加香料的方式混充真蜂蜜,使其具有類似純蜂蜜的風味及口感,或者以香料修飾且穩定蜂蜜的風味,以延長蜂蜜的保存期限。這種調和蜂蜜的外觀性狀及口感與真實的蜂蜜相同,因此,無法單純以外觀及口感分辨其真實性。
目前的蜂蜜檢測方法以中華民國國家標準CNS1305所規範的檢驗方法以及國際分析化學家協會(AOAC)所公認的穩定碳同位素比值分析(SCIRA)進行檢驗。CNS1305的檢驗項目為水分<20%、蔗糖<2%、糖類(葡萄糖+果糖)>70%、水不溶物<0.1%、酸度<30(meq H+ /1000 g)、澱粉酶活性>8 schade unit、羥甲基糠醛(Hydroxymethyl furfural,HMF) <30 mg/kg及不可驗出抗生素。其中,高果糖糖漿可以符合水分、蔗糖、糖類(葡萄糖+果糖)、水不溶物、酸度及羥甲基糠醛的標準,並且藉由添加酵素來達到澱粉酶活性的標準。因此,可以十分趨近真實的蜂蜜。甚至,廠商也可在假蜂蜜中添加微量的花粉粒(pollen)以混充天然的蜂蜜,使之含有蛋白質,因此無法藉由分析蜂蜜中的蛋白質來辨識真假。
穩定碳同位素比值分析則是利用元素分析儀串聯穩定同位素比值質譜儀(EA-IRMS)進行分析,其原理為植物在行光合作用時,因途徑不同而有C3 、C4 及Crassulacean acid metabolism(CAM)三種型態。此三種型態由於途徑不同而導致不同的碳同位素分化作用,因此其穩定碳同位素亦有差異。相較來說,C4 植物具有相對較多的13 C同位素,而C3 植物則具有相對較多的12 C同位素,因此常利用碳同位素組成的特徵差異去鑑定植物行光合作用的途徑。大部分的植物都是屬於C3 植物,例如花生、菸草、菠菜、大豆、水稻、小麥、樹薯、甜菜根、龍眼樹、荔枝樹、咸豐草、向日葵等;而雜糧作物及草本作物大多屬於C4 植物,例如玉米、甘蔗、高粱等;另外,鳳梨科、龍舌蘭科、仙人掌科、景天科、大戟科、百合科、蘭科及葡萄科植物大多屬於CAM植物。而蜂蜜來源的蜜源植物屬於C3 植物。一般而言,C3 植物的同位素δ13 C值約在-8至-16的範圍;C4 植物的同位素δ13 C值約在-22至-32的範圍。因此,如果以高果糖糖漿混充蜂蜜時,由於高果糖糖漿大多由玉米澱粉經酵素轉化而來,玉米屬於C4 植物,所以測出的同位素δ13 C值會在約-8至-16的範圍,此時便可判斷出這是以高果糖糖漿混充的假蜂蜜。然而,如果高果糖糖漿是以樹薯澱粉轉化而成,由於樹薯澱粉的來源樹薯與蜜源植物同屬C3 植物,此時便無法分辨出蜂蜜的真偽。因此,只要以C3 植物為來源製備成高果糖糖漿,便可混充成真蜂蜜。
但是,真蜂蜜會帶有淡淡的花果香味,因此以高果糖糖漿所調和之蜂蜜必須添加香料,使其具有近似真蜂蜜的香味。香料的外觀型態分為固態香料及液態香料,由於蜂蜜的性狀為黏稠狀,在添加香料時需考慮到溶解性及均勻性,因此香料的選擇上僅能使用液態香料才容易與調和蜂蜜均勻混合,而固態香料(例如,粉狀香料、膏狀香料)除了無法與調和蜂蜜均勻混合之外,外觀上也容易被發現。香料可分為天然香料(Natural)、等同天然的香料(Natural-identical)及人工合成香料(Artificial)。天然香料為完全取自天然中的香料,如胡椒、丁香、肉桂等;等同天然的香料為使用物理或化學的方法,將含有多種化合物的天然香料中的其中一種化合物單獨分離出來,又稱為單離香料;人工合成香料為香料組成中含有人工合成單體香料,如乙基麥芽醇(Ethyl maltol)、乙基香草醛(Ethyl vanillin)…等。人工合成香料除了來源不同之外,在本質上與等同天然的香料並無區別。
此外,液態香料中無論是天然香料、等同天然的香料及人工合成香料在使用上皆需將香料單體溶解在溶劑中。一般香料溶劑以丙二醇(Propylene glycol)或三乙酸甘油酯(Triacetin)為主。然而,該些溶劑並不存在於自然界,因此可作為判斷蜂蜜是否添加液態香料之分析依據之一。
綜觀前所述,本發明之發明人思索並設計一種分析蜂蜜中之液態香料之方法,經多年潛心研究,以針對現有技術之缺失加以改善,進而增進產業上之實施利用。
有鑑於上述習知技藝之問題,本發明之目的就是在提供一種分析蜂蜜中之液態香料之方法,以解決習知方法無法辨識出假蜂蜜的問題。
根據本發明之目的,提出一種分析蜂蜜中之液態香料之方法,其包含下列步驟:將蜂蜜以一預熱溫度及一預熱時間進行預熱;使用吸附纖維,並且在一吸附溫度及一吸附時間下進行吸附蜂蜜之一氣相揮發物,其中氣相揮發物包含乙基麥芽醇、乙基香草醛、丙二醇、三乙酸甘油酯或其組合;將氣相揮發物進行氣相層析;以及進行鑑定氣相揮發物之離子片段。
較佳地,預熱溫度可為70 ℃至90 ℃。
較佳地,預熱時間可為5分鐘至25分鐘。
較佳地,吸附纖維可為DVB/CAR/PDMS複合型纖維。
較佳地,吸附溫度可為70 ℃至90 ℃。
較佳地,吸附時間可為10分鐘至15分鐘。
較佳地,氣相揮發物之離子片段之質荷比(m/z)範圍可為30至350。
較佳地,更可包含將吸附纖維進行熱脫附之步驟。
較佳地,熱脫附可在250 ℃下持續30分鐘。
承上所述,本發明之分析蜂蜜中之液態香料之方法,其可具有一或多個下述優點:
(1)本發明之分析蜂蜜中之液態香料之方法,使用DVB/CAR/PDMS複合型纖維,且藉由頂空固相微萃取法的前處理方式,將待分析的成分從蜂蜜樣品中萃取出來,以降低非分析的物質或可能產生干擾的物質對待分析物產生影響。此前處理的方法除了可減短進行吸附所需要的時間,也可增加後續在分析及鑑定結果的準確性,同時也符合經濟效益。
(2) 本發明之分析蜂蜜中之液態香料之方法,藉由分析蜂蜜樣品的氣相揮發物是否含有乙基麥芽醇、乙基香草醛、丙二醇、三乙酸甘油酯或其組合,以作為判斷蜂蜜真假的依據。
(3) 本發明之分析蜂蜜中之液態香料之方法,藉由使用氣相層析串聯質譜儀,以進行蜂蜜樣品的氣相層析及鑑定,判斷蜂蜜樣品中所添加的液態香料的成分,而此方式也可避免人為感官的誤差。
為利 貴審查員瞭解本發明之技術特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。
本發明將藉由下列較佳實施例及其配合之圖式,作進一步之詳細說明。需注意的是,以下各實施例所揭示之實驗數據,係為便於解釋本案技術特徵,並非用以限制其可實施之態樣。
請參閱第1圖,其係為本發明之分析蜂蜜中之液態香料之方法之第一實施例之流程圖。
如圖所示,此分析方法包含下列步驟:首先,步驟S1,將蜂蜜以預熱溫度及預熱時間進行預熱;其次,步驟S2,使用吸附纖維,並且在吸附溫度及吸附時間下進行吸附蜂蜜之氣相揮發物,其中氣相揮發物包含乙基麥芽醇(Ethyl maltol)、乙基香草醛(Ethyl vanillin)、丙二醇(Propylene glycol)、三乙酸甘油酯(Triacetin)或其組合;接著,步驟S3,將氣相揮發物進行氣相層析;最後,步驟S4,進行鑑定氣相揮發物之離子片段。
具體來說,首先進行步驟S1的部分,也就是將待分析的蜂蜜樣品進行前處理。目前常見的前處理方法有薄膜萃取法(membrane extraction)、靜態上空間採樣法(static headspace sampling)、吹氣捕集法(purge and trap)、超臨界流體萃取法(supercritical fluid extraction)、固相萃取法(solid phase extraction,SPE)等,在本實施例中採用固相微萃取法(solid-phase microextraction,SPME),其具有儀器裝置簡單、使用方便、採樣時間短、偵測極限佳等優點,此外,更可減少分析時間、提高樣品分析速度及降低人為誤差。而固相微萃取法又可分為下列幾種萃取模式:直接固相微萃取(direct SPME,DI-SPME)、頂空固相微萃取(headspace SPME,HS-SPME)以及衍生化固相微萃取(derivatization SPME),而在本實施例中採用頂空固相微萃取法進行蜂蜜的前處理步驟。
取5 g-10 g的蜂蜜,裝入20 ml的頂空玻璃瓶中,以附有聚四氟乙烯墊片(Silicone Blue/PTFE)的鋁蓋蓋上並且旋緊後,以約70 ℃至約90 ℃的預熱溫度進行預熱約5分鐘至約25分鐘的預熱時間。預熱溫度可為約70 ℃至約90 ℃,在本實施例中係以85 ℃作為示範態樣,但並不以此為限。另外,預熱時間可為約5分鐘至約25分鐘,而在本實施例中係以15分鐘進行樣品的前處理。蜂蜜的取樣量會影響分析的結果,取樣量太少,會導致濃度不夠;取樣量太多,在頂空固相微萃取的過程中,吸附纖維會浸到蜂蜜樣品。接著進行步驟S2的部分,將蜂蜜樣品放入前處理加熱箱內,在約85 ℃下持續約10分鐘。之後,將裝有DVB/CAR/PDMS複合型纖維的吸附探針插入內含蜂蜜樣品的頂空玻璃瓶中,且伸出吸附纖維以進行吸附,在約70 ℃至約90 ℃的吸附溫度且在約10分鐘至約15分鐘的吸附時間的條件下,進行吸附蜂蜜樣品的氣相揮發物。DVB/CAR/PDMS複合型纖維的吸附纖維藉由頂空萃取的方式,待一段時間後使氣相揮發物在DVB/CAR/PDMS複合型纖維與蜂蜜樣品之間達到分配平衡後,即完成吸附的步驟。在本實施例中所使用的吸附探針類型為50/30 μM DVB/CAR/PDMS,而DVB/CAR/PDMS複合型纖維的長度為1公分。吸附溫度可為約70 ℃至約90 ℃,在本實施例中係控制在85 ℃。另一方面,在進行吸附氣相揮發物的初始階段時,待分析的氣相揮發物便快速地吸附到DVB/CAR/PDMS複合型纖維上,然而隨著時間增長,吸附的速度卻變得越來越慢,在接近平衡狀態時,延長吸附時間對於吸附氣相揮發物的量並無太大影響,因此一般進行吸附的時間會在30分鐘內,吸附時間可為約10分鐘至約15分鐘,而在本實施例中係控制在10分鐘,但並不以此為限。
也就是說,頂空固相微萃取法的DVB/CAR/PDMS複合型纖維並不會與蜂蜜樣品接觸,而是置於蜂蜜樣品溶液的上方,進行頂空萃取蜂蜜樣品溶液的氣相揮發物。此種方式主要用於萃取易揮發或者半揮發性的物質。而採用此方法的好處在於可保護DVB/CAR/PDMS複合型纖維在萃取過程中不會被樣品汙染、破壞,從而延長DVB/CAR/PDMS複合型纖維的使用壽命,甚至可避免樣品基質(matrix)的干擾。
值得一提的是,DVB/CAR/PDMS複合型纖維可在進行吸附步驟之前,再另外進行一熱脫附的步驟。熱脫附係在約250 ℃的溫度下持續30分鐘。而進行吸附氣相揮發物的吸附纖維在選擇上則根據「同性相溶(like dissolve like)」的原理,亦即極性塗層的吸附纖維吸附極性化合物;而非極性塗層的吸附纖維吸附非極性化合物。此外,吸附纖維越長,其吸附氣相揮發物的量就越高,但同時也有容易折斷吸附纖維的缺點,因此除非特別指出,一般都使用1公分長的吸附纖維。其次,塗層越厚,其吸附氣相揮發物的量就越高,但達到分配平衡所需的時間也就越長,進而導致吸附氣相揮發物的速度變慢。
接下來進行步驟S3以及步驟S4的部分,目前固相微萃取法大多結合氣相層析儀或氣相層析質譜儀進行後段分析,將已吸附到氣相揮發物的吸附纖維直接注入氣相層析儀的注入口,以進行熱脫附的步驟,將氣相揮發物從吸附纖維上脫附至氣相層析儀,以進行後續的分離及偵測。本實施例的氣相揮發物中包含乙基麥芽醇、乙基香草醛、丙二醇、三乙酸甘油酯或其組合,本實施例以這四樣物質作為判斷蜂蜜中是否添加液態香料的依據,只要有測到,而無論所測得的濃度,皆可斷定待測的蜂蜜樣品中有添加液態香料。
進一步來說,本實施例使用氣相層析串聯質譜儀(Gas chromatography mass spectrometry)進行氣相層析以及鑑定的步驟,其中氣相層析儀的機型為7890B;質譜儀的機型為5977A(廠商Agilent)。氣相層析儀的載流氣體必須使用化學惰性的氣體,其可為氫氣(H2 )、氮氣(N2 )或氦氣(He),在本實施例中係以氦氣作為示範態樣,但並不以此為限。另外,在本實施例中,氣相層析儀的機台設定條件可分為樣品注入口的條件、使用的毛細管柱以及烘箱設定的條件三個部分。首先,樣品注入口的條件為全進樣(不分流),進樣溫度為250 ℃、進樣壓力為7.3614 psi、流速為14 ml/分,並且在進樣2分鐘後以10 ml/分吹去殘樣。其次,所使用的毛細管柱為Agilent HP 5MS毛細管柱(長度30 m,內徑250 μm,膜厚0.25 μM),毛細管柱內的樣品進樣初速為1 ml/分、毛細管柱內的壓力為7.3614 psi。最後,氣相沉積串聯質譜儀之烘箱所使用的升溫程式如下表所示: 在分離過程中以連續或階段方式進行增加毛細管柱的溫度,以得到所期望的結果。首先,起始溫度為45 ℃,維持2分鐘;其次,以每分鐘2 ℃上升至110 ℃,上升時間為32.5分鐘且維持2分鐘;接著,以每分鐘10 ℃上升至220 ℃,上升時間為11分鐘且維持10分鐘,再來,以每分鐘 50 ℃上升至250 ℃,上升時間為0.6分鐘且維持5分鐘;最後,以每分鐘10 ℃上升至300 ℃,上升時間為5分鐘,而整體過程的時間總計為68.1分。
質譜儀的機台設定條件可分為下列3個部分:(1)經由氣相層析儀毛細管柱末端進入,且離子源的溫度設定為280 ℃;(2)離子化:以EI(electron ionization)將分子藉由70伏特電壓而離子化,且離子源的溫度控制在230 ℃;(3)四極柱(Quadrupole)質量分析器:收集質荷比(m/z)範圍為30至350之間的離子片段,以偵測器進行偵測,且偵測器的溫度設定為150 ℃。
具體來說,將DVB/CAR/PDMS複合型纖維所吸附到的氣相揮發物注入氣相層析儀的注入口內,氣相揮發物會因為高溫而自DVB/CAR/PDMS複合型纖維脫附。接著氣相層析儀以氦氣作為載流氣體,攜帶氣相揮發物進入氣相層析儀之毛細管柱。各個化合物依據與毛細管柱的親和力進行結合,與毛細管柱靜相親和力強的化合物,則沖提較慢,亦即滯留時間長;相反地,與毛細管柱移動相親和力強的化合物,則沖提較快,亦即滯留時間短。經毛細管柱分離之後的化合物,經由毛細管柱末端進入質譜儀中進行分析,且離子源的溫度設定為280 ℃。接著,質譜儀以70伏特的強力電壓,使化合物帶電並且斷裂成離子片段,且離子源的溫度控制在230 ℃。最後再以四極柱質量分析器進行離子片段的收集,所收集的離子片段之質荷比(m/z)範圍為30至350之間,並且以偵測器進行偵測,且偵測器的溫度設定為150 ℃。將偵測到的訊號進行鑑定,即可定性化合物。並且利用標準品再次進行確認。
進行蜂蜜樣品分析之後,得到下列的結果:請參閱第2圖,其係為根據本發明之第一實施例所測得的純蜂蜜之GC/MS總離子層析圖(Total ion chromatography,TIC)。
請一併參閱第3圖、第4a圖及第4b圖,其係分別為根據本發明之第一實施例所測得的含丙二醇的蜂蜜之GC/MS總離子層析圖;第3圖中丙二醇成分之離子片段質譜圖;以及NIST11資料庫中丙二醇之離子片段質譜圖。如第3圖所示,可在滯留時間為(Retention time)7.593分鐘的位置發現一波峰(Peak),將該波峰以質譜儀進行分析,結果如第4a圖所示,在滯留時間為7.593分鐘時,可看到波峰的主要離子片段為45.0、43.0及61.0;將該些主要離子片段與NIST11資料庫進行比對離子片段之後,參照第4b圖,經離子片段比對鑑定此化合物最吻合的化合物為丙二醇。
請一併參閱第5圖、第6a圖及第6b圖,其係分別為根據本發明之第一實施例所測得的含丙二醇及乙基麥芽醇的蜂蜜之GC/MS總離子層析圖;第5圖中乙基麥芽醇成分之離子片段質譜圖;以及NIST11資料庫中乙基麥芽醇之離子片段質譜圖。如第5圖所示,可在滯留時間為34.469分鐘的位置發現一波峰,將該波峰以質譜儀進行分析,結果如第6a圖所示,在滯留時間為34.469分鐘時,可看到波峰的主要離子片段為140.0、139.0及97.0;將該些主要離子片段與NIST11資料庫進行比對離子片段之後,參照第6b圖,經離子片段比對鑑定此化合物最吻合的化合物為乙基麥芽醇。
請一併參閱第7圖、第8a圖及第8b圖,其係分別為根據本發明之第一實施例所測得的含丙二醇、乙基麥芽醇及乙基香草醛的蜂蜜之GC/MS總離子層析圖;第7圖中乙基香草醛成分之離子片段質譜圖;以及NIST11資料庫中乙基香草醛之離子片段質譜圖。如第7圖所示,可在滯留時間為43.712分鐘的位置發現一波峰,將該波峰以質譜儀進行分析,結果如第8a圖所示,在滯留時間為43.712分鐘時,可看到波峰的主要離子片段為137.0、166.0及109.0;將該些主要離子片段與NIST11資料庫進行比對離子片段之後,參照第8b圖,經離子片段比對鑑定此化合物最吻合的化合物為乙基香草醛。
請一併參閱第9圖、第10a圖及第10b圖,其係分別為根據本發明之第一實施例所測得的含三乙酸甘油酯的蜂蜜之GC/MS總離子層析圖;第9圖中三乙酸甘油酯成分之離子片段質譜圖;以及NIST11資料庫中三乙酸甘油酯之離子片段質譜圖。如第9圖所示,可在滯留時間為41.981分鐘的位置發現一波峰,將該波峰以質譜儀進行分析,結果如第10a圖所示,在滯留時間為41.981分鐘時,可看到波峰的主要離子片段為43.0、103.0及145.0;將該些主要離子片段與NIST11資料庫進行比對離子片段之後,參照第10b圖,經離子片段比對鑑定此化合物最吻合的化合物為三乙酸甘油酯。
最後,請參閱第11a圖、第11b圖及第11c圖,其係為分別比對純蜂蜜、含丙二醇的蜂蜜以及含丙二醇及乙基麥芽醇兩者的蜂蜜之GC/MS總離子層析圖。首先,第11a圖為純蜂蜜之GC/MS總離子層析圖;第11b圖為添加丙二醇的香料溶劑的蜂蜜之GC/MS總離子層析圖;以及第11c圖為添加丙二醇的香料溶劑及乙基麥芽醇的單體香料的蜂蜜之GC/MS總離子層析圖。將這三個樣品進行總離子層析圖譜的比對,可以明顯區分出純蜂蜜、添加丙二醇的蜂蜜以及添加丙二醇香料溶劑及乙基麥芽醇單體香料兩者的蜂蜜之滯留時間與圖譜的差異。
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
S1-S4‧‧‧步驟
第1圖係為本發明之分析蜂蜜中之液態香料之方法之第一實施例之流程圖。 第2圖係為根據本發明之第一實施例所測得的純蜂蜜之GC/MS總離子層析圖。 第3圖係為根據本發明之第一實施例所測得的含丙二醇的蜂蜜之GC/MS總離子層析圖。 第4a圖係為第3圖中丙二醇成分之離子片段質譜圖。 第4b圖係為NIST11資料庫中丙二醇之離子片段質譜圖。 第5圖係為根據本發明之第一實施例所測得的含丙二醇及乙基麥芽醇的蜂蜜之GC/MS總離子層析圖。 第6a圖係為第5圖中乙基麥芽醇成分之離子片段質譜圖。 第6b圖係為NIST11資料庫中乙基麥芽醇之離子片段質譜圖。 第7圖係為根據本發明之第一實施例所測得的含丙二醇、乙基麥芽醇及乙基香草醛的蜂蜜之GC/MS總離子層析圖。 第8a圖係為第7圖中乙基香草醛成分之離子片段質譜圖。 第8b圖係為NIST11資料庫中乙基香草醛之離子片段質譜圖。 第9圖係為根據本發明之第一實施例所測得的含三乙酸甘油酯的蜂蜜之GC/MS總離子層析圖。 第10a圖係為第9圖中三乙酸甘油酯之離子片段質譜圖。 第10b圖係為NIST11資料庫中三乙酸甘油酯之離子片段質譜圖。 第11a圖係為純蜂蜜之GC/MS總離子層析圖。 第11b圖係為含丙二醇的蜂蜜之GC/MS總離子層析圖。 第11c圖係為含丙二醇及乙基麥芽醇兩者的蜂蜜之GC/MS總離子層析圖。
S1-S4‧‧‧步驟

Claims (9)

  1. 一種分析蜂蜜中之液態香料之方法,其包含下列步驟: 將一蜂蜜以一預熱溫度及一預熱時間進行預熱; 使用一吸附纖維,並且在一吸附溫度及一吸附時間下進行吸附該蜂蜜之一氣相揮發物,其中該氣相揮發物係包含乙基麥芽醇(Ethyl maltol)、乙基香草醛(Ethyl vanillin)、丙二醇(Propylene glycol)、三乙酸甘油酯(Triacetin)或其組合; 將該氣相揮發物進行氣相層析;以及 進行鑑定該氣相揮發物之離子片段。
  2. 如申請專利範圍第1項所述之分析蜂蜜中之液態香料之方法,該預熱溫度為70 ℃至90 ℃。
  3. 如申請專利範圍第2項所述之分析蜂蜜中之液態香料之方法,該預熱時間為5分鐘至25分鐘。
  4. 如申請專利範圍第1項所述之分析蜂蜜中之液態香料之方法,該吸附纖維為DVB/CAR/PDMS複合型纖維。
  5. 如申請專利範圍第1項所述之分析蜂蜜中之液態香料之方法,該吸附溫度為70 ℃至90 ℃。
  6. 如申請專利範圍第5項所述之分析蜂蜜中之液態香料之方法,該吸附時間為10分鐘至15分鐘。
  7. 如申請專利範圍第1項所述之分析蜂蜜中之液態香料之方法,該氣相揮發物之離子片段之質荷比(m/z)範圍為30至350。
  8. 如申請專利範圍第1項所述之分析蜂蜜中之液態香料之方法,更包含將該吸附纖維進行一熱脫附之步驟。
  9. 如申請專利範圍第8項所述之分析蜂蜜中之液態香料之方法,其中該熱脫附係在250 ℃下持續30分鐘。
TW104101722A 2015-01-19 2015-01-19 分析蜂蜜中之液態香料之方法 TWI530681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104101722A TWI530681B (zh) 2015-01-19 2015-01-19 分析蜂蜜中之液態香料之方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104101722A TWI530681B (zh) 2015-01-19 2015-01-19 分析蜂蜜中之液態香料之方法

Publications (2)

Publication Number Publication Date
TWI530681B TWI530681B (zh) 2016-04-21
TW201627666A true TW201627666A (zh) 2016-08-01

Family

ID=56361501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104101722A TWI530681B (zh) 2015-01-19 2015-01-19 分析蜂蜜中之液態香料之方法

Country Status (1)

Country Link
TW (1) TWI530681B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677757A (zh) * 2017-09-08 2018-02-09 大连市食品检验所 同时测定食品中香兰素、甲基香兰素、乙基香兰素的方法
CN108426968A (zh) * 2018-06-13 2018-08-21 中国农业科学院蜜蜂研究所 一种冬蜜和乌桕蜜的分类方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907600B (zh) * 2017-10-25 2020-04-07 大连理工大学 一种基于液液萃取-液相色谱-串联质谱同时测定植物油脂中黄曲霉毒素和香味剂的方法
CN114858939A (zh) * 2022-04-27 2022-08-05 国家烟草质量监督检验中心 同时测定新型雾化产品中丁香酚、麦芽酚、乙基麦芽酚、香兰素和乙基香兰素的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677757A (zh) * 2017-09-08 2018-02-09 大连市食品检验所 同时测定食品中香兰素、甲基香兰素、乙基香兰素的方法
CN107677757B (zh) * 2017-09-08 2019-11-08 大连市食品检验所 同时测定食品中香兰素、甲基香兰素、乙基香兰素的方法
CN108426968A (zh) * 2018-06-13 2018-08-21 中国农业科学院蜜蜂研究所 一种冬蜜和乌桕蜜的分类方法
CN108426968B (zh) * 2018-06-13 2021-06-15 中国农业科学院蜜蜂研究所 一种冬蜜和乌桕蜜的分类方法

Also Published As

Publication number Publication date
TWI530681B (zh) 2016-04-21

Similar Documents

Publication Publication Date Title
Arbulu et al. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines
Robinson et al. Origins of grape and wine aroma. Part 2. Chemical and sensory analysis
CN107941978B (zh) 一种烟用爆珠内在质量稳定性评价方法
TWI530681B (zh) 分析蜂蜜中之液態香料之方法
Haddad et al. Perfume fingerprinting by easy ambient sonic‐spray ionization mass spectrometry: nearly instantaneous typification and counterfeit detection
Gomez et al. Analytical tools for elucidating the biological role of melatonin in plants by LC‐MS/MS
Fraser et al. Monitoring tea fermentation/manufacturing by direct analysis in real time (DART) mass spectrometry
CN105784862B (zh) 一种烟草中挥发和半挥发成分的分析方法
Avellone et al. Investigation on the influence of spray-drying technology on the quality of Sicilian Nero d’Avola wines
Jones et al. Investigating sub-2 μm particle stationary phase supercritical fluid chromatography coupled to mass spectrometry for chemical profiling of chamomile extracts
Mellon et al. Thermospray liquid chromatography—mass spectrometry in food and agricultural research
CN105929082B (zh) 一种分离测定唾液中吡嗪类和吡啶类物质的方法
CN108548877B (zh) 固相微萃取-气质联用技术测定烟用爆珠挥发性成分的方法
CN109212066B (zh) 一种烟草及烟草制品中非脂肪类有机酸的测定方法
Cai et al. Free amino acids, biogenic amines, and ammonium profiling in tobacco from different geographical origins using microwave‐assisted extraction followed by ultra high performance liquid chromatography
CN113049436A (zh) 一种烟用香精香料一致性快速分析方法及其应用
Kimura et al. Simple and rapid determination of 1‐deoxynojirimycin in mulberry leaves
Du et al. Simultaneous qualitative and quantitative analysis of 28 components in Isodon rubescens by HPLC‐ESI‐MS/MS
CN114778728A (zh) 一种姜黄素类化合物含量的测定方法
Liberto et al. Fractionated dynamic headspace sampling in the analysis of matrices of vegetable origin in the food field
Liang et al. Hydrophilic interaction liquid chromatography for the separation, purification, and quantification of raffinose family oligosaccharides from Lycopus lucidus Turcz
Abreu et al. Characterization of the variation in the imidazole alkaloid profile of Pilocarpus microphyllus in different seasons and parts of the plant by electrospray ionization mass spectrometry fingerprinting and identification of novel alkaloids by tandem mass spectrometry
Wang et al. A simple and fast quantitative analysis of quinolizidine alkaloids and their biosynthetic precursor, lysine, in Sophora alopecuroides by hydrophilic interaction chromatography coupled with triple‐quadrupole tandem mass spectroscopy
Zhang et al. Headspace Solid-Phase Microextraction Coupled with Gas Chromatography–Mass Spectrometry (HS-SPME-GC–MS) for the Characterization of Cigar Leaves
Yao et al. HILIC‐UPLC‐MS/MS combined with hierarchical clustering analysis to rapidly analyze and evaluate nucleobases and nucleosides in Ginkgo biloba leaves