TW201626442A - Methods for doping FinFETs - Google Patents

Methods for doping FinFETs Download PDF

Info

Publication number
TW201626442A
TW201626442A TW104120710A TW104120710A TW201626442A TW 201626442 A TW201626442 A TW 201626442A TW 104120710 A TW104120710 A TW 104120710A TW 104120710 A TW104120710 A TW 104120710A TW 201626442 A TW201626442 A TW 201626442A
Authority
TW
Taiwan
Prior art keywords
doping
top surface
sidewall
fin
field effect
Prior art date
Application number
TW104120710A
Other languages
Chinese (zh)
Other versions
TWI567795B (en
Inventor
俊華 洪
吳漢明
炯 陳
張勁
Original Assignee
上海凱世通半導體有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2015/070309 external-priority patent/WO2016109958A1/en
Priority claimed from CN201510107481.0A external-priority patent/CN106033728B/en
Priority claimed from CN201510107549.5A external-priority patent/CN106033715B/en
Application filed by 上海凱世通半導體有限公司 filed Critical 上海凱世通半導體有限公司
Publication of TW201626442A publication Critical patent/TW201626442A/en
Application granted granted Critical
Publication of TWI567795B publication Critical patent/TWI567795B/en

Links

Abstract

The instant disclosure relates to a method for doping FinFETs. A FinFET includes a semiconductor substrate and a plurality of fins arranged on the semiconductor substrate, wherein the fins are spaced apart and parallel to each other. The method includes the following steps: forming a doped layer on an upper surface, a first sidewall, and a second sidewall of each of the fins; and directing a sputtering material into the corresponding doped layer along the normal direction of the semiconductor substrate to reduce its doping concentration.

Description

鰭式場效電晶體的摻雜方法 Doping method of fin field effect transistor

本發明涉及一種鰭式場效電晶體(FinFET)的摻雜方法,特別是指一種具有自調節功能的鰭式場效電晶體的摻雜方法。 The invention relates to a doping method of a fin field effect transistor (FinFET), in particular to a doping method of a fin field effect transistor having a self-regulating function.

隨著積體電路從22nm技術節點往更小尺寸發展,製程會採用FinFET(鰭式場效電晶體,Fin是魚鰭的意思,FinFET的命名是根據電晶體的形狀與魚鰭的相似性)結構,旨在減少溝道效應,在抑制亞閾值電流和閘漏電流方面有著絕對的優勢。隨著積集度的提高,以FinFET器件取代傳統體矽器件將是必然的趨勢。 As the integrated circuit evolves from a 22nm technology node to a smaller size, the process uses FinFET (Fin Field Effect Transistor, Fin is a fin, FinFET is named according to the shape of the transistor and the fin similarity) structure. , designed to reduce channeling, has an absolute advantage in suppressing subthreshold currents and gate leakage currents. As the degree of integration increases, it will be an inevitable trend to replace traditional body devices with FinFET devices.

請參考圖1,顯示FinFET結構的一部分(包括100和200兩個單元),其中附圖標記20表示基底,例如矽基底,附圖標記22表示形成於基底20之中或基底20上的淺溝道絕緣區域(shallow trench isolation region),圖1中還分別以附圖標記124和224表示所示的兩根鰭狀物(Fin)。 Referring to FIG. 1, a portion of a FinFET structure (including two cells of 100 and 200) is shown, wherein reference numeral 20 denotes a substrate, such as a germanium substrate, and reference numeral 22 denotes a shallow trench formed in or on the substrate 20. In the shallow trench isolation region, the two fins (Fin) shown are also indicated by reference numerals 124 and 224, respectively.

在FinFET結構中,需要在豎直的Fin中形成摻雜。半導體業界現有的摻雜方式主要有生長法和離子注入法。生長法對於P型摻雜來說是可行的,然而在形成N型摻雜時就遭遇了困境。另外,N型摻雜源比較常見的AsH3,其毒性非常大,因此必須採用砷離子注入的方式來形成N型摻雜。但是在實際應用中,離子注入卻面臨著三個急需解決的技術問題,即均勻性、非晶化和圓角的問題。 In a FinFET structure, doping needs to be formed in a vertical Fin. The existing doping methods in the semiconductor industry mainly include growth methods and ion implantation methods. The growth method is feasible for P-type doping, but it encounters a dilemma when forming N-type doping. In addition, the N-type dopant source is relatively common AsH 3 , and its toxicity is very large, so it is necessary to form an N-type doping by means of arsenic ion implantation. However, in practical applications, ion implantation faces three technical problems that need to be solved, namely, uniformity, amorphization and rounding.

1、均勻性(doping conformity) 1, uniformity (doping conformity)

請參考圖2及圖3,由於Fin一般為豎直結構,為了在其側壁中形成摻雜,離子注入的方向必須和Fin的長度方向呈一定角度。具體來說,為了使Fin的側壁中均實現有效摻雜,現有的注入方式通常是採用兩次注入,亦即先按照圖2中所示的箭頭方向完成Fin右側的注入,接著再按照圖3中所示的箭頭方向完成Fin左側的注入。然而,在這類帶有傾角的注入中,Fin的頂部會受到兩次離子注入且帶有不同注入投影劑量的影響,這就造成了每根Fin的頂部和側壁之間摻雜劑量的嚴重不均勻。 Referring to FIG. 2 and FIG. 3, since Fin is generally a vertical structure, in order to form doping in its sidewall, the direction of ion implantation must be at an angle to the length direction of Fin. Specifically, in order to achieve effective doping in the sidewalls of the Fin, the existing injection method usually adopts two injections, that is, the injection of the right side of Fin is completed according to the direction of the arrow shown in FIG. 2, and then according to FIG. The direction of the arrow shown in the arrow completes the injection on the left side of Fin. However, in such implants with dip angles, the top of Fin is subject to two ion implantations with different implant doses, which results in a severe dose doping between the top and side walls of each Fin. Evenly.

更進一步來說,為了在Fin的側壁上形成摻雜,離子注入的方向必然是要和基底基底的法線方向保持一定角度的,而除了45°之外,Fin的頂部和側壁上的摻雜劑量必然是不同的。並且隨著FinFET結構高寬比(aspect ratio,即Fin的高度和兩根Fin之間的距離之比)的增大,離子注入的角度(注入方向和基底基底法線的夾角)也就越來越小,因此注入至頂部的離子勢必會多於注入側壁的離子,這就加劇了Fin本身頂部和側壁摻雜劑量的不均勻。目前,這種不均勻性是極為顯著的,甚至達到了頂部和側壁摻雜劑量之比為20:1,理想化條件是要達到10:1或者更小。也就是說,頂部的摻雜量要遠遠大於側壁,這種不均勻性對於器件性能的優化是極為不利的。 Furthermore, in order to form doping on the sidewall of Fin, the direction of ion implantation must be at an angle to the normal direction of the substrate substrate, and the doping on the top and sidewalls of Fin except 45°. The dose must be different. And as the aspect ratio of the FinFET structure increases, the ratio of the height of the Fin to the distance between the two Fins increases, the angle of the ion implantation (the angle between the injection direction and the base of the base substrate) increases. The smaller the ion, the more ions injected into the top will be more than the ions injected into the sidewall, which exacerbates the unevenness of the top and sidewall doping doses of Fin itself. At present, this non-uniformity is extremely significant, even reaching a top-to-side doping dose ratio of 20:1, idealized to be 10:1 or less. That is to say, the doping amount of the top is much larger than that of the sidewall, and this unevenness is extremely disadvantageous for the optimization of device performance.

再者,倘若兩次的注入參數不能精確控制以保持一致性,又會造成Fin兩個側壁上的摻雜不均勻,從而影響到器件的性能。 Furthermore, if the two injection parameters are not precisely controlled to maintain consistency, the doping on the two sidewalls of Fin will be uneven, which will affect the performance of the device.

2、非晶化(Amorphization) 2, amorphization (Amorphization)

現有的注入法還遭遇了非晶化的問題,原因在於注入離子的能量較高,則離子被注入的深度就很深,這會使得Fin被非晶化,原本的單晶結構難以保持,這對於器件的性能也是極為不利的。 The existing implantation method also suffers from the problem of amorphization because the energy of the implanted ions is high, and the depth at which the ions are implanted is deep, which causes the Fin to be amorphized, and the original single crystal structure is difficult to maintain, which is The performance of the device is also extremely disadvantageous.

3、圓角(Corner erosion) 3, rounded (Corner erosion)

請參考圖4,現有技術的高能量注入除了會帶來非晶化的問題 之外,還會造成Fin的兩個角被離子撞擊損傷的情況,如圖4所示Fin被損傷後會形成圓角,這類的圓角結構也是不利於器件性能的。 Please refer to FIG. 4, the high energy injection of the prior art will bring about the problem of amorphization. In addition, it will cause the two corners of Fin to be damaged by the impact of ions. As shown in Figure 4, Fin will be rounded after being damaged. Such rounded structure is also detrimental to device performance.

本發明所要解決的技術問題是為了克服現有技術中,因採用離子注入法來完成Fin的摻雜時所產生的注入均勻性不佳的問題,特別是Fin的頂部和側壁摻雜劑量之比往往會超過10:1的缺陷。為此本發明提供一種鰭式場效電晶體的摻雜方法,其可透過較長時間的離子注入實現注入的飽和,並在側壁完成注入之後增加一道濺射材料(如:基底元素、惰性元素或IV族元素)注入的製程,以實現Fin的均勻摻雜。 The technical problem to be solved by the present invention is to overcome the problem of poor injection uniformity caused by the ion implantation method for performing Fin doping in the prior art, in particular, the ratio of the top and sidewall doping doses of Fin is often Will exceed 10:1 defects. To this end, the present invention provides a doping method for a fin field effect transistor, which can achieve saturation of implantation through ion implantation for a long time, and add a sputtering material (such as a base element, an inert element or Group IV element) process of implantation to achieve uniform doping of Fin.

為達上述目的,本發明之一較佳實施例採用下述技術方案:一種鰭式場效電晶體的摻雜方法,該鰭式場效電晶體包括一基底及位於該基底上且平行間隔設置的數個半導體鰭狀物(Fin),每一半導體鰭狀物包括一頂面、一第一側壁及一第二側壁,其特徵在於該鰭式場效電晶體的摻雜方法包括以下步驟:(a)在每一該半導體鰭狀物的頂面、第一側壁及第二側壁上各形成一摻雜層;以及(b)將一濺射材料沿著該基底的法線方向注入至每一該半導體鰭狀物的頂面的摻雜層以減小其中之摻雜元素的濃度。 In order to achieve the above object, a preferred embodiment of the present invention adopts the following technical solution: a method for doping a fin field effect transistor, the fin field effect transistor comprising a substrate and a number of parallel spaced intervals on the substrate a semiconductor fin (Fin), each of the semiconductor fins including a top surface, a first sidewall and a second sidewall, wherein the doping method of the fin field effect transistor comprises the following steps: (a) Forming a doped layer on each of the top surface, the first sidewall, and the second sidewall of the semiconductor fin; and (b) implanting a sputter material along the normal direction of the substrate to each of the semiconductors A doped layer on the top surface of the fin to reduce the concentration of dopant elements therein.

由於Fin的豎直結構,頂面的摻雜劑量會大於側壁的摻雜劑量,這就造成了頂面和側壁摻雜嚴重不均的情況。為此,在完成摻雜層之後,增加一道注入濺射材料的製程,來減小頂面中摻雜元素的濃度,從而確保頂面和側壁摻雜的均勻性。 Due to the vertical structure of Fin, the doping amount of the top surface is greater than the doping amount of the sidewall, which causes severe unevenness in top and sidewall doping. To this end, after the doping layer is completed, a process of implanting the sputter material is added to reduce the concentration of doping elements in the top surface, thereby ensuring uniformity of top and sidewall doping.

較佳地,步驟(a)中該濺射材料的注入深度是可調的。 Preferably, the depth of implantation of the sputter material in step (a) is adjustable.

較佳地,步驟(a)中該該濺射材料的注入深度與每一該半導體鰭狀物的頂面的摻雜層的深度一致。 Preferably, the implantation depth of the sputter material in step (a) is consistent with the depth of the doped layer of the top surface of each of the semiconductor fins.

較佳地,步驟(a)進一步包括以下步驟: (a-1)將一摻雜元素注入至每一該半導體鰭狀物的頂面及第一側壁;以及(a-2)將該摻雜元素注入至每一該半導體鰭狀物的頂面及第二側壁。 Preferably, step (a) further comprises the steps of: (a-1) implanting a doping element into a top surface and a first sidewall of each of the semiconductor fins; and (a-2) implanting the doping element into a top surface of each of the semiconductor fins And a second side wall.

在該摻雜方法中,完成第一側壁和第二側壁的注入摻雜之後,由於頂面受到兩次離子注入,頂面中的摻雜劑量勢必會大於側壁的摻雜劑量。為了減少這種不均勻性,在完成Fin的兩個側壁的摻雜之後增加一道垂直注入的製程,將濺射材料注入至頂部的摻雜層中,由於注入方向沿著基底的法線方向,因此濺射材料的注入不會影響Fin的兩個側壁上的摻雜,而僅會影響頂部的摻雜。並且在注入濺射材料之後,濺射材料會將頂部的摻雜層中之摻雜元素濺射掉一部分,依此方式來減小頂部的摻雜層中之摻雜元素的劑量,從而降低了摻雜濃度而有助於實現Fin的頂部和側壁的均勻性。 In the doping method, after the implantation doping of the first sidewall and the second sidewall is completed, since the top surface is subjected to two ion implantations, the doping amount in the top surface is inevitably larger than the doping amount of the sidewall. In order to reduce this non-uniformity, a process of vertical implantation is added after doping the two sidewalls of the Fin, and a sputter material is implanted into the top doped layer, since the implantation direction is along the normal direction of the substrate. Therefore, the implantation of the sputter material does not affect the doping on the two sidewalls of Fin, but only affects the doping of the top. And after injecting the sputter material, the sputter material sputters a portion of the doping element in the top doped layer, thereby reducing the dose of the doping element in the top doped layer, thereby reducing the dose. The doping concentration helps to achieve uniformity of the top and sidewalls of the Fin.

較佳地,步驟(a-1)中還包括使每一該半導體鰭狀物的頂面及第一側壁的摻雜層中之摻雜元素的劑量達到自飽和,步驟(a-2)中還包括使每一該半導體鰭狀物的頂面及第二側壁的摻雜層中之摻雜元素的劑量達到自飽和。 Preferably, the step (a-1) further comprises self-saturating the dose of the doping element in the top surface of each of the semiconductor fins and the doped layer of the first sidewall, in step (a-2) The method further includes self-saturating the dose of the doping element in the doped layer of the top surface and the second sidewall of each of the semiconductor fins.

也就是說,對於每根Fin來說兩個側壁的摻雜過程是這樣的:首先,使摻雜元素注入至該第一側壁中以及注入至該頂面中直至該第一側壁中摻雜元素的劑量達到自飽和,其中:部分摻雜元素被注入至該第一側壁中以形成摻雜層;部分摻雜元素撞擊該摻雜層後濺射出該摻雜層中的摻雜元素並且濺射出的摻雜元素射向相鄰Fin的第二側壁以在相鄰Fin的第二側壁上形成沉積層,接著,使摻雜元素注入至該第二側壁中以及注入至該頂面中直至該第二側壁中摻雜元素的劑量達到飽和,其中:部分摻雜元素被注入至該第二側壁中以形成摻雜層; 部分摻雜元素撞擊該摻雜層後濺射出該摻雜層中的摻雜元素並且濺射出的摻雜元素射向相鄰Fin的第一側壁;部分摻雜元素撞擊該沉積層後濺射出該沉積層中的摻雜元素並且濺射出的摻雜元素射向相鄰Fin的第一側壁。 That is, the doping process of the two sidewalls for each Fin is such that first, a doping element is implanted into the first sidewall and implanted into the top surface until doping elements in the first sidewall The dose reaches self-saturation, wherein: a portion of the doping element is implanted into the first sidewall to form a doped layer; a portion of the doping element strikes the doped layer, and then the doping element in the doped layer is sputtered and sputtered out a doping element is incident on the second sidewall of the adjacent Fin to form a deposited layer on the second sidewall of the adjacent Fin, and then implanting a doping element into the second sidewall and implanting into the top surface until the first The dose of the doping element in the two sidewalls is saturated, wherein: a portion of the doping element is implanted into the second sidewall to form a doped layer; a portion of the doping element strikes the doped layer to sputter the doping element in the doped layer and the sputtered doping element is directed to the first sidewall of the adjacent Fin; a portion of the doping element strikes the deposited layer and sputters the The doping elements in the deposited layer and the sputtered doping elements are directed toward the first sidewall of the adjacent Fin.

較佳地,步驟(a)中還包括反覆執行步驟(a-1)與(a-2)直到每一該半導體鰭狀物的第一側壁及第二側壁的摻雜層中之摻雜元素的劑量達到自飽和。 Preferably, the step (a) further comprises repeatedly performing the steps (a-1) and (a-2) until the doping element in the doped layer of the first sidewall and the second sidewall of each of the semiconductor fins The dose reaches self-saturation.

較佳地,該摻雜元素的注入方向與該基底的法線的夾角介於2°至45°,該摻雜元素的注入能量範圍介於200eV至2keV,該摻雜元素為砷、磷或硼,該濺射材料為基底元素、惰性元素及IV族元素之中的至少一種。 Preferably, the implantation direction of the doping element is between 2° and 45° from the normal of the substrate, and the implantation energy of the doping element ranges from 200 eV to 2 keV, and the doping element is arsenic, phosphorus or Boron, the sputter material is at least one of a base element, an inert element, and a group IV element.

較佳地,該基底元素為矽或鍺,該惰性元素為氖、氬、氪或氙,該IV族元素為碳、矽或鍺。 Preferably, the base element is ruthenium or osmium, and the inert element is ruthenium, argon, osmium or iridium, and the group IV element is carbon, ruthenium or osmium.

本發明之另一較佳實施例採用下述技術方案:一種鰭式場效電晶體的摻雜方法,該鰭式場效電晶體包括一基底及位於該基底上且平行間隔設置的數個半導體鰭狀物(Fin),每一半導體鰭狀物包括一頂面、一第一側壁及一第二側壁,其特徵在於該鰭式場效電晶體的摻雜方法包括以下步驟:(i)在每一該半導體鰭狀物的頂面、第一側壁及第二側壁上各形成一摻雜層;以及(ii)將一濺射材料沿著大致平形於每一該半導體鰭狀物的頂面的方向注入至相對應的該些摻雜層以減小其中之摻雜元素的濃度,其中該濺射材料的注入方向與每一該半導體鰭狀物的頂面的夾角大於0度且小於等於5度。 Another preferred embodiment of the present invention adopts the following technical solution: a doping method of a fin field effect transistor, the fin field effect transistor comprising a substrate and a plurality of semiconductor fins disposed on the substrate and arranged in parallel Fin, each of the semiconductor fins includes a top surface, a first sidewall, and a second sidewall, wherein the doping method of the fin field effect transistor comprises the following steps: (i) in each of the Forming a doped layer on each of the top surface, the first sidewall, and the second sidewall of the semiconductor fin; and (ii) implanting a sputter material in a direction substantially flat to the top surface of each of the semiconductor fins And corresponding to the doping layers to reduce the concentration of the doping element therein, wherein an angle of the sputtering material injecting direction with the top surface of each of the semiconductor fins is greater than 0 degrees and less than or equal to 5 degrees.

在該技術方案中,為了解決Fin的頂面和側壁摻雜不均勻的問題,同樣地,在完成Fin的摻雜之後增加一道注入濺射材料的製程,採用幾乎與頂面平行的注入方向將濺射材料注入於頂面的摻雜層中,濺射材料注入之後可將Fin的頂面的摻雜層302中之摻雜元素濺射掉一部分,從而提高頂面和側壁的摻雜均勻性。 In this technical solution, in order to solve the problem of uneven topping and sidewall doping of Fin, similarly, after the doping of Fin is completed, a process of implanting a sputter material is added, and an implantation direction almost parallel to the top surface is adopted. The sputtering material is implanted into the doped layer of the top surface, and the doping element in the doping layer 302 of the top surface of the Fin can be sputtered off after the sputtering material is implanted, thereby improving the doping uniformity of the top surface and the sidewall. .

較佳地,步驟(i)進一步包括以下步驟:(i-1)將一摻雜元素注入至每一該半導體鰭狀物的頂面及第一側壁;以及(i-2)將該摻雜元素注入至每一該半導體鰭狀物的頂面及第二側壁。 Preferably, the step (i) further comprises the steps of: (i-1) implanting a doping element into the top surface and the first sidewall of each of the semiconductor fins; and (i-2) doping the doping An element is implanted into the top surface and the second sidewall of each of the semiconductor fins.

較佳地,步驟(i-1)中還包括使每一該半導體鰭狀物的頂面及第一側壁的摻雜層中之摻雜元素的劑量達到自飽和,步驟(i-2)中還包括使每一該半導體鰭狀物的頂面及第二側壁的摻雜層中之摻雜元素的劑量達到自飽和。 Preferably, the step (i-1) further comprises self-saturating the dose of the doping element in the top surface of each of the semiconductor fins and the doped layer of the first sidewall, in step (i-2) The method further includes self-saturating the dose of the doping element in the doped layer of the top surface and the second sidewall of each of the semiconductor fins.

較佳地,步驟(a)中還包括反覆執行步驟(i-1)與(i-2)直到每一該半導體鰭狀物的第一側壁及第二側壁的摻雜層中之摻雜元素的劑量達到自飽和。 Preferably, the step (a) further comprises repeatedly performing the steps (i-1) and (i-2) until the doping element in the doped layer of the first sidewall and the second sidewall of each of the semiconductor fins The dose reaches self-saturation.

兩個側壁的摻雜情況具體如下,進行第一側壁的注入時:部分摻雜元素被注入至該第一側壁中以形成摻雜層;部分摻雜元素撞擊該摻雜層後濺射出該摻雜層中的摻雜元素並且濺射出的摻雜元素射向相鄰Fin的第二側壁以在相鄰Fin的第二側壁上形成沉積層,進行第二側壁的注入時:部分摻雜元素被注入至該第二側壁中以形成摻雜層;部分摻雜元素撞擊該摻雜層後濺射出該摻雜層中的摻雜元素並且濺射出的摻雜元素射向相鄰Fin的第一側壁;部分摻雜元素撞擊該沉積層後濺射出該沉積層中的摻雜元素並且濺射出的摻雜元素射向相鄰Fin的第一側壁。 The doping of the two sidewalls is specifically as follows. When the implantation of the first sidewall is performed: a part of the doping element is implanted into the first sidewall to form a doped layer; a part of the doping element strikes the doped layer and sputters the doping a doping element in the impurity layer and the sputtered doping element is directed to the second sidewall of the adjacent Fin to form a deposited layer on the second sidewall of the adjacent Fin, and when the second sidewall is implanted: the partially doped element is Injecting into the second sidewall to form a doped layer; a partially doped element impinges on the doped layer to sputter a doping element in the doped layer and the sputtered doping element is directed to the first sidewall of the adjacent Fin A portion of the doping element strikes the deposited layer to sputter the doping element in the deposited layer and the sputtered doping element is directed toward the first sidewall of the adjacent Fin.

較佳地,該摻雜元素的注入方向與該基底的法線的夾角介於2°至45°,該摻雜元素的注入能量範圍介於200eV至2keV,該摻雜元素為砷、磷或硼,該濺射材料為基底元素、惰性元素及IV族元素之中的至少一種。 Preferably, the implantation direction of the doping element is between 2° and 45° from the normal of the substrate, and the implantation energy of the doping element ranges from 200 eV to 2 keV, and the doping element is arsenic, phosphorus or Boron, the sputter material is at least one of a base element, an inert element, and a group IV element.

較佳地,該基底元素為矽或鍺,該惰性元素為氖、氬、氪或氙,該IV族元素為碳、矽或鍺。 Preferably, the base element is ruthenium or osmium, and the inert element is ruthenium, argon, osmium or iridium, and the group IV element is carbon, ruthenium or osmium.

本發明的積極進步效果在於:1.透過在完成Fin的側壁摻雜之後增加垂直注入濺射材料的方式來減小頂部的摻雜劑量或濃度,或者通過幾乎水準的注入濺射材料方式來減小頂部的摻雜劑量或濃度,從而實現Fin的頂部和側壁的摻雜均勻。 The positive progress of the present invention is as follows: 1. The doping amount or concentration of the top is reduced by increasing the vertical injection of the sputter material after doping the sidewall of the Fin, or by substantially injecting the sputter material. Doping dose or concentration of small top to achieve uniform doping of the top and sidewalls of Fin.

2.在對Fin的側壁進行注入摻雜時使側壁的摻雜劑量實現自飽和從而保證了每個側壁各個位置的摻雜是均勻的,並且保證了每根Fin的兩個側壁的摻雜也是均勻的。 2. When the doping of the sidewall of Fin is doped, the doping amount of the sidewall is self-saturated to ensure uniform doping at each position of each sidewall, and the doping of the two sidewalls of each Fin is also ensured. average.

3.由於將摻雜元素的注入能量控制在2keV以下,即低能注入,所以摻雜元素的注入深度較淺,對Fin的損傷也較小,既有利於單晶結構的保持,又改善了圓角的現象,減小了對Fin的磨損。 3. Since the implantation energy of the doping element is controlled below 2 keV, that is, low energy implantation, the implantation depth of the doping element is shallow, and the damage to Fin is also small, which is favorable for the maintenance of the single crystal structure and improves the circle. The phenomenon of the angle reduces the wear on the Fin.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

(先前技術) (previous technology)

100、200‧‧‧單元 100, 200‧‧ units

124、224‧‧‧鰭狀物 124, 224‧‧‧Fins

20‧‧‧基底 20‧‧‧Base

22‧‧‧淺溝道絕緣區域 22‧‧‧Shallow channel insulation area

(本發明) (this invention)

100‧‧‧基底 100‧‧‧Base

200‧‧‧半導體鰭狀物 200‧‧‧Semiconductor fins

301、302‧‧‧摻雜層 301, 302‧‧‧Doped layer

圖1為現有技術中Fin的一種示意圖。 Figure 1 is a schematic diagram of Fin in the prior art.

圖2為Fin的一個側壁的注入示意圖。 Figure 2 is a schematic view of the injection of a side wall of Fin.

圖3為Fin的另一個側壁的注入示意圖。 Figure 3 is a schematic view of the injection of the other side wall of Fin.

圖4為現有技術中Fin的兩個端角被磨損的示意圖。 Fig. 4 is a schematic view showing the wear of the two end angles of Fin in the prior art.

圖5至圖7為本發明實施例2的注入示意圖。 5 to 7 are schematic views of implantation according to Embodiment 2 of the present invention.

圖8為本發明實施例4的注入示意圖。 Figure 8 is a schematic view showing the injection of Embodiment 4 of the present invention.

下文中特舉數個實施例的方式進一步說明本發明,但並不因 此將本發明限制在所述的實施例範圍之中。 The invention will be further described in the following by way of several examples, but not by way of This is to limit the invention to the scope of the described embodiments.

〔實施例1〕 [Example 1]

本實施例所述的鰭式場效電晶體(FinFET)的摻雜方法中,該鰭式場效電晶體包括一基底及位於該基底上平行間隔設置的數個半導體鰭狀物(Fin),每一半導體鰭狀物包括一頂面、一第一側壁及一第二側壁,該摻雜方法包括以下步驟: In the doping method of the FinFET of the present embodiment, the Fin field effect transistor includes a substrate and a plurality of semiconductor fins (Fin) disposed in parallel on the substrate, each of The semiconductor fin includes a top surface, a first sidewall and a second sidewall. The doping method comprises the following steps:

(a)在每一該半導體鰭狀物的頂面、第一側壁及第二側壁上各形成一摻雜層;摻雜層可利用本領域的常規技術手段完成,基於Fin的豎直結構,頂面的摻雜層的摻雜濃度必然大於側壁的摻雜層的摻雜濃度。 (a) forming a doped layer on each of the top surface, the first sidewall and the second sidewall of each of the semiconductor fins; the doped layer can be completed by conventional techniques in the art, based on the vertical structure of Fin, The doping concentration of the top doped layer is necessarily greater than the doping concentration of the doped layer of the sidewall.

(b)將一濺射材料沿著該基底的法線方向注入至每一該半導體鰭狀物的頂面的摻雜層以減小其中之摻雜元素的濃度;本實施例中,濺射材料的注入深度是可調的,如此可以控制濺射材料的注入深度在頂面中的分佈,從而增加濺射的有效性;而理想化條件是,濺射材料的注入深度可與摻雜層的深度一致,如此可以有效地降低頂面中摻雜元素的濃度。該濺射材料為基底元素、惰性元素及IV族元素之中的至少一種;該基底元素為矽或鍺,該惰性元素為氖、氬、氪或氙,該IV族元素為碳、矽或鍺。 (b) implanting a sputter material along the normal direction of the substrate to the doped layer on the top surface of each of the semiconductor fins to reduce the concentration of the doping element therein; in this embodiment, sputtering The implantation depth of the material is adjustable, so that the distribution of the implantation depth of the sputter material in the top surface can be controlled, thereby increasing the effectiveness of sputtering; and ideally, the implantation depth of the sputter material can be combined with the doping layer. The depth is consistent, which can effectively reduce the concentration of doping elements in the top surface. The sputter material is at least one of a base element, an inert element, and a group IV element; the base element is ruthenium or osmium, and the inert element is ruthenium, argon, osmium or iridium, and the group IV element is carbon, ruthenium or osmium. .

〔實施例2〕 [Example 2]

請參考圖5至圖7,其中附圖標記100表示基底,附圖標記200表示Fin,本實施例之FinFET的結構與實施例1一致,本實施例之摻雜方法包括以下步驟:如圖5所示,將一摻雜元素注入至每一該半導體鰭狀物200的頂面及第一側壁,直到每一該半導體鰭狀物200的頂面及第一側壁的摻雜層301、302中之摻雜元素的劑量達到自飽和,其中附圖標記301表示第一側壁的摻雜層,附圖標記302表示表示頂面的摻雜層。此處所提及自飽和為注入的摻雜元素和濺射出的摻雜 元素相等的動態平衡狀態。 Please refer to FIG. 5 to FIG. 7 , wherein the reference numeral 100 represents a substrate, and the reference numeral 200 represents Fin. The structure of the FinFET of the embodiment is the same as that of the embodiment 1. The doping method of the embodiment includes the following steps: As shown, a doping element is implanted into the top surface and the first sidewall of each of the semiconductor fins 200 until the top surface of each of the semiconductor fins 200 and the doped layers 301, 302 of the first sidewalls The dose of the doping element is self-saturated, wherein reference numeral 301 denotes a doped layer of the first sidewall, and reference numeral 302 denotes a doped layer representing the top surface. The self-saturation referred to here is the implanted doping element and the sputtered doping The equal dynamic state of the elements.

如圖6所示,將該摻雜元素注入至每一該半導體鰭狀物200的頂面及第二側壁,直到每一該半導體鰭狀物200的頂面及第二側壁的摻雜層301、302中之摻雜元素的劑量達到自飽和,其中附圖標記301亦表示第二側壁的摻雜層,附圖標記302表示表示頂面的摻雜層。值得說明的是,為了要在第一和第二側壁上形成摻雜,摻雜元素的注入方向必然是與基底的法線呈一定角度的,如此頂面就會有兩次注入摻雜,造成頂面上的摻雜元素多於側壁上的摻雜元素。本實施例中,摻雜元素的注入能量為1keV。 As shown in FIG. 6, the doping element is implanted into the top surface and the second sidewall of each of the semiconductor fins 200 up to the top surface of each of the semiconductor fins 200 and the doped layer 301 of the second sidewall. The dose of the doping element in 302 is self-saturated, wherein reference numeral 301 also denotes a doped layer of the second sidewall, and reference numeral 302 denotes a doped layer representing the top surface. It is worth noting that in order to form doping on the first and second sidewalls, the implantation direction of the doping element must be at an angle to the normal of the substrate, so that the top surface is implanted twice, resulting in The doping elements on the top surface are more than the doping elements on the sidewalls. In this embodiment, the implantation energy of the doping element is 1 keV.

如圖7所示,在完成摻雜元素的注入後,將濺射材料沿著該基底100的法線方向注入至Fin的頂面的摻雜層302以減小其中之摻雜元素的濃度;也就是說,濺射材料注入之後可將Fin的頂面的摻雜層302中之摻雜元素濺射掉一部分,從而降低了摻雜濃度。該濺射材料為基底元素、惰性元素及IV族元素之中的至少一種;該基底元素為矽或鍺,該惰性元素為氖、氬、氪或氙,該IV族元素為碳、矽或鍺。 As shown in FIG. 7, after the implantation of the doping element is completed, the sputter material is implanted into the doped layer 302 of the top surface of the Fin along the normal direction of the substrate 100 to reduce the concentration of the doping element therein; That is to say, after the sputtering material is implanted, a part of the doping element in the doping layer 302 of the top surface of Fin can be sputtered off, thereby reducing the doping concentration. The sputter material is at least one of a base element, an inert element, and a group IV element; the base element is ruthenium or osmium, and the inert element is ruthenium, argon, osmium or iridium, and the group IV element is carbon, ruthenium or osmium. .

〔實施例3〕 [Example 3]

請複參考圖5至圖7,實施例3的基本原理與實施例2相同,不同之處在於:本實施例中並非採用兩次注入的方式,而是採用多次注入的方式,亦即多次依次實現第一側壁和第二側壁的離子注入,直到兩個側壁的摻雜層301中之摻雜元素的劑量達到自飽和,之後再執行垂直的濺射材料注入。該濺射材料為基底元素、惰性元素及IV族元素之中的至少一種;該基底元素為矽或鍺,該惰性元素為氖、氬、氪或氙,該IV族元素為碳、矽或鍺。 Referring to FIG. 5 to FIG. 7 , the basic principle of Embodiment 3 is the same as that of Embodiment 2, except that in this embodiment, instead of using two injection methods, multiple injection methods are used, that is, multiple Ion implantation of the first sidewall and the second sidewall is performed in sequence until the dose of the doping element in the doped layer 301 of the two sidewalls is self-saturated, followed by vertical sputtering material implantation. The sputter material is at least one of a base element, an inert element, and a group IV element; the base element is ruthenium or osmium, and the inert element is ruthenium, argon, osmium or iridium, and the group IV element is carbon, ruthenium or osmium. .

其餘未提及之處參照實施例2。 Reference is made to Example 2 where the rest are not mentioned.

〔實施例4〕 [Example 4]

請複參考圖5、圖6及圖8,實施例4的基本原理與實施例2相同,都是在完成摻雜元素的注入之後增加矽元素的注入,不同之處在於注入方向。 Referring to FIG. 5, FIG. 6, and FIG. 8, the basic principle of Embodiment 4 is the same as that of Embodiment 2, and the implantation of the erbium element is increased after the implantation of the doping element is completed, except for the injection direction.

首先如圖5及圖6所示,注入摻雜元素來形成頂面和側壁上的摻雜層301、302,接著如圖8所示,濺射材料沿著幾乎平行於Fin的頂面的方向注入至摻雜層302以減小其中之摻雜元素的劑量。本實施例中,該濺射材料的注入方向與每一該半導體鰭狀物的頂面的夾角為2°,濺射材料注入之後可將Fin的頂面的摻雜層302中之摻雜元素濺射掉一部分,從而提高了頂面和側壁的摻雜均勻度。 First, as shown in FIGS. 5 and 6, a doping element is implanted to form doped layers 301, 302 on the top and side walls, and then, as shown in FIG. 8, the sputter material is in a direction substantially parallel to the top surface of Fin. The doping layer 302 is implanted to reduce the dose of the doping element therein. In this embodiment, the implantation direction of the sputter material is at an angle of 2° to the top surface of each of the semiconductor fins, and the doping element in the doped layer 302 of the top surface of the Fin may be implanted after the sputter material is implanted. Part of the sputtering is sputtered to increase the doping uniformity of the top and side walls.

〔效果實施例1〕 [Effects Example 1]

首先進行As的注入,注入方向與基底的法線方向所呈夾角為10°,注入能量為250eV,初始注入的劑量為7.5e16cm-2,但是自飽和時摻雜至第一側壁和第二側壁中的摻雜劑量為2.58e15cm-2,而頂部的摻雜劑量為2.13e16cm-2First, the implantation of As is performed, the injection direction is 10° from the normal direction of the substrate, the implantation energy is 250 eV, and the initial implantation dose is 7.5e16 cm -2 , but is doped to the first sidewall and the second sidewall from saturation. The doping dose was 2.58e15 cm -2 and the doping dose at the top was 2.13e16 cm -2 .

接著,以1keV的能量垂直注入5e15cm-2的基底元素(矽)至頂面(由於是垂直注入,因此不會影響到側壁),且由於濺射作用,頂面中As的劑量減小到1.54e16cm-2Next, a base element (矽) of 5e15 cm -2 is vertically injected at an energy of 1 keV to the top surface (because it is vertical injection, so the sidewall is not affected), and the dose of As in the top surface is reduced to 1.54 due to sputtering. E16cm -2 .

由此可以看出,將頂面和側壁的劑量相除得到頂面和側壁的均勻度比值約為5:1,相比現有技術的10:1而言,有了較大的改善。 It can be seen that dividing the dose of the top and side walls results in a uniformity ratio of the top and side walls of about 5:1, which is a significant improvement over the prior art 10:1.

〔效果實施例2〕 [Effects Example 2]

首先進行As的注入,注入方向與基底的法線方向所呈夾角為20°,注入能量為250eV,初始注入的劑量為7.5e16cm-2,自飽和時摻雜至第一側壁和第二側壁中的摻雜劑量為3.33e15cm-2,而頂面中的摻雜劑量為1.83e16cm-2First, the implantation of As is performed, the injection direction is at an angle of 20° with the normal direction of the substrate, the implantation energy is 250 eV, the initial implantation dose is 7.5 e16 cm −2 , and the self-saturation is doped into the first sidewall and the second sidewall. The doping dose was 3.33e15 cm -2 and the doping amount in the top surface was 1.83e16 cm -2 .

接著,以1keV的能量垂直注入5e15cm-2的基底元素(矽)至頂面(由於是垂直注入,因此不會影響到側壁),由於濺射作用,頂面中As的劑量減小到1.22e16cm-2Next, a base element (矽) of 5e15 cm -2 is vertically injected at an energy of 1 keV to the top surface (because it is vertical injection, so the sidewall is not affected), and the dose of As in the top surface is reduced to 1.22e16 cm due to sputtering. -2 .

由此可以看出,將頂面和側壁的劑量相除得到頂面和側壁的均勻度比值約為3.7:1,相比現有技術的10:1而言,有了較大的改善。 It can be seen that dividing the doses of the top and side walls results in a uniformity ratio of the top and side walls of about 3.7:1, which is a significant improvement over the prior art 10:1.

〔效果實施例3〕 [Effects Embodiment 3]

首先進行As的注入,注入條件和效果實施例2相同,再採用矽元素沿著基底法線方向垂直注入至Fin的頂面中,與效果實施例2不同的是注入的矽元素的量為1.25e16cm-2,在濺射的作用下,最終的摻雜劑量為:頂面中:6.7642e15cm-2,側壁中:3.3339e15cm-2。由此頂面和側壁的摻雜劑量之比約為2:1。 First, the implantation of As is performed in the same manner as in the second embodiment, and the germanium element is vertically implanted into the top surface of the Fin along the normal direction of the substrate. The difference from the effect example 2 is that the amount of the germanium element implanted is 1.25. e16cm -2, under the influence of sputtering, the final dose of doping: the top surface: 6.7642e15cm -2, side walls: 3.3339e15cm -2. Thus the doping dose ratio of the top and side walls is about 2:1.

〔效果實施例4〕 [Effects Example 4]

Fin的摻雜依然參考效果實施例2,即採用As元素注入直至自飽和,之後與上述三個效果實施例不同的是,矽元素的注入並不是沿著法線方向的,而是沿著幾乎平行於基底平面的方向,在本效果實施例中矽元素的注入方向與基底平面的夾角為2°,能量為1keV,矽元素的量為8e16cm-2,在這樣幾乎平行基底的角度下,矽元素會撞擊Fin的頂面,一部分矽元素會進入Fin的頂面中,一部分矽元素會使Fin中的As被濺射出來,由此降低頂面中As的摻雜濃度,最終頂面和側壁中摻雜劑量為:頂面:1.2786e16cm-2,側壁3.3289e15cm-2。頂面和側壁之比為3.84:1。 The doping of Fin is still referred to effect example 2, that is, the injection of As element is used until self-saturation, and then different from the above three effect embodiments, the injection of germanium element is not along the normal direction, but is almost along Parallel to the plane of the substrate, in the embodiment of the effect, the angle between the injection direction of the lanthanum element and the plane of the substrate is 2°, the energy is 1 keV, and the amount of lanthanum element is 8e16 cm -2 , at such an angle of almost parallel substrate, 矽The element will hit the top surface of Fin, some of the element will enter the top surface of Fin, and some of the element will cause As in Fin to be sputtered, thereby reducing the doping concentration of As in the top surface, and finally the top and side walls. The medium doping dose is: top surface: 1.2786e16cm -2 , side wall 3.3289e15cm -2 . The ratio of top surface to side wall is 3.84:1.

〔效果實施例5〕 [Effects Example 5]

首先進行As的注入,注入方向與基底的法線方向所呈夾角為10°,注入能量為200eV,初始注入的劑量為7.5e15cm-2(分左右 兩次注入,每次注入3.25e15cm-2),但是自飽和時摻雜至第一側壁和第二側壁中的摻雜劑量為9.9e14cm-2,而頂部的摻雜劑量為5.4e15cm-2。可以看出,此時頂部的摻雜遠遠大於兩個側壁的摻雜。 First, the implantation of As is performed. The injection direction is 10° to the normal direction of the substrate, the implantation energy is 200 eV, and the initial implantation dose is 7.5e15 cm -2 (two injections per minute, each injection of 3.25e15 cm -2 ) However, the doping amount doped into the first side wall and the second side wall from saturation is 9.9e14 cm -2 , and the doping amount at the top is 5.4e15 cm-2. It can be seen that the top doping at this time is much larger than the doping of the two sidewalls.

接著,以3keV的能量垂直注入8e15cm-2的惰性元素(Ar)至頂面(由於是垂直注入,因此不會影響到側壁),由於濺射作用,頂面中As的劑量減小到1.1e15cm-2Next, an inert element (Ar) of 8e15 cm -2 is vertically injected at an energy of 3 keV to the top surface (since it is vertical injection, so the sidewall is not affected), and the dose of As in the top surface is reduced to 1.1e15 cm due to sputtering. -2 .

由此可以看出,將頂面和側壁的劑量相除得到頂面和側壁的均勻性比值約為1.11:1,相比現有技術的10:1而言,有了較大的改善。 It can be seen that the ratio of the top surface to the side wall is divided to obtain a uniformity ratio of the top surface and the side wall of about 1.11:1, which is a significant improvement over the prior art 10:1.

由於摻雜元素在注入時能量較低,本效果實施例中為200eV,因此非晶化情況也得到了改善,本效果實施例中非晶化結構的厚度(側壁上)僅為3nm。 Since the doping element has a lower energy at the time of implantation, in the present effect embodiment, it is 200 eV, and thus the amorphization condition is also improved. In the present effect embodiment, the thickness of the amorphized structure (on the side wall) is only 3 nm.

〔效果實施例6〕 [Effects Example 6]

首先進行As的注入,注入方向與基底的法線方向所呈夾角為20°,注入能量為200eV,初始注入的劑量為7.5e15cm-2(分左右兩次注入,每次注入3.25e15cm-2),自飽和時摻雜至第一側壁和第二側壁中的摻雜劑量為1.02e15cm-2,而頂面中的摻雜劑量為5.3e15cm-2First, the implantation of As is carried out. The injection direction is 20° to the normal direction of the substrate, the implantation energy is 200 eV, and the initial implantation dose is 7.5e15 cm -2 (two injections per minute, each injection of 3.25e15 cm -2 ) The doping amount doped into the first sidewall and the second sidewall from saturation is 1.02e15 cm -2 , and the doping amount in the top surface is 5.3e15 cm -2 .

接著,以3keV的能量垂直注入8e15cm-2的惰性元素(Ar)至頂面(由於是垂直注入,因此不會影響到側壁),由於濺射作用,頂面中As的劑量減小到1.1e15cm-2Next, an inert element (Ar) of 8e15 cm -2 is vertically injected at an energy of 3 keV to the top surface (since it is vertical injection, so the sidewall is not affected), and the dose of As in the top surface is reduced to 1.1e15 cm due to sputtering. -2 .

由此可以看出,將頂面和側壁的劑量相除得到頂面和側壁的均勻性比值約為1.1:1,相比現有技術的10:1而言,有了較大的改善。 It can be seen that dividing the doses of the top and side walls results in a uniformity ratio of the top and side walls of about 1.1:1, which is a significant improvement over the prior art 10:1.

〔效果實施例7〕 [Effects Example 7]

Fin的摻雜依然參考效果實施例6,即採用As元素注入直至自飽和,之後與上述兩個效果實施例不同的是,Ar元素的注入並不 是沿著法線方向的,而是沿著幾乎平行於基底平面的方向,在本效果實施例中Ar元素的注入方向與基底平面的夾角為2°,能量為3keV,Ar元素的量為2.3e17cm-2,在這樣幾乎平行基底的角度下,Ar元素會撞擊Fin的頂面,一部分Ar元素會使Fin中的As被濺射出來,由此降低頂面中As的摻雜劑量或濃度,最終頂面和側壁中摻雜劑量為:頂面:1.58e15cm-2,側壁1.02e15cm-2。頂面和側壁之比為1.55:1。 The doping of Fin is still referred to the effect of Embodiment 6, that is, the injection of As element is performed until self-saturation, and then unlike the above two effect embodiments, the injection of Ar element is not along the normal direction, but is almost along Parallel to the plane of the substrate, in the embodiment of the present embodiment, the angle of the injection of the Ar element is 2° with the plane of the substrate, the energy is 3 keV, and the amount of the Ar element is 2.3e17 cm -2 , at such an angle of almost parallel substrate, The Ar element will hit the top surface of Fin. A part of Ar will cause As in Fin to be sputtered, thereby reducing the doping amount or concentration of As in the top surface. The doping amount in the top surface and sidewall is: top surface. : 1.58e15cm -2 , side wall 1.02e15cm -2 . The ratio of top surface to side wall is 1.55:1.

〔效果實施例8〕 [Effects Example 8]

選擇矽作為基底,首先進行As的注入,注入方向與基底的法線方向所呈夾角為10°,注入能量為200eV,初始注入的劑量為7.5e15cm-2(分左右兩次注入,每次注入3.25e15cm-2),但是自飽和時摻雜至第一側壁和第二側壁中的摻雜劑量為9.9e14cm-2,而頂部的摻雜劑量為5.4e15cm-2。可以看出,此時頂部的摻雜遠遠大於兩個側壁的摻雜。 Select 矽 as the substrate, firstly implant As, the injection direction is 10° from the normal direction of the substrate, the implantation energy is 200eV, and the initial implantation dose is 7.5e15cm -2 (two injections per minute, each injection) 3.25e15cm -2 ), but the doping amount doping into the first sidewall and the second sidewall from saturation is 9.9e14cm -2 , and the doping amount at the top is 5.4e15cm -2 . It can be seen that the top doping at this time is much larger than the doping of the two sidewalls.

接著,以1keV的能量垂直注入1.2e16cm-2的IV族元素(Ge)至頂面(由於是垂直注入,因此不會影響到側壁),由於濺射作用,頂面中As的劑量減小到1.3e15cm-2Next, a 1.2e16cm -2 group IV element (Ge) is vertically implanted at a potential of 1 keV to the top surface (due to the vertical implantation, so that the sidewall is not affected), and the dose of As in the top surface is reduced by sputtering. 1.3e15cm -2 .

由此可以看出,將頂面和側壁的劑量相除得到頂面和側壁的均勻性比值約為1.31:1,相比現有技術的10:1而言,有了較大的改善。 It can be seen that the ratio of the top surface to the side wall is divided to obtain a uniformity ratio of the top surface and the side wall of about 1.31:1, which is a significant improvement over the prior art 10:1.

由於摻雜元素在注入時能量較低,本效果實施例中為200eV,因此非晶化情況也得到了改善,本效果實施例中非晶化結構的厚度(側壁上)僅為3nm。 Since the doping element has a lower energy at the time of implantation, in the present effect embodiment, it is 200 eV, and thus the amorphization condition is also improved. In the present effect embodiment, the thickness of the amorphized structure (on the side wall) is only 3 nm.

〔效果實施例9〕 [Effects Example 9]

依然採用矽作為基底,首先進行As的注入,注入方向與基底的法線方向所呈夾角為20°,注入能量為200eV,初始注入的劑量 為7.5e15cm-2(分左右兩次注入,每次注入3.25e15cm-2),自飽和時摻雜至第一側壁和第二側壁中的摻雜劑量為5.3e15cm-2,而頂面中的摻雜劑量為1.0e15cm-2The crucible is still used as the substrate. First, the implantation of As is performed. The angle between the injection direction and the normal direction of the substrate is 20°, the implantation energy is 200 eV, and the initial implantation dose is 7.5e15 cm -2 (two injections per minute). The implantation dose was 3.25e15 cm -2 ), the doping amount doped into the first side wall and the second side wall from saturation was 5.3e15 cm -2 , and the doping amount in the top surface was 1.0e15 cm -2 .

接著,以1keV的能量垂直注入1.2e16cm-2的IV族元素(Ge)至頂面(由於是垂直注入,因此不會影響到側壁),由於濺射作用,頂面中As的劑量減小到1.2e15cm-2Next, a 1.2e16cm -2 group IV element (Ge) is vertically implanted at a potential of 1 keV to the top surface (due to the vertical implantation, so that the sidewall is not affected), and the dose of As in the top surface is reduced by sputtering. 1.2e15cm -2 .

由此可以看出,將頂面和側壁的劑量相除得到頂面和側壁的均勻性比值約為1.2:1,相比現有技術的10:1而言,有了較大的改善。 It can be seen that dividing the doses of the top and side walls results in a uniformity ratio of top and side walls of about 1.2:1, which is a significant improvement over the prior art 10:1.

從上述九個效果實施例來看,頂面和側壁上摻雜的均勻性比之現有技術而言都有了較明顯的改善。 From the above nine effect embodiments, the uniformity of doping on the top and side walls is significantly improved over the prior art.

為了清楚地表達本發明的各個技術方案,圖中的各個部分並未按照比例繪製。所有效果實施例的效果資料均採用MATLAB(一種計算類比軟體)類比得到。 In the interest of clarity of the various aspects of the invention, the various parts of the figures are not drawn to scale. The effect data for all effect examples was obtained using MATLAB (a computational analog software) analogy.

雖然以上描述了本發明的具體實施方式,但是本領域的技術人員應當理解,這些僅是舉例說明,本發明的保護範圍是由所附權利要求書限定的。本領域的技術人員在不背離本發明的原理和實質的前提下,可以對這些實施方式做出多種變更或修改,但這些變更和修改均落入本發明的保護範圍。 While the invention has been described with respect to the preferred embodiments of the present invention, it is understood that the scope of the invention is defined by the appended claims. A person skilled in the art can make various changes or modifications to the embodiments without departing from the spirit and scope of the invention, and such changes and modifications fall within the scope of the invention.

100‧‧‧鰭式場效電晶體 100‧‧‧Fin field effect transistor

301、302‧‧‧摻雜層 301, 302‧‧‧Doped layer

Claims (14)

一種鰭式場效電晶體的摻雜方法,該鰭式場效電晶體包括一基底及位於該基底上且平行間隔設置的數個半導體鰭狀物(Fin),每一半導體鰭狀物包括一頂面、一第一側壁及一第二側壁,其特徵在於,該鰭式場效電晶體的摻雜方法包括以下步驟:(a)在每一該半導體鰭狀物的頂面、第一側壁及第二側壁上各形成一摻雜層;以及(b)將一濺射材料沿著該基底的法線方向注入至每一該半導體鰭狀物的頂面的摻雜層以減小其中之摻雜元素的濃度。 A method for doping a fin field effect transistor, the fin field effect transistor comprising a substrate and a plurality of semiconductor fins (Fin) disposed on the substrate and spaced apart from each other, each semiconductor fin including a top surface a first side wall and a second side wall, wherein the doping method of the fin field effect transistor comprises the steps of: (a) top surface, first side wall and second side of each of the semiconductor fins Forming a doped layer on each of the sidewalls; and (b) implanting a sputter material along a normal direction of the substrate to a doped layer on a top surface of each of the semiconductor fins to reduce doping elements therein concentration. 如請求項1所述的鰭式場效電晶體的摻雜方法,其中步驟(a)中該濺射材料的注入深度是可調的。 The doping method of the fin field effect transistor according to claim 1, wherein the implantation depth of the sputtering material in the step (a) is adjustable. 如請求項2所述的鰭式場效電晶體的摻雜方法,其中該濺射材料的注入深度與每一該半導體鰭狀物的頂面的摻雜層的深度一致。 The method of doping a fin field effect transistor according to claim 2, wherein a depth of implantation of the sputter material is consistent with a depth of a doped layer of a top surface of each of the semiconductor fins. 如請求項1所述的鰭式場效電晶體的摻雜方法,其中步驟(a)進一步包括以下步驟:(a-1)將一摻雜元素注入至每一該半導體鰭狀物的頂面及第一側壁;以及(a-2)將該摻雜元素注入至每一該半導體鰭狀物的頂面及第二側壁。 The method of doping a fin field effect transistor according to claim 1, wherein the step (a) further comprises the step of: (a-1) implanting a doping element into a top surface of each of the semiconductor fins and a first sidewall; and (a-2) implanting the doping element into a top surface and a second sidewall of each of the semiconductor fins. 如請求項4所述的鰭式場效電晶體的摻雜方法,其中步驟(a-1)中還包括使每一該半導體鰭狀物的頂面及第一側壁的摻雜層中之摻雜元素的劑量達到自飽和,步驟(a-2)中還包括使每一該半導體鰭狀物的頂面及第二側壁的摻雜層中之摻雜元素的劑量達到自飽和。 The doping method of the fin field effect transistor according to claim 4, wherein the step (a-1) further comprises doping the top surface of each of the semiconductor fins and the doping layer of the first sidewall The dose of the element is self-saturated, and step (a-2) further includes self-saturating the dose of the doping element in the doped layer of each of the top surface of the semiconductor fin and the second sidewall. 如請求項4所述的鰭式場效電晶體的摻雜方法,其中步驟(a)中還包括反覆執行步驟(a-1)與(a-2)直到每一該半導體鰭狀物的 第一側壁及第二側壁的摻雜層中之摻雜元素的劑量達到自飽和。 The doping method of the fin field effect transistor according to claim 4, wherein the step (a) further comprises repeatedly performing the steps (a-1) and (a-2) until each of the semiconductor fins The dose of the doping element in the doped layer of the first sidewall and the second sidewall reaches self-saturation. 如請求項4-6中任一項所述的鰭式場效電晶體的摻雜方法,其中該摻雜元素的注入方向與該基底的法線的夾角介於2°至45°,該摻雜元素的注入能量範圍介於200eV至2keV,該摻雜元素為砷、磷或硼,該濺射材料為基底元素、惰性元素及IV族元素之中的至少一種。 The doping method of the fin field effect transistor according to any one of claims 4-6, wherein an angle of incidence of the doping element with an angle of a normal of the substrate is between 2° and 45°, the doping The implantation energy of the element ranges from 200 eV to 2 keV, and the doping element is arsenic, phosphorus or boron, and the sputtering material is at least one of a base element, an inert element and a group IV element. 如請求項7所述的鰭式場效電晶體的摻雜方法,其中該基底元素為矽或鍺,該惰性元素為氖、氬、氪或氙,該IV族元素為碳、矽或鍺。 The doping method of the fin field effect transistor according to claim 7, wherein the base element is ruthenium or osmium, the inert element is ruthenium, argon, osmium or iridium, and the group IV element is carbon, ruthenium or osmium. 一種鰭式場效電晶體的摻雜方法,該鰭式場效電晶體包括一基底及位於該基底上且平行間隔設置的數個半導體鰭狀物(Fin),每一半導體鰭狀物包括一頂面、一第一側壁及一第二側壁,其特徵在於,該鰭式場效電晶體的摻雜方法包括以下步驟:(i)在每一該半導體鰭狀物的頂面、第一側壁及第二側壁上各形成一摻雜層;以及(ii)將一濺射材料沿著大致平形於每一該半導體鰭狀物的頂面的方向注入至相對應的該些摻雜層以減小其中之摻雜元素的濃度,其中該濺射材料的注入方向與每一該半導體鰭狀物的頂面的夾角大於0度且小於等於5度。 A method for doping a fin field effect transistor, the fin field effect transistor comprising a substrate and a plurality of semiconductor fins (Fin) disposed on the substrate and spaced apart from each other, each semiconductor fin including a top surface a first side wall and a second side wall, wherein the doping method of the fin field effect transistor comprises the steps of: (i) top surface, first side wall and second side of each of the semiconductor fins Forming a doped layer on each of the sidewalls; and (ii) implanting a sputter material into the corresponding doped layers in a direction substantially flat to the top surface of each of the semiconductor fins to reduce a concentration of the doping element, wherein an angle between an injection direction of the sputter material and a top surface of each of the semiconductor fins is greater than 0 degrees and less than or equal to 5 degrees. 如請求項9所述的鰭式場效電晶體的摻雜方法,其中步驟(i)進一步包括以下步驟:(i-1)將一摻雜元素注入至每一該半導體鰭狀物的頂面及第一側壁;以及(i-2)將該摻雜元素注入至每一該半導體鰭狀物的頂面及第二側壁。 The method of doping a fin field effect transistor according to claim 9, wherein the step (i) further comprises the step of: (i-1) implanting a doping element into a top surface of each of the semiconductor fins and a first sidewall; and (i-2) implanting the doping element into a top surface and a second sidewall of each of the semiconductor fins. 如請求項10所述的鰭式場效電晶體的摻雜方法,其中步驟(i-1) 中還包括使每一該半導體鰭狀物的頂面及第一側壁的摻雜層中之摻雜元素的劑量達到自飽和,步驟(i-2)中還包括使每一該半導體鰭狀物的頂面及第二側壁的摻雜層中之摻雜元素的劑量達到自飽和。 The doping method of the fin field effect transistor according to claim 10, wherein the step (i-1) The method further includes self-saturating the dose of the doping element in the top surface of each of the semiconductor fins and the doped layer of the first sidewall, and step (i-2) further including: each of the semiconductor fins The dose of the doping element in the top surface and the doped layer of the second sidewall is self-saturated. 如請求項10所述的鰭式場效電晶體的摻雜方法,其中步驟(a)中還包括反覆執行步驟(i-1)與(i-2)直到每一該半導體鰭狀物的第一側壁及第二側壁的摻雜層中之摻雜元素的劑量達到自飽和。 The doping method of the fin field effect transistor according to claim 10, wherein the step (a) further comprises repeatedly performing the steps (i-1) and (i-2) until the first of each of the semiconductor fins The dose of the doping element in the doped layer of the sidewall and the second sidewall is self-saturated. 如請求項10-12中任一項所述的鰭式場效電晶體的摻雜方法,其中該摻雜元素的注入方向與該基底的法線的夾角介於2°至45°,該摻雜元素的注入能量範圍介於200eV至2keV,該摻雜元素為砷、磷或硼,該濺射材料為基底元素、惰性元素及1V族元素之中的至少一種。 The method for doping a fin field effect transistor according to any one of claims 10 to 12, wherein an angle of incidence of the doping element with an angle of a normal of the substrate is between 2° and 45°, the doping The implantation energy of the element ranges from 200 eV to 2 keV, and the doping element is arsenic, phosphorus or boron, and the sputtering material is at least one of a base element, an inert element and a group 1V element. 如請求項13所述的鰭式場效電晶體的摻雜方法,其中該基底元素為矽或鍺,該惰性元素為氖、氬、氪或氙,該IV族元素為碳、矽或鍺。 The doping method of the fin field effect transistor according to claim 13, wherein the substrate element is ruthenium or osmium, the inert element is ruthenium, argon, osmium or iridium, and the group IV element is carbon, ruthenium or osmium.
TW104120710A 2015-01-08 2015-06-26 Methods for doping finfets TWI567795B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/070309 WO2016109958A1 (en) 2015-01-08 2015-01-08 Method for doping finfet
CN201510107481.0A CN106033728B (en) 2015-03-11 2015-03-11 The doping method of FinFET
CN201510107549.5A CN106033715B (en) 2015-03-11 2015-03-11 The doping method of FinFET

Publications (2)

Publication Number Publication Date
TW201626442A true TW201626442A (en) 2016-07-16
TWI567795B TWI567795B (en) 2017-01-21

Family

ID=56985163

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104120710A TWI567795B (en) 2015-01-08 2015-06-26 Methods for doping finfets

Country Status (1)

Country Link
TW (1) TWI567795B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048954A (en) * 2007-07-27 2010-05-11 파나소닉 주식회사 Semiconductor device and method for manufacturing the same
US8679960B2 (en) * 2009-10-14 2014-03-25 Varian Semiconductor Equipment Associates, Inc. Technique for processing a substrate having a non-planar surface

Also Published As

Publication number Publication date
TWI567795B (en) 2017-01-21

Similar Documents

Publication Publication Date Title
KR101897649B1 (en) Fabrication method of semiconductor device
TWI606492B (en) Plasma doping a non-planar semiconductor device
CN107710417B (en) Method for manufacturing semiconductor device
US9246006B2 (en) Recrystallization of source and drain blocks from above
TW201530622A (en) Method to process semiconductor device and method of forming fin type field effect transistor
TWI469368B (en) Direct current ion implantation for solid phase epitaxial regrowth in solar cell fabrication
KR20120003494A (en) Formation of raised source/drain on a strained thin film implanted with cold and/or molecular carbon
US20120256279A1 (en) Method of gate work function adjustment and metal gate transistor
CN104900652B (en) A kind of low-temperature polycrystalline silicon transistor array base palte and preparation method thereof, display device
TWI527091B (en) Manufacturing method of semiconductor device
US7888223B2 (en) Method for fabricating P-channel field-effect transistor (FET)
TWI567795B (en) Methods for doping finfets
CN101714529A (en) Semiconductor device and method for manufacturing the same
US11955533B2 (en) Ion implantation to reduce nanosheet gate length variation
US11205593B2 (en) Asymmetric fin trimming for fins of FinFET device
CN101350300A (en) Method for injecting ion into light dope source drain electrode
CN114242656A (en) P-type MOSFET device and preparation method thereof
WO2016109958A1 (en) Method for doping finfet
CN108630535B (en) Semiconductor structure and forming method thereof
TW201633381A (en) Doping method of FinFET
US7947559B2 (en) Method of fabricating semiconductor device
TWI567797B (en) FinFET doping method
JP6263240B2 (en) Manufacturing method of semiconductor device
CN106033715B (en) The doping method of FinFET
CN117766605A (en) Low-gain avalanche detector and manufacturing method thereof