TWI606492B - Plasma doping a non-planar semiconductor device - Google Patents

Plasma doping a non-planar semiconductor device Download PDF

Info

Publication number
TWI606492B
TWI606492B TW102136542A TW102136542A TWI606492B TW I606492 B TWI606492 B TW I606492B TW 102136542 A TW102136542 A TW 102136542A TW 102136542 A TW102136542 A TW 102136542A TW I606492 B TWI606492 B TW I606492B
Authority
TW
Taiwan
Prior art keywords
bias
planar semiconductor
semiconductor body
substrate
region
Prior art date
Application number
TW102136542A
Other languages
Chinese (zh)
Other versions
TW201432794A (en
Inventor
顏子師
鄧念濠
鄭宗南
Original Assignee
漢辰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 漢辰科技股份有限公司 filed Critical 漢辰科技股份有限公司
Publication of TW201432794A publication Critical patent/TW201432794A/en
Application granted granted Critical
Publication of TWI606492B publication Critical patent/TWI606492B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/66803Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with a step of doping the vertical sidewall, e.g. using tilted or multi-angled implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Description

非平面半導體裝置之電漿摻雜 Plasma doping of non-planar semiconductor devices

本發明係關於半導體裝置的製造,並且特別是,關於非平面半導體裝置的電漿摻雜方法。 The present invention relates to the fabrication of semiconductor devices, and more particularly to plasma doping methods for non-planar semiconductor devices.

隨半導體裝置製造者持續縮小電晶體裝置的尺寸以達成較好的電路密度及較高的表現,短通道效應,例如寄生電容及關閉狀態漏電,漸妨害電晶體裝置的特性。近來於半導體製程中,發展鰭狀場效電晶體(FinFET),例如雙閘極電晶體、三閘極電晶體及環繞式閘極電晶體,以控制如短通道效應。FinFET具有凸出於基板表面的鰭狀部分。鰭狀部分產生較長的等效通道長度,因此減少短通道效應。 As semiconductor device manufacturers continue to shrink the size of the transistor device to achieve better circuit density and higher performance, short channel effects, such as parasitic capacitance and off-state leakage, can hinder the characteristics of the transistor device. Recently, in the semiconductor process, fin field effect transistors (FinFETs), such as double gate transistors, three gate transistors, and wraparound gate transistors, have been developed to control short channel effects. The FinFET has a fin portion that protrudes from the surface of the substrate. The fin portion produces a longer equivalent channel length, thus reducing the short channel effect.

鰭狀部分定義FinFET的通道、源極/汲極區域及源極/汲極延伸區域。與傳統平面金屬氧化物半導體裝置(MOSFET)相似,FinFET裝置的通道、源極/汲極區域及源極/汲極延伸區域摻雜有雜質(即摻雜)以產生需求的電子特性。理想中,這些區域各沿鰭狀部分的高度的摻雜一 致。不良的摻雜一致性可能造成跨越閘極的高度的臨界電壓的不理想改變以及源極/汲極擊穿的問題。 The fin portion defines the channel, source/drain region, and source/drain extension region of the FinFET. Similar to conventional planar metal oxide semiconductor devices (MOSFETs), the channel, source/drain regions, and source/drain extension regions of the FinFET device are doped with impurities (ie, doped) to produce the desired electronic properties. Ideally, the doping of each of these regions along the height of the fin To. Poor doping uniformity can cause undesirable changes in the threshold voltage across the gate height and source/drain breakdown.

電漿摻雜(亦稱為電漿浸潤離子佈植)係摻雜FinFET裝置的通道、源極/汲極區域及源極/汲極延伸區域的一種方法。唯,利用電漿摻雜達成跨越鰭狀部分的高度一致摻雜的特性會具有挑戰性。電漿摻雜期間形成的電漿鞘會與鰭狀部分的尺寸非常相關,因此電漿鞘會與鰭狀部分不一致。因此,電漿摻雜會主要發生於垂直方向,而鰭狀部分的上部會比鰭狀部分的下部有較重的摻雜。 Plasma doping (also known as plasma infiltration ion implantation) is a method of doping the FinFET device's channel, source/drain regions, and source/drain extension regions. However, the use of plasma doping to achieve highly uniform doping characteristics across the fin portion can be challenging. The plasma sheath formed during plasma doping will be very dependent on the size of the fin portion, so the plasma sheath will be inconsistent with the fin portion. Therefore, the plasma doping will mainly occur in the vertical direction, and the upper portion of the fin portion will be heavierly doped than the lower portion of the fin portion.

於範例實施例中,提供基板具有非平面半導體本體形成於其上。具有非平面半導體本體的基板可置入腔室中。可含有摻雜離子的電漿可形成於腔室中。可產生第一偏壓以植入摻雜離子於非平面半導體本體的區域。可產生第二偏壓以植入摻雜離子於相同區域中。一個範例中,第一偏壓與第二偏壓可不同。 In an exemplary embodiment, a substrate is provided having a non-planar semiconductor body formed thereon. A substrate having a non-planar semiconductor body can be placed into the chamber. A plasma that can contain dopant ions can be formed in the chamber. A first bias voltage can be generated to implant a region of dopant ions in the non-planar semiconductor body. A second bias voltage can be generated to implant dopant ions in the same region. In one example, the first bias voltage and the second bias voltage can be different.

100‧‧‧摻雜系統 100‧‧‧Doping system

102‧‧‧腔室 102‧‧‧ chamber

104‧‧‧基板 104‧‧‧Substrate

106‧‧‧支撐座 106‧‧‧ support

108‧‧‧氣體板 108‧‧‧ gas plate

110‧‧‧噴頭 110‧‧‧ sprinkler

114‧‧‧配合網路 114‧‧‧With network

116‧‧‧RF偏移功率 116‧‧‧RF offset power

118‧‧‧配合網路 118‧‧‧With network

120‧‧‧電漿 120‧‧‧ Plasma

122‧‧‧電漿鞘 122‧‧‧Electrochemical sheath

124‧‧‧真空幫浦 124‧‧‧vacuum pump

126‧‧‧電極螢幕 126‧‧‧Electrode screen

128‧‧‧節流閥 128‧‧‧ throttle valve

130‧‧‧控制器 130‧‧‧ Controller

132‧‧‧處理器 132‧‧‧ processor

134‧‧‧主要記憶體 134‧‧‧ main memory

136‧‧‧儲存媒介 136‧‧‧Storage medium

138‧‧‧支持裝置 138‧‧‧Support device

300‧‧‧FinFET裝置 300‧‧‧FinFET device

302‧‧‧基板 302‧‧‧Substrate

304‧‧‧鰭狀部分 304‧‧‧Fin section

312‧‧‧通道區域 312‧‧‧Channel area

313‧‧‧源極延伸區域 313‧‧‧Source extension area

314‧‧‧源極區域 314‧‧‧ source area

315‧‧‧汲極延伸區域 315‧‧‧Bungee extension area

316‧‧‧汲極區域 316‧‧‧Bungee area

318‧‧‧電漿 318‧‧‧ Plasma

319‧‧‧深度 319‧‧‧depth

320‧‧‧電漿鞘 320‧‧‧Electrochemical sheath

321‧‧‧第一偏壓 321‧‧‧First bias

323‧‧‧第二偏壓 323‧‧‧second bias

324‧‧‧下部分 324‧‧‧ lower part

325‧‧‧深度 325‧‧ depth

326‧‧‧部分 Section 326‧‧‧

502‧‧‧基板 502‧‧‧Substrate

504‧‧‧鰭狀部分 504‧‧‧Fin section

506‧‧‧鄰接結構 506‧‧‧ Adjacent structure

508‧‧‧高度 508‧‧‧ Height

510‧‧‧臨界尺寸 510‧‧‧ critical size

511‧‧‧襯墊層 511‧‧‧ liner

512‧‧‧厚度 512‧‧‧ thickness

514‧‧‧PTS層 514‧‧‧PTS layer

515‧‧‧非連續介面 515‧‧‧ discontinuous interface

516‧‧‧深度 516‧‧‧depth

518‧‧‧電漿鞘 518‧‧‧Electrochemical sheath

520‧‧‧深度 520‧‧ depth

521‧‧‧第一偏壓 521‧‧‧First bias

522‧‧‧電漿 522‧‧‧ Plasma

523‧‧‧第二偏壓 523‧‧‧second bias

524‧‧‧箭頭 524‧‧‧ arrow

600‧‧‧FinFET裝置 600‧‧‧FinFET device

602‧‧‧基板 602‧‧‧Substrate

604‧‧‧鰭狀部分 604‧‧‧Fin section

606‧‧‧源極區域 606‧‧‧ source area

608‧‧‧汲極區域 608‧‧‧Bungee area

610‧‧‧源極延伸區域 610‧‧‧Source extension area

612‧‧‧汲極延伸區域 612‧‧‧Bungee extension area

614‧‧‧通道區域 614‧‧‧Channel area

616‧‧‧PTS層 616‧‧‧PTS layer

620‧‧‧閘極介電層 620‧‧‧ gate dielectric layer

622‧‧‧深度 622‧‧ depth

628‧‧‧介面 628‧‧" interface

第1圖係可用於電漿摻雜FinFET裝置的範例電漿摻雜系統的概要方塊圖 Figure 1 is a schematic block diagram of an exemplary plasma doping system that can be used in a plasma doped FinFET device.

第2圖係顯示電漿摻雜FinFET裝置的範例製程 Figure 2 shows an example process for a plasma doped FinFET device

第3A至3D圖係顯示於電漿摻雜FinFET裝 置的範例製程中的不同階段的範例FinFET的截面圖 3A to 3D are shown in the plasma doped FinFET package Sectional view of an example FinFET at different stages in the sample process

第4圖係顯示電漿摻雜FinFET裝置的另一範例製程 Figure 4 shows another example process for a plasma doped FinFET device.

第5A至5G圖係顯示於電漿摻雜FinFET裝置的範例製程中的不同階段的範例FinFET的截面圖 5A through 5G are cross-sectional views of exemplary FinFETs showing different stages in an exemplary process of a plasma doped FinFET device

第6A至6C圖係顯示由摻雜FinFET裝置的範例製程形成的範例FinFET裝置的截面圖 6A-6C are cross-sectional views showing an exemplary FinFET device formed by an exemplary process of a doped FinFET device

敘述電漿摻雜於非平面半導體裝置的方法。以下敘述係使所屬技術領域中具有通常知識者能夠製造並使用不同的實施例。敘述特別的裝置、方法及應用,僅作為範例。對此處敘述的範例的多樣修改對於所屬技術領域中具有通常知識者係容易且明顯的,並且此處定義的一般原則可應用至其它範例及應用,而不與不同實施例的精神及範圍背離。因此,不同實施例非為限制此後敘述並揭示的範例,而是使申請專利範圍的範圍可以被支持。例如,可敘述電漿摻雜FinFET裝置的範例製程。較理想的是,這些範例製程可另應用於與FinFET裝置不同的非平面半導體裝置,例如,非平面多閘極電晶體裝置及非平面奈米線電晶體裝置。 A method of plasma doping to a non-planar semiconductor device is described. The following description is made to enable a person of ordinary skill in the art to make and use the various embodiments. The specific devices, methods, and applications are described by way of example only. Various modifications to the examples described herein are readily and obvious to those of ordinary skill in the art, and the general principles defined herein can be applied to other examples and applications without departing from the spirit and scope of the different embodiments. . Therefore, the various embodiments are not intended to limit the examples described and disclosed herein, but the scope of the claims can be supported. For example, an exemplary process for a plasma doped FinFET device can be described. Ideally, these exemplary processes may be additionally applied to non-planar semiconductor devices other than FinFET devices, such as non-planar multi-gate transistor devices and non-planar nanowire transistor devices.

(1)電漿摻雜系統 (1) Plasma doping system

第1圖顯示可用於電漿摻雜非平面半導體裝 置的範例電漿摻雜系統100,例如FinFET裝置。範例電漿摻雜系統100可具有由圓柱側壁、基底及上蓋包圍的腔室102。可將基板104具有鰭狀部分形成於其上置入腔室102中且支撐於支撐座106上。支撐座106的溫度可由加熱及冷卻機制調整以控制基板104的溫度。 Figure 1 shows that it can be used for plasma doping of non-planar semiconductor devices. An exemplary plasma doping system 100, such as a FinFET device. The example plasma doping system 100 can have a chamber 102 surrounded by a cylindrical sidewall, a substrate, and an upper cover. The substrate 104 having a fin portion formed thereon is placed in the chamber 102 and supported on the support base 106. The temperature of the support 106 can be adjusted by heating and cooling mechanisms to control the temperature of the substrate 104.

可經由噴頭110從氣體板108提供處理氣體至腔室102。製程氣體可為包含至少一種摻雜氣體(例如,三氟化硼、二硼烷、磷化氫、五氟化磷、砷化氫等)的混合氣體及惰性氣體(例如,氦、氬、氖等)稀釋。真空幫浦124可抽取腔室102,經由節流閥128控制腔室壓力於所需的範圍(例如,2至150mT)。 Process gas can be supplied from the gas plate 108 to the chamber 102 via the showerhead 110. The process gas may be a mixed gas containing at least one doping gas (for example, boron trifluoride, diborane, phosphine, phosphorus pentafluoride, arsine, etc.) and an inert gas (for example, helium, argon, or neon). Etc.) Dilution. The vacuum pump 124 can extract the chamber 102 and control the chamber pressure to a desired range (eg, 2 to 150 mT) via the throttle valve 128.

由提供一或更多功率源至噴頭110,電漿120可由製程氣體形成於腔室102中。例如,可經由配合網路114提供射頻(RF)功率源112至噴頭110。RF功率源112可具有功率200W至10kW及頻率5至30MHz。電漿120可含有由混合氣體中的至少一種摻雜氣體形成摻雜離子。電漿120可形成於噴頭110及基板104之間且電漿鞘122可形成於電漿120及基板104之間。 By providing one or more power sources to the showerhead 110, the plasma 120 can be formed in the chamber 102 by process gases. For example, a radio frequency (RF) power source 112 can be provided to the showerhead 110 via the mating network 114. The RF power source 112 can have a power of 200W to 10 kW and a frequency of 5 to 30 MHz. The plasma 120 may contain dopant ions formed from at least one of the mixed gases. The plasma 120 may be formed between the showerhead 110 and the substrate 104 and the plasma sheath 122 may be formed between the plasma 120 and the substrate 104.

RF偏移功率116可經由配合網路118提供至支撐座106。RF偏移功率116可具有功率50至500W且頻率0.5至5MHz。RF偏移功率116可產生偏壓跨越電漿120及基板104之間的電漿鞘122。此偏壓可從電漿120中取出摻雜離子且可加速摻雜離子跨越電漿鞘122以植入基板104上的鰭狀部分。產生的偏壓越高,可植入摻 雜離子於鰭狀部分中越深。RF偏移功率116可產生100V至15kV的偏壓。偏壓可引導摻雜離子植入鰭狀部分於實質上垂直於基板104的表面的植入角度。例如,植入角度可為約0至10度相對於與基板104的表面垂直的軸。可設置可選電極螢幕126於電漿120及基板104之間。功率源(未顯示)可提供電位至電極螢幕126以加速摻雜離子跨越電漿鞘122至鰭狀部分。可傾斜電極螢幕126以引導摻雜離子於所需的植入角度進入鰭狀部分。 The RF offset power 116 can be provided to the support base 106 via the mating network 118. The RF offset power 116 can have a power of 50 to 500 W and a frequency of 0.5 to 5 MHz. The RF offset power 116 can create a bias across the plasma sheath 122 between the plasma 120 and the substrate 104. This bias can extract dopant ions from the plasma 120 and can accelerate the doping ions across the plasma sheath 122 to implant the fin portions on the substrate 104. The higher the bias generated, the implantable blend The deeper the impurity ions are in the fins. The RF offset power 116 can produce a bias voltage of 100V to 15kV. The bias can direct the implantation of dopant ions into the fin portion at an implantation angle that is substantially perpendicular to the surface of the substrate 104. For example, the implantation angle can be about 0 to 10 degrees with respect to an axis perpendicular to the surface of the substrate 104. An optional electrode screen 126 can be disposed between the plasma 120 and the substrate 104. A power source (not shown) can provide a potential to the electrode screen 126 to accelerate the doping ions across the plasma sheath 122 to the fin portion. The electrode screen 126 can be tilted to direct the dopant ions into the fin portion at the desired implantation angle.

可將控制器130耦合至電漿摻雜系統100的許多組件並控制電漿摻雜系統100以執行此處敘述的非平面半導體裝置電漿摻雜製程。控制器130的功能及特性將於之後詳細描述。 Controller 130 can be coupled to many components of plasma doping system 100 and control plasma doping system 100 to perform the non-planar semiconductor device plasma doping process described herein. The function and characteristics of the controller 130 will be described in detail later.

此處敘述的範例電漿摻雜系統100由電容耦合形成電漿120。較理想的是,非平面半導體裝置的電漿植入方法可利用任何適合的電漿摻雜系統執行。例如,電漿120也可利用電感耦合產生。也可從許多其它的電漿源配置,例如環型電漿源、螺旋電漿源、直流電漿源或遠處電漿源,提供電漿。需要了解的是,提供的參數值,例如RF功率及RF頻率,僅作為範例且亦可使用其它數值於本發明的範圍中。 The exemplary plasma doping system 100 described herein forms a plasma 120 by capacitive coupling. Preferably, the plasma implantation method of the non-planar semiconductor device can be performed using any suitable plasma doping system. For example, the plasma 120 can also be produced using inductive coupling. Plasma can also be provided from many other plasma source configurations, such as a toroidal plasma source, a spiral plasma source, a direct current plasma source, or a remote plasma source. It is to be understood that the provided parameter values, such as RF power and RF frequency, are merely exemplary and other values may be used within the scope of the present invention.

(2)非平面半導體裝置的電漿摻雜 (2) Plasma doping of non-planar semiconductor devices

參照第2圖,敘述電漿摻雜FinFET裝置的範例製程200。於製程200的步驟202,可提供基板具有鰭 狀部分形成於其上。鰭狀部分可包含通道區域、源極區域、汲極區域、源極延伸區域及汲極延伸區域。於步驟204,可將具有鰭狀部分的基板置入腔室中。於步驟206,可形成電漿於腔室中。電漿可含有摻雜離子。於步驟208,可產生第一偏壓於腔室中以將摻雜離子植入鰭狀部分的區域中。區域可包含通道區域、源極區域、汲極區域、源極延伸區域及汲極延伸區域的其中之任一。於步驟210,可產生第二偏壓於腔室中以將摻雜離子植入鰭狀部分的相同區域中。偏壓可至少部分決定摻雜離子植入鰭狀部分的深度。於一範例中,第一偏壓可與第二偏壓不同,以植入摻雜離子於鰭狀部分中的不同深度。於此種範例中,第一偏壓可大於第二偏壓。 Referring to Figure 2, an exemplary process 200 for a plasma doped FinFET device is described. In step 202 of process 200, the substrate can be provided with fins A shaped portion is formed thereon. The fin portion may include a channel region, a source region, a drain region, a source extension region, and a drain extension region. At step 204, a substrate having a fin portion can be placed into the chamber. At step 206, a plasma can be formed in the chamber. The plasma may contain dopant ions. At step 208, a first bias voltage can be generated in the chamber to implant dopant ions into the region of the fin portion. The region may include any of a channel region, a source region, a drain region, a source extension region, and a drain extension region. At step 210, a second bias voltage can be generated in the chamber to implant dopant ions into the same region of the fin portion. The bias voltage can at least partially determine the depth at which the dopant ions are implanted into the fin portion. In one example, the first bias voltage can be different than the second bias voltage to implant different depths of dopant ions in the fin portion. In such an example, the first bias voltage can be greater than the second bias voltage.

現在提供較詳細的範例製程200的敘述,參照第2圖及第3A至3D圖。第3A至3D圖係顯示FinFET裝置300於製程200中的不同階段的截面圖。於製程200的步驟202,如第3A圖中所示,可提供基板302具有鰭狀部分304形成於其上。基板302可包含任何適合用於FinFET裝置300形成的已知的基板。例如,基板302可包含單晶半導體晶圓(例如,矽、鍺、砷化鎵等)。於另一範例中,基板302可包含一或更多磊晶單晶半導體層(例如,矽、鍺、矽鍺、砷化鎵、磷化銦、砷化銦鎵等)成長於不同晶圓(矽、鍺、砷化鎵等)上。一或更多磊晶成長半導體層可作為緩衝層以使從晶圓至基板302的上表面的不同晶格常數漸層。於另一範例中,基板302可包含絕緣層 (例如,二氧化矽、氧氮化矽、高介電常數層等)於單晶半導體基板及形成的磊晶層之間,例如,絕緣層覆矽基板。值得了解的是,基板302可包含其它基板和層,例如淺溝槽隔離結構。 A more detailed description of the exemplary process 200 is now provided, with reference to Figures 2 and 3A through 3D. 3A through 3D are cross-sectional views showing different stages of the FinFET device 300 in the process 200. In step 202 of process 200, as shown in FIG. 3A, substrate 302 can be provided with fin portions 304 formed thereon. Substrate 302 can comprise any known substrate suitable for use in the formation of FinFET device 300. For example, substrate 302 can comprise a single crystal semiconductor wafer (eg, germanium, germanium, gallium arsenide, etc.). In another example, the substrate 302 may include one or more epitaxial single crystal semiconductor layers (eg, germanium, germanium, antimony, gallium arsenide, indium phosphide, indium gallium arsenide, etc.) grown on different wafers (矽, 锗, gallium arsenide, etc.). One or more epitaxially grown semiconductor layers can serve as a buffer layer to gradient different lattice constants from the wafer to the upper surface of the substrate 302. In another example, the substrate 302 can include an insulating layer (for example, cerium oxide, cerium oxynitride, high dielectric constant layer, or the like) is interposed between the single crystal semiconductor substrate and the formed epitaxial layer, for example, an insulating layer covering the substrate. It is to be appreciated that the substrate 302 can include other substrates and layers, such as shallow trench isolation structures.

基板302上的鰭狀部分304可由傳統半導體製造方法形成,例如但不限於,光微影技術、蝕刻及化學氣相沉積。鰭狀部分304可具有通道區域312設置於源極區域314及汲極區域316之間。源極延伸區域313可設置於通道區域312及源極區域314之間且汲極延伸區域315可設置於通道區域312及汲極區域316之間。鰭狀部分304可包含單晶半導體材料(例如,矽、鍺、砷化鎵等)。或是,鰭狀部分304可包含多層磊晶成長半導體材料。於此種範例中,多層磊晶成長半導體材料可形成多重奈米線的垂直陣列於通道區域中。如第3A圖中所示,鰭狀部分304可具有臨界尺寸306、高度308及長度310。於一範例中,臨界尺寸306可為5至50nm,高度308可為15至150nm,且長度可為20至1200nm。 The fin portion 304 on the substrate 302 can be formed by conventional semiconductor fabrication methods such as, but not limited to, photolithography, etching, and chemical vapor deposition. The fin portion 304 can have a channel region 312 disposed between the source region 314 and the drain region 316. The source extension region 313 may be disposed between the channel region 312 and the source region 314 and the drain extension region 315 may be disposed between the channel region 312 and the drain region 316. The fin portion 304 may comprise a single crystal semiconductor material (eg, germanium, antimony, gallium arsenide, etc.). Alternatively, fin portion 304 can comprise a plurality of epitaxially grown semiconductor materials. In such an example, the multilayer epitaxially grown semiconductor material can form a vertical array of multiple nanowires in the channel region. As shown in FIG. 3A, the fin portion 304 can have a critical dimension 306, a height 308, and a length 310. In one example, the critical dimension 306 can be 5 to 50 nm, the height 308 can be 15 to 150 nm, and the length can be 20 to 1200 nm.

於製程200的步驟204,具有鰭狀部分304的基板302可置入於腔室中。腔室可為任何適合能夠電漿佈植非平面半導體裝置的腔室,例如,第1圖中的腔室102。於步驟206且如第3B圖中所示,電漿318形成於腔室中且電漿鞘320形成於電漿318及基板302之間。如前所述,於第1圖中,電漿318可由提供製程氣體至腔室並且提供至少一功率源(例如,RF功率源)而形成。製程氣體可 包含至少一種之後在電漿318中形成摻雜離子的摻雜氣體。提供於腔室中的摻雜氣體種類可決定電漿318中形成的摻雜離子種類。例如,p型摻雜氣體,例如,二硼烷及三氟化硼形成p型摻雜離子,例如,B+、BF+、BF2+及BF3+,於電漿318中。相對的,n型摻雜氣體,例如,砷化氫及磷化氫形成n型摻雜離子,例如,P+及As+,於電漿318中。因此可選擇適當的摻雜氣體種類,以所需的摻雜離子種類電漿摻雜鰭狀部分304的區域。典型的,通道區域312當形成NMOS電晶體裝置時,植入有p型摻雜離子,以及當形成PMOS電晶體裝置時,植入有n型摻雜離子。相對的,典型的,源極/汲極區域314/316及源極/汲極延伸區域313/315,當形成PMOS電晶體裝置時,植入有p型摻雜離子,以及當形成NMOS電晶體裝置時,植入有n型摻雜離子。 In step 204 of process 200, substrate 302 having fin portion 304 can be placed in the chamber. The chamber can be any chamber suitable for plasma implanting a non-planar semiconductor device, such as chamber 102 in FIG. At step 206 and as shown in FIG. 3B, a plasma 318 is formed in the chamber and a plasma sheath 320 is formed between the plasma 318 and the substrate 302. As previously mentioned, in FIG. 1, the plasma 318 may be formed by providing a process gas to the chamber and providing at least one power source (eg, an RF power source). Process gas At least one dopant gas that subsequently forms dopant ions in the plasma 318 is included. The type of dopant gas provided in the chamber can determine the type of dopant ion formed in the plasma 318. For example, a p-type dopant gas, such as diborane and boron trifluoride, forms p-type dopant ions, such as B+, BF+, BF2+, and BF3+, in the plasma 318. In contrast, n-type dopant gases, such as arsine and phosphine, form n-type dopant ions, such as P+ and As+, in the plasma 318. Thus, a suitable dopant species can be selected to electrically dope the region of the fin portion 304 with the desired dopant species. Typically, channel region 312 is implanted with p-type dopant ions when forming an NMOS transistor device, and is implanted with n-type dopant ions when forming a PMOS transistor device. In contrast, typical, source/drain regions 314/316 and source/drain extension regions 313/315, when forming a PMOS transistor device, are implanted with p-type dopant ions, and when forming an NMOS transistor The device is implanted with n-type dopant ions.

於製程200的步驟208並參照第3C圖所示,可產生第一偏壓321於腔室中。如前述的第1圖中,第一偏壓321可由提供RF偏壓功率至支撐基板302的支撐座而產生。可產生第一偏壓321跨越電漿鞘320以從電漿318植入摻雜離子至鰭狀部分304的一或多個區域,例如,源極/汲極區域314/316、源極/汲極延伸區域313/315或通道區域312。偏壓大小至少部分決定摻雜離子可植入鰭狀部分304的深度。產生的偏壓越高,摻雜離子可植入鰭狀部分304中的深度越深。可產生第一偏壓321以將摻雜離子主要植入於鰭狀部分304中任何所需的深度。如第 3C圖中所示,可產生第一偏壓321以將摻雜離子主要植入於鰭狀部分304的下部分324中的深度319。例如,深度319可為2至50nm。於一範例中,第一偏壓321可為0.5kV至15kV。於另一範例中,第一偏壓321可為2kV至10kV。於再另一範例中,第一偏壓321可為2kV至6kV。 In step 208 of process 200 and referring to FIG. 3C, a first bias 321 can be generated in the chamber. As in the first FIG. 1 described above, the first bias 321 can be generated by providing RF bias power to the support base of the support substrate 302. A first bias 321 can be generated across the plasma sheath 320 to implant dopant ions from the plasma 318 into one or more regions of the fin portion 304, eg, source/drain regions 314/316, source/汲Polar extension region 313/315 or channel region 312. The magnitude of the bias determines, at least in part, the depth at which the dopant ions can be implanted into the fin portion 304. The higher the resulting bias voltage, the deeper the doping ions can be implanted into the fin portion 304. A first bias 321 can be created to implant dopant ions primarily at any desired depth in the fin portion 304. Such as the first As shown in FIG. 3C, a first bias 321 can be generated to implant dopant ions primarily into the depth 319 in the lower portion 324 of the fin portion 304. For example, the depth 319 can be 2 to 50 nm. In an example, the first bias voltage 321 can be 0.5 kV to 15 kV. In another example, the first bias voltage 321 can be 2 kV to 10 kV. In still another example, the first bias voltage 321 can be 2 kV to 6 kV.

電漿鞘320的尺寸相對於鰭狀部分304的尺寸可較大,其中形成於鰭狀部分304上的電漿鞘320不與鰭狀部分304一致。因此,摻雜離子可僅植入鰭狀部分304的上部,於與基板302實質上垂直的植入角度。例如,第一偏壓321可植入摻雜離子,於相對於基板302垂直的軸為約0度的植入角度植入。如前所述,植入角度可由傾斜設置於基板302上的電極螢幕於一角度控制。例如,電極螢幕可傾斜以使第一偏壓321於相對於基板302垂直的軸的第一植入角度,將摻雜離子植入鰭狀部分304中。於一範例中,第一植入角度可為0至10度。於另一範例中,第一植入角度可為0至5度。 The size of the plasma sheath 320 may be larger relative to the size of the fin portion 304, wherein the plasma sheath 320 formed on the fin portion 304 does not coincide with the fin portion 304. Thus, the dopant ions can be implanted only in the upper portion of the fin portion 304 at an implantation angle that is substantially perpendicular to the substrate 302. For example, the first bias 321 can be implanted with dopant ions implanted at an implant angle of about 0 degrees with respect to the axis perpendicular to the substrate 302. As previously mentioned, the implantation angle can be controlled at an angle by an electrode screen that is obliquely disposed on the substrate 302. For example, the electrode screen can be tilted to implant dopant ions into the fin portion 304 at a first implantation angle of the first bias 321 at an axis that is perpendicular to the substrate 302. In one example, the first implantation angle can be from 0 to 10 degrees. In another example, the first implantation angle can be 0 to 5 degrees.

於製程200的步驟210且如第3D圖中所示,可產生第二偏壓323於腔室中。可產生第二偏壓323跨越電漿鞘320以從電漿318植入摻雜離子至一或多個鰭狀部分304的相同的區域(即,源極/汲極區域、源極/汲極延伸區域或通道區域)。第二偏壓323可定義為於鰭狀部分304中植入摻雜離子至2至33nm為主的深度。第二偏壓323可與第一偏壓321不同,其中摻雜離子可植入鰭狀部 分304中的不同深度。例如,如第3D圖中所示,可產生低於第一偏壓321的第二偏壓323,其中第二偏壓323將摻雜離子植入比部分324中的深度319淺的部分326中的深度325。部分326可於部分324上或與部分324部分地重疊。於一範例中,第二偏壓323可為0.5kV至10kV。於另一範例中,第二偏壓323可為0.5kV至6kV。於再另一範例中,第二偏壓323可為0.5kV至2kV。 In step 210 of process 200 and as shown in FIG. 3D, a second bias voltage 323 can be generated in the chamber. A second bias 323 can be generated across the plasma sheath 320 to implant dopant ions from the plasma 318 to the same region of the one or more fin portions 304 (ie, source/drain regions, source/drain Extended area or channel area). The second bias voltage 323 can be defined as the implantation of dopant ions into the fin portion 304 to a depth of 2 to 33 nm. The second bias 323 can be different from the first bias 321 in which the dopant ions can be implanted into the fin Divided into different depths in 304. For example, as shown in FIG. 3D, a second bias 323 that is lower than the first bias 321 can be generated, wherein the second bias 323 implants dopant ions into the portion 326 that is shallower than the depth 319 in the portion 324. The depth is 325. Portion 326 can partially overlap portion 324 or with portion 324. In an example, the second bias voltage 323 can be 0.5 kV to 10 kV. In another example, the second bias voltage 323 can be 0.5 kV to 6 kV. In still another example, the second bias voltage 323 can be 0.5 kV to 2 kV.

第二偏壓323可植入摻雜離子至鰭狀部分304中,於實質上垂直於基板302的植入角度。或是,電極螢幕可傾斜以使第二偏壓323於相對於基板302垂直的軸的第二植入角度,將摻雜離子植入鰭狀部分304中。於一範例中,第二植入角度可為1至10度。於另一範例中,第二植入角度可為2至6度。 The second bias 323 can implant dopant ions into the fin portion 304 at an implantation angle that is substantially perpendicular to the substrate 302. Alternatively, the electrode screen can be tilted to implant dopant ions into the fin portion 304 at a second implantation angle of the second bias 323 to an axis that is perpendicular to the substrate 302. In an example, the second implantation angle can be from 1 to 10 degrees. In another example, the second implantation angle can be 2 to 6 degrees.

偏壓可影響植入鰭狀部分304中的摻雜離子的分散。分散係鰭狀部分304中的摻雜離子散佈。分散產生於水平方向(例如,沿鰭狀部分304的長度方向310)及垂直方向(例如沿鰭狀部分304的高度方向308),並且隨偏壓而增加。於不同偏壓植入摻雜離子可能造成更大的整體分散,可能造成跨越鰭狀部分304的長度310及高度308的不良摻雜一致性。於本實施例中,第一植入角度及第二植入角度可定義為減少因於不同偏壓植入造成的整體水平分散。例如,若第一偏壓321大於第二偏壓323,第一植入角度可定義為小於第二植入角度。於一此種範例中,第一偏壓321可為2至10kV且第一植入角度可為0至 2度,而第二偏壓323可為0.5至2kV且第二植入角度可為2至10度。 The bias voltage can affect the dispersion of dopant ions implanted in the fin portion 304. The doped ions in the dispersion fin portion 304 are dispersed. The dispersion occurs in a horizontal direction (eg, along the length direction 310 of the fin portion 304) and a vertical direction (eg, along the height direction 308 of the fin portion 304) and increases with bias. Implantation of dopant ions at different biases may result in greater overall dispersion, which may result in poor doping uniformity across the length 310 and height 308 of the fin portion 304. In this embodiment, the first implant angle and the second implant angle may be defined as reducing overall horizontal dispersion due to different bias implants. For example, if the first bias 321 is greater than the second bias 323, the first implant angle can be defined to be less than the second implant angle. In one such example, the first bias 321 can be 2 to 10 kV and the first implant angle can be 0 to 2 degrees, while the second bias 323 may be 0.5 to 2 kV and the second implantation angle may be 2 to 10 degrees.

亦可由於不同的偏壓植入不同種類的摻雜離子減少整體分散。由提供不同的摻雜氣體至腔室中以在電漿318中形成不同種類的摻雜離子,可植入不同種類的摻雜離子。具有較大分子量的摻雜離子種類傾向於具有較小的穿透深度及分散。為減少整體分散,可隨較高偏壓植入具有較大分子量的摻雜離子種類,而隨較低偏壓植入具有較小分子量的摻雜離子種類。例如,可植入具有較大分子量74.9的摻雜離子種類砷於較高第一偏壓2至10kV,及可植入具有較小分子量31.0的摻雜離子種類磷於較低第二偏壓0.5至2kV。 It is also possible to reduce the overall dispersion by implanting different kinds of dopant ions due to different bias voltages. Different types of dopant ions can be implanted by providing different dopant gases into the chamber to form different kinds of dopant ions in the plasma 318. Doped ion species having a larger molecular weight tend to have a smaller penetration depth and dispersion. To reduce overall dispersion, dopant species with larger molecular weights can be implanted with higher biases, while dopant species with smaller molecular weights can be implanted with lower bias. For example, a doped ion species having a larger molecular weight of 74.9 can be implanted at a higher first bias voltage of 2 to 10 kV, and a doped ion species having a smaller molecular weight of 31.0 can be implanted at a lower second bias voltage of 0.5. Up to 2kV.

較佳的是,較深的離子植入於較淺的離子植入之前植入。如此,較淺的摻雜離子植入不會被後續的較深的植入所移動位置(敲入)。例如,於製程200中,第一偏壓可大於第二偏壓,且第一偏壓可於第二偏壓之前產生。 Preferably, deeper ion implantation is implanted prior to shallower ion implantation. As such, the shallower doped ion implantation will not be moved (knocked in) by subsequent deeper implants. For example, in process 200, the first bias voltage can be greater than the second bias voltage and the first bias voltage can be generated prior to the second bias voltage.

如所述,可執行步驟210於與步驟208相同的腔室中。或是,較理想的是,步驟208及步驟210可於不同腔室中執行。例如,於步驟210,具有鰭狀部分304的基板302可置入不同於步驟208中的腔室中。可形成具有摻雜離子的電漿於不同腔室中,且可形成電漿鞘於電漿及基板302之間。而後,可產生第二偏壓跨越電漿鞘以將摻雜離子植入鰭狀部分304中。 As described, step 210 can be performed in the same chamber as step 208. Or, preferably, steps 208 and 210 can be performed in different chambers. For example, in step 210, the substrate 302 having the fin portion 304 can be placed in a different chamber than in step 208. A plasma having dopant ions can be formed in different chambers and a plasma sheath can be formed between the plasma and the substrate 302. A second bias voltage can then be generated across the plasma sheath to implant dopant ions into the fin portion 304.

較理想的是,製程200可應用於其它非平面半導體裝置,例如但不限於,非平面多閘極電晶體裝置、非平面環繞式閘極電晶體裝置及非平面奈米線電晶體裝置。例如,鰭狀部分304可由其它非平面半導體本體替代,例如,奈米線或垂直奈米線陣列。 Preferably, process 200 is applicable to other non-planar semiconductor devices such as, but not limited to, non-planar multi-gate transistor devices, non-planar wraparound gate transistor devices, and non-planar nanowire transistor devices. For example, the fin portion 304 can be replaced by other non-planar semiconductor bodies, such as a nanowire or vertical nanowire array.

參照第4圖,顯示電漿摻雜FinFET裝置的另一範例製程400。第5A至5F圖顯示製程400中的代表不同階段的FinFET裝置500的截面圖。製程400包含步驟402至416。可選擇的步驟404及406以虛線外框表示。 Referring to Figure 4, another exemplary process 400 for a plasma doped FinFET device is shown. 5A-5F show cross-sectional views of FinFET device 500 representing different stages in process 400. Process 400 includes steps 402 through 416. Optional steps 404 and 406 are indicated by dashed outlines.

於製程400的步驟402,如第5A圖中所示,可提供基板具有鰭狀部分504形成於其上。基板502可包含單晶半導體基板、一或更多磊晶成長層於不同矽晶圓上、絕緣層覆矽基板或其它任何已知的FinFET裝置可形成於上的基板。鰭狀部分504可包含源極/汲極區域、源極/汲極延伸區域及通道區域。鰭狀部分504可具有臨界尺寸510、高度508及長度(未顯示)。可形成鄰接結構506,例如遮罩、虛構特徵或鄰接鰭狀部分,鄰接於鰭狀部分504。 In step 402 of process 400, as shown in FIG. 5A, a substrate may be provided having a fin portion 504 formed thereon. Substrate 502 can comprise a single crystal semiconductor substrate, one or more epitaxially grown layers on different germanium wafers, an insulating blanket substrate, or any other substrate on which known FinFET devices can be formed. The fin portion 504 can include a source/drain region, a source/drain extension region, and a channel region. The fin portion 504 can have a critical dimension 510, a height 508, and a length (not shown). Adjacent structures 506, such as masks, fictitious features, or adjoining fins, may be formed adjacent to fin portions 504.

於製程400的可選擇步驟404且如第5B圖所示,可形成襯墊層511於鰭狀部分504上並圍繞鰭狀部分504,並且填充鰭狀部分504與鄰接結構506之間的區域。於電漿摻雜過程中,襯墊層511可阻擋摻雜離子到達基板502且防止摻雜離子重複濺鍍於鰭狀部分504的側壁。另外,襯墊層511增加鰭狀部分504中的摻雜保留度。於 鰭狀部分504的上表面上的襯墊層511的厚度512可為足夠薄,以在植入過程中不阻礙摻雜離子進入鰭狀部分504。例如,襯墊層511的厚度512可形成為0至10nm於鰭狀部分504的上表面上。另外,襯墊層511於鰭狀部分504及鄰接結構506上可具有近似平面的表面。 In an optional step 404 of process 400 and as shown in FIG. 5B, a liner layer 511 can be formed over the fin portion 504 and surrounding the fin portion 504 and fill the region between the fin portion 504 and the abutment structure 506. During the plasma doping process, the liner layer 511 blocks dopant ions from reaching the substrate 502 and prevents the dopant ions from being repeatedly sputtered onto the sidewalls of the fin portion 504. In addition, the pad layer 511 increases the doping retention in the fin portion 504. to The thickness 512 of the liner layer 511 on the upper surface of the fin portion 504 can be sufficiently thin to not hinder dopant ions from entering the fin portion 504 during implantation. For example, the thickness 512 of the pad layer 511 may be formed on the upper surface of the fin portion 504 from 0 to 10 nm. Additionally, the liner layer 511 can have an approximately planar surface on the fin portion 504 and the abutment structure 506.

襯墊層511可包含捕捉植入摻雜離子的任何材料。例如,襯墊層511可為介電材料或是內摻雜材料,例如但不限於,非摻雜氧化矽、摻雜氧化矽、氮化矽、有機材料及氧氮化矽。襯墊層511可由傳統半導體製程形成,例如化學氣相沉積、旋轉塗佈沉積、溶液凝膠沉積製程、選擇沉積製程及選擇回蝕刻製程。襯墊層511可於製程400中的步驟408及410之前形成,且可於步驟412的鰭狀部分504退火之前或之後移除。 The liner layer 511 can comprise any material that captures implanted dopant ions. For example, the liner layer 511 can be a dielectric material or an internal dopant material such as, but not limited to, undoped yttrium oxide, doped yttrium oxide, tantalum nitride, an organic material, and yttrium oxynitride. The liner layer 511 can be formed by conventional semiconductor processes such as chemical vapor deposition, spin coating deposition, solution gel deposition processes, selective deposition processes, and selective etch back processes. The liner layer 511 can be formed prior to steps 408 and 410 in the process 400 and can be removed before or after the fin portion 504 of step 412 is annealed.

於製程400的可選擇步驟406且如第5C圖所示,可形成擊穿停止(PTS)層514於鰭狀部分504中。PTS層514可形成於鰭狀部分504的源極/汲極區域、通道區域及/或源極/汲極延伸區域,以防止電子擊穿。源極/汲極區域、通道區域及/或源極/汲極延伸區域可部分重疊PTS層514。另外,PTS層514於電漿摻雜及於退火製程中,可作為阻擋或顯著阻止摻雜遷移的阻障層,因此可最小化鰭狀部分504中的摻雜的垂直分散。PTS層514可產生非連續介面515於PTS層514及鰭狀部分504的源極/汲極區域、通道區域及/或源極/汲極延伸區域之間,其中每個區域中的摻雜濃度非連續地消失。例如,可形成PTS層 514以使源極/汲極區域、通道區域及/或源極/汲極延伸區域中的面電阻(Rs)於PTS層514與源極/汲極區域、通道區域及/或源極/汲極延伸區域之間的介面515的3nm厚度,增加3個數量級。 In a selectable step 406 of process 400 and as shown in FIG. 5C, a puncture stop (PTS) layer 514 can be formed in fin portion 504. PTS layer 514 can be formed in the source/drain regions, channel regions, and/or source/drain extension regions of fin portion 504 to prevent electron breakdown. The source/drain regions, the channel regions, and/or the source/drain extension regions may partially overlap the PTS layer 514. In addition, the PTS layer 514 can act as a barrier layer that blocks or significantly prevents doping migration during plasma doping and in the annealing process, thereby minimizing the vertical dispersion of doping in the fin portion 504. The PTS layer 514 can generate a discontinuous interface 515 between the source/drain regions of the PTS layer 514 and the fin portion 504, the channel region, and/or the source/drain extension region, wherein the doping concentration in each region Disappears discontinuously. For example, a PTS layer can be formed 514 such that the surface resistance (Rs) in the source/drain region, the channel region, and/or the source/drain extension region is in the PTS layer 514 and the source/drain region, the channel region, and/or the source/汲The 3 nm thickness of the interface 515 between the pole extension regions is increased by three orders of magnitude.

由摻雜進入鰭狀部分504阻擋摻雜移動的任何種類(例如但不限於,碳、氧、氟、氮或其中的任何組合),可形成PTS層514。或是,由摻雜與植入PTS層514上方的摻雜離子種類相反的摻雜離子種類,可形成PTS層514。例如,若p型摻雜離子植入PTS層514上方的區域,PTS層514可由植入n型摻雜離子形成。可執行植入由任何適合的植入製程,例如離子束植入或電漿摻雜。於一範例中,PTS層514可形成於與製程400中的步驟412及414相同的電漿摻雜腔室中。 The PTS layer 514 can be formed by any species (such as, but not limited to, carbon, oxygen, fluorine, nitrogen, or any combination thereof) that is doped into the fin portion 504 to block doping movement. Alternatively, the PTS layer 514 can be formed by doping ion species doped opposite the dopant species implanted above the PTS layer 514. For example, if a p-type dopant ion is implanted in a region above the PTS layer 514, the PTS layer 514 can be formed by implanting n-type dopant ions. The implantable implant can be performed by any suitable implantation process, such as ion beam implantation or plasma doping. In one example, PTS layer 514 can be formed in the same plasma doping chamber as steps 412 and 414 in process 400.

PTS層514形成的深度516可形成為約等於FinFET裝置500的等效高度516。於已知的技術中,FinFET裝置500的等效通道寬度約等於兩倍的FinFET的等效高度與鰭狀部分的臨界尺寸的和。因為深度516可由植入製程控制,FinFET裝置500的等效通道寬度可由植入製程(例如,離子束植入及電漿摻雜)控制,而與鰭狀部分504實際上的高度508獨立。於一範例中,PTS層514可形成於鰭狀部分504下方的基板502中。於此種範例中,PTS層514可與鰭狀部分504的下部部分重疊。於另一範例中,PTS層514可形成於鰭狀部分504中的任何深度516。較佳的是,PTS層514可形成於大於鰭狀部分504 的臨界尺寸510的深度516。例如,PTS層514可形成於鰭狀部分504中於大於臨界尺寸510且小於鰭狀部分504的高度508的深度516。形成的PTS層514的深度516於跨越鰭狀部分504的長度可具有一致性5%或更小的百分比。 The depth 516 formed by the PTS layer 514 can be formed to be approximately equal to the equivalent height 516 of the FinFET device 500. In the known technique, the equivalent channel width of the FinFET device 500 is approximately equal to twice the sum of the equivalent height of the FinFET and the critical dimension of the fin portion. Because the depth 516 can be controlled by the implant process, the equivalent channel width of the FinFET device 500 can be controlled by the implant process (eg, ion beam implant and plasma doping), independent of the actual height 508 of the fin portion 504. In an example, the PTS layer 514 can be formed in the substrate 502 below the fin portion 504. In such an example, the PTS layer 514 can overlap the lower portion of the fin portion 504. In another example, the PTS layer 514 can be formed at any depth 516 in the fin portion 504. Preferably, the PTS layer 514 can be formed larger than the fin portion 504. The depth 510 of the critical dimension 510. For example, the PTS layer 514 can be formed in the fin portion 504 at a depth 516 that is greater than the critical dimension 510 and less than the height 508 of the fin portion 504. The depth 516 of the formed PTS layer 514 may have a uniformity percentage of 5% or less across the length of the fin portion 504.

於製程400的步驟408,具有鰭狀部分504的基板502置入腔室中。腔室可為任何適合能夠電漿摻雜的腔室,例如第1圖中的腔室102。於步驟410及如第5D圖中所示,電漿522形成於腔室中且電漿鞘518形成於電漿522及基板502之間。電漿522可含有摻雜離子。 At step 408 of process 400, substrate 502 having fin portion 504 is placed into the chamber. The chamber can be any chamber suitable for plasma doping, such as chamber 102 in Figure 1. In step 410 and as shown in FIG. 5D, a plasma 522 is formed in the chamber and a plasma sheath 518 is formed between the plasma 522 and the substrate 502. The plasma 522 can contain dopant ions.

於製程400的步驟412及如第5E圖中所示,可產生第一偏壓521於腔室中。可產生第一偏壓521以植入摻雜離子至鰭狀部分504的一或多個區域,例如源極/汲極區域、源極/汲極延伸區域或通道區域。第一偏壓521可植入摻雜離子主要至鰭狀部分504中的深度520。於一範例中,鰭狀部分504中的深度520可為2至50nm。於一範例中,第一偏壓521可為0.5kV至15kV。於另一範例中,第一偏壓521可為2kV至10kV。於再另一範例中,第一偏壓521可為2kV至6kV。第一偏壓521可植入摻雜離子至鰭狀部分504中,於與基板502實質上垂直的植入角度。例如,植入角度可為約0度。或是,電漿摻雜系統中的電極螢幕,例如第1圖中所示的電極螢幕126,可傾斜以使第一偏壓521於第一植入角度植入摻雜離子至鰭狀部分504。於一範例中,第一植入角度可為0至10 度。於另一範例中,第一植入角度可為0至5度。 In step 412 of process 400 and as shown in FIG. 5E, a first bias voltage 521 can be generated in the chamber. A first bias voltage 521 can be generated to implant dopant ions into one or more regions of the fin portion 504, such as a source/drain region, a source/drain extension region, or a channel region. The first bias 521 can implant a doping ion primarily to a depth 520 in the fin portion 504. In an example, the depth 520 in the fin portion 504 can be 2 to 50 nm. In an example, the first bias voltage 521 can be 0.5 kV to 15 kV. In another example, the first bias voltage 521 can be 2 kV to 10 kV. In still another example, the first bias voltage 521 can be 2 kV to 6 kV. The first bias 521 can implant dopant ions into the fin portion 504 at an implantation angle that is substantially perpendicular to the substrate 502. For example, the implantation angle can be about 0 degrees. Alternatively, an electrode screen in a plasma doping system, such as electrode screen 126 shown in FIG. 1, can be tilted to cause first bias 521 to implant dopant ions into fin portion 504 at a first implantation angle. . In an example, the first implantation angle can be 0 to 10 degree. In another example, the first implantation angle can be 0 to 5 degrees.

於製程400的步驟414及如第5F圖中所示,可產生第二偏壓523於腔室中。可產生第二偏壓523以植入與第一偏壓521相同種類(即p型或n型)的摻雜離子至一或多個與第一偏壓521相同的區域(即,源極/汲極區域、源極/汲極延伸區域或通道區域312)。第二偏壓523可定義以植入摻雜離子主要至鰭狀部分504中2至33nm的深度。第二偏壓523可與第一偏壓521不同,其中摻雜離子可植入鰭狀部分504中的不同深度。例如,第二偏壓523可低於第一偏壓521,其中第二偏壓523可植入摻雜離子至淺於第一偏壓521植入摻雜離子的深度。於此種範例中,由第二偏壓523植入的摻雜離子於鰭狀部分504中可與由第一偏壓521植入的摻雜離子與部分重疊。於一範例中,第二偏壓523可為0.5kV至10kV。於另一範例中,第二偏壓523可為0.5kV至6kV。於再另一範例中,第二偏壓523可為0.5kV至2kV。第二偏壓523可植入摻雜離子至鰭狀部分504中,於與基板502實質上垂直的植入角度。例如,植入角度可為約0度。或是,電極螢幕可傾斜以使第二偏壓523於第二植入角度植入摻雜離子至鰭狀部分504中。第二植入角度可約等於第一植入角度。或是第二植入角度可與第一植入角度不同。於一範例中,第二植入角度可為0至10度。於另一範例中,第二植入角度可為0至5度。 In step 414 of process 400 and as shown in FIG. 5F, a second bias 523 can be generated in the chamber. A second bias 523 can be generated to implant dopant species of the same species (ie, p-type or n-type) as the first bias 521 to one or more regions of the same first bias 521 (ie, source/ The drain region, the source/drain extension region, or the channel region 312). The second bias 523 can be defined to implant dopant ions primarily to a depth of 2 to 33 nm in the fin portion 504. The second bias 523 can be different than the first bias 521, wherein the dopant ions can be implanted at different depths in the fin portion 504. For example, the second bias 523 can be lower than the first bias 521, wherein the second bias 523 can implant dopant ions to a depth that is shallower than the first bias 521 implanted with dopant ions. In such an example, the dopant ions implanted by the second bias voltage 523 may partially overlap the dopant ions implanted by the first bias voltage 521 in the fin portion 504. In an example, the second bias voltage 523 can be 0.5 kV to 10 kV. In another example, the second bias voltage 523 can be 0.5 kV to 6 kV. In still another example, the second bias voltage 523 can be 0.5 kV to 2 kV. The second bias 523 can implant dopant ions into the fin portion 504 at an implantation angle that is substantially perpendicular to the substrate 502. For example, the implantation angle can be about 0 degrees. Alternatively, the electrode screen can be tilted to cause the second bias 523 to implant dopant ions into the fin portion 504 at the second implantation angle. The second implantation angle can be approximately equal to the first implantation angle. Or the second implantation angle may be different from the first implantation angle. In one example, the second implantation angle can be from 0 to 10 degrees. In another example, the second implantation angle can be 0 to 5 degrees.

較理想的是,可產生額外的偏壓以植入額外 的摻雜離子至鰭狀部分504中。例如,可產生第三偏壓(未顯示)。於一範例中,產生偏壓的總數(包含第一偏壓及第二偏壓)可為2至20。於另一範例中,產生偏壓的總數可為2至6。 Ideally, an additional bias voltage can be generated to implant additional Doped ions into the fin portion 504. For example, a third bias voltage (not shown) can be generated. In one example, the total number of biases generated (including the first bias and the second bias) can be from 2 to 20. In another example, the total number of biases generated can be 2 to 6.

每個額外的偏壓可植入與第一及第二偏壓相同種類(即p型或n型)的摻雜離子至一或多個與第一及第二偏壓相同的區域(即,源極/汲極區域、源極/汲極延伸區域及通道區域)。每個額外的偏壓亦可植入摻雜離子,由傾斜電漿摻雜系統中的電漿螢幕,於鰭狀部分504中於任何植入角度。另外,產生的每個偏壓可不相同。於一範例中,可產生逐漸減小的偏壓以防止植入過程中植入離子位移(敲入)。 Each additional bias voltage can implant the same type (ie, p-type or n-type) dopant ions as the first and second biases to one or more regions of the same first and second bias voltages (ie, Source/drain region, source/drain extension region, and channel region). Each additional bias can also be implanted with dopant ions from the plasma screen in the tilted plasma doping system at any implantation angle in the fin portion 504. In addition, each of the generated bias voltages may be different. In one example, a gradually decreasing bias voltage can be generated to prevent implanted ion displacement (knock-in) during implantation.

可植入摻雜離子於與偏壓成比例反向的植入角度。例如,最高的偏壓可植入摻雜離子於最小的植入角度,而最低的偏壓可植入摻雜離子於最大的植入角度。於此種範例中,偏壓及相應的植入角度可定義為最小化鰭狀部分504中的整體水平摻雜離子分散。例如,偏壓及植入角度可定義為跨越鰭狀部分504中的植入區域的高度,達成摻雜濃度一致性5%或更小的百分比。於一範例製程中,其中形成PTS層514,偏壓及植入角度可定義為跨越PTS層514形成的深度516,達成摻雜濃度一致性5%或更小的百分比。 The implantable ions can be implanted at an implantation angle that is inversely proportional to the bias voltage. For example, the highest bias can implant dopant ions at a minimum implantation angle, while the lowest bias can implant dopant ions at a maximum implantation angle. In such an example, the bias voltage and corresponding implant angle can be defined to minimize overall horizontal dopant ion dispersion in the fin portion 504. For example, the bias and implant angle can be defined as the height across the implanted region in the fin portion 504, achieving a doping concentration uniformity of 5% or less. In an exemplary process in which the PTS layer 514 is formed, the bias and implant angle can be defined as the depth 516 formed across the PTS layer 514 to achieve a doping concentration uniformity of 5% or less.

為減少整體分散,一或更多偏壓可植入具有與其它偏壓不同分子量的摻雜離子種類。例如,一或更多 高偏壓可植入相對於其它偏壓具有較高分子量的摻雜離子種類。 To reduce overall dispersion, one or more biases can be implanted with dopant species of a different molecular weight than the other biases. For example, one or more High bias voltages can implant dopant species with higher molecular weight relative to other bias voltages.

於製程400的步驟416及如第5G圖中所示,可退火鰭狀部分504。退火由箭頭524表示。於退火中,鰭狀部分504中的植入摻雜活化。另外,鰭狀部分504的植入傷害(例如,非晶化及結晶傷害)可由結晶重新成長的手段修復。於退火中,較佳的是,摻雜擴散可最小化以維持鰭狀部分504中的良好摻雜一致性。可執行退火於與製程400的步驟408、410、412或414相同的製程腔室。或是,退火可執行於分離的退火腔室。鰭狀部分504可由最小化摻雜擴散的退火製程退火。例如,鰭狀部分504可由雷射退火製程或脈衝雷射退火製程退火。於另一範例中,可退火鰭狀部分504而摻雜擴散不超過5nm。 At step 416 of process 400 and as shown in FIG. 5G, fin portion 504 may be annealed. Annealing is indicated by arrow 524. During annealing, the implant doping in the fin portion 504 is activated. In addition, implant damage (eg, amorphization and crystallization damage) of the fin portion 504 can be repaired by means of crystallization re-growth. In annealing, it is preferred that the doping diffusion be minimized to maintain good doping uniformity in the fin portion 504. Annealing may be performed in the same process chamber as step 408, 410, 412 or 414 of process 400. Alternatively, the annealing can be performed on a separate annealing chamber. The fin portion 504 can be annealed by an annealing process that minimizes doping diffusion. For example, the fin portion 504 can be annealed by a laser annealing process or a pulsed laser annealing process. In another example, the fin portion 504 can be annealed with a dopant diffusion of no more than 5 nm.

如前所述,FinFET裝置500的等效通道寬度可由植入製程控制,與鰭狀部分504的實際高度508獨立。因此,此處的電漿摻雜非平面半導體裝置的方法與製程可用於具有不同等效通道寬度於單一基板上而不需形成具有不同實際高度的鰭狀部分的FinFET裝置的製造。以此種方法,可避免昂貴的微影及圖案蝕刻步驟。例如,可提供基板502具有第一鰭狀部分及第二鰭狀部分(未顯示)形成於其上。第一鰭狀部分及第二鰭狀部分可具有約相等的鰭狀部分高度。第一鰭狀部分可形成第一FinFET裝置,且第二鰭狀部分可形成第二FinFET裝置。可形成第一PTS層於第一鰭狀部分中的第一深度,且形成第二PTS層 於第二鰭狀部分中的第二深度。第一深度及第二深度可小於或等於第一鰭狀部分及第二鰭狀部分的高度。另外,第一深度可與第二深度不同,因此第一FinFET裝置可具有與第二FinFET裝置不同的通道寬度。例如,第一FinFET裝置可具有與兩倍的第一深度及第一鰭狀部分的臨界尺寸的和約相等的第一通道寬度,而第二FinFET裝置可具有與兩倍的第二深度及第二鰭狀部分的臨界尺寸的和約相等的第二通道寬度。另外,可摻雜第一鰭狀部分及第二鰭狀部分,根據此處描述的非平面半導體裝置的電漿摻雜方法及製程。例如,可產生第一偏壓以將摻雜離子植入第一鰭狀部分的區域中及可產生第二偏壓以將摻雜離子植入第一鰭狀部分的所述區域中。而後可產生第三偏壓以將摻雜離子植入第二鰭狀部分的區域中及可產生第四偏壓以將摻雜離子植入第二鰭狀部分的所述區域中。於此種範例中,第一偏壓及第二偏壓可不同,且第三偏壓及第四偏壓可不同。 As previously mentioned, the equivalent channel width of the FinFET device 500 can be controlled by the implant process, independent of the actual height 508 of the fin portion 504. Thus, the methods and processes of plasma doped non-planar semiconductor devices herein can be used in the fabrication of FinFET devices having different equivalent channel widths on a single substrate without the need to form fin portions having different actual heights. In this way, expensive lithography and pattern etching steps can be avoided. For example, substrate 502 can be provided having a first fin portion and a second fin portion (not shown) formed thereon. The first fin portion and the second fin portion may have approximately equal fin portion heights. The first fin portion may form a first FinFET device and the second fin portion may form a second FinFET device. Forming a first depth of the first PTS layer in the first fin portion and forming a second PTS layer a second depth in the second fin portion. The first depth and the second depth may be less than or equal to the heights of the first fin portion and the second fin portion. Additionally, the first depth can be different than the second depth, such that the first FinFET device can have a different channel width than the second FinFET device. For example, the first FinFET device can have a first channel width that is about equal to twice the sum of the first depth and the critical dimension of the first fin portion, and the second FinFET device can have twice the second depth and The sum of the critical dimensions of the second fin portion is about equal to the width of the second channel. Additionally, the first fin portion and the second fin portion may be doped, according to the plasma doping method and process of the non-planar semiconductor device described herein. For example, a first bias voltage can be generated to implant dopant ions into the region of the first fin portion and a second bias voltage can be generated to implant dopant ions into the region of the first fin portion. A third bias voltage can then be generated to implant dopant ions into the region of the second fin portion and a fourth bias voltage can be generated to implant dopant ions into the region of the second fin portion. In such an example, the first bias voltage and the second bias voltage may be different, and the third bias voltage and the fourth bias voltage may be different.

較理想的是,可執行未顯示於製程400的額外半導體製程於FinFET裝置500的製程中。例如,可形成保形閘極介電層於FinFET裝置500的通道區域上,閘極電極可形成於保形閘極介電層上,並且一對側壁間隔層可形成於閘極電極的每側。完成的FinFET裝置500可為雙閘極FinFET、三閘極FinFET或環繞式閘極FinFET。 Preferably, additional semiconductor processes not shown in process 400 may be performed in the fabrication of FinFET device 500. For example, a conformal gate dielectric layer can be formed over the channel region of the FinFET device 500, a gate electrode can be formed over the conformal gate dielectric layer, and a pair of sidewall spacer layers can be formed on each side of the gate electrode. The completed FinFET device 500 can be a dual gate FinFET, a triple gate FinFET, or a wraparound gate FinFET.

另外,如前所述,較理想的是,範例製程400可應用至其它非平面半導體裝置,例如但不限於,非平面 多閘極電晶體裝置,非平面環繞式閘極電晶體裝置及非平面奈米線電晶體裝置。例如,鰭狀部分504可由其它非平面半導體本體(例如,奈米線或垂直陣列奈米線)替代,其中非平面半導體本體可由範例製程400電漿摻雜。 Additionally, as previously mentioned, it is desirable that the example process 400 be applicable to other non-planar semiconductor devices such as, but not limited to, non-planar Multi-gate transistor device, non-planar wrap gate transistor device and non-planar nanowire transistor device. For example, the fin portion 504 can be replaced by other non-planar semiconductor bodies (eg, nanowires or vertical array nanowires), wherein the non-planar semiconductor body can be plasma doped by the exemplary process 400.

參照第6A至6C圖,揭示此處由範例製程形成的範例FinFET裝置600。第6A圖敘述範例FinFET裝置600的三維截面圖。第6B圖敘述範例FinFET裝置600沿鰭狀部分604的長度的二維截面圖。第6C圖描述範例FinFET裝置600沿閘極電極618的長度的二維截面圖。於本實施例中,FinFET裝置600可具有鰭狀部分604設置於基板602上。鰭狀部分604可包含源極區域606、汲極區域608、源極延伸區域610、汲極延伸區域612及通道區域614。可設置PTS層616於鰭狀部分604中的深度622大於臨界尺寸626及小於高度624處。FinFET裝置600的通道寬度可為約等於兩倍的深度622及臨界尺寸626的和。PTS層616的深度622於跨越鰭狀部分604的長度可具有一致性5%或更低的百分比。如第6B圖中所示,源極/汲極區域606/608、源極/汲極延伸區域610/612及通道區域614可設置於PTS層616上。任一區域可部分重疊PTS層616。每個區域可摻雜至跨越深度622的濃度一致性為5%或更少的百分比。任一區域的摻雜濃度可不連續地消失於PTS層616與源極/汲極區域606/608、源極/汲極延伸區域610/612及通道區域614之間的介面628。於一範例中,任一區域的平面電阻(Rs)於介面628的厚度 3nm處增加3個數量級。閘極介電層620可設置於鰭狀部分604的通道區域614上。閘極介電層620可包含任何適合的電絕緣材料,例如但不限於,氧化矽、高介電常數介電質、氧化鉿及氧化鈦。閘極電極618可設置於閘極介電層620上。閘極電極618可包含任何適合的導電材料,例如但不限於,摻雜多晶矽、金屬、金屬氮化物、金屬矽化物、鈦、鉭及鎢。 Referring to Figures 6A through 6C, an exemplary FinFET device 600 formed herein by an exemplary process is disclosed. FIG. 6A depicts a three-dimensional cross-sectional view of an exemplary FinFET device 600. FIG. 6B depicts a two-dimensional cross-sectional view of the length of the example FinFET device 600 along the fin portion 604. FIG. 6C depicts a two-dimensional cross-sectional view of the length of the example FinFET device 600 along the gate electrode 618. In the present embodiment, the FinFET device 600 can have a fin portion 604 disposed on the substrate 602. The fin portion 604 can include a source region 606, a drain region 608, a source extension region 610, a drain extension region 612, and a channel region 614. The depth 622 of the PTS layer 616 in the fin portion 604 can be set to be greater than the critical dimension 626 and less than the height 624. The channel width of the FinFET device 600 can be approximately equal to twice the sum of the depth 622 and the critical dimension 626. The depth 622 of the PTS layer 616 may have a uniformity percentage of 5% or less across the length of the fin portion 604. As shown in FIG. 6B, source/drain regions 606/608, source/drain extension regions 610/612, and channel regions 614 may be disposed on PTS layer 616. Any region may partially overlap the PTS layer 616. Each region can be doped to a percentage consistency of 5% or less across the depth 622. The doping concentration of either region may discontinuously disappear from the interface 628 between the PTS layer 616 and the source/drain regions 606/608, the source/drain extension regions 610/612, and the channel region 614. In one example, the planar resistance (Rs) of any region is at the thickness of interface 628 Increased by 3 orders of magnitude at 3 nm. The gate dielectric layer 620 can be disposed on the channel region 614 of the fin portion 604. Gate dielectric layer 620 can comprise any suitable electrically insulating material such as, but not limited to, hafnium oxide, high dielectric constant dielectric, hafnium oxide, and titanium oxide. The gate electrode 618 can be disposed on the gate dielectric layer 620. Gate electrode 618 can comprise any suitable electrically conductive material such as, but not limited to, doped polysilicon, metal, metal nitride, metal telluride, titanium, tantalum, and tungsten.

(3)電腦應用 (3) Computer application

參照前述第1圖,電漿摻雜系統100可具有控制器130。如前所述,控制器130可耦合至電漿摻雜系統100的不同組件,並且控制電漿摻雜系統100以執行此處敘述的非平面半導體裝置的電漿植入。例如,控制器130由控制氣體面板108的質量氣流控制器(未顯示),可調整製程氣體的流動速率及提供至腔室102中的製程氣體的比率。控制器130亦由控制RF功率源112及RF偏壓功率116,可設定提供至腔室102的RF功率源及RF偏壓功率的大小及頻率。另外,控制器130可由控制功率源(未顯示)調整供應至電極螢幕126的電位。控制器130由控制電極螢幕126的傾斜,可控制摻雜離子植入基板104上的鰭狀部分的植入角度。此外,控制器130由控制真空幫浦124及節流閥128,可控制腔室102中的腔室壓力。 Referring to the first FIG. 1 described above, the plasma doping system 100 can have a controller 130. As previously mentioned, the controller 130 can be coupled to different components of the plasma doping system 100 and control the plasma doping system 100 to perform plasma implantation of the non-planar semiconductor devices described herein. For example, controller 130 is controlled by a mass airflow controller (not shown) that controls gas panel 108 to adjust the flow rate of the process gas and the ratio of process gases provided to chamber 102. The controller 130 also controls the RF power source 112 and the RF bias power 116 to set the magnitude and frequency of the RF power source and RF bias power provided to the chamber 102. Additionally, controller 130 can adjust the potential supplied to electrode screen 126 by a control power source (not shown). The controller 130 controls the implantation angle of the fin portion on the doped ion implantation substrate 104 by the inclination of the control electrode screen 126. In addition, the controller 130 controls the vacuum pump 124 and the throttle valve 128 to control the chamber pressure in the chamber 102.

控制器130可為任何的通用資料處理系統之一,可用於控制電漿摻雜系統100的不同組件。一般而言 ,控制器130可包含經由匯流排140與主要記憶體134、儲存媒介136及支撐裝置138的處理器132通訊。處理器132可為一或更多通用資料處理裝置例如微處理器、中央處理單元(CPU)等。主要記憶體134可為隨機存取記憶體(RAM)或任一其它用於暫態儲存為處理器132所執行的資訊及指令的動態記憶體。儲存媒介136可包含任何非暫態電腦可讀儲存媒介,能夠儲存電腦軟體、指令或資料,例如但不限於,硬碟、軟碟、磁帶、光碟、唯讀記憶體(ROM)或其它可移除或固定媒介。支撐裝置138可包含輸入/輸出介面或通訊介面,例如USB插槽、網路介面、乙太網、PCMCIA插槽等。支撐裝置138可允許電腦程式、軟體、資料或其它指令載入控制器130中以提供至處理器132執行。 Controller 130 can be one of any general purpose data processing systems that can be used to control different components of plasma doping system 100. Generally speaking The controller 130 can include communicating with the main memory 134, the storage medium 136, and the processor 132 of the support device 138 via the bus bar 140. Processor 132 can be one or more general purpose data processing devices such as a microprocessor, central processing unit (CPU), and the like. The primary memory 134 can be random access memory (RAM) or any other dynamic memory used to temporarily store information and instructions executed by the processor 132. The storage medium 136 can include any non-transitory computer readable storage medium capable of storing computer software, instructions or materials such as, but not limited to, hard disks, floppy disks, magnetic tapes, optical disks, read only memory (ROM) or other removable media. In addition to or fixed media. The support device 138 can include an input/output interface or a communication interface, such as a USB slot, a network interface, an Ethernet network, a PCMCIA slot, and the like. Support device 138 may allow computer programs, software, materials, or other instructions to be loaded into controller 130 for execution to processor 132 for execution.

非暫態電腦可讀儲存媒介,例如儲存媒介136或其它適合的媒介內部或外部控制器130可包含電腦可執行指令(一般稱為電腦程式碼,可群組為電腦程式的形式或其它群組),以執行此處所述的非平面半導體裝置的電漿摻雜製程的任何一或多個特徵或功能。一或更多此種電腦可執行指令,當提供至處理器132執行時,可使控制器130控制電漿摻雜系統100以執行此處所述的非平面半導體裝置的電漿摻雜製程的任何一或多個特徵或功能。 Non-transitory computer readable storage medium, such as storage medium 136 or other suitable medium internal or external controller 130 may include computer executable instructions (generally referred to as computer code, groupable in the form of computer programs or other groups) ) to perform any one or more of the features or functions of the plasma doping process of the non-planar semiconductor device described herein. One or more such computer executable instructions, when provided to processor 132 for execution, may cause controller 130 to control plasma doping system 100 to perform the plasma doping process of the non-planar semiconductor device described herein. Any one or more features or functions.

特定組件、組態、特徵及功能提供如上述,然而理想的是所屬技術領域中具有通常知識者可使用其它變化。另外,雖特徵可表示敘述與特定的實施例連結,所 屬技術領域中具有通常知識者可理解不同的技術特徵可與所述的實施例結合。又,所述的與特定的實施例連結的觀點,可單獨為之。 The specific components, configurations, features, and functions are provided as described above, but it is desirable that those skilled in the art can use other variations. In addition, although the features may indicate that the description is linked to a particular embodiment, Those of ordinary skill in the art will appreciate that various technical features can be combined with the described embodiments. Further, the above-described viewpoints associated with a specific embodiment may be separately provided.

雖已參照圖示完整敘述實施例,需要注意的是,不同改變及修改對所屬技術領域中具有通常知識者是明顯的。可認為此種改變及修改包含於如所附的申請專利範圍中定義的不同實施範圍中。 Although the embodiments have been described in detail with reference to the drawings, it should be noted that various changes and modifications may be apparent to those of ordinary skill in the art. Such changes and modifications are considered to be included in the various embodiments as defined in the appended claims.

Claims (23)

一種電漿摻雜非平面半導體裝置的方法,包含:提供基板具有第一非平面半導體本體形成於該基板上;將該基板置入腔室中;於該腔室中形成電漿,該電漿含有摻雜離子;產生第一偏壓以將摻雜離子植入該第一非平面半導體本體的區域,其中:該第一偏壓加速摻雜離子往該基板;及由該第一偏壓加速的該摻雜離子以對於與該基板正交的軸的第一植入角度被導向於該基板;及產生第二偏壓以將摻雜離子植入該區域,其中:該第二偏壓加速摻雜離子往該基板;及由該第二偏壓加速的該摻雜離子以對於該軸的第二植入角度被導向於該基板;該第一偏壓大於該第二偏壓;及該第一植入角度小於該第二植入角度。 A method of plasma doping a non-planar semiconductor device, comprising: providing a substrate having a first non-planar semiconductor body formed on the substrate; placing the substrate into a chamber; forming a plasma in the chamber, the plasma Having a dopant ion; generating a first bias to implant dopant ions into a region of the first non-planar semiconductor body, wherein: the first bias accelerates dopant ions to the substrate; and is accelerated by the first bias The dopant ions are directed to the substrate at a first implantation angle for an axis orthogonal to the substrate; and a second bias is generated to implant dopant ions into the region, wherein: the second bias is accelerated Doping ions toward the substrate; and the dopant ions accelerated by the second bias are directed to the substrate at a second implantation angle for the axis; the first bias voltage is greater than the second bias voltage; The first implantation angle is less than the second implantation angle. 如請求項1之方法,其中,該區域係至少通道區域、源極區域、汲極區域、源極延伸區域及汲極延伸區域的之一。 The method of claim 1, wherein the region is at least one of a channel region, a source region, a drain region, a source extension region, and a drain extension region. 如請求項1之方法,其中,於產生該第二偏壓之前,產生該第一偏壓。 The method of claim 1, wherein the first bias voltage is generated prior to generating the second bias voltage. 如請求項1之方法,其中,產生該第一偏壓植入第一摻雜離子種類至該區域,其中,產生該第二偏壓植入 第二摻雜離子種類至該區域,及其中,該第一摻雜離子種類具有比該第二摻雜離子種類大的分子量。 The method of claim 1, wherein the first bias is generated to implant a first dopant ion species into the region, wherein the second bias implant is generated a second dopant ion species to the region, and wherein the first dopant ion species has a molecular weight greater than the second dopant ion species. 如請求項1之方法,其中,產生該第一偏壓植入第一摻雜離子種類至該區域,其中,產生該第二偏壓植入第二摻雜離子種類至該區域,及其中,該第一摻雜離子種類具有與該第二摻雜離子種類不同的分子量。 The method of claim 1, wherein the first bias is implanted into the first dopant ion species to the region, wherein the second bias is implanted into the second dopant ion species to the region, and wherein The first dopant ion species has a different molecular weight than the second dopant ion species. 如請求項1之方法,更包含:產生第三偏壓以將摻雜離子植入該區域,其中,該第三偏壓與該第一偏壓及該第二偏壓不同。 The method of claim 1, further comprising: generating a third bias to implant dopant ions into the region, wherein the third bias is different from the first bias and the second bias. 如請求項1之方法,其中,該第一非平面半導體本體具有高度,及其中該第一偏壓、該第一植入角度、該第二偏壓及該第二植入角度定義為使達成於該區域中跨越該高度的摻雜濃度一致性係5%或更小的百分比。 The method of claim 1, wherein the first non-planar semiconductor body has a height, and wherein the first bias, the first implant angle, the second bias, and the second implant angle are defined to achieve The doping concentration uniformity across this height in this region is a percentage of 5% or less. 如請求項1之方法,更包含:於將該基板置入該腔室之前,形成襯墊層於該第一非平面半導體本體上及圍繞該第一非平面半導體本體。 The method of claim 1, further comprising: forming a liner layer on the first non-planar semiconductor body and surrounding the first non-planar semiconductor body before the substrate is placed in the chamber. 如請求項8之方法,其中,該第一非平面半導體本體具有上表面,及其中該襯墊層形成為厚度0至10奈米於該第一非平面半導體本體的該上表面上。 The method of claim 8, wherein the first non-planar semiconductor body has an upper surface, and wherein the liner layer is formed to have a thickness of 0 to 10 nm on the upper surface of the first non-planar semiconductor body. 如請求項1之方法,更包含:形成擊穿停止層。 The method of claim 1, further comprising: forming a breakdown stop layer. 如請求項10之方法,其中,該擊穿停止層形成於該基板中且於該第一非平面半導體本體正下處。 The method of claim 10, wherein the breakdown stop layer is formed in the substrate and directly below the first non-planar semiconductor body. 如請求項10之方法,其中,該第一非平面半導 體本體具有臨界尺寸及高度,及其中,該擊穿停止層形成於該第一非平面半導體本體中且於比該第一非平面半導體本體的該臨界尺寸大及比該第一非平面半導體本體的該高度小的深度。 The method of claim 10, wherein the first non-planar semiconductor The body body has a critical dimension and height, and wherein the breakdown stop layer is formed in the first non-planar semiconductor body and is larger than the critical dimension of the first non-planar semiconductor body and larger than the first non-planar semiconductor body The height is small and deep. 如請求項12之方法,其中,該第一非平面半導體裝置具有通道寬度,且其中該通道寬度係約兩倍的該擊穿停止層的深度加上該臨界尺寸。 The method of claim 12, wherein the first non-planar semiconductor device has a channel width, and wherein the channel width is about twice the depth of the breakdown stop layer plus the critical dimension. 如請求項12之方法,其中,該第一偏壓、該第一植入角度、該第二偏壓及該第二植入角度定義為使達成於該區域中跨越該擊穿停止層的該深度的摻雜濃度一致性係5%或更小的百分比。 The method of claim 12, wherein the first bias, the first implant angle, the second bias, and the second implant angle are defined such that the crossing of the breakdown stop layer is achieved in the region The depth doping concentration uniformity is a percentage of 5% or less. 如請求項12之方法,其中,該第一非平面半導體本體具有長度,且其中,該擊穿停止層的該深度具有跨越該第一非平面半導體本體的該長度的一致性係5%或更小的百分比。 The method of claim 12, wherein the first non-planar semiconductor body has a length, and wherein the depth of the breakdown stop layer has a consistency of 5% or more across the length of the first non-planar semiconductor body. a small percentage. 如請求項1之方法,其中所提供的該基板具有第二非平面半導體本體形成於該基板上,其中,該第一非平面半導體本體與該第二非平面半導體本體各具有高度,其中,該第一非平面半導體本體的該高度約等於該第二非平面半導體本體的該高度,以及更包含:形成第一擊穿停止層於該第一非平面半導體本體中且於第一深度;形成第二擊穿停止層於該第二非平面半導體本體中且 於第二深度,其中,該第一深度與該第二深度不同,及其中,該第一深度及該第二深度係小於或等於該第一非平面半導體本體的該高度與該第二非平面半導體本體的該高度;產生第三偏壓以將摻雜離子植入該第二非平面半導體本體的區域;及產生第四偏壓以將摻雜離子植入該第二非平面半導體本體的該區域,其中,該第三偏壓及該第四偏壓不同。 The method of claim 1, wherein the substrate is provided with a second non-planar semiconductor body formed on the substrate, wherein the first non-planar semiconductor body and the second non-planar semiconductor body each have a height, wherein The height of the first non-planar semiconductor body is approximately equal to the height of the second non-planar semiconductor body, and further comprising: forming a first breakdown stop layer in the first non-planar semiconductor body and at a first depth; forming a a second breakdown stop layer in the second non-planar semiconductor body and At a second depth, wherein the first depth is different from the second depth, and wherein the first depth and the second depth are less than or equal to the height of the first non-planar semiconductor body and the second non-planar The height of the semiconductor body; generating a third bias to implant dopant ions into the region of the second non-planar semiconductor body; and generating a fourth bias to implant dopant ions into the second non-planar semiconductor body a region, wherein the third bias voltage and the fourth bias voltage are different. 如請求項16之方法,其中該第一非平面半導體本體及該第二非平面半導體本體各具有臨界尺寸,其中該第一非平面半導體本體形成具有第一通道寬度的第一非平面半導體裝置及該第二非平面半導體本體形成具有第二通道寬度的第二非平面半導體裝置,及其中,該第一通道寬度係約兩倍的該第一深度加上該第一非平面半導體本體的該臨界尺寸及該第二通道寬度係約兩倍的該第二深度加上該第二非平面半導體本體的該臨界尺寸。 The method of claim 16, wherein the first non-planar semiconductor body and the second non-planar semiconductor body each have a critical dimension, wherein the first non-planar semiconductor body forms a first non-planar semiconductor device having a first channel width and The second non-planar semiconductor body forms a second non-planar semiconductor device having a second channel width, and wherein the first channel width is about twice the first depth plus the criticality of the first non-planar semiconductor body The second depth, which is approximately twice the size and width of the second channel, plus the critical dimension of the second non-planar semiconductor body. 如請求項1之方法,更包含:退火該第一非平面半導體本體。 The method of claim 1, further comprising: annealing the first non-planar semiconductor body. 如請求項1之方法,其中,該第一非平面半導體本體係鰭狀部分、奈米線及垂直奈米線陣列的之一。 The method of claim 1, wherein the first non-planar semiconductor system is one of a fin portion, a nanowire, and a vertical nanowire array. 如請求項1之方法,其中,該非平面半導體裝置係FinFET裝置、非平面多閘極電晶體裝置或非平面奈米線電晶體裝置的之一。 The method of claim 1, wherein the non-planar semiconductor device is one of a FinFET device, a non-planar multi-gate transistor device, or a non-planar nanowire transistor device. 一種電漿摻雜非平面半導體裝置的方法,包含: 提供基板具有非平面半導體本體形成於該基板上;將該基板置入腔室中;於該腔室中形成電漿,該電漿含有摻雜離子;產生第一偏壓以加速摻雜離子至該非平面半導體本體的區域;以於第一傾斜角度設置電極螢幕於該腔室中,以使由該第一偏壓加速的該摻雜離子以對於與該基板正交的軸的第一植入角度被植入該區域;產生第二偏壓以加速摻雜離子至該區域,其中該第二偏壓小於該第一偏壓;及以於第二傾斜角度設置該電極螢幕於該腔室中,以使由該第二偏壓加速的該摻雜離子以對於該軸的第二植入角度被植入該基板,其中該第二植入角度大於該第一植入角度。 A method of plasma doping a non-planar semiconductor device, comprising: Providing a substrate having a non-planar semiconductor body formed on the substrate; placing the substrate into a chamber; forming a plasma in the chamber, the plasma containing dopant ions; generating a first bias to accelerate dopant ions to An area of the non-planar semiconductor body; the electrode screen is disposed in the chamber at a first tilt angle such that the dopant ions accelerated by the first bias are first implanted on an axis orthogonal to the substrate An angle is implanted in the region; a second bias is generated to accelerate dopant ions to the region, wherein the second bias is less than the first bias; and the electrode screen is disposed in the chamber at a second tilt angle The dopant ions accelerated by the second bias are implanted into the substrate at a second implantation angle for the axis, wherein the second implantation angle is greater than the first implantation angle. 如請求項21之方法,其中:該第一偏壓加速第一種類的摻雜離子至該區域;該第二偏壓加速第二種類的摻雜離子至該區域;及該第一種類的該摻雜離子具有的分子量比該第二種類的該摻雜離子的分子量大。 The method of claim 21, wherein: the first bias accelerates the dopant of the first species to the region; the second bias accelerates the dopant of the second species to the region; and the first species The dopant ions have a molecular weight greater than the molecular weight of the dopant ions of the second species. 一種電漿摻雜非平面半導體裝置的方法,包含:提供基板具有非平面半導體本體形成於該基板上;使用離子植入製程形成擊穿停止層於該非平面半導體本體中;將該基板置入腔室中; 於該腔室中形成電漿,該電漿含有摻雜離子;產生第一偏壓以加速摻雜離子至該非平面半導體本體的區域,其中由該第一偏壓加速的該摻雜離子以對於與該基板正交的軸的第一植入角度被導向於該基板;及產生第二偏壓以加速摻雜離子至該區域,其中:由該第二偏壓加速的該摻雜離子以對於該軸的第二植入角度被導向於該基板;該第一偏壓大於該第二偏壓;及該第一植入角度小於該第二植入角度。 A method of plasma-doping a non-planar semiconductor device, comprising: providing a substrate having a non-planar semiconductor body formed on the substrate; forming a breakdown stop layer in the non-planar semiconductor body using an ion implantation process; placing the substrate into the cavity In the room; Forming a plasma in the chamber, the plasma containing dopant ions; generating a first bias to accelerate doping ions to a region of the non-planar semiconductor body, wherein the dopant ions accelerated by the first bias are a first implantation angle of the axis orthogonal to the substrate is directed to the substrate; and a second bias is generated to accelerate dopant ions to the region, wherein: the dopant ions accelerated by the second bias are A second implantation angle of the shaft is directed to the substrate; the first bias is greater than the second bias; and the first implant angle is less than the second implant angle.
TW102136542A 2012-10-09 2013-10-09 Plasma doping a non-planar semiconductor device TWI606492B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/648,127 US9006065B2 (en) 2012-10-09 2012-10-09 Plasma doping a non-planar semiconductor device

Publications (2)

Publication Number Publication Date
TW201432794A TW201432794A (en) 2014-08-16
TWI606492B true TWI606492B (en) 2017-11-21

Family

ID=50432065

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102136542A TWI606492B (en) 2012-10-09 2013-10-09 Plasma doping a non-planar semiconductor device

Country Status (4)

Country Link
US (1) US9006065B2 (en)
JP (1) JP6306313B2 (en)
KR (1) KR20140045899A (en)
TW (1) TWI606492B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823060B1 (en) * 2013-02-20 2014-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for inducing strain in FinFET channels
US9214555B2 (en) 2013-03-12 2015-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Barrier layer for FinFET channels
US8999792B2 (en) * 2013-03-15 2015-04-07 Qualcomm Incorporated Fin-type semiconductor device
US9431512B2 (en) * 2014-06-18 2016-08-30 Globalfoundries Inc. Methods of forming nanowire devices with spacers and the resulting devices
US9490340B2 (en) 2014-06-18 2016-11-08 Globalfoundries Inc. Methods of forming nanowire devices with doped extension regions and the resulting devices
US9941406B2 (en) * 2014-08-05 2018-04-10 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with source/drain cladding
CN106575671A (en) * 2014-09-19 2017-04-19 英特尔公司 Apparatus and methods to create a doped sub-structure to reduce leakage in microelectronic transistors
US9954107B2 (en) 2015-05-05 2018-04-24 International Business Machines Corporation Strained FinFET source drain isolation
US10903210B2 (en) * 2015-05-05 2021-01-26 International Business Machines Corporation Sub-fin doped bulk fin field effect transistor (FinFET), Integrated Circuit (IC) and method of manufacture
US9698225B2 (en) * 2015-07-07 2017-07-04 International Business Machines Corporation Localized and self-aligned punch through stopper doping for finFET
US9847388B2 (en) * 2015-09-01 2017-12-19 International Business Machines Corporation High thermal budget compatible punch through stop integration using doped glass
KR102427596B1 (en) 2015-09-03 2022-07-29 삼성전자주식회사 Semiconductor device and method for fabricating the same
US9368569B1 (en) 2015-09-21 2016-06-14 International Business Machines Corporation Punch through stopper for semiconductor device
CN106558544B (en) * 2015-09-29 2019-11-08 中国科学院微电子研究所 Method, semi-conductor device manufacturing method
CN107369712A (en) * 2016-05-13 2017-11-21 上海新昇半导体科技有限公司 Semiconductor structure and forming method thereof
US10460941B2 (en) * 2016-11-08 2019-10-29 Varian Semiconductor Equipment Associates, Inc. Plasma doping using a solid dopant source
EP3514821B1 (en) * 2018-01-18 2020-05-27 Laser Systems & Solutions of Europe Method of laser irradiation of a patterned semiconductor device
US11380548B2 (en) * 2019-12-30 2022-07-05 Taiwan Semiconductor Manufacturing Company Ltd. Method of manufacturing semiconductor structure through multi-implantation to fin structures

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118255A (en) * 2000-07-31 2002-04-19 Toshiba Corp Semiconductor device and manufacturing method thereof
US7074656B2 (en) * 2003-04-29 2006-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Doping of semiconductor fin devices
JP2005064500A (en) * 2003-08-14 2005-03-10 Samsung Electronics Co Ltd Multi-structured silicon fin and manufacturing method for the same
US6881967B1 (en) * 2004-01-22 2005-04-19 Axcelis Technologies, Inc. Method of correction for wafer crystal cut error in semiconductor processing
US20070084564A1 (en) * 2005-10-13 2007-04-19 Varian Semiconductor Equipment Associates, Inc. Conformal doping apparatus and method
US7655989B2 (en) * 2006-11-30 2010-02-02 International Business Machines Corporation Triple gate and double gate finFETs with different vertical dimension fins
US20090004836A1 (en) * 2007-06-29 2009-01-01 Varian Semiconductor Equipment Associates, Inc. Plasma doping with enhanced charge neutralization
US9123509B2 (en) * 2007-06-29 2015-09-01 Varian Semiconductor Equipment Associates, Inc. Techniques for plasma processing a substrate
WO2009116015A1 (en) * 2008-03-20 2009-09-24 Nxp B.V. Finfet transistor with high-voltage capability and cmos-compatible method for fabricating the same
JP2010010417A (en) * 2008-06-27 2010-01-14 Panasonic Corp Plasma doping method and plasma doping device
US8329055B2 (en) * 2008-10-02 2012-12-11 Varian Semiconductor Equipment Associates, Inc. Plasma uniformity control using biased array
JP5424299B2 (en) * 2008-12-16 2014-02-26 国立大学法人東北大学 Ion implantation apparatus, ion implantation method, and semiconductor device
US8202792B2 (en) * 2009-04-24 2012-06-19 Varian Semiconductor Equipment Associates, Inc. Method of processing a substrate having a non-planar surface
US8440517B2 (en) * 2010-10-13 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET and method of fabricating the same
US8679960B2 (en) * 2009-10-14 2014-03-25 Varian Semiconductor Equipment Associates, Inc. Technique for processing a substrate having a non-planar surface
US8313999B2 (en) * 2009-12-23 2012-11-20 Intel Corporation Multi-gate semiconductor device with self-aligned epitaxial source and drain
US8513723B2 (en) * 2010-01-19 2013-08-20 International Business Machines Corporation Method and structure for forming high performance MOS capacitor along with fully depleted semiconductor on insulator devices on the same chip
US8785286B2 (en) * 2010-02-09 2014-07-22 Taiwan Semiconductor Manufacturing Company, Ltd. Techniques for FinFET doping
US20120000421A1 (en) * 2010-07-02 2012-01-05 Varian Semicondutor Equipment Associates, Inc. Control apparatus for plasma immersion ion implantation of a dielectric substrate
US20120263887A1 (en) * 2011-04-13 2012-10-18 Varian Semiconductor Equipment Associates, Inc. Technique and apparatus for ion-assisted atomic layer deposition
US8420459B1 (en) * 2011-10-20 2013-04-16 International Business Machines Corporation Bulk fin-field effect transistors with well defined isolation
US8604548B2 (en) * 2011-11-23 2013-12-10 United Microelectronics Corp. Semiconductor device having ESD device

Also Published As

Publication number Publication date
US9006065B2 (en) 2015-04-14
KR20140045899A (en) 2014-04-17
US20140097487A1 (en) 2014-04-10
JP6306313B2 (en) 2018-04-04
JP2014090166A (en) 2014-05-15
TW201432794A (en) 2014-08-16

Similar Documents

Publication Publication Date Title
TWI606492B (en) Plasma doping a non-planar semiconductor device
TWI594300B (en) A method for doping a non-planar semiconductor device
KR101822267B1 (en) Forming punch-through stopper regions in finfet devices
US8004045B2 (en) Semiconductor device and method for producing the same
US5970353A (en) Reduced channel length lightly doped drain transistor using a sub-amorphous large tilt angle implant to provide enhanced lateral diffusion
KR101172853B1 (en) Methods of forming semiconductor device
US10985276B2 (en) Method and device having low contact resistance
US9865505B2 (en) Method for reducing N-type FinFET source and drain resistance
US9577040B2 (en) FinFET conformal junction and high epi surface dopant concentration method and device
KR20070071111A (en) Recess gate transistor structure and manufacturing forming method thereof
US10269972B2 (en) Fin-FET devices and fabrication methods thereof
TWI402945B (en) Method for fabricating semiconductor device having bulb-type recessed channel
CN109427585B (en) Semiconductor device and method for manufacturing the same
US11205593B2 (en) Asymmetric fin trimming for fins of FinFET device
US9559176B2 (en) FinFET conformal junction and abrupt junction with reduced damage method and device
CN116246959A (en) Fin field effect transistor semiconductor device and forming method thereof
US20160133711A1 (en) Method of fabricating source/drain region and semiconductor structure having source/drain region fabricated by the same
KR20070058804A (en) Methods of forming semiconductor device
KR20100113331A (en) Method of fabricating semiconductor device