TW201624741A - Crystalline silicon solar energy chip with low specular gloss and low reflectivity - Google Patents

Crystalline silicon solar energy chip with low specular gloss and low reflectivity Download PDF

Info

Publication number
TW201624741A
TW201624741A TW104121203A TW104121203A TW201624741A TW 201624741 A TW201624741 A TW 201624741A TW 104121203 A TW104121203 A TW 104121203A TW 104121203 A TW104121203 A TW 104121203A TW 201624741 A TW201624741 A TW 201624741A
Authority
TW
Taiwan
Prior art keywords
low
scale
micron
item
wafer
Prior art date
Application number
TW104121203A
Other languages
Chinese (zh)
Other versions
TWI623109B (en
Inventor
Wei-Cheng Lai
jin-yuan Liu
Shao-Yi Jiang
Zheng-Zhang Luo
chuan-ming Zeng
Wen-Long Zheng
jia-bin Zhuang
Zong-Yuan Li
Original Assignee
Giga Solar Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giga Solar Materials Corp filed Critical Giga Solar Materials Corp
Priority to TW104121203A priority Critical patent/TWI623109B/en
Publication of TW201624741A publication Critical patent/TW201624741A/en
Application granted granted Critical
Publication of TWI623109B publication Critical patent/TWI623109B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A crystalline silicon solar energy chip with low specular gloss and low reflectivity is disclosed, which comprises: a chip body; a micro-scale structure formed by a roughening treatment for plural micro-scale pores to distribute on the surface of chip body in a pore array; and a nano-scale structure formed by a roughening treatment for plural nano-scale pores to disperse uniformly in the micro-scale structure and the local surface of the chip body, thereby forming a multi-scale texture, and forming a composite structure with the micro-scale structure. Accordingly, the micro-scale pore arrangement structure is applied by the present invention as the substrate to reduce the surface specular gloss (85 DEG < 50 G.U.), and the nano-scale pore-like surface structure is etched on the substrate to form the multi-scale texture, thereby forming the composite structure to reduce the surface reflectivity of wafer.

Description

具有低光澤率與低反射率結晶矽太陽能矽晶片Crystalline germanium wafer with low gloss and low reflectivity

本發明 係有關於一種具有低光澤率與低反射率結晶矽太陽能矽晶片,尤指涉及一種以微米級(micro-scale)孔形排列結構作為基底降低晶圓表面光澤度,再於基底上蝕刻奈米級(nano-scale)孔狀表面結構而形成多重尺度(multi-scale)之粗糙化,形成複合結構(composited structure)以降低晶圓表面反射率者。The invention relates to a crystalline germanium solar germanium wafer with low gloss and low reflectivity, in particular to a micro-scale pore-shaped arrangement as a substrate for reducing the surface gloss of the wafer, and then etching on the substrate. A nano-scale pore-like surface structure forms a multi-scale roughening, forming a composite structure to reduce the surface reflectance of the wafer.

目前商用太陽能電池主流為結晶矽太陽能電池,分為單晶矽(c-Si)、類單晶(mono-like c-Si)以及多晶(m-Si)結晶矽太陽能電池,其中由多晶矽晶圓製成之多晶矽太陽能電池,其晶圓以及電池製作程序快速,成本相較於單晶結晶矽太陽能電池低廉,目前為商業用太陽能電池市占最高之產品。而類單晶結晶矽太陽能電池,雖然已被證實相對於多晶太陽能電池有較高之光電轉換效率,惟其表面外觀不均一直是限制其發展之主要原因之一。At present, the mainstream of commercial solar cells is crystalline germanium solar cells, which are divided into single crystal germanium (c-Si), mono-like c-Si and polycrystalline (m-Si) crystalline germanium solar cells, which are composed of polycrystalline twins. The wafer-made polycrystalline silicon solar cell has a fast wafer and battery fabrication process, and the cost is lower than that of the single crystal crystallization solar cell. Currently, it is the highest product for commercial solar cells. While single crystal crystallization solar cells have been proven to have higher photoelectric conversion efficiencies relative to polycrystalline solar cells, uneven surface appearance has been one of the main reasons for limiting their development.

多晶矽太陽能電池,目前商業大量生產習用濕式酸蝕刻(硝酸與氫氟酸的混合酸)製作表面粗糙化(texture)結構,在製程時間成本上具有極高之競爭優勢;然而,利用濕式酸蝕刻方式製作表面織絨結構時,其絨面為無序結構、呈現白灰色小晶粒(grain),再者,對於部分表面過於平整(低表面粗糙度(Roughness))之多晶片(例如:金剛線切削完成之片子),濕式酸蝕刻方式將無法有效降低光反射率,為限制其效率進一步提升之最主要原因。Polycrystalline germanium solar cells, currently commercially mass-produced wet acid etching (mixed acid of nitric acid and hydrofluoric acid) to produce a surface texture structure, has a very high competitive advantage in process time cost; however, the use of wet acid When the surface woven structure is etched, the pile surface is disordered, and the white-gray grain is presented. Further, for a part of the surface, the wafer is too flat (low surface roughness) (for example: The film cut by the diamond wire), the wet acid etching method will not effectively reduce the light reflectivity, which is the main reason for further improving its efficiency.

金剛線切割(diamond wire cut)由於製造成本相對傳統砂漿切片(slurry cut)低廉,過去幾年,太陽能產業不斷地嘗試金剛線切割方式來降低製造成本,但礙於傳統濕式酸蝕刻無法有效在金剛線切割太陽能矽晶圓表面產生低反射與低光澤形貌,因此同時考量效率以及外觀因素下,一直不被絕大部分客戶所接受。Diamond wire cut is cheaper than traditional mortar cuts. In the past few years, the solar industry has been experimenting with diamond cutting to reduce manufacturing costs, but traditional wet acid etching cannot be effective. Diamond wire cutting solar enamel wafer surface produces low reflection and low gloss appearance, so it has not been accepted by most customers under the consideration of efficiency and appearance factors.

如第5圖所示,為對照不同切片方式之矽晶圓圖,圖(B)為商用金剛線切片外觀,對比圖(A)傳統碳化矽砂漿切片,其表面平均光澤度以及反射率相對高出多,其平均反射率與平均光澤度之數值比較如以下表六所示。As shown in Figure 5, in order to compare the wafer patterns of different slicing methods, Figure (B) shows the appearance of commercial diamond wire slices, and the comparison chart (A) traditional carbonized mortar mortar slices, the surface average gloss and reflectivity are relatively high. The comparison between the average reflectance and the average gloss is shown in Table 6 below.

                 表六Table 6

商業濕式酸蝕刻製程如第6圖所示,其蝕刻重量約為0.32~0.42 g,由下表七可了解傳統濕式酸蝕刻無法有效降低金剛線切片之多晶矽晶圓之平均反射率與光澤度,故限制了電池效率之提升。The commercial wet acid etching process, as shown in Figure 6, has an etch weight of about 0.32 to 0.42 g. It can be seen from Table 7 below that conventional wet acid etching cannot effectively reduce the average reflectance and gloss of polycrystalline germanium wafers. Degree, thus limiting the improvement of battery efficiency.

                            表七Table 7

近年來,為了跳脫傳統濕式酸蝕刻無法有效降低反射率,許多研究皆朝向利用反應性離子蝕刻(Ractive Ion Etching, RIE)等乾式蝕刻方式製作奈米級(粗糙度小於900nm)之表面結構,以獲得更低之反射率。然而,利用不同製程條件於金剛線切片之晶圓表面單獨形成奈米結構,由表八與表七相比較可知,雖可有效降低表面平均反射率,但表面依舊存在過高之平均光澤度;因此,單由奈米結構之存在,係無法得到低光澤與低反射之表面外觀。In recent years, in order to escape the traditional wet acid etching, the reflectivity cannot be effectively reduced. Many studies have been carried out to produce nano-scale (roughness less than 900 nm) surface structure by dry etching such as reactive ion etching (RIE). To get a lower reflectivity. However, the nanostructures are formed separately on the wafer surface of the diamond wire slice by using different process conditions. It can be seen from Table 8 and Table 7 that although the average surface reflectance can be effectively reduced, the surface still has an excessively high average gloss; Therefore, the surface appearance of low gloss and low reflection cannot be obtained by the existence of a nanostructure alone.

                           表八Table eight

鑑於目前金剛線切片太陽能矽晶片在商用上遇到之兩項主要問題:In view of the two main problems encountered in the commercial use of the diamond wire sliced solar wafers at present:

1.傳統濕式酸蝕刻無法更有效增加入射光量,導致效率提升空間之限制。1. Conventional wet acid etching cannot increase the amount of incident light more effectively, resulting in a limitation of efficiency improvement space.

2.具有高表面光澤度。2. Has a high surface gloss.

故,ㄧ般習用者係無法符合使用者於實際使用時之所需。Therefore, the user-like users cannot meet the needs of the user in actual use.

本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種以微米級孔形排列結構作為基底降低晶圓表面光澤度,再於基底上蝕刻奈米級孔狀表面結構而形成多重尺度之粗糙化,形成複合結構以降低晶圓表面反射率之具有低光澤率與低反射率結晶矽太陽能矽晶片。The main object of the present invention is to overcome the above problems encountered in the prior art and to provide a micron-ordered hole-arranged structure as a substrate to reduce the surface gloss of the wafer, and then to form a nano-scaled surface structure on the substrate. Multi-scale roughening, forming a composite structure to reduce the surface reflectance of the wafer with low gloss and low reflectivity crystalline germanium solar germanium wafers.

為達以上之目的,本發明係一種具有低光澤率與低反射率結晶矽太陽能矽晶片,係包括:一晶片本體;一微米級結構,係藉由一粗糙化處理使複數微米級孔洞呈列孔狀分佈於該晶片本體表面構成該微米級結構;以及一奈米級結構,係藉由一粗糙化處理使複數奈米級孔洞均勻分散於該微米級結構中與該晶片本體局部表面而形成多重尺度之粗糙化,並與該微米級結構形成一複合結構。For the purpose of the above, the present invention is a low-gloss and low-reflectivity crystalline germanium solar germanium wafer comprising: a wafer body; a micron-scale structure, wherein a plurality of micron-sized holes are presented by a roughening process. a pore-like distribution on the surface of the wafer body to form the micron-scale structure; and a nano-scale structure, wherein a plurality of nano-scale pores are uniformly dispersed in the micro-scale structure and a partial surface of the wafer body by a roughening treatment Roughening of multiple scales and forming a composite structure with the micron-scale structure.

於本發明上述實施例中,該晶片本體係為多晶矽(m-Si)或類單晶(mono-like c-Si)材料。In the above embodiment of the invention, the wafer system is a polycrystalline germanium (m-Si) or mono-like c-Si material.

於本發明上述實施例中,該微米級結構之粗糙化處理,係以物理蝕刻或化學蝕刻該晶片本體表面; 該物理蝕刻係為雷射、噴砂、濺擊蝕刻(Sputter Etching)、或離子束蝕刻(Ion Beam Etching), 該化學蝕刻係為濕式化學酸或鹼蝕刻搭配蝕刻遮罩,且所使用之濕式化學品係為多種酸或鹼之組合,而酸之濕式化學品係為硝酸、醋酸、氫氟酸、硫酸、或任一組合之混合酸,鹼之濕式化學品係為氫氧化鉀、或氫氧化鈉。In the above embodiment of the present invention, the roughening treatment of the micro-scale structure is performed by physically etching or chemically etching the surface of the wafer body; the physical etching is laser, sand blasting, sputter etching, or ion beam Ion Beam Etching, which is a wet chemical acid or alkali etching combined with an etch mask, and the wet chemical used is a combination of various acids or bases, and the acid wet chemical system is Nitric acid, acetic acid, hydrofluoric acid, sulfuric acid, or a mixed acid of any combination, the base wet chemical is potassium hydroxide or sodium hydroxide.

於本發明上述實施例中,該 奈米級結構之粗糙化處理,係以電漿蝕刻 (Plasma Etching)、或反應性離子蝕刻(Reactive Ion Etching, RIE)該微米級結構與該晶片本體局部表面。In the above embodiment of the present invention, the roughening treatment of the nano-scale structure is performed by plasma etching, or reactive ion etching (RIE), and the micro-scale structure and the surface of the wafer body. .

於本發明上述實施例中,該 奈米級結構係藉由以含有氯系之氣體、氟系之氣體、氧系之氣體以及氫氣之氣體乾式蝕刻(Dry etching)而形成。In the above embodiment of the invention, the nanostructure is formed by dry etching using a gas containing a chlorine-based gas, a fluorine-based gas, an oxygen-based gas, and hydrogen.

於本發明上述實施例中,該含有氟系之氣體係可為六氟化硫(SF6 )、四氟化碳(CF4 )、三氟化氮(NF3 )、以及氟氣(F2 )之至少一種以上之氣體,搭配 該含有氯系之氣體係可為氯氣(Cl2 )、四氯化碳(CCl4 )、以及三氯甲烷(CHCl3 )之至少一種以上之氣體,與 該含有氧系之氣體係可為一氧化二氮(N2 O)、氧氣(O2 )以及臭氧(O3 )之至少一種以上之氣體。In the above embodiment of the present invention, the fluorine-containing gas system may be sulfur hexafluoride (SF 6 ), carbon tetrafluoride (CF 4 ), nitrogen trifluoride (NF 3 ), and fluorine gas (F 2 ). And at least one or more gases of the chlorine-containing gas system may be at least one of chlorine (Cl 2 ), carbon tetrachloride (CCl 4 ), and chloroform (CHCl 3 ), and The oxygen-containing gas system may be at least one of nitrous oxide (N 2 O), oxygen (O 2 ), and ozone (O 3 ).

於本發明上述實施例中,該微米級 結構上之微米級 孔洞,其形狀可為圓形、多邊形、同心圓、幾何圖形、或以上各種不同圖形之組合。In the above embodiment of the present invention, the micron-sized holes in the micron-scale structure may be in the shape of a circle, a polygon, a concentric circle, a geometric figure, or a combination of the above various patterns.

於本發明上述實施例中,該複數微米級孔洞 於每一列中相鄰微米級 孔洞之幾何中心間平均距離係小於200微米(μm)。In the above embodiment of the invention, the average distance between the geometric centers of adjacent micron-sized holes in each column is less than 200 micrometers (μm).

於本發明上述實施例中,該 複數微米級 孔洞於列與列之間係為直行排列、規則重複排列、交錯排列、或呈均勻梅花狀排列。In the above embodiment of the present invention, the plurality of micron-sized holes are arranged in a straight line, a regular repeating arrangement, a staggered arrangement, or a uniform plum-like arrangement between the columns and the columns.

於本發明上述實施例中,該微米級 結構上每一微米級 孔洞之直徑係介於5~200 μm,且每一微米級 孔洞之垂直深度係介於3~30 μm。In the above embodiment of the present invention, the diameter of each micron-sized hole in the micron-scale structure is between 5 and 200 μm, and the vertical depth of each micron-sized hole is between 3 and 30 μm.

於本發明上述實施例中,該 複數微米級 孔洞排列所成之微米級 結構係佔該晶片本體表面面積之50%以上。In the above embodiment of the present invention, the micron-scale structure formed by the plurality of micron-sized holes occupies more than 50% of the surface area of the wafer body.

於本發明上述實施例中,該奈米級結構之平均粗糙度(Roughness)係介於 5~900 nm。In the above embodiment of the invention, the average roughness of the nanostructure is between 5 and 900 nm.

於本發明上述實施例中,該奈米級結構 上每一奈米級 孔洞之直徑係介於300~500 nm,且每一奈米級 孔洞之垂直深度係小於900 nm。In the above embodiment of the present invention, the diameter of each nanometer-scale hole in the nano-scale structure is between 300 and 500 nm, and the vertical depth of each nano-scale hole is less than 900 nm.

於本發明上述實施例中,其表面光澤度係於85°之光入射角下具有低於50 G.U.。In the above embodiment of the invention, the surface gloss is less than 50 G.U. at a light incident angle of 85°.

於本發明上述實施例中,係可降低太陽光譜 300~1100 nm波段間反射率。In the above embodiment of the present invention, the reflectance between the wavelength bands of the solar spectrum of 300 to 1100 nm can be reduced.

除了上述實施型態,本發明所提具有低光澤率與低反射率結晶矽太陽能矽晶片,亦可為另一實施型態,其包括:一晶片本體;一微米級結構,係藉由一粗糙化處理使複數微米級孔洞呈列孔狀分佈於該晶片本體表面構成該微米級結構;以及多層抗反射層,係形成於該晶片本體表面,並覆蓋於該微米級結構內複數微米級孔洞上。In addition to the above embodiments, the present invention has a low-gloss ratio and low-reflectivity crystalline germanium solar germanium wafer, which may be another embodiment including: a wafer body; a micron-scale structure, by a roughness The micro-scale holes are arranged in a row on the surface of the wafer body to form the micro-scale structure; and the multi-layer anti-reflection layer is formed on the surface of the wafer body and covers the plurality of micro-scale holes in the micro-scale structure. .

於本發明上述實施例中,該多層抗反射層係為氧化矽(SiOx )、氮化矽(SiNx )、或二氧化鈦(TiO2 )。In the above embodiment of the invention, the multilayer anti-reflective layer is yttrium oxide (SiO x ), tantalum nitride (SiN x ), or titanium dioxide (TiO 2 ).

於本發明上述實施例中,該複數微米級孔洞 於每一列中相鄰微米級 孔洞之幾何中心間平均距離係小於200 μm。In the above embodiment of the invention, the average distance between the geometric centers of adjacent micron-sized holes in each column is less than 200 μm.

於本發明上述實施例中,該微米級 結構上每一微米級 孔洞之直徑係介於5~200 μm,且每一微米級 孔洞之垂直深度係介於3~30 μm。In the above embodiment of the present invention, the diameter of each micron-sized hole in the micron-scale structure is between 5 and 200 μm, and the vertical depth of each micron-sized hole is between 3 and 30 μm.

於本發明上述實施例中,該 複數微米級 孔洞排列所成之微米級 結構係佔該晶片本體表面面積之50%以上。In the above embodiment of the present invention, the micron-scale structure formed by the plurality of micron-sized holes occupies more than 50% of the surface area of the wafer body.

1‧‧‧晶片本體1‧‧‧chip body

2‧‧‧微米級結構2‧‧‧micron structure

21‧‧‧微米級孔洞21‧‧‧micron holes

3‧‧‧奈米級結構3‧‧‧n-level structure

31‧‧‧奈米級孔洞31‧‧‧Neon-class holes

4‧‧‧抗反射層4‧‧‧Anti-reflective layer

第1圖,係本發明第一實施例之結構局部放大示意圖。Fig. 1 is a partially enlarged schematic view showing the structure of a first embodiment of the present invention.

第2A圖,係本發明奈米級結構之SEM(一)圖。Fig. 2A is a SEM (1) diagram of the nanostructure of the present invention.

第2B圖,係本發明奈米級結構之SEM(二)圖。Figure 2B is a SEM (b) diagram of the nanostructure of the present invention.

第3圖,係本發明第一實施例之製作流程示意圖。Fig. 3 is a schematic view showing the manufacturing process of the first embodiment of the present invention.

第4圖,係本發明第二實施例之結構剖面示意圖。Figure 4 is a cross-sectional view showing the structure of a second embodiment of the present invention.

第5圖,係習用不同切片方式之矽晶圓圖。Figure 5 is a diagram of a wafer with different slicing methods.

第6圖,係傳統多晶結晶矽太陽能電池製作流程示意圖。Figure 6 is a schematic diagram showing the manufacturing process of a conventional polycrystalline crystallization solar cell.

請參閱『第1圖~第4圖』所示,係分別為本發明第一實施例之結構局部放大示意圖、本發明奈米級結構之SEM(一)圖、本發明奈米級結構之SEM(二)圖、本發明第一實施例之製作流程示意圖、及本發明第二實施例之結構剖面示意圖。如圖所示:本發明係一種具有低光澤率與低反射率結晶矽太陽能矽晶片,係包括一晶片本體1、一微米級(micro-scale)結構2、以及一奈米級(nano-scale)結構3所構成。Please refer to FIG. 1 to FIG. 4, which are respectively a partially enlarged schematic view of the structure of the first embodiment of the present invention, an SEM (1) diagram of the nanostructure of the present invention, and a SEM of the nanostructure of the present invention. (2) A schematic diagram of a manufacturing process of the first embodiment of the present invention and a schematic cross-sectional view of a second embodiment of the present invention. As shown in the figure: the present invention is a low-gloss and low-reflectivity crystalline germanium solar germanium wafer comprising a wafer body 1, a micro-scale structure 2, and a nano-scale (nano-scale). Structure 3 is constructed.

上述所提之晶片本體1係可為多晶矽(m-Si)或類單晶(mono-like c-Si)材料。The wafer body 1 mentioned above may be a polycrystalline germanium (m-Si) or a mono-like c-Si material.

該微米級結構2係藉由一粗糙化處理,如物理蝕刻或化學蝕刻(搭配蝕刻遮罩),使複數微米級孔洞21呈列孔狀分佈於該晶片本體1表面,且 列與列之間係為直行排列、規則重複排列、交錯排列、或呈均勻梅花狀排列(如第1圖所示),而 每一列中相鄰微米級 孔洞21 之幾何中心間平均距離係小於200微米(μm),藉此構成一佔該晶片本體1表面面積50%以上之微米級結構2。而該複數微米級孔洞21 係為半凹孔,其形狀可為圓形、多邊形、同心圓、幾何圖形、或以上各種不同圖形之組合,每一微米級 孔洞21 之直徑係介於5~200 μm,且每一微米級 孔洞21 之垂直深度係介於3~30 μm。其中,該物理蝕刻係為雷射、噴砂、濺擊蝕刻(Sputter Etching)、或離子束蝕刻(Ion Beam Etching),該化學蝕刻係為濕式化學酸或鹼蝕刻搭配蝕刻遮罩,且所使用之濕式化學品係為多種酸或鹼之組合,而酸之濕式化學品係為硝酸、醋酸、氫氟酸、硫酸、或任一組合之混合酸,鹼之濕式化學品係為氫氧化鉀、或氫氧化鈉。The micron-scale structure 2 is such that a plurality of micro-scale holes 21 are arranged in a row of holes on the surface of the wafer body 1 by a roughening process such as physical etching or chemical etching (with an etch mask), and between columns and columns The lines are arranged in a straight line, regularly arranged in a regular arrangement, staggered, or arranged in a uniform plum shape (as shown in Fig. 1), and the average distance between geometric centers of adjacent micron-sized holes 21 in each column is less than 200 micrometers (μm). Thereby, a micron-scale structure 2 constituting 50% or more of the surface area of the wafer body 1 is formed. The plurality of micro-scale holes 21 are semi-recessed holes, and the shape thereof may be a circle, a polygon, a concentric circle, a geometric figure, or a combination of the above various patterns. The diameter of each micron-sized hole 21 is between 5 and 200. Mm, and the vertical depth of each micron-sized hole 21 is between 3 and 30 μm. The physical etching is laser, sand blasting, Sputter Etching, or Ion Beam Etching, and the chemical etching is a wet chemical acid or alkali etching with an etch mask, and is used. The wet chemical is a combination of various acids or bases, and the acid wet chemical is nitric acid, acetic acid, hydrofluoric acid, sulfuric acid, or a mixed acid of any combination, and the alkali wet chemical is hydrogen. Potassium oxide, or sodium hydroxide.

該奈米級結構3係藉由一粗糙化處理,如電漿蝕刻 (Plasma Etching)、或反應性離子蝕刻(Reactive Ion Etching, RIE),使複數奈米級孔洞31均勻分散於該微米級結構2中與該晶片本體1局部表面而形成多重尺度(multi-scale)之粗糙化,並與該微米級結構2形成一複合結構(composited structure)。該奈米級結構3經由掃描式電子顯微鏡(Scanning Electron Microscope, SEM)可以明顯看出奈米級孔狀表面(如第2A、2B圖所示),其平均粗糙度(Roughness)係介於 5~900 nm,其每一奈米級 孔洞31 之直徑係介於300~500 nm,且每一奈米級 孔洞31 之垂直深度係小於900 nm。其中,該奈米級結構3係藉由以含有氯系之氣體、氟系之氣體、氧系之氣體以及氫氣之氣體乾式蝕刻(Dry etching)而形成,其含有氟系之氣體係可為六氟化硫(SF6 )、四氟化碳(CF4 )、三氟化氮(NF3 )、以及氟氣(F2 )之至少一種以上之氣體,搭配 該含有氯系之氣體係可為氯氣(Cl2 )、四氯化碳(CCl4 )、以及三氯甲烷(CHCl3 )之至少一種以上之氣體,與 該含有氧系之氣體係可為一氧化二氮(N2 O)、氧氣(O2 )以及臭氧(O3 )之至少一種以上之氣體。如是,藉由上述揭露之裝置構成一全新之具有低光澤率與低反射率結晶矽太陽能矽晶片。The nano-scale structure 3 is uniformly dispersed in the micro-scale structure by a roughening treatment such as plasma etching or reactive ion etching (RIE). 2 is formed with a partial surface of the wafer body 1 to form a multi-scale roughening, and forms a composite structure with the micro-scale structure 2. The nano-structure 3 can clearly see the nano-scaled surface (as shown in Figures 2A and 2B) via a Scanning Electron Microscope (SEM), and the average roughness (Roughness) is between 5 ~900 nm, the diameter of each nanometer hole 31 is between 300 and 500 nm, and the vertical depth of each nanometer hole 31 is less than 900 nm. The nanostructure 3 is formed by dry etching using a chlorine-containing gas, a fluorine-based gas, an oxygen-based gas, and hydrogen gas, and the fluorine-containing gas system may be six. a gas containing at least one of sulfur fluoride (SF 6 ), carbon tetrafluoride (CF 4 ), nitrogen trifluoride (NF 3 ), and fluorine gas (F 2 ) may be used in combination with the chlorine-containing gas system. At least one or more of chlorine (Cl 2 ), carbon tetrachloride (CCl 4 ), and chloroform (CHCl 3 ), and the oxygen-containing gas system may be nitrous oxide (N 2 O), At least one or more of oxygen (O 2 ) and ozone (O 3 ). As such, a novel device having a low gloss and low reflectivity crystalline germanium solar cell is constructed by the above disclosed device.

於一具體實施例中,本發明太陽能矽晶片之微米與奈米複合結構之製作流程如第3圖所示,相較於傳統技術,由如下表一可知,本發明係可同時獲得低平均反射率與光澤度。In a specific embodiment, the fabrication process of the micron and nano composite structure of the solar tantalum wafer of the present invention is as shown in FIG. 3. Compared with the conventional technology, as shown in the following Table 1, the present invention can simultaneously obtain low average reflection. Rate and gloss.

              表一 Table I

本發明除上述第一實施例所提複合結構型態之外,亦可為本第二實施例之結構型態,如第4圖所示,係包括:一晶片本體1、一微米級結構2、以及多層抗反射層4所構成。In addition to the composite structure described in the first embodiment, the present invention may also be the configuration of the second embodiment. As shown in FIG. 4, the present invention includes: a wafer body 1, a micron-scale structure 2 And a multilayer anti-reflection layer 4 is formed.

上述所提晶片本體1及微米級結構2如同前述。The wafer body 1 and the micron-scale structure 2 mentioned above are as described above.

該多層抗反射層4係形成於該晶片本體1表面,並覆蓋於該微米級結構2內複數微米級孔洞21上。其中, 該多層抗反射層係為氧化矽(SiOx )、氮化矽(SiNx )、或二氧化鈦(TiO2 )。The multilayer anti-reflective layer 4 is formed on the surface of the wafer body 1 and covers the plurality of micro-scale holes 21 in the micro-scale structure 2. The multilayer anti-reflective layer is yttrium oxide (SiO x ), tantalum nitride (SiN x ), or titanium dioxide (TiO 2 ).

即便本發明單以微米結構存在,該微米結構之存在亦能有效地製作低表面光澤度太陽能電池;如下表二、表三所整理出微米結構隨著結構深度以及結構間距離對反射率以及表面光澤度之影響,由表二、表三呈現之結果能看出,在分別固定微米結構寬度為20 μm與50 μm下,隨著微米結構深度增加,能同時降低表面光澤度以及反射率;相反地,隨著微米結構間之距離增加,光澤度以及反射率也隨之上升。而相對於前述表面微米單一結構之存在,如下表四、表五顯示複合結構之存在,能更有效地降低表面光澤度以及表面反射率,其中表四係根據表二於晶圓形成表面複合尺寸結構形成其光學數據,表五係根據表三於晶圓形成表面複合尺寸結構形成其光學數據。Even if the present invention exists in a micron structure, the presence of the micron structure can effectively produce a low surface gloss solar cell; as shown in Tables 2 and 3 below, the microstructure structure has a depth along the structure and the distance between the structures and the reflectance and the surface. The influence of gloss can be seen from the results presented in Table 2 and Table 3. When the width of the fixed micro-structure is 20 μm and 50 μm respectively, the surface gloss and reflectivity can be reduced simultaneously with the increase of the micro-structure depth; Ground, as the distance between the microstructures increases, the gloss and reflectivity also increase. With respect to the existence of the above-mentioned surface micro-single structure, Table 4 and Table 5 below show the existence of the composite structure, which can more effectively reduce the surface gloss and surface reflectance, wherein Table 4 is based on Table 2 to form a surface composite size on the wafer. The structure forms its optical data, and Table 5 forms its optical data according to Table 3 to form a surface composite size structure on the wafer.

                        表二 Table II

                           表三Table 3

                          表四Table 4

                          表五Table 5

由上述可知,本發明以複合尺寸表面結構,係能有效降低入射光反射率及光澤度(於85°之光入射角下具有低於50 G.U.),以解決目前金剛線切片太陽能矽晶片在商用上遇到無法更有效增加入射光量,導致效率提升空間之限制,以及具有高表面光澤度之兩項主要問題。It can be seen from the above that the composite size surface structure of the present invention can effectively reduce the incident light reflectance and gloss (having less than 50 GU at a light incident angle of 85°), so as to solve the current diamond wire slice solar tantalum wafer in commercial use. There are two major problems with the inability to increase the amount of incident light more effectively, resulting in a space for efficiency improvement, and high surface gloss.

藉此,本發明以微米級孔狀排列結構作為基底降低晶圓表面光澤度,搭配奈米級結構降低晶圓表面反射率;其中於基底上蝕刻奈米級孔狀表面而形成多重尺度之粗糙化,進而形成具有複合結構之太陽能電池結構,其具有以下特色:Thereby, the invention reduces the surface gloss of the wafer by using a micron-scale pore-arranged structure as a substrate, and reduces the surface reflectance of the wafer by using a nano-scale structure; wherein the nano-scaled surface is etched on the substrate to form a multi-scale roughness. And forming a solar cell structure having a composite structure, which has the following features:

1. 有效降低表面光澤度(85° <50 G.U.)。1. Effectively reduce surface gloss (85° <50 G.U.).

2. 有效降低太陽光譜 300~1100 nm波段反射率。2. Effectively reduce the reflectance of the solar spectrum from 300 to 1100 nm.

3. 增加電極與矽晶片接觸面積,降低電池接觸阻抗。3. Increase the contact area between the electrode and the germanium wafer to reduce the battery contact resistance.

綜上所述,本發明係一種具有低光澤率與低反射率結晶矽太陽能矽晶片,可有效改善習用之種種缺點,以微米級(micro-scale)孔形排列結構作為基底降低晶圓表面光澤度,再於基底上蝕刻奈米級(nano-scale)孔狀表面結構而形成多重尺度(multi-scale)之粗糙化,形成複合結構(composited structure)以降低晶圓表面反射率,進而使本發明之産生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。In summary, the present invention is a low-gloss ratio and low-reflectivity crystalline germanium solar germanium wafer, which can effectively improve various disadvantages of the conventional use, and reduce the surface gloss of the wafer by using a micro-scale hole-shaped arrangement as a substrate. Degree, and then etching a nano-scale pore-like surface structure to form a multi-scale roughening, forming a composite structure to reduce the surface reflectance of the wafer, thereby The invention can be made more progressive, more practical, and more in line with the needs of the user. It has indeed met the requirements of the invention patent application and has filed a patent application according to law.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto; therefore, the simple equivalent changes and modifications made in accordance with the scope of the present invention and the contents of the invention are modified. All should remain within the scope of the invention patent.

1‧‧‧晶片本體 1‧‧‧chip body

2‧‧‧微米級結構 2‧‧‧micron structure

21‧‧‧微米級孔洞 21‧‧‧micron holes

3‧‧‧奈米級結構 3‧‧‧n-level structure

31‧‧‧奈米級孔洞 31‧‧‧Neon-class holes

Claims (20)

【第1項】[Item 1] 一種具有低光澤率與低反射率結晶矽太陽能矽晶片,係包括:
一晶片本體;
一微米級(micro-scale)結構,係藉由一粗糙化處理使複數微米級孔洞呈列孔狀分佈於該晶片本體表面構成該微米級結構;以及
一奈米級(nano-scale)結構,係藉由一粗糙化處理使複數奈米級孔洞均勻分散於該微米級結構中與該晶片本體局部表面而形成多重尺度(multi-scale)之粗糙化,並與該微米級結構形成一複合結構(composited structure)。
A low-gloss ratio and low reflectivity crystalline germanium solar germanium wafer, comprising:
a wafer body;
a micro-scale structure in which a plurality of micro-scale holes are arranged in a row on the surface of the wafer body to form the micro-scale structure by a roughening treatment; and a nano-scale structure, A plurality of nano-scale holes are uniformly dispersed in the micro-scale structure and a partial surface of the wafer body by a roughening process to form a multi-scale roughening, and form a composite structure with the micro-scale structure. (composited structure).
【第2項】[Item 2] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該晶片本體係為多晶矽(m-Si)或類單晶(mono-like c-Si)材料。A low-luminosity and low-reflectivity crystalline germanium solar germanium wafer according to the first aspect of the patent application, wherein the wafer system is a polycrystalline germanium (m-Si) or a mono-like c-Si material. . 【第3項】[Item 3] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該微米級結構之粗糙化處理,係以物理蝕刻或化學蝕刻該晶片本體表面; 該物理蝕刻係為雷射、噴砂、濺擊蝕刻(Sputter Etching)、或離子束蝕刻(Ion Beam Etching), 該化學蝕刻係為濕式化學酸或鹼蝕刻搭配蝕刻遮罩,且所使用之濕式化學品係為多種酸或鹼之組合,而酸之濕式化學品係為硝酸、醋酸、氫氟酸、硫酸、或任一組合之混合酸,鹼之濕式化學品係為氫氧化鉀、或氫氧化鈉。a low-luminosity and low-reflectivity crystalline germanium solar germanium wafer according to claim 1, wherein the micron-scale roughening treatment is performed by physically etching or chemically etching the surface of the wafer body; It is laser, sandblasting, Sputter Etching, or Ion Beam Etching, which is a wet chemical acid or alkali etching with an etch mask, and the wet chemical used. It is a combination of various acids or bases, and the wet chemical of acid is nitric acid, acetic acid, hydrofluoric acid, sulfuric acid, or a mixed acid of any combination, and the wet chemical of the base is potassium hydroxide or hydrogen. Sodium oxide. 【第4項】[Item 4] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該奈米級結構之粗糙化處理,係以電漿蝕刻 (Plasma Etching)、或反應性離子蝕刻(Reactive Ion Etching, RIE)該微米級結構與該晶片本體局部表面。A low-gloss ratio and low-reflectivity crystalline germanium solar germanium wafer according to claim 1, wherein the nanostructure is roughened by plasma etching or reactive ions. Reactive Ion Etching (RIE) The micron-scale structure and the surface of the wafer body. 【第5項】[Item 5] 依申請專利範圍第4項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該奈米級結構係藉由以含有氯系之氣體、氟系之氣體、氧系之氣體以及氫氣之氣體乾式蝕刻(Dry etching)而形成。a low-gloss ratio and low-reflectivity crystalline ruthenium solar wafer according to item 4 of the patent application scope, wherein the nano-scale structure is a gas containing a chlorine-based gas, a fluorine-based gas, or an oxygen-based gas. And hydrogen gas is formed by dry etching. 【第6項】[Item 6] 依申請專利範圍第5項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該含有氟系之氣體係可為六氟化硫(SF6 )、四氟化碳(CF4 )、三氟化氮(NF3 )、以及氟氣(F2 )之至少一種以上之氣體,搭配 該含有氯系之氣體係可為氯氣(Cl2 )、四氯化碳(CCl4 )、以及三氯甲烷(CHCl3 )之至少一種以上之氣體,與 該含有氧系之氣體係可為一氧化二氮(N2 O)、氧氣(O2 )以及臭氧(O3 )之至少一種以上之氣體。According to claim 5, the low-gloss ratio and low reflectivity crystalline germanium solar germanium wafer, wherein the fluorine-containing gas system may be sulfur hexafluoride (SF 6 ) or carbon tetrafluoride (CF). 4 ), at least one or more of nitrogen trifluoride (NF 3 ) and fluorine gas (F 2 ), and the chlorine-containing gas system may be chlorine gas (Cl 2 ) or carbon tetrachloride (CCl 4 ). And at least one of chloroform (CHCl 3 ) and the oxygen-containing gas system may be at least one of nitrous oxide (N 2 O), oxygen (O 2 ), and ozone (O 3 ) Above gas. 【第7項】[Item 7] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該微米級 結構上之微米級 孔洞,其形狀可為圓形、多邊形、同心圓、幾何圖形、或以上各種不同圖形之組合。A low-gloss ratio and low-reflectivity crystalline germanium solar germanium wafer according to claim 1, wherein the micron-scale pores of the micron-scale structure may be circular, polygonal, concentric, or geometric. Or a combination of the above various graphics. 【第8項】[Item 8] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該複數微米級孔洞 於每一列中相鄰微米級 孔洞之幾何中心間平均距離係小於200微米(μm)。The low-gloss ratio and low-reflectivity crystalline germanium solar germanium wafer according to claim 1, wherein the plurality of micron-sized holes have an average distance between geometric centers of adjacent micro-scale holes in each column of less than 200 micrometers. (μm). 【第9項】[Item 9] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該複數微米級 孔洞於列與列之間係為直行排列、規則重複排列、交錯排列、或呈均勻梅花狀排列。a low-luminosity and low-reflectivity crystalline germanium solar germanium wafer according to the first aspect of the patent application, wherein the plurality of micrometer-sized pores are arranged in a row, a regular repeat, a staggered arrangement, or It is arranged in a uniform plum shape. 【第10項】[Item 10] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該微米級 結構上每一微米級 孔洞之直徑係介於5~200 μm,且每一微米級 孔洞之垂直深度係介於3~30 μm。A low-luminosity and low-reflectivity crystalline germanium solar germanium wafer according to claim 1, wherein the micron-sized structure has a diameter of 5 to 200 μm per micrometer. The vertical depth of the graded holes is between 3 and 30 μm. 【第11項】[Item 11] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該複數微米級 孔洞排列所成之微米級 結構係佔該晶片本體表面面積之50%以上。The low-gloss ratio and low-reflectivity crystalline germanium solar germanium wafer according to the first aspect of the patent application, wherein the micron-scale structure formed by the plurality of micron-sized pores occupies more than 50% of the surface area of the wafer body. 【第12項】[Item 12] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該奈米級結構之平均粗糙度(Roughness)係介於 5~900 nm。According to claim 1, the low-gloss ratio and low-reflectivity crystalline germanium solar germanium wafers have an average roughness of 5 to 900 nm. 【第13項】[Item 13] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該奈米級結構 上每一奈米級 孔洞之直徑係介於300~500 nm,且每一奈米級 孔洞之垂直深度係小於900 nm。The low-gloss ratio and low-reflectivity crystalline germanium solar germanium wafer according to the first aspect of the patent application, wherein the nanometer-scale pores of the nano-scale structure are between 300 and 500 nm, and each The vertical depth of a nanometer-scale hole is less than 900 nm. 【第14項】[Item 14] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其表面光澤度係於85°之光入射角下具有低於50 G.U.。According to the scope of claim 1, the low gloss and low reflectivity crystalline germanium solar germanium wafer has a surface gloss of less than 50 G.U. at a light incident angle of 85°. 【第15項】[Item 15] 依申請專利範圍第1項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,係可降低太陽光譜 300~1100 nm波段間反射率。According to the scope of claim 1, the low-gloss ratio and low-reflectivity crystallization solar 矽 wafer can reduce the reflectance between the solar spectrum of 300 to 1100 nm. 【第16項】[Item 16] 一種具有低光澤率與低反射率結晶矽太陽能矽晶片,係包括:
一晶片本體;
一微米級結構,係藉由一粗糙化處理使複數微米級孔洞呈列孔狀分佈於該晶片本體表面構成該微米級結構;以及
多層抗反射層,係形成於該晶片本體表面,並覆蓋於該微米級結構內複數微米級孔洞上。
A low-gloss ratio and low reflectivity crystalline germanium solar germanium wafer, comprising:
a wafer body;
a micron-scale structure, wherein a plurality of micron-sized holes are arranged in a hole shape on the surface of the wafer body to form the micro-scale structure by a roughening treatment; and a multi-layer anti-reflection layer is formed on the surface of the wafer body and covered with The micron-scale structure is on a plurality of micron-sized holes.
【第17項】[Item 17] 依申請專利範圍第16項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該多層抗反射層係為氧化矽(SiOx )、氮化矽(SiNx )、或二氧化鈦(TiO2 )。a low-luminosity and low-reflectivity crystalline germanium solar germanium wafer according to claim 16, wherein the multilayer anti-reflective layer is cerium oxide (SiO x ), tantalum nitride (SiN x ), or titanium dioxide. (TiO 2 ). 【第18項】[Item 18] 依申請專利範圍第16項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該複數微米級孔洞 於每一列中相鄰微米級 孔洞之幾何中心間平均距離係小於200 μm。The low-gloss ratio and low-reflectivity crystalline germanium solar germanium wafer according to claim 16 wherein the average distance between the geometric centers of adjacent micron-sized holes in each column is less than 200 μm. . 【第19項】[Item 19] 依申請專利範圍第16項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該微米級 結構上每一微米級 孔洞之直徑係介於5~200 μm,且每一微米級 孔洞之垂直深度係介於3~30 μm。A low-luminosity and low-reflectivity crystalline germanium solar germanium wafer according to claim 16 wherein the diameter of each micron-sized hole in the micron-scale structure is between 5 and 200 μm, and each micrometer The vertical depth of the graded holes is between 3 and 30 μm. 【第20項】[Item 20] 依申請專利範圍第16項所述之具有低光澤率與低反射率結晶矽太陽能矽晶片,其中, 該複數微米級 孔洞排列所成之微米級 結構係佔該晶片本體表面面積之50%以上。According to claim 16 of the patent application, there is a low-gloss ratio and low-reflectivity crystalline germanium solar germanium wafer, wherein the micron-scale structure formed by the plurality of micron-sized pores occupies more than 50% of the surface area of the wafer body.
TW104121203A 2014-12-31 2015-06-30 Crystalline solar silicon wafer with low gloss and low reflectivity TWI623109B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104121203A TWI623109B (en) 2014-12-31 2015-06-30 Crystalline solar silicon wafer with low gloss and low reflectivity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW103223400 2014-12-31
TW104121203A TWI623109B (en) 2014-12-31 2015-06-30 Crystalline solar silicon wafer with low gloss and low reflectivity

Publications (2)

Publication Number Publication Date
TW201624741A true TW201624741A (en) 2016-07-01
TWI623109B TWI623109B (en) 2018-05-01

Family

ID=56085929

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104210546U TWM518399U (en) 2014-12-31 2015-06-30 Crystalline Silicon chip without lattice shape on the surface having microporous structure
TW104121203A TWI623109B (en) 2014-12-31 2015-06-30 Crystalline solar silicon wafer with low gloss and low reflectivity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104210546U TWM518399U (en) 2014-12-31 2015-06-30 Crystalline Silicon chip without lattice shape on the surface having microporous structure

Country Status (1)

Country Link
TW (2) TWM518399U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI642200B (en) * 2017-07-27 2018-11-21 中美矽晶製品股份有限公司 Wafer for solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414646B (en) * 2009-04-27 2013-11-11 Aurotek Corp Method for manufacturing silicon substrate with periodical structure for solar cell
CN102117850B (en) * 2010-11-12 2012-09-19 北京大学 Solar battery with micro-nano composite structure and production method thereof
TWI476144B (en) * 2012-05-14 2015-03-11 Univ Nat Taiwan Method for preparing a periodic nanohole structure array and the use thereof
TWI498275B (en) * 2012-08-13 2015-09-01 Ind Tech Res Inst Structure of micro-nano anti-reflective layer and method for manufacturing the same

Also Published As

Publication number Publication date
TWI623109B (en) 2018-05-01
TWM518399U (en) 2016-03-01

Similar Documents

Publication Publication Date Title
CN102113131B (en) Solar cell and method for manufacturing same
JP5232798B2 (en) Substrate processing method
US6329296B1 (en) Metal catalyst technique for texturing silicon solar cells
TWI472478B (en) Silicon substrate having nanostructures and method for producing the same and application thereof
TWI605265B (en) Optical anti-reflection structure and solar cell including the same, and method for making the optical anti-reflection structure
US20220402754A1 (en) Formation of antireflective surfaces
JPWO2009128324A1 (en) Substrate roughening method and photovoltaic device manufacturing method
KR20120051047A (en) Method for texturing the surface of a silicon substrate, and textured silicon substrate for a solar cell
US20140242801A1 (en) Multi-level autolimitating etching method
US20140319524A1 (en) Substrates having a broadband antireflection layer and methods of forming a broadband antireflection layer
CN102738339B (en) There is lithium niobate substrate and the manufacture method thereof of patterned structures
CN102270688A (en) Solar cell
JP5297543B2 (en) Silicon substrate having textured surface and method for manufacturing the same
JP2014154617A (en) Silicon substrate having texture structure, and method of forming the same
TW201624741A (en) Crystalline silicon solar energy chip with low specular gloss and low reflectivity
Saito et al. Honeycomb-textured structures on crystalline silicon surfaces for solar cells by spontaneous dry etching with chlorine trifluoride gas
CN202797054U (en) Lithium niobate substrate of patterned structure and used for manufacturing LED chip
Chou et al. Fabrication of hierarchical anti-reflective structures using polystyrene sphere lithography on an as-cut p-Si substrate
JP5220237B2 (en) Substrate roughening method
CN108123009B (en) Preparation method of black silicon battery by RIE texturing
TWI538043B (en) Method for manufacturing bowl shape surface structures of single-crystalline silicon substrates and a single-crystalline silicon substrate with bowl shape surface structures
JP2013219164A (en) Silicon substrate with texture formation surface and manufacturing method therefor
CN106981543A (en) The method that dry etching prepares black silicon layer is aided in using al-si eutectic film
US20130244429A1 (en) Shot blasting material used for silicon substrate surface treatment and method for preparing silicon substrate
TWI449658B (en) Method for making 3-d nano-structured array

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees