TW201621327A - Remote differential voltage sensing - Google Patents

Remote differential voltage sensing Download PDF

Info

Publication number
TW201621327A
TW201621327A TW104127462A TW104127462A TW201621327A TW 201621327 A TW201621327 A TW 201621327A TW 104127462 A TW104127462 A TW 104127462A TW 104127462 A TW104127462 A TW 104127462A TW 201621327 A TW201621327 A TW 201621327A
Authority
TW
Taiwan
Prior art keywords
transistor
coupled
voltage
current path
differential
Prior art date
Application number
TW104127462A
Other languages
Chinese (zh)
Other versions
TWI672509B (en
Inventor
陳微
張欣
格林 樂夫
彼得J 摩爾
Original Assignee
英特希爾美國公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特希爾美國公司 filed Critical 英特希爾美國公司
Publication of TW201621327A publication Critical patent/TW201621327A/en
Application granted granted Critical
Publication of TWI672509B publication Critical patent/TWI672509B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)

Abstract

A remote differential voltage sensing circuit having a voltage input (Vin) and a voltage output (Vout), comprises a dual differential input stage including a common-source or common-collector differential input stage in parallel with a common-gate or common-base differential input stage. The common-source or collector differential input stage has differential inputs, one coupled to the voltage input (Vin) and the other coupled to the voltage output (Vout). The common-gate or common-base differential input stage has differential inputs, one coupled to a local ground (Agnd) and the other coupled to a remote ground (Rgnd). An output stage is driven by an output of the dual differential input stage and produces an output voltage at the voltage output (Vout). A compensation network is coupled between the voltage output (Vout) and the output of the dual differential input stage.

Description

遠端差動電壓感測 Remote differential voltage sensing

本發明的實施例是大致有關於遠端的差動電壓感測電路、包含遠端的差動電壓感測電路的系統、以及用於產生一輸出電壓(Vout)是等於一輸入電壓(Vin)加上或是減去在一遠端的接地(Rgnd)與一本地的接地(Agnd)之間的一差值的方法。 Embodiments of the present invention are generally related to a remote differential voltage sensing circuit, a system including a remote differential voltage sensing circuit, and for generating an output voltage (Vout) equal to an input voltage (Vin) Add or subtract a difference between a remote ground (Rgnd) and a local ground (Agnd).

優先權主張 Priority claim

本申請案是主張2014年8月26日申請的美國臨時專利申請案號62/042,104的優先權,所述美國臨時專利申請案是被納入在此作為參考。 The present application is a priority of U.S. Provisional Patent Application No. 62/042,104, filed on Aug. 26, 2014, which is incorporated herein by reference.

電性系統(亦可被稱為電性裝置)通常包含一矽接地以及一遠端的接地兩者。該矽接地(亦可被稱為一本地的接地、一類比接地、或是Agnd)是和一晶粒或晶片相關的接地。所述遠端的接地(亦可被稱為Rgnd、一返回接地、或是Rrtn)是和所述晶粒或晶片被附接到的一印刷電路板(PCB)相關的接地。 An electrical system (also referred to as an electrical device) typically includes both a grounding and a distal grounding. The grounding (which may also be referred to as a local ground, an analog ground, or Agnd) is a ground associated with a die or wafer. The ground of the distal end (also referred to as Rgnd, a return ground, or Rrtn) is the ground associated with a printed circuit board (PCB) to which the die or wafer is attached.

為了改善此種系統的正確性,遠端的差動電壓感測電路(有時或者被稱為差動的遠端電壓感測電路)是經常被利用。圖1是描繪一習知遠端的差動電壓感測電路102,其包含兩個放大器AMP1及AMP2、以及兩 個電阻分壓器,以達成遠端的感測。所述電阻分壓器中的一個包含電阻器R0及R1,並且所述電阻分壓器中的另一個包含電阻器R2及R3。在圖1中的遠端的差動電壓感測電路102的兩個輸入是Vin及Rgnd,並且所述遠端的差動電壓感測電路102的輸出是Vout,其中Vout=Vin+Rgnd-Agnd。圖1的習知的遠端的差動電壓感測電路102實質是作用為一類比計算電路。 To improve the correctness of such systems, remote differential voltage sensing circuits (sometimes referred to as differential remote voltage sensing circuits) are often utilized. 1 is a diagram of a conventional remote differential voltage sensing circuit 102 that includes two amplifiers AMP1 and AMP2, and two A resistor divider is used to achieve remote sensing. One of the resistor dividers includes resistors R0 and R1, and the other of the resistor dividers includes resistors R2 and R3. The two inputs of the differential voltage sensing circuit 102 at the far end in FIG. 1 are Vin and Rgnd, and the output of the remote differential voltage sensing circuit 102 is Vout, where Vout=Vin+Rgnd-Agnd . The conventional remote differential voltage sensing circuit 102 of FIG. 1 essentially functions as an analog computing circuit.

和圖1的習知的遠端的差動電壓感測電路102相關的缺點是其佔用比所期望的更多的矽面積,其消耗比所期望的更大的功率(因為其包含兩個放大器),並且其具有一大於所期望的電壓偏移(VOS)誤差。更明確地說,VOS=VOS1+2*VOS2,其中VOS1是和所述第一放大器(AMP1)相關的電壓偏移誤差,VOS2是和所述第二放大器(AMP2)相關的電壓偏移誤差,並且VOS是由圖1的遠端的差動電壓感測電路102所引起的總電壓偏移誤差。 A disadvantage associated with the conventional remote differential voltage sensing circuit 102 of Figure 1 is that it occupies more area than desired, which consumes more power than desired (because it contains two amplifiers And it has a greater than the desired voltage offset (VOS) error. More specifically, VOS=VOS1+2*VOS2, where VOS1 is the voltage offset error associated with the first amplifier (AMP1) and VOS2 is the voltage offset error associated with the second amplifier (AMP2), And the VOS is the total voltage offset error caused by the differential voltage sensing circuit 102 at the far end of FIG.

為了降低功率消耗、縮減矽面積、以及降低所述電壓偏移誤差,並聯的互導(transconductance,Gm)級可被利用以差動感測一遠端的信號。此種拓撲的一個例子是被描繪在圖2中。更明確地說,圖2是描繪一種遠端的差動電壓感測電路202,其中所述遠端的差動電壓感測電路202的三個輸入是Vin、Rgnd以及Agrnd,並且所述遠端的差動電壓感測電路202的輸出是Vout,其中Vout=Vin+Rgnd-Agnd。和圖2的遠端的差動電壓感測電路202相關的缺點是其需要在所述兩個輸入對之間的非常良好的匹配,由於接地作為輸入會有一共模範圍的限制,其仍然消耗比所期望的更大的功率,並且其仍然具有一大於所期望的電壓偏移(VOS)誤差。 In order to reduce power consumption, reduce the area of the turns, and reduce the voltage offset error, a parallel transconductance (Gm) stage can be utilized to differentially sense a far-end signal. An example of such a topology is depicted in Figure 2. More specifically, FIG. 2 depicts a remote differential voltage sensing circuit 202 in which the three inputs of the remote differential voltage sensing circuit 202 are Vin, Rgnd, and Agrnd, and the distal end The output of the differential voltage sensing circuit 202 is Vout, where Vout = Vin + Rgnd - Agnd. A disadvantage associated with the remote differential voltage sensing circuit 202 of FIG. 2 is that it requires a very good match between the two input pairs, since grounding as an input would have a common mode range limitation, which still consumes More power than is expected, and it still has a greater than the desired voltage offset (VOS) error.

本發明的實施例是大致有關於遠端的差動電壓感測電路、包 含遠端的差動電壓感測電路的系統、以及用於產生一輸出電壓(Vout)是等於一輸入電壓(Vin)加上或是減去在一遠端的接地(Rgnd)與一本地的接地(Agnd)之間的一差值的方法。根據某些實施例,一種具有一電壓輸入(Vin)以及一電壓輸出(Vout)的遠端的差動電壓感測電路,其包括一雙重差動輸入級,其包含與一共閘極或是共基極的差動輸入級並聯的一共源極或是共集極的差動輸入級,其中所述共源極或是共集極的差動輸入級是具有差動輸入,其中的一差動輸入是耦接至所述電壓輸入(Vin),並且其中的另一差動輸入是耦接至所述電壓輸出(Vout),並且其中所述共閘極或是共基極的差動輸入級是具有差動輸入,其中的一差動輸入是耦接至一本地的接地(Agnd),並且其中的另一差動輸入是耦接至一遠端的接地(Rgnd)。此外,所述遠端的差動電壓感測電路可包含一輸出級,其是藉由所述雙重差動輸入級的一輸出而被驅動並且在所述電壓輸出(Vout)之處產生一輸出電壓。再者,所述遠端的差動電壓感測電路可包含一耦接在所述電壓輸出(Vout)與所述雙重差動輸入級的輸出之間的補償網路。所述補償網路可包含一串聯連接在所述電壓輸出(Vout)與所述雙重差動輸入級的輸出之間的電容器以及電阻器。所述遠端的差動電壓感測電路亦可包含一偏壓所述雙重差動輸入級的第一電流源、以及一偏壓所述輸出級的第二電流源。在某些實施例中,所述共閘極或是共基極的差動輸入級的所述差動輸入是耦接至所述本地的接地(Agnd)以及所述遠端的接地(Rgnd),使得Vout=Vin+Rgnd-Agnd。在其它實施例中,所述共閘極或是共基極的差動輸入級的所述差動輸入是耦接至所述本地的接地(Agnd)以及所述遠端的接地(Rgnd),使得Vout=Vin-Rgnd+Agnd。 Embodiments of the present invention are differential voltage sensing circuits, packages that are generally related to the far end A system comprising a remote differential voltage sensing circuit, and for generating an output voltage (Vout) equal to an input voltage (Vin) plus or minus a ground (Rgnd) at a remote end and a local A method of difference between ground (Agnd). In accordance with some embodiments, a differential voltage sensing circuit having a voltage input (Vin) and a voltage output (Vout) distal end includes a dual differential input stage that includes or is common to a common gate a differential input stage in which the differential input stages of the base are connected in parallel or a differential input stage of the common collector, wherein the differential input stage of the common source or the common collector has a differential input, wherein a differential input An input is coupled to the voltage input (Vin), and another differential input is coupled to the voltage output (Vout), and wherein the common gate or common base differential input stage There is a differential input, one of which is coupled to a local ground (Agnd), and the other of which is coupled to a remote ground (Rgnd). Additionally, the remote differential voltage sensing circuit can include an output stage that is driven by an output of the dual differential input stage and produces an output at the voltage output (Vout) Voltage. Furthermore, the remote differential voltage sensing circuit can include a compensation network coupled between the voltage output (Vout) and the output of the dual differential input stage. The compensation network can include a capacitor and a resistor connected in series between the voltage output (Vout) and the output of the dual differential input stage. The remote differential voltage sensing circuit can also include a first current source biasing the dual differential input stage and a second current source biasing the output stage. In some embodiments, the differential input of the common or common base differential input stage is coupled to the local ground (Agnd) and the remote ground (Rgnd) So that Vout = Vin + Rgnd - Agnd. In other embodiments, the differential input of the common gate or common differential input stage is coupled to the local ground (Agnd) and the remote ground (Rgnd), Let Vout = Vin-Rgnd + Agnd.

102‧‧‧遠端的差動電壓感測電路 102‧‧‧ Remote differential voltage sensing circuit

202‧‧‧遠端的差動電壓感測電路 202‧‧‧ Remote differential voltage sensing circuit

302a、302b‧‧‧遠端的差動電壓感測電路 302a, 302b‧‧‧ remote differential voltage sensing circuit

304a、304b‧‧‧雙重差動輸入級 304a, 304b‧‧‧Dual differential input stage

306a‧‧‧共源極的差動輸入級 306a‧‧‧ Common source differential input stage

306b‧‧‧共射極的差動輸入級 306b‧‧‧Common emitter differential input stage

308a‧‧‧共閘極的差動輸入級 308a‧‧‧Common differential input stage

308b‧‧‧共基極的差動輸入級 308b‧‧‧ Common base differential input stage

310a、310b‧‧‧輸出級 310a, 310b‧‧‧ output stage

312a、312b‧‧‧補償網路 312a, 312b‧‧‧ Compensation Network

402a、402b‧‧‧遠端的差動電壓感測電路 402a, 402b‧‧‧ remote differential voltage sensing circuit

404a、404b‧‧‧雙重差動輸入級 404a, 404b‧‧‧ double differential input stage

406a‧‧‧共源極的差動輸入級 406a‧‧‧ Common source differential input stage

406b‧‧‧共射極的差動輸入級 406b‧‧‧Common emitter differential input stage

408a‧‧‧共閘極的差動輸入級 408a‧‧‧Common differential input stage

408b‧‧‧共基極的差動輸入級 408b‧‧‧ Common base differential input stage

410a、410b‧‧‧輸出級 410a, 410b‧‧‧ output stage

412a、412b‧‧‧補償網路 412a, 412b‧‧‧ compensation network

502a、502b‧‧‧遠端的差動電壓感測電路 502a, 502b‧‧‧ remote differential voltage sensing circuit

504a、504b‧‧‧雙重差動輸入級 504a, 504b‧‧‧ double differential input stage

506a‧‧‧共源極的差動輸入級 506a‧‧‧ Common source differential input stage

506b‧‧‧共射極的差動輸入級 506b‧‧‧Common emitter differential input stage

508a‧‧‧共閘極的差動輸入級 508a‧‧‧Common differential input stage

508b‧‧‧共基極的差動輸入級 508b‧‧‧Basic differential input stage

510a、510b‧‧‧輸出級 510a, 510b‧‧‧ output stage

512a、512b‧‧‧補償網路 512a, 512b‧‧‧ compensation network

602a、602b‧‧‧遠端的差動電壓感測電路 602a, 602b‧‧‧ remote differential voltage sensing circuit

604a、604b‧‧‧雙重差動輸入級 604a, 604b‧‧‧Dual differential input stage

606a‧‧‧共源極的差動輸入級 606a‧‧‧Common source differential input stage

606b‧‧‧共射極的差動輸入級 606b‧‧‧Common emitter differential input stage

608a‧‧‧共閘極的差動輸入級 608a‧‧‧Common differential input stage

608b‧‧‧共基極的差動輸入級 608b‧‧‧ Common base differential input stage

610a、610b‧‧‧輸出級 610a, 610b‧‧‧ output stage

612a、612b‧‧‧補償網路 612a, 612b‧‧‧ compensation network

706‧‧‧電壓調節器 706‧‧‧Voltage regulator

802、804、806、808‧‧‧方法步驟 802, 804, 806, 808‧‧‧ method steps

圖1是描繪一種習知遠端的差動電壓感測電路。 1 is a diagram of a conventional remote differential voltage sensing circuit.

圖2是描繪一種遠端的差動電壓感測電路的一替代實施例。 2 is an alternate embodiment depicting a remote differential voltage sensing circuit.

圖3A是描繪根據本發明的一實施例的一種遠端的差動電壓感測電路。 3A is a diagram of a differential voltage sensing circuit at the distal end, in accordance with an embodiment of the present invention.

圖3B是描繪根據本發明的另一實施例的一種遠端的差動電壓感測電路。 3B is a diagram of a differential voltage sensing circuit at the far end, in accordance with another embodiment of the present invention.

圖4A是描繪根據本發明的一實施例的一種遠端的差動電壓感測電路。 4A is a diagram of a differential voltage sensing circuit at the distal end, in accordance with an embodiment of the present invention.

圖4B是描繪根據本發明的另一實施例的一種遠端的差動電壓感測電路。 4B is a diagram of a differential voltage sensing circuit at the distal end, in accordance with another embodiment of the present invention.

圖5A是描繪根據本發明的另一實施例的一種遠端的差動電壓感測電路。 5A is a diagram of a differential voltage sensing circuit at the distal end, in accordance with another embodiment of the present invention.

圖5B是描繪根據本發明的又一實施例的一種遠端的差動電壓感測電路。 5B is a diagram of a differential voltage sensing circuit at the distal end, in accordance with yet another embodiment of the present invention.

圖6A是描繪根據本發明的另一實施例的一種遠端的差動電壓感測電路。 6A is a diagram of a differential voltage sensing circuit at the far end, in accordance with another embodiment of the present invention.

圖6B是描繪根據本發明的又一實施例的一種遠端的差動電壓感測電路。 6B is a diagram depicting a remote differential voltage sensing circuit in accordance with yet another embodiment of the present invention.

圖7A是描繪根據本發明的一實施例的一種系統,其包含一具有一輸入端子的電壓調節器,所述輸入端子是接收以上參考圖3A、3B、6A及6B所述的遠端的差動電壓感測電路中之一個的輸出電壓。 7A is a diagram depicting a system including a voltage regulator having an input terminal that receives the difference in the distal end described above with reference to FIGS. 3A, 3B, 6A, and 6B, in accordance with an embodiment of the present invention. The output voltage of one of the dynamic voltage sensing circuits.

圖7B是描繪根據本發明的一實施例的一種包含一電壓調節器的系統,所述電壓調節器是在一回授路徑內具有以上參考圖4A、4B、5A及5B所述 的遠端的差動電壓感測電路中之一個。 7B is a diagram depicting a system including a voltage regulator having a voltage feedback in a feedback path as described above with reference to FIGS. 4A, 4B, 5A, and 5B, in accordance with an embodiment of the present invention. One of the remote differential voltage sensing circuits.

圖8是用來總結根據本發明的各種實施例的方法的高階流程圖。 Figure 8 is a high level flow diagram for summarizing methods in accordance with various embodiments of the present invention.

在以下的詳細說明中是參考到構成所述詳細說明的一部分的所附的圖式,並且在圖式中是藉由圖示特定舉例說明的實施例來加以展示。將瞭解到的是,其它實施例亦可被利用,並且可以做成機械及電性的改變。因此,以下的詳細說明並不欲以限制性的意思來視之。在以下的說明中,相同的元件符號或參考指示符將會被用來指出通篇的類似部件或元件。此外,一元件符號的第一位數是指明所述元件符號第一次出現於其中的圖。 The accompanying drawings, which are incorporated in the claims It will be appreciated that other embodiments may be utilized and that mechanical and electrical changes may be made. Therefore, the following detailed description is not intended to be taken in a limiting sense. In the following description, the same component symbols or reference indicators will be used to indicate similar components or components throughout. Further, the first digit of a component symbol is a map indicating that the component symbol first appears therein.

圖3A是描繪根據本發明的一實施例的一種遠端的差動電壓感測電路302a。如同可以從圖3A體認到的,在其中所示的實施例可以只利用五個金屬氧化物半導體場效電晶體(MOSFET)Mp0、Mp1、Mn2、Mn3及Mn5以及一電容器C0來加以實施。有利的是,所述小幾何的裝置(亦即,所述MOSFET)是輕易地被偏壓在其次臨界(sub-threshold)區中,並且具有一類似於雙載子接面電晶體的互導(Gm)。如同在圖3A中所示,所述次臨界的設計是利用匹配在所述PMOS對Mp0及Mp1與所述NMOS對Mn3及Mn2之間的互導(Gm)而在所述差動輸入級中加以實施。 FIG. 3A depicts a remote differential voltage sensing circuit 302a in accordance with an embodiment of the present invention. As can be appreciated from Figure 3A, the embodiment shown therein can be implemented using only five metal oxide semiconductor field effect transistors (MOSFETs) Mp0, Mp1, Mn2, Mn3, and Mn5, and a capacitor C0. Advantageously, the small geometry device (i.e., the MOSFET) is easily biased in its sub-threshold region and has a mutual conductance similar to a bipolar junction transistor. (Gm). As shown in FIG. 3A, the sub-critical design is in the differential input stage by matching the mutual conductance (Gm) between the PMOS pair Mp0 and Mp1 and the NMOS pair Mn3 and Mn2. Implement it.

在圖3A的實施例中,所述NMOS電晶體Mn5是作用為一用於所述遠端的差動電壓感測電路302a的輸出級310a。被展示於其中的電流源I1及I2是被用來偏壓所述遠端的差動電壓感測電路302a。所述電阻器R0以及電容器C0是提供一補償網路312a以穩定化所述遠端的差動電壓感 測電路302a的兩個級的放大器。在一實施例中,所述電阻器R0可以藉由一作用為一電阻器的MOSFET裝置來加以實施。所述電阻器R0(或等效物)是降低透過所述補償電容器C0的前饋(feed-forward)的影響,其改善所述電路的小信號穩定性。所述電阻器R0是與所述電容器C0以及1/Gm5合作,以將右半平面(RHP)零點移動至左半平面(LHP)零點。從所述補償網路312a中消除所述電阻器R0也是可行的。換言之,所述電阻器R0是選配的。 In the embodiment of FIG. 3A, the NMOS transistor Mn5 is an output stage 310a that functions as a differential voltage sensing circuit 302a for the remote end. Current sources I1 and I2 shown therein are differential voltage sensing circuits 302a that are used to bias the far end. The resistor R0 and the capacitor C0 are provided with a compensation network 312a to stabilize the differential voltage sense of the distal end. The amplifiers of the two stages of circuit 302a are measured. In one embodiment, the resistor R0 can be implemented by a MOSFET device that acts as a resistor. The resistor R0 (or equivalent) is the effect of reducing the feed-forward through the compensation capacitor C0, which improves the small signal stability of the circuit. The resistor R0 cooperates with the capacitors C0 and 1/Gm5 to move the right half plane (RHP) zero to the left half plane (LHP) zero. It is also feasible to eliminate the resistor R0 from the compensation network 312a. In other words, the resistor R0 is optional.

在圖3A的實施例中,所述電晶體Mp0、Mp1、Mn3及Mn2係構成一雙重差動輸入級304a,其包含與一共閘極的差動輸入級308a並聯的一共源極的差動輸入級306a。所述共源極的差動輸入級306a是具有差動輸入,其中的一差動輸入是耦接至所述電壓輸入(Vin),並且其中的另一差動輸入是耦接至所述電壓輸出(Vout)。所述共閘極的差動輸入級308a是具有差動輸入,其中的一差動輸入是耦接至一本地的接地(Agnd),並且其中的另一差動輸入是耦接至一遠端的接地(Rgnd)。所述雙重差動輸入級304a的一輸出是在所述電晶體Mp0及Mn3的連接在一起的汲極之處加以產生或是提供。在圖3A的實施例中,所述電晶體Mn5是提供一輸出級310a,其藉由所述雙重差動輸入級304a的一輸出而被驅動,並且在所述電壓輸出(Vout)之處產生一輸出電壓。所述補償網路312a是耦接在所述電壓輸出(Vout)與所述雙重差動輸入級304a的輸出之間。 In the embodiment of FIG. 3A, the transistors Mp0, Mp1, Mn3, and Mn2 form a dual differential input stage 304a that includes a common source differential input in parallel with a common gate differential input stage 308a. Stage 306a. The common source differential input stage 306a has a differential input, one of the differential inputs is coupled to the voltage input (Vin), and another differential input is coupled to the voltage Output (Vout). The common gate differential input stage 308a has a differential input, one of the differential inputs is coupled to a local ground (Agnd), and the other differential input is coupled to a remote end Ground (Rgnd). An output of the dual differential input stage 304a is generated or provided at the junction of the transistors Mp0 and Mn3 connected together. In the embodiment of FIG. 3A, the transistor Mn5 is provided with an output stage 310a that is driven by an output of the dual differential input stage 304a and that is produced at the voltage output (Vout) An output voltage. The compensation network 312a is coupled between the voltage output (Vout) and the output of the dual differential input stage 304a.

在圖3A的實施例中,Vout=Vin+(Gm2/Gm0)*(Rgnd-Agnd),其中Gm2是所述電晶體Mn2的互導,並且Gm0是所述電晶體Mp0的互導。若Gm2=Gm0(此可以透過在裝置尺寸上的適當調整而被達成),則所述方程式變成Vout=Vin+Rgnd-Agnd。再者,注意到的是在此所述的實 施例的每一個中,若Vout正在相關Agnd而被量測時,則Agnd可被假設為零,並且以上的方程式變成Vout=Vin+Rgnd。在圖3A的實施例中,所述電晶體Mp0及Mn2都工作在其次臨界區中。所述NMOS及PMOS電晶體較佳的是具有相同的偏壓電流(ID)。此外,Gm=ID/(n*VT),其中Gm0=Gm2。VT是熱電壓,其例如對於雙載子接面電晶體而言,在攝氏27度下大約是26mV,並且Gm=IC/VT,其中IC是集極電流。對於一次臨界MOSFET而言,若ID=IC,則其Gm是小於一雙載子接面電晶體的Gm,因而一MOSFET的熱電壓是被定義為n*VT,其中n是大於1並且相關於W/L比,其中W是MOSFET通道的寬度,並且L是通道長度。在圖3A中,由於所述PMOS電晶體Mp1及Mp0是利用相同的偏壓電流而被偏壓,並且所述PMOS電晶體Mp1及Mp0是被設計以具有相同的互導(亦即,相同的Gm),則通過所述PMOS電晶體Mp1及Mp0的源極至汲極電流將會是相同的。若Rgnd及Agnd是相同的,則通過所述NMOS電晶體Mn2及Mn3的汲極至源極電流將會是相同的,並且Vout將會等於Vin。然而,若Rgnd及Agnd是不同的(幾乎總是如此),則通過所述NMOS電晶體Mn2及Mn3的汲極至源極電流將會是不同的,此將會具有使得Vout=Vin+Rgnd-Agnd、或單純是Vout=Vin+Rgnd(若Agnd被假設為零)的效應。 In the embodiment of FIG. 3A, Vout = Vin + (Gm2 / Gm0) * (Rgnd - Agnd), where Gm2 is the mutual conductance of the transistor Mn2, and Gm0 is the mutual conductance of the transistor Mp0. If Gm2 = Gm0 (this can be achieved by appropriate adjustments in device size), then the equation becomes Vout = Vin + Rgnd - Agnd. Furthermore, what is noted is the reality described here. In each of the embodiments, if Vout is being measured in relation to Agnd, Agnd can be assumed to be zero, and the above equation becomes Vout=Vin+Rgnd. In the embodiment of Figure 3A, the transistors Mp0 and Mn2 both operate in their subcritical regions. The NMOS and PMOS transistors preferably have the same bias current (ID). Further, Gm = ID / (n * VT), where Gm0 = Gm2. VT is a thermal voltage that is, for example, for a two-carrier junction transistor, approximately 26 mV at 27 degrees Celsius, and Gm = IC/VT, where IC is the collector current. For a critical MOSFET, if ID = IC, then its Gm is less than the Gm of a two-carrier junction transistor, so the thermal voltage of a MOSFET is defined as n * VT, where n is greater than 1 and is related to W/L ratio, where W is the width of the MOSFET channel and L is the channel length. In FIG. 3A, since the PMOS transistors Mp1 and Mp0 are biased with the same bias current, and the PMOS transistors Mp1 and Mp0 are designed to have the same mutual conductance (ie, the same) Gm), the source-to-drain current through the PMOS transistors Mp1 and Mp0 will be the same. If Rgnd and Agnd are the same, the drain-to-source current through the NMOS transistors Mn2 and Mn3 will be the same, and Vout will be equal to Vin. However, if Rgnd and Agnd are different (almost always), the drain-to-source current through the NMOS transistors Mn2 and Mn3 will be different, which will have Vout=Vin+Rgnd- Agnd, or simply the effect of Vout=Vin+Rgnd (if Agnd is assumed to be zero).

在一替代實施例中,如同在圖3B中所示,雙載子接面電晶體(BJT)Qp0、Qp1、Qn2、Qn3及Qn5可被利用以分別取代所述MOSFET電晶體Mp0、Mp1、Mn2、Mn3及Mn5。在圖3B的實施例中,所述電晶體Qp0、Qp1、Qn3及Qn2是構成一雙重差動輸入級304b,其包含與一共基極的差動輸入級308b並聯的一共射極的差動輸入級306b。所述共射極的差動輸入級 306b是具有差動輸入,其中的一差動輸入是耦接至所述電壓輸入(Vin),並且其中的另一差動輸入是耦接至所述電壓輸出(Vout)。所述共基極的差動輸入級308a是具有差動輸入,其中的一差動輸入是耦接至一本地的接地(Agnd),並且其中的另一差動輸入是耦接至一遠端的接地(Rgnd)。所述雙重差動輸入級304b的一輸出是在所述電晶體Qp0及Qn3的連接在一起的集極之處加以產生或是提供。在圖3B的實施例中,所述電晶體Qn5是提供一輸出級310b,其藉由所述雙重差動輸入級304b的一輸出而被驅動,並且在所述電壓輸出(Vout)之處產生一輸出電壓。一補償網路312b是耦接在所述電壓輸出(Vout)與所述雙重差動輸入級304b的輸出之間。如同在圖3A中的例子,所述補償網路312b的電阻器R0是選配的,並且因此可被移除。若Rgnd及Agnd是相同的,則通過所述NPN電晶體Qn2及Qn3的集極至射極電流將會是相同的,並且Vout將會等於Vin。然而,若Rgnd及Agnd是不同的(幾乎總是如此),則通過所述NPN電晶體Qn2及Qn3的集極至射極電流將會是不同的,此將會具有使得Vout=Vin+(Gm2/Gm0)*(Rgnd-Agnd)的效應,其中Gm2是所述電晶體Qn2的互導,並且Gm0是所述電晶體Qp0的互導。若Gm2=Gm0(此可以透過在裝置尺寸上的適當調整而被達成),則所述方程式變成為Vout=Vin+Rgnd-Agnd。再者,若Vout是相關Agnd來加以量測的,則Agnd可被假設為零,並且所述方程式變成為Vout=Vin+Rgnd。 In an alternate embodiment, as shown in FIG. 3B, bi-carrier junction transistors (BJT) Qp0, Qp1, Qn2, Qn3, and Qn5 can be utilized to replace the MOSFET transistors Mp0, Mp1, Mn2, respectively. , Mn3 and Mn5. In the embodiment of FIG. 3B, the transistors Qp0, Qp1, Qn3, and Qn2 form a dual differential input stage 304b that includes a common emitter differential input in parallel with a common base differential input stage 308b. Stage 306b. Differential input stage of the common emitter 306b is a differential input, one of the differential inputs being coupled to the voltage input (Vin), and wherein the other differential input is coupled to the voltage output (Vout). The common base differential input stage 308a has a differential input, one of the differential inputs is coupled to a local ground (Agnd), and the other differential input is coupled to a remote end Ground (Rgnd). An output of the dual differential input stage 304b is generated or provided at the junction of the transistors Qp0 and Qn3 connected together. In the embodiment of FIG. 3B, the transistor Qn5 is provided with an output stage 310b that is driven by an output of the dual differential input stage 304b and that is generated at the voltage output (Vout) An output voltage. A compensation network 312b is coupled between the voltage output (Vout) and the output of the dual differential input stage 304b. As in the example of Figure 3A, the resistor R0 of the compensation network 312b is optional and can therefore be removed. If Rgnd and Agnd are the same, the collector-to-emitter current through the NPN transistors Qn2 and Qn3 will be the same and Vout will be equal to Vin. However, if Rgnd and Agnd are different (almost always), the collector-to-emitter current through the NPN transistors Qn2 and Qn3 will be different, which will have Vout=Vin+(Gm2/ The effect of Gm0)*(Rgnd-Agnd), where Gm2 is the mutual conductance of the transistor Qn2, and Gm0 is the mutual conductance of the transistor Qp0. If Gm2 = Gm0 (this can be achieved by appropriate adjustments in device size), then the equation becomes Vout = Vin + Rgnd - Agnd. Furthermore, if Vout is measured by the associated Agnd, Agnd can be assumed to be zero, and the equation becomes Vout=Vin+Rgnd.

交換在圖3A中的NMOS電晶體Mn2及Mn3的源極連線也是在本發明的實施例的範疇內。更明確地說,參照圖4A,藉由連接所述電晶體Mn2的源極至Agnd,並且連接所述電晶體Mn3的源極至Rgnd,則Vout=Vin-(Gm2/Gm0)*(Rgnd-Agnd),其中Gm2是所述電晶體Mn2的互導,並 且Gm0是所述電晶體Mp0的互導。若Gm2=Gm0,則所述方程式變成為Vout=Vin-Rgnd+Agnd。再者,若Vout是相關Agnd來加以量測的,則Agnd可被假設為零,並且所述方程式變成為Vout=Vin-Rgnd。在圖4A中,所述電晶體Mp0、Mp1、Mn3及Mn2是構成一雙重差動輸入級404a,其包含與一共閘極的差動輸入級408a並聯的一共源極的差動輸入級406a。在圖4A中,所述電晶體Mn5是提供一輸出級410a,並且一補償網路412a是穩定化所述遠端的差動電壓感測電路402a的兩個級的放大器。 It is also within the scope of embodiments of the present invention to exchange the source connections of the NMOS transistors Mn2 and Mn3 in Figure 3A. More specifically, referring to FIG. 4A, by connecting the source of the transistor Mn2 to Agnd and connecting the source of the transistor Mn3 to Rgnd, Vout=Vin-(Gm2/Gm0)*(Rgnd- Agnd), wherein Gm2 is a mutual conductance of the transistor Mn2, and And Gm0 is a mutual conductance of the transistor Mp0. If Gm2 = Gm0, the equation becomes Vout = Vin - Rgnd + Agnd. Furthermore, if Vout is measured by the associated Agnd, Agnd can be assumed to be zero, and the equation becomes Vout=Vin-Rgnd. In FIG. 4A, the transistors Mp0, Mp1, Mn3, and Mn2 form a dual differential input stage 404a that includes a common source differential input stage 406a in parallel with a common gate differential input stage 408a. In FIG. 4A, the transistor Mn5 provides an output stage 410a, and a compensation network 412a is an amplifier that stabilizes the two stages of the remote differential voltage sensing circuit 402a.

交換在圖3B中的NPN電晶體Qn2及Qn3的射極連線也是在本發明的一實施例的範疇內。更明確地說,參照圖4B,藉由連接所述電晶體Qn2的射極至Agnd,並且連接所述電晶體Qn3的射極至Rgnd,則Vout=Vin-(Gm2/Gm0)*(Rgnd-Agnd),其中Gm2是所述電晶體Qn2的互導,並且Gm0是所述電晶體Qp0的互導。若Gm2=Gm0,則所述方程式變成為Vout=Vin-Rgnd+Agnd。再者,若Vout是相關Agnd來加以量測的,則Agnd可被假設為零,並且所述方程式變成為Vout=Vin-Rgnd。在圖4B中,所述電晶體Qp0、Qp1、Qn3及Qn2是構成一雙重差動輸入級404b,其包含與一共基極的差動輸入級408b並聯的一共射極的差動輸入級406b。在圖4B中,所述電晶體Qn5是提供一輸出級410b,並且一補償網路412b是穩定化所述遠端的差動電壓感測電路402b的兩個級的放大器。 It is also within the scope of an embodiment of the present invention to exchange the emitter connections of the NPN transistors Qn2 and Qn3 in Figure 3B. More specifically, referring to FIG. 4B, by connecting the emitter of the transistor Qn2 to Agnd and connecting the emitter of the transistor Qn3 to Rgnd, Vout=Vin-(Gm2/Gm0)*(Rgnd- Agnd), wherein Gm2 is the mutual conductance of the transistor Qn2, and Gm0 is the mutual conductance of the transistor Qp0. If Gm2 = Gm0, the equation becomes Vout = Vin - Rgnd + Agnd. Furthermore, if Vout is measured by the associated Agnd, Agnd can be assumed to be zero, and the equation becomes Vout=Vin-Rgnd. In FIG. 4B, the transistors Qp0, Qp1, Qn3, and Qn2 form a dual differential input stage 404b that includes a common emitter differential input stage 406b in parallel with a common base differential input stage 408b. In FIG. 4B, the transistor Qn5 is provided with an output stage 410b, and a compensation network 412b is an amplifier of two stages of the differential voltage sensing circuit 402b that stabilizes the far end.

圖3A及3B的遠端的差動電壓感測電路302a及302b是運作為一電壓加法器電路,並且因此亦可被稱為一電壓加法器電路。圖4A及4B的遠端的差動電壓感測電路402a及402b是運作為一電壓減法器電路,並且因此亦可被稱為一電壓減法器電路。 The remote differential voltage sensing circuits 302a and 302b of FIGS. 3A and 3B operate as a voltage adder circuit and may therefore also be referred to as a voltage adder circuit. The remote differential voltage sensing circuits 402a and 402b of Figures 4A and 4B operate as a voltage subtractor circuit and may therefore also be referred to as a voltage subtractor circuit.

在上述的實施例中,一遠端的差動感測電路是接受來自一遠端的接地(Rgnd)以及本地的接地(Agnd)的輸入,並且判斷在這兩個接地的電位上的差值。在Rgnd與Agnd之間的一差值是補償所述差動輸入級的操作。若Rgnd是較大的,則電流是在所述電路的左分支與右分支之間被調整,並且整體回授是迫使在所述輸入對中的電流追蹤此調整。例如,在圖3A中,當所述電路操作時,一第一級的DC電流輸出(其是通過所述電晶體Mn5的源極至汲極路徑的電流)將會由於回授的關係而為零(亦即,平衡的)。來自所述第一級的電流輸出是Gmp。由Mp1及Mp0所產生的AC電流是(Vin-Vout)*Gmp。被加到所述第一級的電流輸出是由Mn2及Mn3所產生的AC電流,其是(Rgnd-Agnd)*Gmn。這兩個AC電流加在一起是等於零。藉由設計Gmp=Gmn,一所要的結果被達成,其中所述兩個Gm級是饋入彼此中。換言之,兩個並聯的Gm級是被迫使和彼此平衡。較佳的是,頂端級與底部級的Gm應該是實質相等的。因為這些電晶體共用相同的電流,並且因為它們操作在其次臨界操作區中,因而所述Gm主要是依據所述電流而定,於是相當容易使得所述Gm是實質相等的。當操作在其次臨界操作區中時,每個電晶體的Gm基本上等於電流除以某個固定的電壓(其是用於所述電晶體的每一個之相同的固定的電壓)。此使得所述各種的Gm能夠加以平衡。相較於原本所可能的,此配置是使得所述各種的Gm的匹配更容易獲得。通常為了匹配兩個Gm,通常有需要匹配所述兩個裝置的尺寸比例以及所述兩個裝置的電流。按照定義,通過所述P型裝置以及所述N型裝置的電流是被匹配的。在此配置中的電子遷移率是二階的(second order),此是有利的。所述電晶體的寬度及長度的選擇是被選擇以使得所述電晶體能夠操作 在其次臨界區中。 In the above embodiment, a remote differential sensing circuit accepts input from a remote ground (Rgnd) and local ground (Agnd) and determines the difference in potential between the two grounds. A difference between Rgnd and Agnd is an operation that compensates for the differential input stage. If Rgnd is larger, the current is adjusted between the left and right branches of the circuit, and the overall feedback is forcing the current in the pair to track this adjustment. For example, in FIG. 3A, when the circuit is operated, a first stage DC current output (which is the current through the source to the drain path of the transistor Mn5) will be due to the feedback relationship. Zero (ie, balanced). The current output from the first stage is Gmp. The AC current generated by Mp1 and Mp0 is (Vin-Vout)*Gmp. The current output applied to the first stage is an AC current generated by Mn2 and Mn3, which is (Rgnd-Agnd)*Gmn. The two AC currents are added together to be equal to zero. By designing Gmp = Gmn, a desired result is achieved, wherein the two Gm levels are fed into each other. In other words, two parallel Gm stages are forced and balanced with each other. Preferably, the Gm of the top and bottom stages should be substantially equal. Since these transistors share the same current, and because they operate in their subcritical operating regions, the Gm is primarily dependent on the current, so it is fairly easy to make the Gms substantially equal. When operating in its secondary critical operating region, the Gm of each transistor is substantially equal to the current divided by a certain fixed voltage (which is the same fixed voltage for each of the transistors). This enables the various Gm to be balanced. This configuration makes the matching of the various Gms more readily available than would otherwise be possible. Usually in order to match two Gm, there is usually a need to match the size ratio of the two devices and the current of the two devices. By definition, the current through the P-type device and the N-type device is matched. The electron mobility in this configuration is a second order, which is advantageous. The selection of the width and length of the transistor is selected to enable operation of the transistor In the next critical section.

圖5A是描繪根據本發明的另一實施例的一種遠端的差動電壓感測電路502a。在圖5A的實施例中,所述MOSFET電晶體Mp0、Mp1、Mn3及Mn2是構成一雙重差動輸入級504a,其包含與一共閘極的差動輸入級508a並聯的一共源極的差動輸入級506a。所述共源極的差動輸入級506a是具有差動輸入,其中的一差動輸入是耦接至所述電壓輸入(Vin),並且其中的另一差動輸入是耦接至所述電壓輸出(Vout)。所述共閘極的差動輸入級508a是具有差動輸入,其中的一差動輸入是耦接至一本地的接地(Agnd),並且其中的另一差動輸入是耦接至一遠端的接地(Rgnd)。在圖5A的實施例中,所述電晶體Mn3亦作用為一用於所述遠端的差動電壓感測電路502a的輸出級510a。在圖5A中,假設Gm0=Gm2,Vout=Vin-Rgnd+Agnd。若Vout是相關Agnd來加以量測的,則Agnd可被假設為零,並且所述方程式變成為Vout=Vin-Rgnd。 FIG. 5A is a depiction of a remote differential voltage sensing circuit 502a in accordance with another embodiment of the present invention. In the embodiment of FIG. 5A, the MOSFET transistors Mp0, Mp1, Mn3, and Mn2 form a dual differential input stage 504a that includes a common source differential in parallel with a common gate differential input stage 508a. Input stage 506a. The common source differential input stage 506a has a differential input, one of the differential inputs is coupled to the voltage input (Vin), and another differential input is coupled to the voltage Output (Vout). The common gate differential input stage 508a has a differential input, one of the differential inputs is coupled to a local ground (Agnd), and the other differential input is coupled to a remote end Ground (Rgnd). In the embodiment of Figure 5A, the transistor Mn3 also functions as an output stage 510a for the remote differential voltage sensing circuit 502a. In Fig. 5A, it is assumed that Gm0 = Gm2, and Vout = Vin-Rgnd + Agnd. If Vout is measured by the associated Agnd, Agnd can be assumed to be zero, and the equation becomes Vout=Vin-Rgnd.

圖5B是描繪根據本發明的另一實施例的一種遠端的差動電壓感測電路502b。在圖5B的實施例中,所述BJT電晶體Qp0、Qp1、Qn3及Qn2是構成一雙重差動輸入級504b,其包含與一共基極的差動輸入級508b並聯的一共射極的差動輸入級506b。所述共射極的差動輸入級506b是具有差動輸入,其中的一差動輸入是耦接至所述電壓輸入(Vin),並且其中的另一差動輸入是耦接至所述電壓輸出(Vout)。所述共基極的差動輸入級508b是具有差動輸入,其中的一差動輸入是耦接至一本地的接地(Agnd),並且其中的另一差動輸入是耦接至一遠端的接地(Rgnd)。在圖5B的實施例中,所述電晶體Qn3亦作用為一用於所述遠端的差動電壓感測電路502b的輸出級 510b。在圖5B中,假設Gm0=Gm2,Vout=Vin-Rgnd+Agnd。若Vout是相關Agnd來加以量測的,則Agnd可被假設為零,並且所述方程式變成為Vout=Vin-Rgnd。 FIG. 5B is a depiction of a remote differential voltage sensing circuit 502b in accordance with another embodiment of the present invention. In the embodiment of FIG. 5B, the BJT transistors Qp0, Qp1, Qn3, and Qn2 form a dual differential input stage 504b that includes a common emitter differential in parallel with a common base differential input stage 508b. Input stage 506b. The common emitter differential input stage 506b has a differential input, one of the differential inputs is coupled to the voltage input (Vin), and another differential input is coupled to the voltage Output (Vout). The common base differential input stage 508b has a differential input, one of the differential inputs is coupled to a local ground (Agnd), and the other differential input is coupled to a remote end Ground (Rgnd). In the embodiment of FIG. 5B, the transistor Qn3 also functions as an output stage of the differential voltage sensing circuit 502b for the remote end. 510b. In FIG. 5B, it is assumed that Gm0=Gm2, and Vout=Vin-Rgnd+Agnd. If Vout is measured by the associated Agnd, Agnd can be assumed to be zero, and the equation becomes Vout=Vin-Rgnd.

交換在圖5A中的NMOS電晶體Mn2及Mn3的源極連線也是在本發明的實施例的範疇內。更明確地說,參照圖6A,藉由連接所述電晶體Mn2的源極至Agnd,並且連接所述電晶體Mn3的源極至Rgnd,假設Gm0=Gm2,則Vout=Vin+Rgnd-Agnd。若Vout是相關Agnd來加以量測的,則Agnd可被假設為零,並且所述方程式變成為Vout=Vin+Rgnd。在圖6A的實施例中,所述MOSFET電晶體Mp0、Mp1、Mn3及Mn2是構成一雙重差動輸入級604a,其包含與一共閘極的差動輸入級608a並聯的一共源極的差動輸入級606a。所述共源極的差動輸入級606a是具有差動輸入,其中的一差動輸入是耦接至所述電壓輸入(Vin),並且其中的另一差動輸入是耦接至所述電壓輸出(Vout)。所述共閘極的差動輸入級608a是具有差動輸入,其中的一差動輸入是耦接至一本地的接地(Agnd),並且其中的另一差動輸入是耦接至一遠端的接地(Rgnd)。在圖6A的實施例中,所述電晶體Mn3亦作用為一用於所述遠端的差動電壓感測電路602a的輸出級610a。 It is also within the scope of embodiments of the present invention to exchange the source connections of the NMOS transistors Mn2 and Mn3 in Figure 5A. More specifically, referring to FIG. 6A, by connecting the source of the transistor Mn2 to Agnd and connecting the source of the transistor Mn3 to Rgnd, assuming Gm0 = Gm2, Vout = Vin + Rgnd - Agnd. If Vout is measured by the associated Agnd, Agnd can be assumed to be zero, and the equation becomes Vout = Vin + Rgnd. In the embodiment of FIG. 6A, the MOSFET transistors Mp0, Mp1, Mn3, and Mn2 form a dual differential input stage 604a that includes a common source differential in parallel with a common gate differential input stage 608a. Input stage 606a. The common source differential input stage 606a has a differential input, one of the differential inputs is coupled to the voltage input (Vin), and another differential input is coupled to the voltage Output (Vout). The common gate differential input stage 608a has a differential input, one of the differential inputs is coupled to a local ground (Agnd), and the other differential input is coupled to a remote end Ground (Rgnd). In the embodiment of Figure 6A, the transistor Mn3 also functions as an output stage 610a for the remote differential voltage sensing circuit 602a.

交換在圖5B中的NPN電晶體Qn2及Qn3的射極連線也是在本發明的一實施例的範疇內。更明確地說,參照圖6B,藉由連接所述電晶體Qn2的射極至Agnd,並且連接所述電晶體Qn3的射極至Rgnd,假設Gm0=Gm2,則Vout=Vin+Rgnd-Agnd。若Vout是相關Agnd來加以量測的,則Agnd可被假設為零,並且所述方程式變成為Vout=Vin+Rgnd。在圖6B的實施例中,所述BJT電晶體Qp0、Qp1、Qn3及Qn2是構成一雙重差動輸 入級604b,其包含與一共基極的差動輸入級608b並聯的一共射極的差動輸入級606b。所述共射極的差動輸入級606b是具有差動輸入,其中的一差動輸入是耦接至所述電壓輸入(Vin),並且其中的另一差動輸入是耦接至所述電壓輸出(Vout)。所述共基極的差動輸入級608b是具有差動輸入,其中的一差動輸入是耦接至一本地的接地(Agnd),並且其中的另一差動輸入是耦接至一遠端的接地(Rgnd)。在圖6B的實施例中,所述電晶體Qn3亦作用為一用於所述遠端的差動電壓感測電路602b的輸出級610b。 It is also within the scope of an embodiment of the present invention to exchange the emitter connections of the NPN transistors Qn2 and Qn3 in Figure 5B. More specifically, referring to FIG. 6B, by connecting the emitter of the transistor Qn2 to Agnd and connecting the emitter of the transistor Qn3 to Rgnd, assuming Gm0 = Gm2, Vout = Vin + Rgnd - Agnd. If Vout is measured by the associated Agnd, Agnd can be assumed to be zero, and the equation becomes Vout = Vin + Rgnd. In the embodiment of FIG. 6B, the BJT transistors Qp0, Qp1, Qn3, and Qn2 constitute a double differential input. Stage 604b includes a common emitter differential input stage 606b in parallel with a common base differential input stage 608b. The common emitter differential input stage 606b has a differential input, one of the differential inputs is coupled to the voltage input (Vin), and another differential input is coupled to the voltage Output (Vout). The common base differential input stage 608b has a differential input, one of the differential inputs is coupled to a local ground (Agnd), and the other differential input is coupled to a remote end Ground (Rgnd). In the embodiment of Figure 6B, the transistor Qn3 also functions as an output stage 610b for the remote differential voltage sensing circuit 602b.

如同在此所用的,根據上下文,所述術語"Vin"可被利用以代表一遠端的差動電壓感測電路的輸入節點、以及在所述輸入節點的電壓兩者。換言之,Vin是被用來指出一電路的輸入端子、以及在所述輸入端子的電壓兩者。類似地,根據上下文,所述術語"Vout"可被利用以代表一遠端的差動電壓感測電路的輸出節點、以及在所述輸出節點的電壓兩者。換言之,Vout被用來指出一電路的輸出端子、以及在所述輸出端子的電壓兩者。此外,Agnd可被利用以代表所述本地的接地節點以及在該節點的電壓,並且Rgnd可被利用以代表所述遠端的接地電壓以及在該節點的電壓。再者,I1代表一電流源以及藉由所述電流源所產生的電流兩者;並且I2代表一電流源以及藉由所述電流源所產生的電流兩者。從此種術語被使用於其中的上下文,此種術語是如何被使用的將會是明顯的。 As used herein, the term "Vin" can be utilized to represent both the input node of a remote differential voltage sensing circuit and the voltage at the input node, depending on the context. In other words, Vin is used to indicate both the input terminal of a circuit and the voltage at the input terminal. Similarly, depending on the context, the term "Vout" can be utilized to represent both the output node of a remote differential voltage sensing circuit and the voltage at the output node. In other words, Vout is used to indicate both the output terminal of a circuit and the voltage at the output terminal. Furthermore, Agnd can be utilized to represent the local ground node and the voltage at the node, and Rgnd can be utilized to represent the ground voltage of the far end and the voltage at the node. Furthermore, I1 represents both a current source and the current generated by the current source; and I2 represents both a current source and the current generated by the current source. From the context in which such terms are used, it will be apparent how such terms are used.

圖4A、4B、5A及5B的產生Vout=Vin-Rgnd+Agnd的遠端的差動電壓感測電路可被利用在Vin是一相對於晶片的外部的電壓的情形中,並且在所述晶片內有對於複製Vin的要求。圖3A、3B、6A及6B的產生Vout=Vin+Rgnd-Agnd的遠端的差動電壓感測電路可被利用在Vin是 一相對於晶片的內部的電壓的情形中,並且在所述晶片外有對於複製Vin的要求。 The differential voltage sensing circuit of FIGS. 4A, 4B, 5A, and 5B that generates the distal end of Vout=Vin-Rgnd+Agnd can be utilized in the case where Vin is a voltage relative to the outside of the wafer, and in the wafer There is a requirement for copying Vin. The differential voltage sensing circuit of FIGS. 3A, 3B, 6A, and 6B that generates the far end of Vout=Vin+Rgnd-Agnd can be utilized in Vin. In the case of a voltage relative to the interior of the wafer, and outside the wafer there is a requirement for replicating Vin.

在此所述的遠端的差動電壓感測電路是感測三個輸入,亦即Vin、Rgnd及Agnd,並且產生一等於依據所述實施例而定的Vin+Rgnd-Agnd或是Vin-Rgnd+Agnd的輸出Vout。所述Rgnd及Agnd輸入通常將會有一低阻抗,並且是在彼此的數十mV內。在此所敘述的實施例中,一共閘極(或是共基極)的差動輸入級(例如,308a、308b、408a、408b、508a、508b、608a或608b)是感測在Rgnd與Agnd之間的一差值,並且產生一指出所述差值的補償電流。藉由所述共閘極(或是共基極)的差動輸入級所產生的補償電流是被使用作為一共源極(或是共射極)的差動輸入級(例如,306a、306b、406a、406b、506a、506b、606a或606b)的一負載,所述共源極(或是共射極)的差動輸入級是感測所述輸入電壓Vin(高於接地)並且監視所述輸出電壓Vout(同樣高於接地)。藉由建構所述共閘極(或是共基極)的差動輸入級成為一回授放大器,在所述接地電位Rgnd與Agnd之間的一差值是自動地從所述共源極(或是共射極)的差動輸入級(例如,306a、306b、406a、406b、506a、506b、606a或606b)的輸入中減去。於是,相同的電流是被使用於感測所述接地電位Rgnd及Agnd並且監視所述回授,此提供電流的節省。所述整個算術運算Vin+Rgnd-Agnd或是Vin-Rgnd+Agnd是在一雙重差動輸入級(例如,304a、304b、404a、404b、504a、504b、604a或604b)的四個電晶體(亦即,Mp0、Mp1、Mn2及Mn3;或是Qp0、Qp1、Qn2及Qn3)的一環中加以達成,此對於一給定的電流位準是提供最大的速度。 The remote differential voltage sensing circuit described herein senses three inputs, namely Vin, Rgnd and Agnd, and produces a value equal to Vin+Rgnd-Agnd or Vin- depending on the embodiment. The output of Rgnd+Agnd is Vout. The Rgnd and Agnd inputs will typically have a low impedance and are within tens of mV of each other. In the embodiment described herein, a common gate (or common base) differential input stage (eg, 308a, 308b, 408a, 408b, 508a, 508b, 608a, or 608b) is sensed at Rgnd and Agnd. A difference between and produces a compensation current indicative of the difference. The compensation current generated by the differential input stage of the common gate (or common base) is a differential input stage (eg, 306a, 306b, used as a common source (or common emitter), a load of 406a, 406b, 506a, 506b, 606a or 606b), the differential input stage of the common source (or common emitter) sensing the input voltage Vin (higher than ground) and monitoring the Output voltage Vout (also higher than ground). By constructing the differential input stage of the common gate (or common base) to become a feedback amplifier, a difference between the ground potentials Rgnd and Agnd is automatically from the common source ( Or the input of the differential input stage (eg, 306a, 306b, 406a, 406b, 506a, 506b, 606a, or 606b) of the common emitter) is subtracted. Thus, the same current is used to sense the ground potentials Rgnd and Agnd and monitor the feedback, which provides current savings. The entire arithmetic operation Vin+Rgnd-Agnd or Vin-Rgnd+Agnd is four transistors in a double differential input stage (eg, 304a, 304b, 404a, 404b, 504a, 504b, 604a or 604b) That is, Mp0, Mp1, Mn2, and Mn3; or a loop of Qp0, Qp1, Qn2, and Qn3) is achieved, which provides the maximum speed for a given current level.

以另一種方式解說,在此所述的遠端的差動電壓感測電路是 感測在一遠端的接地點(Rgnd)以及一本地的接地(Agnd)之間的一電壓差,並且施加此電壓差在一共閘極(或是共基極)的差動輸入級(例如,308a、308b、408a、408b、508a、508b、608a或608b)的源極(或射極)端子之間,以便於在其中產生一電流不平衡。此電流不平衡是被施加至一共源極(或是共射極)的差動輸入級(例如,306a、306b、406a、406b、506a、506b、606a或606b),以便於干擾所述共源極(或是共射極)的差動輸入級(例如,306a、306b、406a、406b、506a、506b、606a或606b)的對稱性,並且藉此在所述共源極(或是共射極)的差動輸入級的輸入(例如,Mp0及Mp1的閘極、或是Qp0及Qp1的基極)之間產生一電壓偏移。 In another way, the remote differential voltage sensing circuit described herein is Sensing a voltage difference between a remote ground point (Rgnd) and a local ground (Agnd) and applying the voltage difference to a differential input stage of a common gate (or common base) (eg Between the source (or emitter) terminals of 308a, 308b, 408a, 408b, 508a, 508b, 608a or 608b) to facilitate a current imbalance therein. This current imbalance is a differential input stage (eg, 306a, 306b, 406a, 406b, 506a, 506b, 606a, or 606b) applied to a common source (or common emitter) to facilitate interference with the common source The symmetry of the differential input stage (eg, 306a, 306b, 406a, 406b, 506a, 506b, 606a, or 606b) of the pole (or common emitter), and thereby at the common source (or comrade) A voltage offset is generated between the inputs of the differential input stage (eg, the gates of Mp0 and Mp1, or the bases of Qp0 and Qp1).

根據某些實施例,一電阻器可以耦接在Rgnd與Agnd之間,以限制施加在電晶體Mn2及Mn3上的源極接面之間(或是在電晶體Qn2及Qn3上的射極接面之間)的靜電放電(ESD)應力的量。根據其它實施例,一串聯電阻器可以耦接在Rgnd與電晶體Mn2的源極之間(或是在Rgnd與電晶體Qn2的射極之間),並且另一串聯電阻器可以耦接在Agnd與電晶體Mn3的源極之間(或是在Agnd與電晶體Qn3的射極之間)。或者是,任何其它習知或非習知的ESD保護技術都可被利用。根據某些實施例,電晶體M2的基體(body)是連繫到其源極,並且電晶體M3的基體是連繫到其源極。 According to some embodiments, a resistor may be coupled between Rgnd and Agnd to limit the application between the source junctions on the transistors Mn2 and Mn3 (or the emitter junctions on the transistors Qn2 and Qn3). The amount of electrostatic discharge (ESD) stress between the faces. According to other embodiments, a series resistor may be coupled between Rgnd and the source of transistor Mn2 (either between Rgnd and the emitter of transistor Qn2), and another series resistor may be coupled to Agnd Between the source of the transistor Mn3 (or between the emitter of Agnd and the transistor Qn3). Alternatively, any other conventional or non-practical ESD protection techniques can be utilized. According to some embodiments, the body of the transistor M2 is tied to its source, and the body of the transistor M3 is connected to its source.

本發明的某些實施例可被利用以提供一輸入電壓至一電壓調節器的一輸入端子。例如,圖7A是描繪一種包含一電壓調節器706的系統,所述電壓調節器706具有一輸入端子(其亦可被稱為一參考輸入端子、或單純被稱為一參考端子),所述輸入端子是接收以上參考圖3A、3B、6A及6B所述的遠端的差動電壓感測電路302a、302b、602a或602b中的一個 的輸出電壓(Vout)。所述電壓調節器706例如可以是一DC-DC降壓轉換器,但是並不限於此。 Certain embodiments of the invention may be utilized to provide an input voltage to an input terminal of a voltage regulator. For example, FIG. 7A depicts a system including a voltage regulator 706 having an input terminal (which may also be referred to as a reference input terminal, or simply referred to as a reference terminal), The input terminal is one of the differential voltage sensing circuits 302a, 302b, 602a or 602b receiving the far end described above with reference to Figures 3A, 3B, 6A and 6B. Output voltage (Vout). The voltage regulator 706 can be, for example, a DC-DC buck converter, but is not limited thereto.

本發明的某些實施例可以內含在一電壓調節器的回授路徑中。例如,圖7B是描繪一種包含一電壓調節器706的系統,所述電壓調節器706是在一介於所述電壓調節器706的一電壓輸出(Vout)端子與所述電壓調節器706的回授端子(FB)之間的回授路徑內具有以上參考圖4A、4B、5A及5B所述的遠端的差動電壓感測電路402a、402b、502a或502b中的一個。 Certain embodiments of the invention may be embodied in a feedback path of a voltage regulator. For example, FIG. 7B depicts a system including a voltage regulator 706 that is fed back to a voltage output (Vout) terminal of the voltage regulator 706 and the voltage regulator 706. The feedback path between the terminals (FB) has one of the remote differential voltage sensing circuits 402a, 402b, 502a or 502b described above with reference to Figures 4A, 4B, 5A and 5B.

本發明的實施例亦針對於用於產生一輸出電壓(Vout)是等於一輸入電壓(Vin)加上或是減去在一遠端的接地(Rgnd)與一本地的接地(Agnd)之間的一差值的方法。此種方法是被總結在圖8的高階流程圖中。換言之,圖8是一被用來總結根據本發明的各種實施例的方法的高階流程圖。參照圖8,步驟802是牽涉到施加一輸入電壓(Vin)至一共源極或是共射極的差動輸入級(例如,306a、306b、406a、406b、506a、506b、606a或606b)的一對輸入中的一輸入。步驟804是牽涉到利用一共閘極或是共基極的差動輸入級(例如,308a、308b、408a、408b、508a、508b、608a或608b)以感測在一遠端的接地(Rgnd)與一本地的接地(Agnd)之間的一電壓差,以便於在其中產生一電流不平衡。步驟806是牽涉到施加所述電流不平衡至所述共源極或是共射極的差動輸入級(例如,306a、306b、406a、406b、506a、506b、606a或606b)以便於干擾所述共源極或是共射極的差動輸入級的對稱性,並且藉此在所述共源極或是共射極的差動輸入級的所述對的輸入之間產生一電壓偏移。步驟808是牽涉到藉由利用所述共源極或是共射極的差動輸入級(例如,306a、306b、406a、406b、506a、506b、606a或606b)作為一被配置為單 位增益的電壓隨耦器(voltage follower)的回授放大器的一輸入級以產生一輸出電壓(Vout)。作用為單位增益的電壓隨耦器的電路是被描繪在圖3A、3B、4A、4B、5A、5B、6A及6B中。換言之,在此所述的遠端的差動電壓感測電路可以運作為單位增益的電壓隨耦器。 Embodiments of the present invention are also directed to generating an output voltage (Vout) equal to an input voltage (Vin) plus or minus a ground (Rgnd) at a far end and a local ground (Agnd) A difference method. This method is summarized in the high-level flow chart of Figure 8. In other words, Figure 8 is a high level flow diagram that is used to summarize the methods in accordance with various embodiments of the present invention. Referring to Figure 8, step 802 is a differential input stage (e.g., 306a, 306b, 406a, 406b, 506a, 506b, 606a, or 606b) that involves applying an input voltage (Vin) to a common source or a common emitter. One of a pair of inputs. Step 804 involves a differential input stage (eg, 308a, 308b, 408a, 408b, 508a, 508b, 608a, or 608b) that utilizes a common gate or a common base to sense grounding at a remote end (Rgnd). A voltage difference from a local ground (Agnd) to facilitate a current imbalance therein. Step 806 is directed to applying a differential input stage (eg, 306a, 306b, 406a, 406b, 506a, 506b, 606a, or 606b) that applies the current imbalance to the common source or common emitter to facilitate interference. The symmetry of the differential input stage of the common source or the common emitter, and thereby generating a voltage offset between the inputs of the pair of differential input stages of the common source or common emitter . Step 808 is directed to using a differential input stage (eg, 306a, 306b, 406a, 406b, 506a, 506b, 606a, or 606b) that utilizes the common source or common emitter as one configured as a single The bit gain voltage is followed by an input stage of the feedback follower of the voltage follower to generate an output voltage (Vout). The circuit of the voltage follower that acts as a unity gain is depicted in Figures 3A, 3B, 4A, 4B, 5A, 5B, 6A, and 6B. In other words, the remote differential voltage sensing circuit described herein can operate as a unity-gain voltage follower.

儘管本發明的各種實施例已經在以上加以敘述,但應瞭解的是它們已經藉由舉例而非限制性地加以提出。對於熟習相關技術者而言將會明顯的是各種在形式及細節上的改變都可以在不脫離本發明的精神與範疇下於其中加以完成。 Although various embodiments of the invention have been described above, it is to be understood that It will be apparent to those skilled in the art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention.

本發明的廣度及範疇不應該受限於上述的範例實施例中的任一個,而是應該僅根據以下的申請專利範圍及其等同物來加以界定。 The breadth and scope of the present invention should not be limited to any of the above-described exemplary embodiments, but should be defined only by the scope of the following claims and their equivalents.

302a‧‧‧遠端的差動電壓感測電路 302a‧‧‧ Remote differential voltage sensing circuit

304a‧‧‧雙重差動輸入級 304a‧‧‧Dual differential input stage

306a‧‧‧共源極的差動輸入級 306a‧‧‧ Common source differential input stage

308a‧‧‧共閘極的差動輸入級 308a‧‧‧Common differential input stage

310a‧‧‧輸出級 310a‧‧‧Output

312a‧‧‧補償網路 312a‧‧‧Compensation Network

Claims (21)

一種包含一電壓輸入(Vin)以及一電壓輸出(Vout)的遠端的差動電壓感測電路,其包括:一雙重差動輸入級,其包含與一共閘極或是共基極的差動輸入級並聯的一共源極或是共集極的差動輸入級;其中所述共源極或是共集極的差動輸入級是具有差動輸入,其中的一差動輸入是耦接至所述電壓輸入(Vin),並且其中的另一差動輸入是耦接至所述電壓輸出(Vout);並且其中所述共閘極或是共基極的差動輸入級是具有差動輸入,其中的一差動輸入是耦接至一本地的接地(Agnd),並且其中的另一差動輸入是耦接至一遠端的接地(Rgnd)。 A differential voltage sensing circuit comprising a voltage input (Vin) and a voltage output (Vout), comprising: a dual differential input stage comprising a differential with a common gate or a common base The input source is connected in parallel with a common source or a common collector differential input stage; wherein the common source or the common collector differential input stage has a differential input, and one of the differential inputs is coupled to The voltage input (Vin), and another differential input thereof is coupled to the voltage output (Vout); and wherein the differential input stage of the common gate or common base is differential input One of the differential inputs is coupled to a local ground (Agnd), and the other differential input is coupled to a remote ground (Rgnd). 如申請專利範圍第1項的遠端的差動電壓感測電路,其進一步包括:一輸出級,其是藉由所述雙重差動輸入級的一輸出而被驅動並且在所述電壓輸出(Vout)之處產生一輸出電壓。 The remote differential voltage sensing circuit of claim 1, further comprising: an output stage driven by an output of the dual differential input stage and outputting at the voltage ( An output voltage is generated at Vout). 如申請專利範圍第2項的遠端的差動電壓感測電路,其進一步包括:一補償網路,其耦接在所述電壓輸出(Vout)與所述雙重差動輸入級的所述輸出之間。 A remote differential voltage sensing circuit as claimed in claim 2, further comprising: a compensation network coupled to said voltage output (Vout) and said output of said dual differential input stage between. 如申請專利範圍第3項的遠端的差動電壓感測電路,其中所述補償網路是包含一串聯連接在所述電壓輸出(Vout)與所述雙重差動輸入級的所述輸出之間的電容器以及電阻器。 A remote differential voltage sensing circuit as claimed in claim 3, wherein the compensation network comprises a series connection of the voltage output (Vout) and the output of the dual differential input stage Capacitors and resistors. 如申請專利範圍第2項的遠端的差動電壓感測電路,其進一步包括:一第一電流源,其偏壓所述雙重差動輸入級;以及 一第二電流源,其偏壓所述輸出級。 A remote differential voltage sensing circuit as claimed in claim 2, further comprising: a first current source biasing said dual differential input stage; A second current source that biases the output stage. 如申請專利範圍第1-5項的任一項的遠端的差動電壓感測電路,其中所述共閘極或是共基極的差動輸入級的所述差動輸入是耦接至所述本地的接地(Agnd)以及所述遠端的接地(Rgnd),使得Vout=Vin+Rgnd-Agnd。 The remote differential voltage sensing circuit of any one of claims 1-5, wherein the differential input of the common or common differential input stage is coupled to The local ground (Agnd) and the ground of the far end (Rgnd) are such that Vout = Vin + Rgnd - Agnd. 如申請專利範圍第1-5項的任一項的遠端的差動電壓感測電路,其中所述共閘極或是共基極的差動輸入級的所述差動輸入是耦接至所述本地的接地(Agnd)以及所述遠端的接地(Rgnd),使得Vout=Vin-Rgnd+Agnd。 The remote differential voltage sensing circuit of any one of claims 1-5, wherein the differential input of the common or common differential input stage is coupled to The local ground (Agnd) and the ground of the far end (Rgnd) are such that Vout = Vin-Rgnd + Agnd. 一種包含一電壓輸入(Vin)以及一電壓輸出(Vout)的遠端的差動電壓感測電路,其包括:一第一電晶體(Mp0或Qp0),其具有一控制端子(閘極或基極)以及一包含一第一電流路徑端子(汲極或集極)以及一第二電流路徑端子(源極或射極)的電流路徑,所述第一電晶體(Mp0或Qp0)的所述控制端子(閘極或基極)是耦接至所述電壓輸入(Vin);一第二電晶體(Mp1或Qp1),其具有一控制端子(閘極或基極)以及一包含一第一電流路徑端子(汲極或集極)以及一第二電流路徑端子(源極或射極)的電流路徑,所述第二電晶體(Mp1或Qp1)的所述控制端子(閘極或基極)是耦接至所述電壓輸出(Vout),並且所述第二電晶體(Mp1或Qp1)的所述第二電流路徑端子(源極或射極)是耦接至所述第一電晶體(Mp0或Qp0)的所述第二電流路徑端子(源極或射極);一第三電晶體(Mn3或Qn3),其具有一控制端子(閘極或基極)以及一包含一第一電流路徑端子(汲極或集極)以及一第二電流路徑端子(源極或射極)的電流路徑,所述第三電晶體(Mn3或Qn3)的所述第一電流路徑端子(汲極或 集極)是耦接至所述第一電晶體(Mp0或Qp0)的所述第一電流路徑端子(汲極或集極),並且所述第三電晶體(Mn3或Qn3)的所述第二電流路徑端子(源極或射極)是耦接至一本地的接地(Agnd);一第四電晶體(Mn2或Qn2),其具有一控制端子(閘極或基極)以及一包含一第一電流路徑端子(汲極或集極)以及一第二電流路徑端子(源極或射極)的電流路徑,所述第四電晶體(Mn2或Qn2)的所述控制端子(閘極或基極)以及所述第一電流路徑端子(汲極或集極)是耦接在一起並且耦接至所述第二電晶體(Mp1或Qp1)的所述第一電流路徑端子(汲極或集極),並且所述第四電晶體(Mn2或Qn2)的所述第二電流路徑端子(源極或射極)是耦接至一遠端的接地(Rgnd),所述第四電晶體(Mn2或Qn2)的所述控制端子(閘極或基極)亦耦接至所述第三電晶體(Mn3或Qn3)的所述控制端子(閘極或基極);一第五電晶體(Mn5或Qn5),其具有一控制端子(閘極或基極)以及一包含一第一電流路徑端子(汲極或集極)以及一第二電流路徑端子(源極或射極)的電流路徑,所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極或基極)是耦接至所述第一電晶體(Mp0或Qp0)以及所述第三電晶體(Mn3或Qn3)的所述耦接在一起的第一電流路徑端子(汲極或集極),所述第五電晶體(Mn5或Qn5)的所述第一電流路徑端子(汲極或集極)是耦接至所述電壓輸出(Vout),並且所述第五電晶體(Mn5或Qn5)的所述第二電流路徑端子(源極或射極)是耦接至所述本地的接地(Agnd);以及一補償網路,其耦接在所述電壓輸出(Vout)與所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極或基極)之間;其中 所述第一及第二電晶體((Mp0或Qp0)以及(Mp1或Qp1))是PMOS電晶體,並且所述第三、第四及第五電晶體((Mn3或Qn3)、(Mn2或Qn2)以及(Mn5或Qn5))是NMOS電晶體;或是所述第一及第二電晶體((Mp0或Qp0)以及(Mp1或Qp1))是PNP電晶體,並且所述第三、第四及第五電晶體((Mn3或Qn3)、(Mn2或Qn2)以及(Mn5或Qn5))是NPN電晶體。 A differential voltage sensing circuit including a voltage input (Vin) and a voltage output (Vout), comprising: a first transistor (Mp0 or Qp0) having a control terminal (gate or base) And a current path including a first current path terminal (drain or collector) and a second current path terminal (source or emitter), said first transistor (Mp0 or Qp0) a control terminal (gate or base) coupled to the voltage input (Vin); a second transistor (Mp1 or Qp1) having a control terminal (gate or base) and a first a current path terminal (drain or collector) and a current path of a second current path terminal (source or emitter), said control terminal (gate or base) of said second transistor (Mp1 or Qp1) Is coupled to the voltage output (Vout), and the second current path terminal (source or emitter) of the second transistor (Mp1 or Qp1) is coupled to the first transistor a second current path terminal (source or emitter) of (Mp0 or Qp0); a third transistor (Mn3 or Qn3) having a control terminal (gate or base) and a a current path of a first current path terminal (drain or collector) and a second current path terminal (source or emitter), said first current path terminal of said third transistor (Mn3 or Qn3) (bungee or a collector) is the first current path terminal (drain or collector) coupled to the first transistor (Mp0 or Qp0), and the first of the third transistor (Mn3 or Qn3) The two current path terminals (source or emitter) are coupled to a local ground (Agnd); a fourth transistor (Mn2 or Qn2) having a control terminal (gate or base) and a a current path of a first current path terminal (drain or collector) and a second current path terminal (source or emitter), said control terminal of said fourth transistor (Mn2 or Qn2) (gate or a base and a first current path terminal (drain or collector) are coupled to the first current path terminal of the second transistor (Mp1 or Qp1) (drain or Collector), and the second current path terminal (source or emitter) of the fourth transistor (Mn2 or Qn2) is coupled to a remote ground (Rgnd), the fourth transistor The control terminal (gate or base) of (Mn2 or Qn2) is also coupled to the control terminal (gate or base) of the third transistor (Mn3 or Qn3); a fifth transistor (Mn5 or Qn5), which has one a terminal (gate or base) and a current path including a first current path terminal (drain or collector) and a second current path terminal (source or emitter), said fifth transistor ( The control terminal (gate or base) of Mn5 or Qn5) is coupled to the first transistor (Mp0 or Qp0) and the third transistor (Mn3 or Qn3) a first current path terminal (drain or collector), the first current path terminal (drain or collector) of the fifth transistor (Mn5 or Qn5) being coupled to the voltage output (Vout And the second current path terminal (source or emitter) of the fifth transistor (Mn5 or Qn5) is coupled to the local ground (Agnd); and a compensation network coupled Connected between the voltage output (Vout) and the control terminal (gate or base) of the fifth transistor (Mn5 or Qn5); The first and second transistors ((Mp0 or Qp0) and (Mp1 or Qp1)) are PMOS transistors, and the third, fourth, and fifth transistors ((Mn3 or Qn3), (Mn2 or Qn2) and (Mn5 or Qn5)) are NMOS transistors; or the first and second transistors ((Mp0 or Qp0) and (Mp1 or Qp1)) are PNP transistors, and the third, The fourth and fifth transistors ((Mn3 or Qn3), (Mn2 or Qn2), and (Mn5 or Qn5)) are NPN transistors. 如申請專利範圍第8項的遠端的差動電壓感測電路,其中Vout=Vin+(Gm2/Gm0)*(Rgnd-Agnd),其中Gm0是包括所述第一電晶體(Mp0或Qp0)的一互導,並且Gm2是包括所述第四電晶體(Mn2或Qn2)的一互導。 A remote differential voltage sensing circuit as in claim 8 wherein Vout = Vin + (Gm2 / Gm0) * (Rgnd - Agnd), wherein Gm0 is the first transistor (Mp0 or Qp0) A mutual conductance, and Gm2 is a mutual conductance including the fourth transistor (Mn2 or Qn2). 如申請專利範圍第8或9項的遠端的差動電壓感測電路,其進一步包括:一第一電流源(I1),其耦接在一高電壓軌(AVDD)與所述第一電晶體(Mp0或Qp0)以及所述第二電晶體(Mp1或Qp1)的所述耦接在一起的第二電流路徑端子(源極或射極)之間;以及第二電流源(I2),其耦接在所述高電壓軌(AVDD)與所述電壓輸出(Vout)之間。 The remote differential voltage sensing circuit of claim 8 or 9, further comprising: a first current source (I1) coupled to a high voltage rail (AVDD) and the first power a crystal (Mp0 or Qp0) and the second current path terminal (source or emitter) coupled together of the second transistor (Mp1 or Qp1); and a second current source (I2), It is coupled between the high voltage rail (AVDD) and the voltage output (Vout). 如申請專利範圍第8或9項的遠端的差動電壓感測電路,其中所述補償網路是耦接在所述電壓輸出(Vout)與所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極或基極)之間,所述補償網路包含一耦接在所述電壓輸出(Vout)與所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極或基極)之間的電容器(C0)。 A remote differential voltage sensing circuit as claimed in claim 8 or 9, wherein the compensation network is coupled to the voltage output (Vout) and the fifth transistor (Mn5 or Qn5) Between the control terminals (gate or base), the compensation network includes a control terminal (gate) coupled to the voltage output (Vout) and the fifth transistor (Mn5 or Qn5) Capacitor (C0) between pole or base). 如申請專利範圍第11項的遠端的差動電壓感測電路,其中所述補償 網路是耦接在所述電壓輸出(Vout)與所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極或基極)之間,所述補償網路包含一與所述電容器(C0)串聯耦接在所述電壓輸出(Vout)與所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極或基極)之間的電阻器(R0)。 A remote differential voltage sensing circuit as claimed in claim 11 wherein said compensation a network is coupled between the voltage output (Vout) and the control terminal (gate or base) of the fifth transistor (Mn5 or Qn5), the compensation network including one and the A capacitor (C0) is coupled in series to a resistor (R0) between the voltage output (Vout) and the control terminal (gate or base) of the fifth transistor (Mn5 or Qn5). 一種包含一電壓輸入(Vin)以及一電壓輸出(Vout)的遠端的差動電壓感測電路,其包括:一第一電晶體(Mp0或Qp0),其具有一控制端子(閘極或基極)以及一包含一第一電流路徑端子(汲極或集極)以及一第二電流路徑端子(源極或射極)的電流路徑,所述第一電晶體(Mp0或Qp0)的所述控制端子(閘極或基極)是耦接至所述電壓輸入(Vin);一第二電晶體(Mp1或Qp1),其具有一控制端子(閘極或基極)以及一包含一第一電流路徑端子(汲極或集極)以及一第二電流路徑端子(源極或射極)的電流路徑,所述第二電晶體(Mp1或Qp1)的所述控制端子(閘極或基極)是耦接至所述電壓輸出(Vout),並且所述第二電晶體(Mp1或Qp1)的所述第二電流路徑端子(源極或射極)是耦接至所述第一電晶體(Mp0或Qp0)的所述第二電流路徑端子(源極或射極);一第三電晶體(Mn3或Qn3),其具有一控制端子(閘極或基極)以及一包含一第一電流路徑端子(汲極或集極)以及一第二電流路徑端子(源極或射極)的電流路徑,所述第三電晶體(Mn3或Qn3)的所述第一電流路徑端子(汲極或集極)是耦接至所述第一電晶體(Mp0或Qp0)的所述第一電流路徑端子(汲極或集極),並且所述第三電晶體(Mn3或Qn3)的所述第二電流路徑端子(源極或射極)是耦接至一遠端的接地(Rgnd); 一第四電晶體(Mn2或Qn2),其具有一控制端子(閘極或基極)以及一包含一第一電流路徑端子(汲極或集極)以及一第二電流路徑端子(源極或射極)的電流路徑,所述第四電晶體(Mn2或Qn2)的所述控制端子(閘極或基極)以及所述第一電流路徑端子(汲極或集極)是耦接在一起並且耦接至所述第二電晶體(Mp1或Qp1)的所述第一電流路徑端子(汲極或集極),並且所述第四電晶體(Mn2或Qn2)的所述第二電流路徑端子(源極或射極)是耦接至一本地的接地(Rgnd),所述第四電晶體(Mn2或Qn2)的所述控制端子(閘極或基極)亦耦接至所述第三電晶體(Mn3或Qn3)的所述控制端子(閘極或基極);一第五電晶體(Mn5或Qn5),其具有一控制端子(閘極或基極)以及一包含一第一電流路徑端子(汲極或集極)以及一第二電流路徑端子(源極或射極)的電流路徑,所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極或基極)是耦接至所述第一電晶體(Mp0或Qp0)以及所述第三電晶體(Mn3或Qn3)的所述耦接在一起的第一電流路徑端子(汲極或集極),所述第五電晶體(Mn5或Qn5)的所述第一電流路徑端子(汲極或集極)是耦接至所述電壓輸出(Vout),並且所述第五電晶體(Mn5或Qn5)的所述第二電流路徑端子(源極或射極)是耦接至所述本地的接地(Agnd);以及一補償網路,其耦接在所述電壓輸出(Vout)與所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極或基極)之間;其中所述第一及第二電晶體((Mp0或Qp0)以及(Mp1或Qp1))是PMOS電晶體,並且所述第三、第四及第五電晶體((Mn3或Qn3)、(Mn2或Qn2)以及(Mn5或Qn5))是NMOS電晶體;或是 所述第一及第二電晶體((Mp0或Qp0)以及(Mp1或Qp1))是PNP電晶體,並且所述第三、第四及第五電晶體((Mn3或Qn3)、(Mn2或Qn2)以及(Mn5或Qn5))是NPN電晶體。 A differential voltage sensing circuit including a voltage input (Vin) and a voltage output (Vout), comprising: a first transistor (Mp0 or Qp0) having a control terminal (gate or base) And a current path including a first current path terminal (drain or collector) and a second current path terminal (source or emitter), said first transistor (Mp0 or Qp0) a control terminal (gate or base) coupled to the voltage input (Vin); a second transistor (Mp1 or Qp1) having a control terminal (gate or base) and a first a current path terminal (drain or collector) and a current path of a second current path terminal (source or emitter), said control terminal (gate or base) of said second transistor (Mp1 or Qp1) Is coupled to the voltage output (Vout), and the second current path terminal (source or emitter) of the second transistor (Mp1 or Qp1) is coupled to the first transistor a second current path terminal (source or emitter) of (Mp0 or Qp0); a third transistor (Mn3 or Qn3) having a control terminal (gate or base) and a a current path of a first current path terminal (drain or collector) and a second current path terminal (source or emitter), said first current path terminal of said third transistor (Mn3 or Qn3) (drain or collector) is the first current path terminal (drain or collector) coupled to the first transistor (Mp0 or Qp0), and the third transistor (Mn3 or Qn3) The second current path terminal (source or emitter) is coupled to a remote ground (Rgnd); a fourth transistor (Mn2 or Qn2) having a control terminal (gate or base) and a terminal including a first current path (drain or collector) and a second current path terminal (source or a current path of the emitter, the control terminal (gate or base) of the fourth transistor (Mn2 or Qn2) and the first current path terminal (drain or collector) are coupled together And coupled to the first current path terminal (drain or collector) of the second transistor (Mp1 or Qp1), and the second current path of the fourth transistor (Mn2 or Qn2) The terminal (source or emitter) is coupled to a local ground (Rgnd), and the control terminal (gate or base) of the fourth transistor (Mn2 or Qn2) is also coupled to the a control terminal (gate or base) of a tri-crystal (Mn3 or Qn3); a fifth transistor (Mn5 or Qn5) having a control terminal (gate or base) and a first a current path terminal (drain or collector) and a current path of a second current path terminal (source or emitter), said control terminal (gate or base) of said fifth transistor (Mn5 or Qn5) Is coupled a first current path terminal (drain or collector) coupled to the first transistor (Mp0 or Qp0) and the third transistor (Mn3 or Qn3), the fifth The first current path terminal (drain or collector) of the crystal (Mn5 or Qn5) is coupled to the voltage output (Vout), and the second of the fifth transistor (Mn5 or Qn5) a current path terminal (source or emitter) coupled to the local ground (Agnd); and a compensation network coupled between the voltage output (Vout) and the fifth transistor (Mn5 or Between the control terminals (gate or base) of Qn5); wherein the first and second transistors ((Mp0 or Qp0) and (Mp1 or Qp1)) are PMOS transistors, and the third , fourth and fifth transistors ((Mn3 or Qn3), (Mn2 or Qn2) and (Mn5 or Qn5)) are NMOS transistors; or The first and second transistors ((Mp0 or Qp0) and (Mp1 or Qp1)) are PNP transistors, and the third, fourth, and fifth transistors ((Mn3 or Qn3), (Mn2 or Qn2) and (Mn5 or Qn5)) are NPN transistors. 如申請專利範圍第13項的遠端的差動電壓感測電路,其中Vout=Vin-(Gm2/Gm0)*(Rgnd-Agnd),其中Gm0包括所述第一電晶體(Mp0或Qp0)的一互導,並且Gm2包括所述第四電晶體(Mn2或Qn2)的一互導。 A remote differential voltage sensing circuit as claimed in claim 13 wherein Vout = Vin - (Gm2 / Gm0) * (Rgnd - Agnd), wherein Gm0 comprises the first transistor (Mp0 or Qp0) A mutual conductance, and Gm2 includes a mutual conductance of the fourth transistor (Mn2 or Qn2). 如申請專利範圍第13或14項的遠端的差動電壓感測電路,其進一步包括:一第一電流源(I1),其耦接在一高電壓軌(AVDD)與所述第一電晶體(Mp0或Qp0)以及所述第二電晶體(Mp1或Qp1)的所述耦接在一起的第二電流路徑端子(源極或射極)之間;以及一第二電流源(I2),其耦接在所述高電壓軌(AVDD)與所述電壓輸出(Vout)之間。 The remote differential voltage sensing circuit of claim 13 or 14, further comprising: a first current source (I1) coupled to a high voltage rail (AVDD) and the first power a crystal (Mp0 or Qp0) and the second current path terminal (source or emitter) coupled to the second transistor (Mp1 or Qp1); and a second current source (I2) Connected between the high voltage rail (AVDD) and the voltage output (Vout). 如申請專利範圍第15項的遠端的差動電壓感測電路,其中所述補償網路是耦接在所述電壓輸出(Vout)與所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極或基極)之間,所述補償網路包含一耦接在所述電壓輸出(Vout)與所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極或基極)之間的電容器(C0)。 A remote differential voltage sensing circuit as claimed in claim 15 wherein said compensation network is coupled to said voltage output (Vout) and said fifth transistor (Mn5 or Qn5) The control network (gate or base) includes a control terminal (gate or Capacitor (C0) between the bases. 如申請專利範圍第16項的遠端的差動電壓感測電路,其中所述補償網路是耦接在所述電壓輸出(Vout)與所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極或基極)之間,所述補償網路包含一與所述電容器(C0)串聯耦接在所述電壓輸出(Vout)與所述第五電晶體(Mn5或Qn5)的所述控制端子(閘極 或基極)之間的電阻器(R0)。 A remote differential voltage sensing circuit as claimed in claim 16 wherein said compensation network is coupled to said voltage output (Vout) and said fifth transistor (Mn5 or Qn5) Between the control terminals (gate or base), the compensation network includes a capacitor (C0) coupled in series with the voltage output (Vout) and the fifth transistor (Mn5 or Qn5) The control terminal Or the base () between the resistors (R0). 一種系統,其包括:一電壓調節器,其包含一參考端子、一輸出端子、一回授端子、一耦接至一本地的接地(Agnd)的本地的接地端子以及一耦接至一遠端的接地(Rgnd)的遠端的接地端子;一遠端的差動電壓感測電路,其二擇一地提供一電壓至所述電壓調節器的所述參考端子,或是連接在一介於所述電壓調節器的所述輸出端子與所述回授端子之間的回授路徑內;其中所述遠端的差動電壓感測電路是包括一雙重差動輸入級,其包含與一共閘極或是共基極的差動輸入級並聯的一共源極或是共集極的差動輸入級;其中所述共源極或是共集極的差動輸入級是具有差動輸入,其中的一差動輸入是耦接至所述遠端的差動電壓感測電路的一電壓輸入,並且其中的另一差動輸入是耦接至所述遠端的差動電壓感測電路的一電壓輸出;並且其中所述共閘極或是共基極的差動輸入級是具有差動輸入,其中的一差動輸入是耦接至所述本地的接地(Agnd),並且其中的另一差動輸入是耦接至所述遠端的接地(Rgnd)。 A system includes: a voltage regulator comprising a reference terminal, an output terminal, a feedback terminal, a local ground terminal coupled to a local ground (Agnd), and a coupling to a remote end a remote ground terminal of the ground (Rgnd); a remote differential voltage sensing circuit that alternatively provides a voltage to the reference terminal of the voltage regulator, or is connected to an interface a feedback path between the output terminal of the voltage regulator and the feedback terminal; wherein the remote differential voltage sensing circuit includes a dual differential input stage including a common gate Or a common source or a common collector differential input stage in parallel with the differential input stage of the common base; wherein the differential input stage of the common source or the common collector has a differential input, wherein A differential input is a voltage input coupled to the remote differential voltage sensing circuit, and wherein the other differential input is a voltage coupled to the remote differential voltage sensing circuit Output; and wherein the common gate or common base differential transmission Having a differential input stage, a differential input of which is coupled to the local ground (AGND), and further wherein the differential input is coupled to the distal end of the ground (Rgnd). 如申請專利範圍第18項之系統,其中所述遠端的差動電壓感測電路是包含一輸出級,其是藉由所述雙重差動輸入級的一輸出而被驅動。 The system of claim 18, wherein the remote differential voltage sensing circuit includes an output stage that is driven by an output of the dual differential input stage. 如申請專利範圍第19項之系統,其進一步包括:一補償網路,其耦接在所述遠端的差動電壓感測電路的所述電壓輸出 與所述雙重差動輸入級的所述輸出之間。 The system of claim 19, further comprising: a compensation network coupled to the voltage output of the differential voltage sensing circuit at the distal end Between the output of the dual differential input stage. 一種用於產生一輸出電壓(Vout)是等於一輸入電壓(Vin)加上或是減去在一遠端的接地(Rgnd)與一本地的接地(Agnd)之間的一差值的方法,所述方法包括:(a)施加所述輸入電壓(Vin)至一共源極或是共射極的差動輸入級的一對的輸入中的一輸入;(b)利用一共閘極或是共基極的差動輸入級以感測在所述遠端的接地(Rgnd)與所述本地的接地(Agnd)之間的一電壓差,以便於在其中產生一電流不平衡;(c)施加所述電流不平衡至所述共源極或是共射極的差動輸入級以便於干擾所述共源極或是共射極的差動輸入級的一對稱性,並且藉此在所述共源極或是共射極的差動輸入級的所述對的輸入之間產生一電壓偏移;以及(d)藉由利用所述共源極或是共射極的差動輸入級作為一被配置為一單位增益電壓隨耦器的回授放大器的一輸入級以產生所述輸出電壓(Vout)。 A method for generating an output voltage (Vout) equal to an input voltage (Vin) plus or minus a difference between a remote ground (Rgnd) and a local ground (Agnd), The method includes: (a) applying the input voltage (Vin) to an input of a pair of inputs of a common source or a common emitter differential input stage; (b) utilizing a common gate or a total a differential input stage of the base to sense a voltage difference between the ground (Rgnd) of the distal end and the local ground (Agnd) to facilitate generating a current imbalance therein; (c) applying The current is unbalanced to a differential input stage of the common source or common emitter to facilitate interference with a symmetry of the differential input stage of the common source or common emitter, and thereby Generating a voltage offset between the inputs of the pair of differential input stages of the common source or common emitter; and (d) by using the differential input stage of the common source or common emitter as An input stage of a feedback amplifier configured as a unity gain voltage follower to generate the output voltage (Vout).
TW104127462A 2014-08-26 2015-08-24 Remote differential voltage sensing TWI672509B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462042104P 2014-08-26 2014-08-26
US62/042,104 2014-08-26
US14/692,979 2015-04-22
US14/692,979 US10175272B2 (en) 2014-08-26 2015-04-22 Remote differential voltage sensing

Publications (2)

Publication Number Publication Date
TW201621327A true TW201621327A (en) 2016-06-16
TWI672509B TWI672509B (en) 2019-09-21

Family

ID=55402193

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104127462A TWI672509B (en) 2014-08-26 2015-08-24 Remote differential voltage sensing

Country Status (3)

Country Link
US (1) US10175272B2 (en)
CN (1) CN105388349B (en)
TW (1) TWI672509B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677821B (en) * 2018-05-21 2019-11-21 旺宏電子股份有限公司 Voltage subtracter and operation method for subtracting voltages
TWI739811B (en) * 2016-11-18 2021-09-21 台灣積體電路製造股份有限公司 Layout of semiconductor device, semiconductor device and operation thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022138B (en) * 2018-01-10 2023-11-17 荣湃半导体(上海)有限公司 Latch and isolation circuit
CN110022145B (en) * 2018-01-10 2024-04-19 荣湃半导体(上海)有限公司 Latch and isolation circuit
CN115308467A (en) 2021-05-07 2022-11-08 脸萌有限公司 Integrated circuit internal voltage detection circuit, detection method and integrated circuit

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1467057A (en) * 1973-05-24 1977-03-16 Rca Corp Amplifier with over-current protection
US4360785A (en) * 1980-05-27 1982-11-23 Rca Corporation Transistor amplifiers exhibiting low input offset potentials
US5504444A (en) * 1994-01-24 1996-04-02 Arithmos, Inc. Driver circuits with extended voltage range
JP2900995B2 (en) 1996-08-19 1999-06-02 日本電気株式会社 Voltage addition circuit
US6545510B1 (en) * 2001-12-10 2003-04-08 Micron Technology, Inc. Input buffer and method for voltage level detection
US6831489B2 (en) * 2002-05-21 2004-12-14 The Hong Kong University Of Science And Technology Low-voltage high-speed frequency-divider circuit
US6937099B2 (en) * 2003-12-04 2005-08-30 Analog Devices, Inc. Op-amp configurable in a non-inverting mode with a closed loop gain greater than one with output voltage correction for a time varying voltage reference of the op-amp, and a method for correcting the output voltage of such an op-amp for a time varying voltage reference
US7358799B2 (en) * 2005-04-13 2008-04-15 Finisar Corporation Switchable high pass configuration and an optical receiver with a switchable high pass configuration
US7514966B2 (en) * 2005-06-02 2009-04-07 Via Technologies, Inc. Fast, low offset ground sensing comparator
TWI340537B (en) * 2006-02-14 2011-04-11 Richwave Technology Corp Single-ended input to differential-ended output low noise amplifier implemented with cascode and cascade topology
US7345465B2 (en) 2006-06-12 2008-03-18 Intersil Americas Inc. Two pin-based sensing of remote DC supply voltage differential using precision operational amplifier and diffused resistors
US7466171B2 (en) * 2007-01-15 2008-12-16 International Business Machines Corporation Voltage detection circuit and circuit for generating a trigger flag signal
CN101655517B (en) * 2008-08-21 2011-09-14 联咏科技股份有限公司 Voltage test circuit and voltage test method
US8310277B2 (en) * 2009-08-27 2012-11-13 Qualcomm, Incorporated High linear fast peak detector
CN101839941B (en) * 2010-06-02 2012-03-14 西南交通大学 Signal sensing amplifier
US8120424B2 (en) 2010-06-15 2012-02-21 Intersil Americas Inc. Class AB output stages and amplifiers including class AB output stages
FR2975510B1 (en) * 2011-05-17 2013-05-03 St Microelectronics Rousset DEVICE FOR GENERATING AN ADJUSTABLE PROHIBITED BAND REFERENCE VOLTAGE WITH HIGH FEED REJECTION RATES
CN102288810B (en) * 2011-08-11 2014-01-22 无锡中星微电子有限公司 Voltage detection circuit
US8797098B2 (en) * 2012-05-22 2014-08-05 Fujitsu Limited Variable gain amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI739811B (en) * 2016-11-18 2021-09-21 台灣積體電路製造股份有限公司 Layout of semiconductor device, semiconductor device and operation thereof
TWI677821B (en) * 2018-05-21 2019-11-21 旺宏電子股份有限公司 Voltage subtracter and operation method for subtracting voltages

Also Published As

Publication number Publication date
CN105388349B (en) 2020-01-31
US10175272B2 (en) 2019-01-08
US20160061866A1 (en) 2016-03-03
CN105388349A (en) 2016-03-09
TWI672509B (en) 2019-09-21

Similar Documents

Publication Publication Date Title
TWI672509B (en) Remote differential voltage sensing
US7880534B2 (en) Reference circuit for providing precision voltage and precision current
JP6204772B2 (en) Cascode amplifier
US10671109B2 (en) Scalable low output impedance bandgap reference with current drive capability and high-order temperature curvature compensation
TWI303361B (en) Constant-current circuit and system power source using this constant-current circuit
JP6728335B2 (en) Multistage amplifier with cascode stage and DC bias regulator
CN100514249C (en) Band-gap reference source produce device
US9483069B2 (en) Circuit for generating bias current
CN103558890B (en) A kind of bandgap voltage reference with high-gain high rejection ratio
CN109067368B (en) Power operational amplifier with current limiting protection function based on CDMOS process
WO2012082189A1 (en) Current mirror and high-compliance single-stage amplifier
JP2018527821A (en) DC bias regulator for cascode amplifier
JP6740122B2 (en) Active inductor and amplifier circuit
Nagulapalli et al. A two-stage opamp frequency Compensation technique by splitting the 2 nd stage
US9401679B1 (en) Apparatus and method for improving power supply rejection ratio
CN106774572A (en) Miller-compensated circuit and electronic circuit
US20160342172A1 (en) Low-voltage current mirror circuit and method
TWI644195B (en) Buffer stage and a control circuit
TW200848975A (en) Current generator
CN115498970A (en) Amplifying circuit, differential amplifying circuit and amplifier
US20180059707A1 (en) Proportional to Absolute Temperature Reference Circuit and a Voltage Reference Circuit
US6876182B1 (en) MOSFET current mirror circuit with cascode output
JP6758029B2 (en) Semiconductor device
JP4291658B2 (en) Current mirror circuit
JP2011170443A (en) Reference voltage generation circuit and semiconductor device