TW201619066A - Method and apparatus for controlling Fenton system, and wastewater processing system - Google Patents

Method and apparatus for controlling Fenton system, and wastewater processing system Download PDF

Info

Publication number
TW201619066A
TW201619066A TW103141294A TW103141294A TW201619066A TW 201619066 A TW201619066 A TW 201619066A TW 103141294 A TW103141294 A TW 103141294A TW 103141294 A TW103141294 A TW 103141294A TW 201619066 A TW201619066 A TW 201619066A
Authority
TW
Taiwan
Prior art keywords
fenton reaction
dot
oxidant
reaction system
value
Prior art date
Application number
TW103141294A
Other languages
Chinese (zh)
Other versions
TWI576316B (en
Inventor
余瑞芳
林宏明
周宜君
Original Assignee
國立聯合大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立聯合大學 filed Critical 國立聯合大學
Priority to TW103141294A priority Critical patent/TWI576316B/en
Publication of TW201619066A publication Critical patent/TW201619066A/en
Application granted granted Critical
Publication of TWI576316B publication Critical patent/TWI576316B/en

Links

Abstract

The invention provides method and apparatus for controlling Fenton system, and a wastewater treatment system. Fe+2/H2O2 ratio optimal control, for example, can be achieved by monitoring at least a control parameter of the reaction system so as to control dosing from a low dosage. In an embodiment, the method for controlling Fenton system includes the following. Dissolved oxygen (DO) concentration of a Fenton system is monitored so as to obtain a DO concentration value (DOt). A catalyst is added to the Fenton system, in which the Fenton system includes water to be treated. When DOt is equal to 0 or smaller than a setting value A, an oxidizing agent (H2O2) is added or generated in the Fenton system; when DOt is equal to or greater than the setting value A, the addition or generation of the oxidizing agent is stopped, wherein the oxidizing agent includes at least hydrogen peroxide.

Description

芬頓(Fenton)反應系統控制方法、控制裝置及廢水處理系統Fenton reaction system control method, control device and wastewater treatment system

本申請案有關於Fenton反應系統的控制,尤其是關於Fenton反應系統的加藥控制方法、控制裝置及廢水處理系統。This application relates to the control of the Fenton reaction system, in particular to the dosing control method, control device and wastewater treatment system of the Fenton reaction system.

Fenton 廢水處理程序是目前廢水高級氧化處理程序(Advanced Oxidation Processes, AOPs)中發展最成熟的且日益應用於處理各類之工/事業廢水之程序,如染料/染整廢水、垃圾滲出水、石化業廢水、含難分解苯環類或毒性之氯酚類有機物之工業廢水等。Fenton程序廣被採用,原因不外乎是優異的處理效率、低廉的藥劑成本,且在實驗的操作上也具有相當大的彈性。然Fenton 程序雖有高效率、低操作費的優點,但同時因其會產生大量的鐵污泥, 成為應用時的一大缺點。這些問題都直接與加藥量之操控有直接之關連。The Fenton wastewater treatment program is currently the most developed and advanced process for the treatment of various types of industrial/business wastewater in advanced Oxidation Processes (AOPs), such as dye/dyeing wastewater, landfill water, petrochemicals. Industrial wastewater, industrial wastewater containing benzene rings or toxic phenolic organic compounds. The Fenton program has been widely adopted for its excellent processing efficiency, low cost of pharmaceuticals, and considerable flexibility in the operation of the experiment. Although the Fenton program has the advantages of high efficiency and low operating cost, it also has a large disadvantage in application because it generates a large amount of iron sludge. These problems are directly related to the manipulation of dosing.

Fenton 程序的兩種主要化學藥劑(Fe+2 及H2 O2 )成本中,以加藥量而言,H2 O2 大約是Fe+2 的3-10 倍,另外,工業級H2 O2 價格大約是Fe+2 的2-3 倍。因此,在化學藥劑成本上,H2 O2 遠高於Fe+2 。大多數之Fenton程序都採固定H2 O2 /Fe+2 之加藥比值方式控制H2 O2 之加藥量,但是處理不同之性質之廢水所需要之最佳H2 O2 /Fe+2 之加藥比不同,而且,不同濃度範圍之Fe+2 加藥量之最佳H2 O2 / Fe+2 之比值亦不同。國內外並未有探討如何藉由自動監測決定最佳H2 O2 /Fe+2 加藥比之研究,甚至如何降低或有效控制H2 O2 加藥成本之研究及技術亦相對十分缺乏。In the cost of the two main chemicals (Fe + 2 and H 2 O 2 ) of the Fenton program, H 2 O 2 is about 3-10 times that of Fe +2 in terms of dosing amount. In addition, industrial grade H 2 O 2 price is about 2-3 times that of Fe +2. Therefore, H 2 O 2 is much higher than Fe +2 in terms of chemical cost. Most Fenton programs use a fixed ratio of H 2 O 2 /Fe +2 to control the amount of H 2 O 2 added, but the best H 2 O 2 /Fe + required to treat wastewater of different nature. 2 different dosing ratio, and the optimal range of different concentrations of H Fe +2 dosage of 2/2 O Fe +2 ratio of also different. At home and abroad, there is no research on how to determine the optimal H 2 O 2 /Fe +2 dosing ratio by automatic monitoring. Even the research and technology on how to reduce or effectively control the cost of H 2 O 2 dosing is relatively lacking.

因此,在Fenton反應中之最佳加藥比([H2 O2 ]/[Fe2+ ]),必須依賴操作者的經驗來調整加藥比,不適當之加藥比會容易造成處理效率不佳且增加加藥成本,故如何有效控制藥劑量以有效利用Fenton反應為業界欲解決問題。Therefore, the optimal dosing ratio ([H 2 O 2 ]/[Fe 2+ ]) in the Fenton reaction must rely on the operator's experience to adjust the dosing ratio. Inappropriate dosing ratio can easily lead to treatment efficiency. Poor and increase the cost of dosing, so how to effectively control the dose to effectively use the Fenton reaction for the industry to solve the problem.

有鑑於此,本申請案提出Fenton反應系統控制方法、控制裝置及廢水處理系統,藉由監測系統中的控制參數的數值變化控制最佳之[H2 O2 ]/[Fe2+ ]加藥比。In view of this, the present application proposes a Fenton reaction system control method, a control device, and a wastewater treatment system, and controls the optimal [H 2 O 2 ]/[Fe 2+ ] dosing by monitoring the numerical changes of the control parameters in the system. ratio.

本發明之一實施態樣提出一種Fenton反應系統控制方法,其至少包括:監測一Fenton反應系統內之溶氧(DO)濃度並得到DO濃度值 (DOt)。添加一催化劑於該Fenton反應系統中,其中該Fenton反應系統含有待處理水。當該DOt等於0或小於設定值A時,則添加或產生氧化劑於該Fenton反應系統內,當該DOt為等於或大於該設定值A時,停止添加或停止產生該氧化劑;其中該氧化劑係至少包含過氧化氫。One embodiment of the present invention provides a Fenton reaction system control method comprising at least monitoring a dissolved oxygen (DO) concentration in a Fenton reaction system and obtaining a DO concentration value (DOt). A catalyst is added to the Fenton reaction system, wherein the Fenton reaction system contains water to be treated. When the DOt is equal to 0 or less than the set value A, an oxidant is added or generated in the Fenton reaction system, and when the DOt is equal to or greater than the set value A, the addition or stop of the generation of the oxidant is stopped; wherein the oxidant is at least Contains hydrogen peroxide.

本發明之一實施態樣提出一種Fenton反應統統控制裝置,其至少包括:溶氧度感測裝置及本地控制單元。溶氧度感測裝置用以監測一Fenton反應槽中的溶氧度(DO)以得到DO濃度值(DOt)。本地控制單元, 其至少依據DOt發出一控制訊號C1以添加或產生氧化劑於該Fenton反應槽,其中當DOt等於0或小於設定值A時,則添加或產生一氧化劑於該Fenton反應系統內,當DOt為等於或大於該設定值A時,停止添加或停止產生該氧化劑。An embodiment of the present invention provides a Fenton reaction control device, which at least includes: a dissolved oxygen sensing device and a local control unit. The dissolved oxygen sensing device is used to monitor the dissolved oxygen (DO) in a Fenton reaction cell to obtain a DO concentration value (DOt). a local control unit that emits a control signal C1 according to at least DOt to add or generate an oxidant in the Fenton reaction tank, wherein when DOt is equal to 0 or less than the set value A, an oxidant is added or generated in the Fenton reaction system. When DOt is equal to or greater than the set value A, the addition or stop of the generation of the oxidant is stopped.

本發明之一實施態樣提出一種廢水處理系統,其包括:芬頓(Fenton)反應槽、前述之芬頓(Fenton)反應系統控制裝置及藥液添加單元。芬頓(Fenton)反應槽供以Fenton法處理待處理水。藥液添加單元係用以回應該加藥控制訊號以選擇性地至少將該氧化劑添加至該Fenton反應槽。One embodiment of the present invention provides a wastewater treatment system comprising: a Fenton reaction tank, the aforementioned Fenton reaction system control device, and a chemical liquid addition unit. The Fenton reaction tank is used to treat the water to be treated by the Fenton method. The drug solution addition unit is configured to respond to the dosing control signal to selectively add at least the oxidant to the Fenton reaction cell.

為了讓上述本發明的各方面以及其他方面更為明顯易懂,於下文中將以多個實施態樣助以對應相關之圖式來進行詳細之說明。In order to make the various aspects and the aspects of the invention described above more readily apparent, the detailed description will be described in the accompanying drawings.

以下說明芬頓(Fenton)反應系統控制方法、控制裝置及廢水處理系統的不同實施態樣。此外,將利用實施態樣來討論以控制參數溶氧量(DO)為主導的Fenton反應系統控制方法對廢水處理之效果。The following describes various embodiments of the Fenton reaction system control method, control device, and wastewater treatment system. In addition, the implementation aspect will be used to discuss the effect of the Fenton reaction system control method dominated by the control parameter dissolved oxygen (DO) on wastewater treatment.

依據本發明之第一實施態樣,利用Fenton反應系統中的控制參數溶氧(DO)為主導來控制Fenton系統,提出一種芬頓(Fenton)反應系控制方法。請參考圖1,其為依據本發明之第一實施態樣的Fenton反應系統控制方法的流程圖。如圖1所示,Fenton反應系統控制方法包括:如步驟S10所示,監測Fenton反應系統內之溶氧(DO)濃度並得到DO濃度值 (DOt)。如步驟S20所示,添加催化劑於Fenton反應系統中,其中Fenton反應系統含有待處理水。接著,如步驟S25所示,判斷DOt的數值所在範圍,從而控制Fenton反應系統。例如,當DOt等於0或小於設定值A(A>0)時,則如步驟S30所示,添加或產生氧化劑於Fenton反應系統內。並且每當添加或產生完氧化劑後(如步驟S30所示),皆可繼續進行步驟S10,進而一次或多次地執行步驟S30令該Fenton反應系統的DOt的數值趨向或控制在設定值A的範圍內。當DOt為等於或大於設定值A時,則執行步驟S40,以停止添加或停止產生氧化劑。又當停止添加或停止產生氧化劑後(如步驟S40所示),該控制方法皆可繼續進行步驟S10,進而繼續監測該Fenton反應系統的DOt的數值令其在設定值A的範圍內。其中設定值A可設為1.0 mg/L或以上,如1.5mg/L,2.0mg/L,但本實施態樣並不以此為限。According to the first embodiment of the present invention, the Fenton system is controlled by using the control parameter dissolved oxygen (DO) in the Fenton reaction system, and a Fenton reaction system control method is proposed. Please refer to FIG. 1, which is a flow chart of a Fenton reaction system control method according to a first embodiment of the present invention. As shown in Fig. 1, the Fenton reaction system control method includes monitoring the dissolved oxygen (DO) concentration in the Fenton reaction system and obtaining a DO concentration value (DOt) as shown in step S10. As shown in step S20, a catalyst is added to the Fenton reaction system, wherein the Fenton reaction system contains water to be treated. Next, as shown in step S25, the range of the value of DOt is determined, thereby controlling the Fenton reaction system. For example, when DOt is equal to 0 or less than the set value A (A>0), then as shown in step S30, an oxidant is added or generated in the Fenton reaction system. And each time the oxidant is added or generated (as shown in step S30), step S10 may be continued, and step S30 may be performed one or more times to make the value of the DOt of the Fenton reaction system trend or control at the set value A. Within the scope. When DOt is equal to or greater than the set value A, step S40 is performed to stop the addition or stop of generating the oxidant. Further, when the addition or stop of the generation of the oxidant is stopped (as shown in step S40), the control method may proceed to step S10 to continue monitoring the value of the DOt of the Fenton reaction system so as to be within the range of the set value A. The set value A can be set to 1.0 mg/L or more, such as 1.5 mg/L, 2.0 mg/L, but the embodiment does not limit this.

本發明之第一實施態樣係利用Fenton反應系統中的溶氧(DO)做為該Fenton反應系統的控制參數來使用,並適合在該Fenton反應系統之DOt初始值為小於設定值A的情形。其可延伸此應用至各種Fenton反應系統,至少監測其中DO之數值,並利用例如DO控制器,以設定值A來控制加藥之進行;如此,能實現有效控制Fenton反應系統中氧化劑的加藥量,並可避免以制式加藥比之控制方式所可能造成的過量加藥的浪費及成本增加的問題。The first embodiment of the present invention utilizes dissolved oxygen (DO) in the Fenton reaction system as a control parameter of the Fenton reaction system, and is suitable for the case where the initial DOt value of the Fenton reaction system is less than the set value A. . It can extend this application to various Fenton reaction systems, at least monitor the value of DO therein, and control the dosing with a set value A using, for example, a DO controller; thus, it is possible to effectively control the dosing of the oxidant in the Fenton reaction system. The amount and the problem of excessive waste and cost increase which may be caused by the standard dosing control method can be avoided.

依據上述第一實施態樣所記載之方法,在本發明之第二實施態樣中,對於已知DO及ORP變化關係的Fenton反應系統而言,更可利用Fenton反應系統內之氧化還原電位(ORP)作為另一個控制參數來確認氧化劑的添加或產生量是否合適。第二實施態樣之Fenton反應系控制方法除了包含第一實施態樣的步驟,如圖2所示,第二實施態樣更可包括:如步驟S50所示,監測Fenton反應系統內之氧化還原電位(ORP)並得到ORP值(ORPt)。如步驟S55所示,當DOt為A1時,更進一步判斷ORPt的數值所在範圍,從而控制Fenton反應系統,以決定是否添加或產生氧化劑,或停止添加或停止產生氧化劑,其中A>A1³0。例如,當DOt為A1及ORPt係為小於DOt為A1時所對應的設定值B1時,則進行如步驟S57所示,添加或產生氧化劑於該Fenton反應系統內。並且每當添加或產生完氧化劑後(如步驟S30所示),皆可繼續進行步驟S10或S50。當DOt為A1及ORPt為等於或大於設定值B1時,則進行如步驟S59所示,停止添加或停止產生氧化劑,其中A>A1³0。According to the method described in the first embodiment, in the second embodiment of the present invention, the Fenton reaction system in which the relationship between DO and ORP changes is known, the oxidation-reduction potential in the Fenton reaction system can be utilized ( ORP) is used as another control parameter to confirm whether the addition or production of oxidant is appropriate. The Fenton reaction system control method of the second embodiment includes the steps of the first embodiment, as shown in FIG. 2, and the second embodiment may further include: monitoring the redox in the Fenton reaction system as shown in step S50. The potential (ORP) and the ORP value (ORPt). As shown in step S55, when DOt is A1, the range of the value of ORPt is further determined, thereby controlling the Fenton reaction system to decide whether to add or generate an oxidant, or to stop adding or stopping the generation of an oxidant, wherein A>A130. For example, when DOt is A1 and ORPt is less than the set value B1 corresponding to DOt being A1, then adding or generating an oxidant in the Fenton reaction system is performed as shown in step S57. And each time the oxidant is added or produced (as shown in step S30), step S10 or S50 can be continued. When DOt is A1 and ORPt is equal to or greater than the set value B1, then as shown in step S59, the addition or stop of the generation of the oxidant is stopped, wherein A>A130.

在第二實施態樣中,設定值B1可視為DOt等於A1時所對應的ORPt的上限,故ORPt達到或超越上限時就停止添加或產生氧化劑。又依據第一實施態樣,當DOt在從某一初始值(例如0 mg/L)至設值定A(例如2 mg/L)之間變化時,例如DOt的值(稱為A1)為0、0.1、0.5、1.0、1.1、1.5 等時,會有對應的ORPt的數值,例如預期之ORPt為在530mV至560mV之範圍內變化,故利用第二實施態樣,ORPt的數值達到或超越DOt的數值所對應的ORPt的上限時,表示有狀況發生,例如監測裝置故障或Fenton反應系統含有之待處理水成份有狀況或待處理水成份有所改變,故第二實施態樣更可達到在狀況情況下避免過量加藥或之作用以及警示狀況情況發生之作用。舉例而言,可針對DOt的值A1(例如A1等於0、0.1、0.5、1.0、1.1或1.5 等)時,來設定其對應的ORPt的設定值B1(即上限);或針對A1的變化範圍(例如:區間[0,2);區間[0,1]及區間(0,2))來設定該變化範圍之區間內,對應的ORPt的設定值B1(即上限)。In the second embodiment, the set value B1 can be regarded as the upper limit of the ORPt corresponding to when DOt is equal to A1, so that the addition or generation of the oxidant is stopped when the ORPt reaches or exceeds the upper limit. Further, according to the first embodiment, when DOt changes from a certain initial value (for example, 0 mg/L) to a set value A (for example, 2 mg/L), for example, the value of DOt (referred to as A1) is 0, 0.1, 0.5, 1.0, 1.1, 1.5, etc., there will be a corresponding value of ORPt, for example, the expected ORPt varies from 530mV to 560mV, so with the second embodiment, the value of ORPt reaches or exceeds When the upper limit of the ORPt corresponding to the value of DOt indicates that a condition has occurred, such as a malfunction of the monitoring device or a condition of the water component to be treated contained in the Fenton reaction system or a change in the composition of the water to be treated, the second embodiment is more achievable. In the case of conditions, avoid excessive dosing or its effects and the role of warning conditions. For example, the set value B1 (ie, the upper limit) of the corresponding ORPt may be set for the value A1 of DOt (for example, A1 is equal to 0, 0.1, 0.5, 1.0, 1.1, or 1.5, etc.); or the range of variation for A1 (For example, the interval [0, 2); the interval [0, 1] and the interval (0, 2)), the set value B1 (ie, the upper limit) of the corresponding ORPt is set in the interval of the variation range.

蓋對於某一Fenton反應系統,DO係與ORP之變化成正向的關係。對於相同的DOt變化範圍,例如DOt從0mg/L 至2.0mg/L,不同Fenton反應系統會產生不同的ORP對應值。故此,可延伸第二實施態樣之應用至各種Fenton反應系統,至少監測其中ORP及DO之數值,並利用例如DO及ORP控制器,以設定值控制的方式控制加藥;如此,能實現有效控制Fenton反應系統中氧化劑的加藥量,並可避免以制式加藥比之控制方式所可能造成的過量加藥的浪費及成本問題。Cover For a Fenton reaction system, the DO system has a positive relationship with the change in ORP. For the same DOt variation range, such as DOt from 0 mg/L to 2.0 mg/L, different Fenton reaction systems will produce different ORP corresponding values. Therefore, the application of the second embodiment can be extended to various Fenton reaction systems, at least the values of ORP and DO can be monitored, and the dosing can be controlled in a set value control manner by using, for example, DO and ORP controllers; thus, effective Controlling the dosage of oxidant in the Fenton reaction system, and avoiding the waste and cost of overdosing that may be caused by the standard dosing control method.

在本發明之第三實施態樣中,更可設定 DOt等於A1時所對應的ORPt的下限C1。在第三實施態樣中,Fenton反應系控制方法除了包含第一實施態樣的步驟以外,如圖3所示,更包括:如步驟S50所示,監測Fenton反應系統內之氧化還原電位(ORP)並得到ORP值(ORPt)。如步驟S65所示,當DOt為A1時,更進一步判斷ORPt的數值所在範圍,從而控制Fenton反應系統,以決定是否添加或產生氧化劑,或停止添加或停止產生氧化劑,其中A>A1³0。例如,當DOt為A1、ORPt係為小於DOt為A1時所對應的設定值B1、且ORPt係為大於或等於DOt為A1時所對應的設定值C1時,則進行如步驟S67所示,添加或產生氧化劑於該Fenton反應系統內。並且每當添加或產生完氧化劑後(如步驟S30或步驟S57所示),皆可繼續進行步驟S10或S50。當DOt為A1及ORPt係為等於或大於設定值B1或ORPt係為小於設定值C1時,則進行如步驟S69所示,停止添加或停止產生氧化劑,其中A>A1³0,B1>C1。又設定值C1的設定方式亦可仿照前述設定值B1的例子而作類推,故不再贅述。In the third embodiment of the present invention, the lower limit C1 of the ORPt corresponding to the DOt equal to A1 can be set. In the third embodiment, the Fenton reaction system control method includes, in addition to the steps of the first embodiment, as shown in FIG. 3, further comprising: monitoring the redox potential (FRP) in the Fenton reaction system as shown in step S50. And get the ORP value (ORPt). As shown in step S65, when DOt is A1, the range of the value of ORPt is further determined, thereby controlling the Fenton reaction system to decide whether to add or generate an oxidant, or to stop adding or stopping the generation of an oxidant, where A>A130. For example, when DOt is A1 and ORPt is less than the set value B1 corresponding to when DOt is A1, and ORPt is greater than or equal to the set value C1 corresponding to when DOt is A1, the addition is performed as shown in step S67. Or generating an oxidant in the Fenton reaction system. And each time the oxidant is added or produced (as shown in step S30 or step S57), step S10 or S50 may be continued. When DOt is A1 and ORPt is equal to or greater than the set value B1 or ORPt is less than the set value C1, then as shown in step S69, the addition or stop of generating the oxidant is stopped, wherein A>A130, B1>C1. Further, the setting method of the setting value C1 can be analogized by the example of the setting value B1 described above, and therefore will not be described again.

在上述第二實施態樣或第三實施態樣中,當ORPt的數值超出上限或低於下限時,如步驟S59或S69所示,雖然停止添加或產生氧化劑,然而Fenton反應系統仍然在反應中,一般而言,DO值會因此而減少,故此,在實施上述實施態樣時,皆可令該控制方法繼續進行步驟S10,進而繼續監測該Fenton反應系統的DOt的數值令其在設定值A的範圍內。In the second embodiment or the third embodiment described above, when the value of ORPt exceeds the upper limit or falls below the lower limit, as shown in step S59 or S69, although the addition or generation of the oxidant is stopped, the Fenton reaction system is still in the reaction. In general, the DO value will be reduced accordingly. Therefore, in implementing the above embodiments, the control method can continue to perform step S10, and then continue to monitor the value of the DOt of the Fenton reaction system so that it is at the set value A. In the range.

在前述第二實施態樣或第三實施態樣中,當ORPt的數值超出上限或低於下限時,可能表示反應系統或監測儀器有狀況發生,故此停止添加或產生氧化劑。若發生此情形,現場人員可進行檢查,確保反應系統是否有狀況;若有狀況發生,即可進一步進行因應行動,以及避免繼續加藥而造成浪費。又例如,因上述狀況而停止添加或停止產生氧化劑之時,可進一步由執行該控制方法的設備記錄有關情況或發出訊息以通知有關人員注意或處理。然而,本發明的實現方式並不以此為限,當可設立其他各種輔助處理方式,以讓氧化劑的添加量得到良好的控制,並效率良好地完成Fenton反應系統之處理。In the foregoing second embodiment or the third embodiment, when the value of the ORPt exceeds the upper limit or falls below the lower limit, it may indicate that the reaction system or the monitoring instrument has a condition, so that the addition or generation of the oxidant is stopped. If this happens, field personnel can check to see if the reaction system is in a condition; if there is a condition, further action can be taken and waste can be avoided by continuing to add the drug. For another example, when the addition or stop of the generation of the oxidant is stopped due to the above situation, the device performing the control method may further record the situation or issue a message to notify the relevant person to pay attention or handle. However, the implementation of the present invention is not limited thereto, and various other auxiliary treatment methods can be established to allow the oxidant addition amount to be well controlled, and the Fenton reaction system can be efficiently processed.

又,前述任一實施態樣更可配合對氧化劑及催化劑之加藥比進行監測,從而提出其他控制方式的第四實施態樣。在第四實施態樣中,Fenton反應系統控制方法更可包括以下步驟:(1) 監測氧化劑及催化劑之加藥量。(2)當氧化劑及催化劑之加藥量之比值大於一加藥比時,則添加該催化劑於Fenton反應系統內;當氧化劑及催化劑之加藥量之比值小於該加藥比時,則添加或產生氧化劑於該Fenton反應系統內。(3)當氧化劑及催化劑之加藥量之比值等於加藥比時,則停止添加或產生氧化劑,並且停止添加催化劑。又在這些關於氧化劑及催化劑之加藥比之實施態樣中,在實作時,由於加藥比之監測或計算可能有誤差的存在,氧化劑及催化劑之加藥量之比值等於加藥比之意義,應視為在一容忍度(例如1%、5%等)之下氧化劑及催化劑之加藥量之比值等於加藥比。又當停止添加或停止產生氧化劑後,該控制方法皆可繼續進行步驟S10,進而繼續監測該Fenton反應系統的DOt的數值令其在設定值A的範圍內。Further, any of the above embodiments can be further monitored in combination with the dosing ratio of the oxidizing agent and the catalyst, thereby proposing a fourth embodiment of other control modes. In the fourth embodiment, the Fenton reaction system control method may further comprise the following steps: (1) monitoring the dosage of the oxidant and the catalyst. (2) when the ratio of the oxidant to the catalyst is greater than a dosing ratio, the catalyst is added to the Fenton reaction system; when the ratio of the oxidant to the catalyst is less than the dosing ratio, then An oxidant is produced in the Fenton reaction system. (3) When the ratio of the oxidizing agent to the catalyst is equal to the dosing ratio, the addition or generation of the oxidizing agent is stopped, and the addition of the catalyst is stopped. In addition, in the implementation aspect of the dosing ratio of the oxidant and the catalyst, in the actual implementation, the ratio of the oxidant and the catalyst dosing amount is equal to the dosing ratio due to the possibility of error in the monitoring or calculation of the dosing ratio. The meaning should be regarded as the ratio of the oxidant and the catalyst dosing amount equal to the dosing ratio under a tolerance (for example, 1%, 5%, etc.). Further, when the addition or stop of the generation of the oxidant is stopped, the control method may continue to proceed to step S10 to continue monitoring the value of the DOt of the Fenton reaction system so as to be within the range of the set value A.

在上述方法實施態樣中,催化劑及氧化劑的添加方式及順序並不受限。例如,在上述方法之一實施態樣中,其中在添加催化劑以前,可先添加氧化劑。在上述方法之又一實施態樣中,其中在添加氧化劑以前,亦可先添加催化劑。又在上述方法之另一實施態樣中,亦可先將氧化劑與催化劑混合成混合液,然後再將混合液加入此Fenton反應系統。In the above embodiment, the manner and sequence of addition of the catalyst and the oxidant are not limited. For example, in one embodiment of the above method, wherein an oxidizing agent may be added prior to the addition of the catalyst. In still another embodiment of the above method, wherein the catalyst is added prior to the addition of the oxidant. In still another embodiment of the above method, the oxidizing agent and the catalyst may be first mixed into a mixed liquid, and then the mixed liquid is added to the Fenton reaction system.

在上述方法的實施態樣中,在該Fenton反應系統內加入氧化劑的方式至少有兩種,例如可將某劑量的氧化劑添加至該Fenton反應系統內或在該Fenton反應系統中產生某劑量的氧化劑,故此在步驟S30、S57或S67中係以添加或產生氧化劑於該Fenton反應槽之敘述來表示之,然而,本發明之實施方式並不受限於此。例如,在上述方法的實施態樣中,步驟S30、S57或S67中的氧化劑的加入量(即添加量或產生量)可為相同或不同。又在實作中,步驟S30、S57或S67可能會被多次執行,而各步驟再次被執行時,相較於前次執行時,其氧化劑的加入量可為相同或不同,例如每次加入10_ml之氧化劑,又例如氧化劑的加入量係為遞減或遞增者。在實作時,當可視Fenton反應系統的情況,例如當中所含有待處理水的狀況(例如待處理水的量或種類)或其他有關反應的條件,適當地設定或調整氧化劑的添加量或產生量。而上述的待處理水可以是廢水或含有機物等的水。In an embodiment of the above method, there are at least two ways of adding an oxidizing agent to the Fenton reaction system, for example, adding a dose of an oxidizing agent to the Fenton reaction system or generating a dose of an oxidizing agent in the Fenton reaction system. Therefore, in the step S30, S57 or S67, the description of adding or generating an oxidizing agent to the Fenton reaction tank is shown, however, the embodiment of the present invention is not limited thereto. For example, in the embodiment of the above method, the amount of the oxidizing agent added in the step S30, S57 or S67 (i.e., the amount of addition or the amount of production) may be the same or different. In addition, in practice, step S30, S57 or S67 may be executed multiple times, and when each step is executed again, the amount of oxidant added may be the same or different compared to the previous execution, for example, each time The amount of 10_ml of oxidant, such as oxidant, is either decreasing or increasing. In practice, when the Fenton reaction system is visible, for example, the condition of the water to be treated (for example, the amount or type of water to be treated) or other conditions related to the reaction, the amount of oxidant added or generated is appropriately set or adjusted. the amount. The water to be treated described above may be waste water or water containing organic matter or the like.

在上述方法中,Fenton反應系統可以為傳統Fenton反應系統、電解還原-Fenton反應系統、流體化床-Fenton反應系統、或光-Fenton反應系統。但在本發明的實施方式並不受限於此,任何基於Fenton氧化法的反應系統皆可適用於上述方法。In the above method, the Fenton reaction system may be a conventional Fenton reaction system, an electrolytic reduction-Fenton reaction system, a fluidized bed-Fenton reaction system, or a photo-Fenton reaction system. However, embodiments of the present invention are not limited thereto, and any reaction system based on Fenton oxidation can be applied to the above method.

依據本發明之另一觀點,提出用於廢水處理系統之Fenton反應系統控制裝置之實施態樣,以利用Fenton反應來處理污水或有機污染物。In accordance with another aspect of the present invention, an embodiment of a Fenton reaction system control apparatus for a wastewater treatment system is proposed to utilize a Fenton reaction to treat sewage or organic contaminants.

請參考圖4,其顯示在廢水處理系統1的實施態樣中使用依據本發明之第五實施態樣的Fenton反應系統控制裝置10的示意方塊圖。Referring to Figure 4, there is shown a schematic block diagram of a Fenton reaction system control unit 10 in accordance with a fifth embodiment of the present invention in an embodiment of the wastewater treatment system 1.

如圖4所示,廢水處理系統1包括: Fenton反應系統控制裝置10、Fenton反應槽20及藥液添加單元30。例如,Fenton反應槽係為進行Fenton家族高級處理技術之反應槽,例如傳統Fenton反應槽、電解還原-Fenton反應槽、流體化床-Fenton反應槽、或光-Fenton反應槽,但本發明的實施方式並不受限於此。As shown in FIG. 4, the wastewater treatment system 1 includes a Fenton reaction system control device 10, a Fenton reaction tank 20, and a chemical liquid addition unit 30. For example, the Fenton reaction tank is a reaction tank for performing advanced treatment techniques of the Fenton family, such as a conventional Fenton reaction tank, an electrolytic reduction-Fenton reaction tank, a fluidized bed-Fenton reaction tank, or a photo-Fenton reaction tank, but the practice of the present invention The method is not limited to this.

在第五實施態樣中,Fenton反應系統控制裝置10至少包括溶氧度(DO)感測裝置11及本地控制單元13。溶氧度感測裝置11用以監測Fenton反應槽20中的溶氧度(DO)以得到DO濃度值(DOt)。氧化還原電位感測裝置12用以監測Fenton反應槽中的氧化還原電位ORP以得到ORP值(ORPt)。本地控制單元13係至少依據DOt發出一控制訊號SC1以添加或產生氧化劑於該Fenton反應槽,其中當DOt等於0或小於設定值A時,則添加或產生一氧化劑於該Fenton反應系統內,當DOt為等於或大於該設定值A時,停止添加或停止產生該氧化劑。此實施態樣之Fenton反應系統控制裝置10可用以實現上述第一實施態樣之Fenton反應系統控制方法。In the fifth embodiment, the Fenton reaction system control device 10 includes at least a dissolved oxygen (DO) sensing device 11 and a local control unit 13. The dissolved oxygen sensing device 11 is used to monitor the dissolved oxygen (DO) in the Fenton reaction tank 20 to obtain a DO concentration value (DOt). The redox potential sensing device 12 is used to monitor the redox potential ORP in the Fenton reaction cell to obtain an ORP value (ORPt). The local control unit 13 sends a control signal SC1 according to at least DOt to add or generate an oxidant in the Fenton reaction tank, wherein when DOt is equal to 0 or less than the set value A, an oxidant is added or generated in the Fenton reaction system. When DOt is equal to or greater than the set value A, the addition or stop of the generation of the oxidant is stopped. The Fenton reaction system control device 10 of this embodiment can be used to implement the Fenton reaction system control method of the first embodiment described above.

在第五實施態樣中,依據本發明之Fenton反應系統控制裝置10,除了具備上述裝置以外,更可包括氧化還原電位(ORP)感測裝置12,用以監測該Fenton反應槽中的氧化還原電位ORP以得到ORP值(ORPt)。在此場合下,該本地控制單元13更依據DOt及ORPt發出該控制訊號SC1以將該氧化劑添加至該Fenton反應槽,其中當DOt為A1及ORPt係為小於DOt為A1時所對應的設定值B1時,該本地控制單元13發出該控制訊號SC1以添加或產生該氧化劑於該Fenton反應系統內,當DOt為A1及ORPt為等於或大於該設定值B1時,則停止添加或停止產生該氧化劑,其中A>A1³0。此實施態樣之Fenton反應系統控制裝置10可用以實現上述第二實施態樣之Fenton反應系統控制方法。In a fifth embodiment, the Fenton reaction system control device 10 according to the present invention, in addition to the above device, may further include an oxidation reduction potential (ORP) sensing device 12 for monitoring redox in the Fenton reaction tank. The potential ORP is obtained to obtain an ORP value (ORPt). In this case, the local control unit 13 further sends the control signal SC1 according to DOt and ORPt to add the oxidant to the Fenton reaction tank, wherein when DOt is A1 and ORPt is less than the set value corresponding to DOt being A1. At B1, the local control unit 13 sends the control signal SC1 to add or generate the oxidant in the Fenton reaction system. When DOt is A1 and ORPt is equal to or greater than the set value B1, the addition or stop of generating the oxidant is stopped. , where A>A130. The Fenton reaction system control device 10 of this embodiment can be used to implement the Fenton reaction system control method of the second embodiment described above.

另外,在第五實施態樣中,依據本發明之Fenton反應系統控制裝置10更基於上述第三實施態樣而配置為:當DOt為A1、ORPt係為小於該設定值B1、且ORPt係為大於或等於DOt為A1時所對應的設定值C1時,該本地控制單元13發出該控制訊號SC1以添加或產生該氧化劑於該Fenton反應系統內,當DOt為A1及ORPt為等於或大於該設定值B1或ORPt為小於該設定值C1時,則停止添加或停止產生該氧化劑,其中A>A1³0,B1>C1。In addition, in the fifth embodiment, the Fenton reaction system control device 10 according to the present invention is further configured based on the third embodiment described above: when DOt is A1, the ORPt system is smaller than the set value B1, and the ORPt system is When the value is greater than or equal to the set value C1 corresponding to when the DOt is A1, the local control unit 13 sends the control signal SC1 to add or generate the oxidant in the Fenton reaction system. When DOt is A1 and ORPt is equal to or greater than the setting. When the value B1 or ORPt is less than the set value C1, the addition or stop of the generation of the oxidant is stopped, wherein A>A130, B1>C1.

又,前述任一Fenton反應系統控制裝置的實施態樣更可進一步配置為對氧化劑及催化劑之加藥比進行監測。例如,將Fenton反應系統控制裝置配置為,本地控制單元更監測該氧化劑及該催化劑之加藥量;當該氧化劑及該催化劑之加藥量之比值大於一加藥比時,該本地控制單元發出一控制訊號SC2以添加該催化劑於該Fenton反應系統內;當該氧化劑及該催化劑之加藥量之比值小於該加藥比時,該本地控制單元發出該控制訊號SC1以添加或產生該氧化劑於該Fenton反應系統內;當該氧化劑及該催化劑之加藥量之比值為該加藥比時,停止添加該氧化劑及該催化劑。故此,本地控制單元13可以配置為利用不同方式來控制Fenton反應系統,故並不以上述為限。Further, the embodiment of any of the aforementioned Fenton reaction system control devices can be further configured to monitor the dosing ratio of the oxidant and the catalyst. For example, the Fenton reaction system control device is configured such that the local control unit monitors the oxidant and the dosing amount of the catalyst; when the ratio of the oxidant to the catalyst is greater than a dosing ratio, the local control unit issues a control signal SC2 to add the catalyst to the Fenton reaction system; when the ratio of the oxidant to the catalyst is less than the dosing ratio, the local control unit sends the control signal SC1 to add or generate the oxidant In the Fenton reaction system, when the ratio of the oxidizing agent to the catalyst is the dosing ratio, the addition of the oxidizing agent and the catalyst is stopped. Therefore, the local control unit 13 can be configured to control the Fenton reaction system in different ways, and thus is not limited to the above.

例如,圖5顯示依據本發明之第六實施態樣的Fenton反應系統控制裝置的其他實施態樣的示意方塊圖。在圖5中,本地控制單元13例如包括資料處理裝置111、儲存裝置112及通訊裝置113。資料處理裝置111收集關於Fenton反應槽20之控制參數之數值,控制參數至少包括DOt。儲存裝置112用以供資料處理裝置111使用。通訊裝置113用以使資料處理裝置111與外部溝通,其中通訊裝置113將至少部分收集之數值藉由一通訊連結LK傳輸至外部。本地控制單元13可實現為內嵌式系統、電腦系統、專屬電子裝置、或控制系統之一部分。For example, Figure 5 shows a schematic block diagram of another embodiment of a Fenton reaction system control apparatus in accordance with a sixth embodiment of the present invention. In FIG. 5, the local control unit 13 includes, for example, a data processing device 111, a storage device 112, and a communication device 113. The data processing device 111 collects values for the control parameters of the Fenton reaction tank 20, the control parameters including at least DOt. The storage device 112 is used by the data processing device 111. The communication device 113 is configured to enable the data processing device 111 to communicate with the outside, wherein the communication device 113 transmits at least a portion of the collected values to the outside via a communication link LK. The local control unit 13 can be implemented as part of an embedded system, a computer system, a proprietary electronic device, or a control system.

在第六實施態樣中,Fenton反應系統控制裝置10更可包括遠端控制單元50,本地控制單元13的通訊裝置113藉由通訊連結LK與遠端控制單元50連結。遠端控制單元50依據複數個控制參數的數據經過運算處理(例如統計、分析及判斷)以指示本地控制單元13發出加藥控制訊號SC1以將氧化劑添加至Fenton反應槽20;或指示本地控制單元13發出加藥控制訊號SC2以將催化劑添加至Fenton反應槽20。在此實施態樣中,遠端控制單元50分擔了本地控制單元13的工作,基於在本地端收集的數據對Fenton反應槽13中的Fenton反應作出例如統計、分析及判斷,並藉由通訊連結LK對Fenton反應槽20進行遠端的調控,至少控制氧化劑的加藥量。In the sixth embodiment, the Fenton reaction system control device 10 further includes a remote control unit 50. The communication device 113 of the local control unit 13 is coupled to the remote control unit 50 via a communication link LK. The remote control unit 50 performs arithmetic processing (eg, statistics, analysis, and judgment) according to data of the plurality of control parameters to instruct the local control unit 13 to issue the dosing control signal SC1 to add the oxidant to the Fenton reaction tank 20; or to indicate the local control unit The dosing control signal SC2 is issued to add the catalyst to the Fenton reaction tank 20. In this embodiment, the remote control unit 50 shares the operation of the local control unit 13, and performs, for example, statistics, analysis, and judgment on the Fenton response in the Fenton reaction tank 13 based on the data collected at the local end, and communicates through communication. LK regulates the distal end of the Fenton reaction tank 20 to control at least the amount of oxidant added.

此外,在第六實施態樣中,更可依據上述實施態樣中的本地控制單元13或遠端控制單元50並因應需求而配置為控制其他關於Fenton反應槽13的處理,例如待處理水的進入或/及進出的控制,又例如催化劑添加的控制,以至其他與Fenton反應相關的控制如酸鹼度pH值的控制。再者,上述實施態樣中的本地控制單元13或遠端控制單元50更可配置為依據DO值、ORP值及其他一或多個控制參數如pH值、導電度(conductivity)來控制關於Fenton反應槽13的處理,例如待處理水的進入或/及進出的控制,又例如催化劑添加的控制,以至其他與Fenton反應相關的控制如酸鹼度pH值的控制。In addition, in the sixth embodiment, the local control unit 13 or the remote control unit 50 in the above embodiment may be further configured to control other processes related to the Fenton reaction tank 13 according to requirements, such as water to be treated. Controls into or/and in and out, such as control of catalyst addition, and other controls associated with Fenton reactions such as pH control. Furthermore, the local control unit 13 or the remote control unit 50 in the above embodiment may be further configured to control the Fenton according to the DO value, the ORP value and other one or more control parameters such as pH value and conductivity. The treatment of the reaction tank 13, such as the control of the entry or/and access of the water to be treated, is, for example, the control of the addition of the catalyst, and the control of other Fenton-related reactions such as the pH of the pH.

另外,在其他實施態樣中,更可藉由對一或多個控制參數,例如DO值、ORP值、pH值、或導電度(conductivity)等進行統計分析,從而將相關分析結果及變化趨勢等紀錄在本地控制單元13或遠端控制單元50以供處理下一梯次的待處理水時參考。又例如統計分析結果可顯示在本地控制單元13或遠端控制單元50或終端裝置60的顯示器上,以讓管理人員參閱及了解處理成效或用藥成本等。In addition, in other embodiments, statistical analysis may be performed on one or more control parameters, such as DO value, ORP value, pH value, or conductivity, so as to correlate analysis results and trends. The record is referenced when the local control unit 13 or the remote control unit 50 is used to process the next step of the water to be treated. For example, the statistical analysis result can be displayed on the display of the local control unit 13 or the remote control unit 50 or the terminal device 60, so that the manager can refer to and understand the processing effect or the cost of medication.

上述通訊連結LK例如為有線或無線或其組合之通訊連結或網路如區域網路、網際網路或行動網路或其組合。此外,在一實施態樣中,遠端控制單元50更可視為伺服器或由雲端運算系統來代替,藉此其他連結到網路的終端裝置60,例如個人電腦、平板電腦、智慧型手機等得以作線上即時監控。在另一實施態樣中,本地控制單元13亦可透過網路而與終端裝置60連結,從而作線上即時監控。這些關於即時監控的實施態樣讓廢水處理系統在加藥量及待處理水水量之監控上更具靈活性及即時性。The above communication link LK is, for example, a wired or wireless or a combination of communication links or networks such as a regional network, an internet or a mobile network, or a combination thereof. In addition, in an implementation aspect, the remote control unit 50 can be more regarded as a server or replaced by a cloud computing system, whereby other terminal devices 60 connected to the network, such as a personal computer, a tablet computer, a smart phone, etc. Instant online monitoring. In another embodiment, the local control unit 13 can also be connected to the terminal device 60 through the network for online on-line monitoring. These implementations of real-time monitoring allow the wastewater treatment system to be more flexible and immediacy in monitoring the amount of dosing and the amount of water to be treated.

依據本發明之又一觀點,在本發明之廢水處理系統1中,包括Fenton反應槽20、Fenton反應系控制裝置10及藥液添加單元30。關於Fenton反應系控制裝置10的各種實施態樣如前文所述,在此不再贅述。Fenton反應槽20係供以Fenton法處理一待處理水。藥液添加單元30,係回應本地控制單元13所發出的加藥控制訊號以選擇性地至少將氧化劑添加至Fenton反應槽。藥液添加單元30的處理方式可以不同方式實現,並不以上述為限。舉例來說,例如,藥液添加單元30更用以選擇性地將一催化劑添加至該Fenton反應槽。According to still another aspect of the present invention, the wastewater treatment system 1 of the present invention includes a Fenton reaction tank 20, a Fenton reaction system control device 10, and a chemical liquid addition unit 30. Various embodiments of the Fenton reaction system control device 10 are as described above, and are not described herein again. The Fenton reaction tank 20 is for treating a water to be treated by the Fenton method. The chemical solution adding unit 30 responds to the dosing control signal issued by the local control unit 13 to selectively add at least the oxidizing agent to the Fenton reaction tank. The processing method of the chemical solution adding unit 30 can be implemented in different manners, and is not limited to the above. For example, the chemical solution adding unit 30 is further configured to selectively add a catalyst to the Fenton reaction tank.

藥液添加單元30包括一個或多個加藥泵,比如以一加藥泵來控制待處理水的添加以及以另一加藥泵來控制氧化劑的添加。在另一例子中,藥液添加單元30更可用以控制催化劑之添加量。故藥液添加單元30可以不同方式實現,故並不以上述為限。而對於不同的實施態樣,可使Fenton反應系統控制裝置10所發出的加藥控制訊號配置為對應於藥液添加單元30的實施方式,例如在以一加藥泵來控制氧化劑的添加之場合,加藥控制訊號可被配置為一開關訊號;在以兩個加藥泵來分別控制待處理水(或催化劑)及氧化劑之場合,加藥控制訊號可被配置為兩個開關訊號。加藥泵的配置方式可以不同方式實現,故並不以上述為限。The drug solution addition unit 30 includes one or more dosing pumps, such as a dosing pump to control the addition of water to be treated and another dosing pump to control the addition of the oxidant. In another example, the chemical liquid addition unit 30 can be further used to control the amount of addition of the catalyst. Therefore, the chemical liquid addition unit 30 can be implemented in different manners, and thus is not limited to the above. For different implementations, the dosing control signal sent by the Fenton reaction system control device 10 can be configured to correspond to the embodiment of the drug solution adding unit 30, for example, when a dosing pump is used to control the addition of the oxidant. The dosing control signal can be configured as a switching signal; when two dosing pumps are used to separately control the water (or catalyst) and the oxidant to be treated, the dosing control signal can be configured as two switching signals. The configuration of the dosing pump can be implemented in different ways, so it is not limited to the above.

在本發明之廢水處理系統中,舉例來說,例如,廢水處理系統1更可包括一個或多個泵以及一個或多個處理槽。泵(例如加藥泵)用以選擇性地將該Fenton反應槽20中反應後之液體排出;處理槽用以對該Fenton反應槽20中反應後之液體進行處理。但本發明的廢水處理系統,並不受限於此。舉例來說,例如,處理槽40(請參考圖4)作為混凝沉澱槽以對Fenton反應槽中反應後之液體排出至處理槽40進行混凝沉澱處理。混凝沉澱處理係利用鹼劑(例如氫氧化鈣或氫氧化納)與Fenton反應後之溶液混合後再進行混凝沉澱,而氫氧化鈣(或氫氧化納)係調至pH=7.0±0.1。處理槽的處理方式可以不同方式實現,故並不以上述為限。此外,更可在此實施態樣的廢水處理系統1中設置泵31,用以選擇性地將Fenton反應槽中反應後之液體排出至處理槽40。In the wastewater treatment system of the present invention, for example, the wastewater treatment system 1 may further include one or more pumps and one or more treatment tanks. A pump (e.g., a dosing pump) is used to selectively discharge the reacted liquid in the Fenton reaction tank 20; the treatment tank is used to treat the reacted liquid in the Fenton reaction tank 20. However, the wastewater treatment system of the present invention is not limited thereto. For example, the treatment tank 40 (please refer to FIG. 4) is used as a coagulation sedimentation tank to discharge the liquid after the reaction in the Fenton reaction tank to the treatment tank 40 for coagulation sedimentation treatment. The coagulation sedimentation treatment is carried out by mixing the solution of the Fenton reaction with an alkali agent (for example, calcium hydroxide or sodium hydroxide), and then coagulation and precipitation, and the calcium hydroxide (or sodium hydroxide) is adjusted to pH=7.0±0.1. . The processing method of the processing tank can be implemented in different ways, and thus is not limited to the above. Further, a pump 31 may be provided in the wastewater treatment system 1 of this embodiment to selectively discharge the reacted liquid in the Fenton reaction tank to the treatment tank 40.

請參考圖6,其顯示廢水處理系統的其他實施態樣的示意方塊圖。在圖6中,廢水處理系統包括多個Fenton反應槽20,各個Fenton反應本槽配置有各自的Fenton反應系統控制裝置10及藥液添加單元30,這些Fenton反應系統控制裝置皆與遠端控制單元50有通訊連結。如此,遠端控制單元50能掌握各個Fenton反應槽的反應情況從而有效地進行廢水處理。 [實施例]Please refer to Figure 6, which shows a schematic block diagram of other embodiments of a wastewater treatment system. In FIG. 6, the wastewater treatment system includes a plurality of Fenton reaction tanks 20, and each of the Fenton reaction tanks is provided with a respective Fenton reaction system control device 10 and a chemical liquid addition unit 30, and these Fenton reaction system control devices are all connected to the remote control unit. 50 has a communication link. In this manner, the remote control unit 50 can grasp the reaction conditions of the respective Fenton reaction tanks to effectively perform wastewater treatment. [Examples]

以下,雖然藉由實施例來説明本發明,然而本發明並非僅限定於此等之實施例。另外,在各實施例中之特性値的評價係藉由以下的方法來進行的。Hereinafter, the present invention will be described by way of examples, but the invention is not limited to the examples. In addition, the evaluation of the characteristics 在 in each of the examples was carried out by the following method.

分別採用200、300、400及500 mg/L等4種不同的亞鐵進流濃度來進行實施例1至實施例4,分析水樣中的過氧化氫殘餘濃度、亞鐵殘餘濃度、COD值及色度,詳細情況將簡述於下述。 《COD值》Example 1 to Example 4 were carried out using 4 different ferrous influent concentrations of 200, 300, 400 and 500 mg/L, respectively, and the residual hydrogen peroxide concentration, ferrous residual concentration and COD value in the water sample were analyzed. And chromaticity, the details will be briefly described below. "COD value"

COD值(EPA 5220 D)係利用與市售COD試劑相同的調製方法製得的COD試劑來量測。每次實驗須以鄰苯二甲酸氫鉀(Panreac公司製,濃度:99.8%)製作COD檢量線,COD檢量線也可確保COD試劑的品質。以COD試劑(HACH COD 20-1500 mg/L)進行分析,將加入COD試劑的樣品放入COD加熱器(CR-25)進行2小時、150℃之COD水樣密閉迴流加熱,以分光光度計測定該樣品在波長為620nm的光之吸光度,製作檢量線以內插法求得COD值。 《色度》The COD value (EPA 5220 D) was measured using a COD reagent prepared by the same modulation method as the commercially available COD reagent. Each experiment requires a COD calibration line made of potassium hydrogen phthalate (Panreac, concentration: 99.8%), and the COD calibration line also ensures the quality of the COD reagent. The COD reagent (HACH COD 20-1500 mg/L) was used for analysis. The COD reagent was added to the COD heater (CR-25) for 2 hours, and the COD water sample at 150 ° C was closed and reflux heated to obtain a spectrophotometer. The absorbance of the sample at a wavelength of 620 nm was measured, and a calibration curve was prepared to obtain a COD value by interpolation. Chroma

色度(A.P.H.A. 2120 E.)係將分光光度計設定為穿透度(%T)模式,掃描可見光波段(400 nm-700 nm),以每10個nm為一單位測定其透光率,共計31個數值,藉由檢量線的公式經過換算後而求得。 《H2 O2 殘留濃度》Chromaticity (APHA 2120 E.) is to set the spectrophotometer to the transmittance (%T) mode, scan the visible light band (400 nm-700 nm), and measure the transmittance per unit of 10 nm. The 31 values are obtained by converting the formula of the calibration line. "H 2 O 2 Residual Concentration"

H2 O2 殘餘濃度係利用如反應式(1)所示之在酸性條件下4價鈦(使用草酸鉀鈦,林純藥工業株式會社製,濃度:95%)與過氧化氫形成黃色化合物之原理,以分光光度計測定該黃色物質在波長為400nm的光之吸光度,製作檢量線以內插法求得。 Ti+4 +H2 O2 +2H2 O→H2 TiO4 +4H+ (反應式(1)) 《Fe+2 殘留濃度》The H 2 O 2 residual concentration is a yellow compound formed by reacting tetravalent titanium (using potassium oxalate titanate, manufactured by K.K., Ltd., concentration: 95%) with hydrogen peroxide under acidic conditions as shown in the reaction formula (1). The principle is to measure the absorbance of the yellow substance at a wavelength of 400 nm by a spectrophotometer, and to prepare a calibration curve by interpolation. Ti +4 + H 2 O 2 + 2H 2 O → H 2 TiO 4 + 4H + (Reaction formula (1)) "Fe +2 residual concentration"

Fe+2 殘留濃度係利用如反應式(2)所示之菲羅林試劑(使用1,10-二氮菲(1,10-Phenanthroline),Merck製)與2價金屬離子形成橘紅色化合物之原理,以分光光度計測定該紅色物質在波長為510nm的光之吸光度,製作檢量線以內插法求得。 Fe+2 +3phenH+ →Fe(phen3 )+2 +3H+ (反應式(2)) 《待處理水》The Fe +2 residual concentration is formed by using a pheniramine reagent (using 1,10-Phenanthroline, manufactured by Merck) as shown in the reaction formula (2) to form an orange-red compound with a divalent metal ion. The principle is to measure the absorbance of the red substance at a wavelength of 510 nm by a spectrophotometer, and to prepare a calibration curve by interpolation. Fe +2 +3phenH + →Fe(phen 3 ) +2 +3H + (Reaction formula (2)) "Water to be treated"

在實驗中所使用的待處理水WA係使用反應性染料Reactive Blue 49提供廢水中的色度值,反應性染料Reactive Blue 49之化學結構如下化學式(1);使用 polyvinyl alcohol提供COD值,其模擬廢水之ADMI值為9000±300;COD值為1000±100mg/L。實驗前以硫酸及氫氧化鈉調配適合Fenton反應之pH值,將pH值調到2。(化學式(1))The water to be treated WA used in the experiment provided the chromaticity value in the wastewater using the reactive dye Reactive Blue 49, and the chemical structure of the reactive dye Reactive Blue 49 was as follows (1); the COD value was provided using polyvinyl alcohol, and the simulation was carried out. The wastewater has an ADMI value of 9000 ± 300; the COD value is 1000 ± 100 mg / L. Before the experiment, the pH value suitable for the Fenton reaction was adjusted with sulfuric acid and sodium hydroxide, and the pH was adjusted to 2. (Chemical Formula (1))

在實驗中模擬實廠處理廢水,廢水和藥劑由蠕動泵打入反應槽中,經過一個水力停留時間(Hydraulic Retention Time;HRT)的處理後自上方的放流口出流,以HRT取代傳統瓶杯實驗的反應時間,並將反應系統中的亞鐵進流濃度維持在一定值。實驗設計的HRT為60分鐘,算法如計算式(1)。實驗前需等待廢水和藥劑從開始進流到放流口出流後,再經過一個HRT的系統穩定期,才得以自放流口開始取樣並著手進行實驗分析。(計算式(1)) 《實施例1》In the experiment, the simulated wastewater treatment was simulated. The wastewater and the medicament were pumped into the reaction tank by a peristaltic pump. After a treatment of hydraulic retention time (HRT), the water discharged from the upper discharge port and replaced the traditional bottle with HRT. The reaction time of the experiment was maintained, and the ferrous inflow concentration in the reaction system was maintained at a certain value. The experimental design of the HRT is 60 minutes, and the algorithm is calculated as equation (1). Before the experiment, it is necessary to wait for the wastewater and the medicament to flow from the beginning to the discharge port, and then through a system stabilization period of HRT, it is possible to start sampling from the discharge port and proceed with the experimental analysis. (Calculation Formula (1)) "Embodiment 1"

在實施例中所使用Fenton反應系統控制裝置為如圖7所示,Fenton反應系統控制裝置70係由反應槽71、pH感測裝置72(WTW  SenTix®RO系列)、ORP感測裝置73(WTW SenTix®RO系列)、DO感測裝置74(型號:METTLER TOLEDO O2-sensor InPro 6050/120)、控制單元75(型號:SUNTEX TRANSMITTER PC-5300、PC5100及EC-430)及導電度感測裝置76(型號:SUNTEX 8-12-6)所構成。反應槽71的有效容積約為1.8公升壓克力圓筒槽,陽極為鈦基銥鉭棒狀電極,陰極為不鏽鋼圓筒網片狀電極,並以電源供應器77施以電流密度6.4mA/cm2 。反應槽71底部的進水管線連接有泵78、泵79及泵80,分別用以將氧化劑、催化劑及待處理水WA注入到反應槽71中。泵採用微量蠕動泵(MasterFlex Cole Parmer L/S®數位型可調流量泵) 。The Fenton reaction system control device used in the embodiment is as shown in FIG. 7, and the Fenton reaction system control device 70 is composed of a reaction tank 71, a pH sensing device 72 (WTW SenTix® RO series), and an ORP sensing device 73 (WTW). SenTix® RO series), DO sensing device 74 (model: METTLER TOLEDO O2-sensor InPro 6050/120), control unit 75 (model: SUNTEX TRANSMITTER PC-5300, PC5100 and EC-430) and conductivity sensing device 76 (Model: SUNTEX 8-12-6). The effective volume of the reaction tank 71 is about 1.8 liters of the booster cylinder groove, the anode is a titanium-based ruthenium rod electrode, the cathode is a stainless steel cylinder mesh electrode, and the power supply 77 is applied with a current density of 6.4 mA/ Cm 2 . The water inlet line at the bottom of the reaction tank 71 is connected to a pump 78, a pump 79, and a pump 80 for injecting the oxidant, the catalyst, and the water to be treated WA into the reaction tank 71, respectively. The pump uses a micro-peristaltic pump (MasterFlex Cole Parmer L/S® digitally adjustable flow pump).

首先,在如圖7所示之Fenton反應槽71中,將待處理之廢水抽入連續性之反應槽、將配置好濃度之硫酸亞鐵( Merck公司製,濃度:95%)連續抽入反應槽,並控制其濃度為200mg/L,並連續抽入H2 O2 (Panreac公司製,濃度:33%)以使產生Fenton反應,並連續偵測反應槽中之DO值或ORP值,藉以控制H2 O2 之加藥量。在自實驗開始起,每間隔10分鐘採取一組出流水樣,分別採取第0 min、10 min、20 min、30 min、40 min、50 min及60 min共計七組的水樣,以孔徑0.45μm的混合纖維過濾膜(∮47mm),分別過濾所取得前述水樣中之雜質。First, in the Fenton reaction tank 71 shown in Fig. 7, the waste water to be treated is pumped into a continuous reaction tank, and the ferrous sulfate (manufactured by Merck, concentration: 95%) having a concentration of the reaction is continuously pumped into the reaction. The tank was controlled to have a concentration of 200 mg/L, and H 2 O 2 (manufactured by Panreac Co., Ltd., concentration: 33%) was continuously drawn to generate a Fenton reaction, and the DO value or ORP value in the reaction tank was continuously detected. Control the amount of H 2 O 2 added. At the beginning of the experiment, a set of outflow water samples were taken at intervals of 10 minutes, and a total of seven groups of water samples were taken at 0 min, 10 min, 20 min, 30 min, 40 min, 50 min and 60 min, with a pore diameter of 0.45. A mixed fiber filter membrane (∮47 mm) of μm was separately filtered to obtain impurities in the aforementioned water sample.

其次,對於經Fenton處理後之出流水,即上述經除去雜質後之水樣,分別以鹼劑Ca(OH)2 (Panreac公司製,濃度:95%)、NaOH(Panreac公司製,濃度:98%)調整鹼度使成為pH=7.0±0.1,然後進行慢混30分鐘使形成膠羽後,再靜置30分鐘,藉以進行混凝沉澱處理,接著取上層澄清液,以前述之分析方法測定而得到其中之COD值、色度值、過氧化氫殘餘濃度及亞鐵殘餘濃度。Next, for the run water treated by Fenton, that is, the water sample after the removal of the impurities, respectively, an alkali agent Ca(OH) 2 (manufactured by Panreac Co., Ltd., concentration: 95%), and NaOH (manufactured by Panreac Co., Ltd., concentration: 98) %) adjust the alkalinity to pH=7.0±0.1, then carry out slow mixing for 30 minutes to form a rubber feather, and then let stand for another 30 minutes, thereby performing coagulation precipitation treatment, and then taking the upper layer clear liquid, and measuring by the above-mentioned analytical method. The COD value, the chromaticity value, the residual hydrogen peroxide concentration, and the ferrous residual concentration are obtained.

將上述所得到的數據,以DO濃度值為橫軸,分別以COD去除率、色度去除率、過氧化氫殘餘濃度、亞鐵殘餘濃度及H2 O2 /Fe+2 加藥比為縱軸繪製與ORP關係曲線圖,結果如圖8A、圖9A、圖10A、圖11A、圖12A所示。 《實施例2》The data obtained above were plotted on the horizontal axis with the DO concentration as the horizontal axis, and the COD removal rate, the chromaticity removal rate, the residual hydrogen peroxide concentration, the ferrous residual concentration, and the H 2 O 2 /Fe +2 dosing ratio were respectively The axis is plotted against ORP, and the results are shown in Figures 8A, 9A, 10A, 11A, and 12A. <<Example 2》

在本實施例中同樣使用如圖7所示之Fenton反應系統控制裝置。除了將硫酸亞鐵之濃度與添加量分別變更為300mg/L以外,皆與實施例1進行相同的操作,分別自實驗開始起,每間隔10分鐘採取一組出流水樣,分別採取第0 min、10 min、20 min、30 min、40 min、50 min及60 min共計七組的水樣,以0.45μm的混合纖維過濾膜(∮47mm),分別過濾所取得前述水樣中之雜質。A Fenton reaction system control device as shown in Fig. 7 is also used in this embodiment. Except that the concentration and the added amount of ferrous sulfate were changed to 300 mg/L, respectively, the same operation as in Example 1 was carried out, and a set of outflow water samples were taken every 10 minutes from the beginning of the experiment, respectively, taking the 0 min. A total of seven groups of water samples were prepared at 10 min, 20 min, 30 min, 40 min, 50 min and 60 min, and the impurities in the water samples were obtained by filtering the mixed fiber filter membrane (∮47 mm) of 0.45 μm.

其次,和實施例1同樣地以前述之分析方法測定而得到其中之COD值、色度值、過氧化氫殘餘濃度及亞鐵殘餘濃度。將上述所得到的數據,以DO濃度值為橫軸,分別以COD去除率、色度去除率、過氧化氫殘餘濃度、亞鐵殘餘濃度及H2 O2 /Fe+2 加藥比為縱軸繪製與ORP關係曲線圖,結果如圖8B、圖9B、圖10B、圖11B、圖12B所示。 《實施例3》Next, in the same manner as in Example 1, the COD value, the chromaticity value, the residual hydrogen peroxide concentration, and the ferrous residual concentration were obtained by the above-described analysis methods. The data obtained above were plotted on the horizontal axis with the DO concentration as the horizontal axis, and the COD removal rate, the chromaticity removal rate, the residual hydrogen peroxide concentration, the ferrous residual concentration, and the H 2 O 2 /Fe +2 dosing ratio were respectively The axis is plotted against the ORP, and the results are shown in Figures 8B, 9B, 10B, 11B, and 12B. Example 3

在本實施例中同樣使用如圖7所示之Fenton反應系統控制裝置。除了將硫酸亞鐵之濃度與添加量分別變更為400mg/L以外,皆與實施例1進行相同的操作,分別自實驗開始起,每間隔10分鐘採取一組出流水樣,分別採取第0 min、10 min、20 min、30 min、40 min、50 min及60 min共計七組的水樣,以0.45μm的混合纖維過濾膜(∮47mm),分別過濾所取得前述水樣中之雜質。A Fenton reaction system control device as shown in Fig. 7 is also used in this embodiment. Except that the concentration and the added amount of ferrous sulfate were changed to 400 mg/L, respectively, the same operation as in Example 1 was carried out, and a set of outflow water samples were taken every 10 minutes from the beginning of the experiment, respectively, and the 0 min was taken respectively. A total of seven groups of water samples were prepared at 10 min, 20 min, 30 min, 40 min, 50 min and 60 min, and the impurities in the water samples were obtained by filtering the mixed fiber filter membrane (∮47 mm) of 0.45 μm.

其次,和實施例1同樣地以前述之分析方法測定而得到其中之COD值、色度值、過氧化氫殘餘濃度及亞鐵殘餘濃度。將上述所得到的數據,以DO濃度值為橫軸,分別以COD去除率、色度去除率、過氧化氫殘餘濃度、亞鐵殘餘濃度及H2 O2 /Fe+2 加藥比為縱軸繪製與ORP關係曲線圖,結果如圖8C、圖9C、圖10C、圖11C、圖12C所示。 《實施例4》Next, in the same manner as in Example 1, the COD value, the chromaticity value, the residual hydrogen peroxide concentration, and the ferrous residual concentration were obtained by the above-described analysis methods. The data obtained above were plotted on the horizontal axis with the DO concentration as the horizontal axis, and the COD removal rate, the chromaticity removal rate, the residual hydrogen peroxide concentration, the ferrous residual concentration, and the H 2 O 2 /Fe +2 dosing ratio were respectively The axis is plotted against ORP, and the results are shown in Figures 8C, 9C, 10C, 11C, and 12C. Example 4

在本實施例中同樣使用如圖7所示之Fenton反應系統控制裝置。除了將硫酸亞鐵之濃度與添加量分別變更為500mg/L以外,皆與實施例1進行相同的操作,分別自實驗開始起,每間隔10分鐘採取一組出流水樣,分別採取第0 min、10 min、20 min、30 min、40 min、50 min及60 min共計七組的水樣,以0.45μm的混合纖維過濾膜(∮47mm),分別過濾所取得前述水樣中之雜質。A Fenton reaction system control device as shown in Fig. 7 is also used in this embodiment. Except that the concentration and the added amount of ferrous sulfate were changed to 500 mg/L, respectively, the same operation as in Example 1 was carried out, and a set of outflow water samples were taken every 10 minutes from the start of the experiment, respectively, taking the 0 min. A total of seven groups of water samples were prepared at 10 min, 20 min, 30 min, 40 min, 50 min and 60 min, and the impurities in the water samples were obtained by filtering the mixed fiber filter membrane (∮47 mm) of 0.45 μm.

其次,和實施例1同樣地以前述之分析方法測定而得到其中之COD值、色度值、過氧化氫殘餘濃度及亞鐵殘餘濃度。將上述所得到的數據,以DO濃度值為橫軸,分別以COD去除率、色度去除率、過氧化氫殘餘濃度、亞鐵殘餘濃度及H2 O2 /Fe+2 加藥比為縱軸繪製與ORP關係曲線圖,結果如圖8D、圖9D、圖10D、圖11D、圖12D所示。Next, in the same manner as in Example 1, the COD value, the chromaticity value, the residual hydrogen peroxide concentration, and the ferrous residual concentration were obtained by the above-described analysis methods. The data obtained above were plotted on the horizontal axis with the DO concentration as the horizontal axis, and the COD removal rate, the chromaticity removal rate, the residual hydrogen peroxide concentration, the ferrous residual concentration, and the H 2 O 2 /Fe +2 dosing ratio were respectively The axis is plotted against ORP, and the results are shown in Figures 8D, 9D, 10D, 11D, and 12D.

《實驗結果》上述之實施例1至實施例4係至少監測系統中pH值、ORP值、DO值及導電度4項數值,其中以DO值數值作為控制依據,探討最佳的控制點,由控制單元75作動進藥,自動調整加藥比。當DO感測裝置74感測到DO值為2、6、20、40 mg/L時,控制H2 O2 的加藥量。另外,當DO值小於2 mg/L後,因為低DO值之監測易產生誤差,以致DO值的控制較不穩定,不容易有效地監測。因此當DO=0 mg/L時,以相對之ORP值為控制點。以下藉由圖式來討論以DO值、ORP值為控制值,在實施例1至實施例4的操作條件下,進行Fenton反應之實驗結果。 《圖8A至圖8D、圖9A至圖9D》"Experimental Results" The above-mentioned Embodiments 1 to 4 are at least monitoring the values of pH value, ORP value, DO value and conductivity in the system, wherein the value of DO value is used as a control basis to explore the optimal control point. The control unit 75 actuates the medicine and automatically adjusts the dosing ratio. When the DO sensing device 74 senses a DO value of 2 , 6, 20, 40 mg/L, the dosing amount of H 2 O 2 is controlled. In addition, when the DO value is less than 2 mg/L, since the monitoring of the low DO value is liable to cause an error, the control of the DO value is unstable, and it is not easy to effectively monitor. Therefore, when DO=0 mg/L, the relative ORP value is used as the control point. The experimental results of the Fenton reaction were carried out under the operating conditions of Examples 1 to 4 by taking the DO value and the ORP value as control values as follows. "Fig. 8A to Fig. 8D, Fig. 9A to Fig. 9D"

圖8A至圖8D、圖9A至圖9D係分別顯示本發明之實施例1至實施例4的COD去除率、色度去除率變化曲線圖,其中實線、虛線分別表示使用NaOH、Ca(OH)2 進行混凝沉澱後分析所得到的COD去除率及色度去除率。由圖8A至圖8D、圖9A至圖9D,可明顯得知:在Fenton程序反應系統中,當DO等於0 mg/L時,Fenton程序對於COD及色度之去除率均明顯下降;當DO值等於2  mg/L時COD及色度去除率達到高點;而當DO值大於2  mg/L時,則該等COD及色度之去除率僅小幅提高而已。例如, 當DO成為6、20及40mg/L時,即使添加更多H2 O2 亦無顯著地提升效果;換言之,儘管提升H2 O2 /Fe+2 加藥比,亦無法使COD及色度之去除率顯著提升。8A to 8D and 9A to 9D are graphs showing changes in COD removal rate and chromaticity removal rate of Embodiments 1 to 4 of the present invention, respectively, wherein solid lines and broken lines respectively indicate the use of NaOH, Ca (OH). 2 The COD removal rate and the chromaticity removal rate were analyzed after coagulation precipitation. From Fig. 8A to Fig. 8D, Fig. 9A to Fig. 9D, it is apparent that in the Fenton program reaction system, when DO is equal to 0 mg/L, the Fenton program has a significant decrease in COD and chromaticity removal rate; When the value is equal to 2 mg/L, the COD and chromaticity removal rate reach a high point; and when the DO value is greater than 2 mg/L, the COD and chromaticity removal rates are only slightly increased. For example, when DO becomes 6, 20, and 40 mg/L, even if more H 2 O 2 is added, there is no significant improvement effect; in other words, although the H 2 O 2 /Fe +2 dosing ratio is increased, COD and The removal rate of chromaticity is significantly improved.

其次,為了減弱Fenton反應後所形成之大量的三價鐵離子所引起的放流水色度增加之影響,而在Fenton氧化反應後之排水中加入鹼劑,例如,Ca(OH)2 或以調整pH至中性並進行混凝沉澱。從圖8A至圖8D、圖9A至圖9D所示的COD及色度去除率來看,可以確認使用Ca(OH)2 比使用NaOH還更可以得到優異的效果。 《圖10A至圖10D、圖11A至圖11D》Secondly, in order to reduce the influence of the increase of the chromaticity of the discharged water caused by the large amount of ferric ions formed after the Fenton reaction, an alkali agent such as Ca(OH) 2 is added to the drainage after the Fenton oxidation reaction to adjust the pH. Neutral and coagulation precipitation. From the COD and the chromaticity removal rate shown in FIGS. 8A to 8D and 9A to 9D, it was confirmed that the use of Ca(OH) 2 is more excellent than the use of NaOH. "Fig. 10A to Fig. 10D, Fig. 11A to Fig. 11D"

圖10A至圖10D、圖11A至圖11D係分別顯示本發明之實施例1至實施例4的過氧化氫、亞鐵之殘餘濃度變化曲線圖、圖11A至圖11D。從圖10A至圖10D、圖11A至圖11D可確認:在Fenton程序之反應系統中,當DO等於0 mg/L時可發現殘存Fe+2 濃度達到高點,但H2 O2 濃度則維持於低值;當DO值等於2 mg/L時,反應系統中殘存之Fe+2 濃度及H2 O2 濃度均在理想範圍中之相對低值;而當DO大於2 mg/L,例如,成為6、20及40 mg/L時,殘存的Fe+2 濃度急速下降,但殘存H2 O2 濃度卻急速上升。 《圖12A至圖12D》10A to 10D and 11A to 11D are graphs showing changes in residual concentration of hydrogen peroxide and ferrous iron according to Examples 1 to 4 of the present invention, and Figs. 11A to 11D, respectively. From Fig. 10A to Fig. 10D, Fig. 11A to Fig. 11D, it can be confirmed that in the reaction system of the Fenton program, when DO is equal to 0 mg/L, the residual Fe +2 concentration can be found to reach a high point, but the H 2 O 2 concentration is maintained. At a low value; when the DO value is equal to 2 mg/L, the Fe + 2 concentration and the H 2 O 2 concentration remaining in the reaction system are relatively low in the ideal range; and when DO is greater than 2 mg/L, for example, When the ratios were 6, 20, and 40 mg/L, the residual Fe + 2 concentration rapidly decreased, but the residual H 2 O 2 concentration rapidly increased. "Figure 12A to 12D"

圖12A至圖12D係顯示本發明之實施例1至實施例4的H2 O2 /Fe+2 加藥比變化曲線圖。由圖12A至圖12D,可確認在Fenton程序之反應系統中,當DO等於0 mg/L時,H2 O2 /Fe+2 加藥比急速下降,表示H2 O2 添加量不足;當DO大於0 mg/L時H2 O2 /Fe+2 加藥比逐漸上升到DO值等於2 mg/L時,H2 O2 /Fe+2 加藥比逐漸成為穩定值;當DO大於2 mg/L時,例如,成為6、20及40 mg/L時,H2 O2 /Fe+2 加藥比越來越高,表示此時H2 O2 添加量已經過量。12A to 12D are graphs showing changes in the H 2 O 2 /Fe +2 dosing ratio of Examples 1 to 4 of the present invention. From Fig. 12A to Fig. 12D, it can be confirmed that in the reaction system of the Fenton program, when DO is equal to 0 mg/L, the H 2 O 2 /Fe +2 dosing ratio drops rapidly, indicating that the amount of H 2 O 2 added is insufficient; When the DO ratio is greater than 0 mg/L, the H 2 O 2 /Fe +2 dosing ratio gradually increases to a value of 2 mg/L, and the H 2 O 2 /Fe +2 dosing ratio gradually becomes a stable value; when DO is greater than 2 At mg/L, for example, at 6, 20, and 40 mg/L, the H 2 O 2 /Fe +2 dosing ratio is getting higher and higher, indicating that the amount of H 2 O 2 added has been excessive.

另外,表1為由圖8A至圖8D、圖9A至圖9D、圖10A至圖10D、圖11A至圖11D、圖12A至圖12D之實驗結果,加以整理所得到的各實施例中在不同Fe+2 加藥量下的最佳H2 O2 /Fe+2 加藥比、相對之H2 O2 加藥量、最佳H2 O2 /Fe+2 加藥比下之DO值(mg/L)以及對應之ORP值等參數。 【表1】 In addition, Table 1 is an experimental result obtained by arranging the experimental results of FIGS. 8A to 8D, 9A to 9D, 10A to 10D, 11A to 11D, and 12A to 12D, and is different in each embodiment. best H 2 O 2 / Fe +2 ratio medicated dosage of Fe +2, relative to the H 2 O 2 dosage, the DO value of the optimal H 2 O 2 / Fe +2 ratio dosing ( Mg/L) and corresponding ORP values and other parameters. 【Table 1】

如表1所示,可知在各實施例之最佳的H2 O2 /Fe+2 加藥比並非成為一固定的值,而是會隨著Fe+2 加藥量不同而改變,例如,在實施例1、實施例2、實施例3、及實施例4之最佳的H2 O2 /Fe+2 加藥比分別為9.18、6.46、4.45、4.02。As shown in Table 1, it is understood that the optimum H 2 O 2 /Fe +2 dosing ratio in each of the examples does not become a fixed value, but varies depending on the Fe +2 dosing amount, for example, The optimum H 2 O 2 /Fe +2 dosing ratios of Example 1, Example 2, Example 3, and Example 4 were 9.18, 6.46, 4.45, and 4.02, respectively.

再者,在最佳的H2 O2 /Fe+2 加藥比且處理效率良好的情況下,比較合適的DO值大多數皆落在0以上至2 mg/L之範圍。另外,在此情況下,如圖8A至圖8D、圖9A至圖9D所示, COD去除率及色度去除率亦均為良好,可以確認當有效地控制H2 O2 /Fe+2 加藥比時,就能夠有效達到處理廢水的效果。Furthermore, in the case of the optimum H 2 O 2 /Fe +2 dosing ratio and good treatment efficiency, most suitable DO values fall in the range of 0 or more to 2 mg/L. In addition, in this case, as shown in FIGS. 8A to 8D and 9A to 9D, the COD removal rate and the chromaticity removal rate are also good, and it can be confirmed that when H 2 O 2 /Fe +2 is effectively controlled. When the ratio is compared, the effect of treating wastewater can be effectively achieved.

從而,經由上述之實驗結果,可確認: (1)  當利用Fenton反應系統來處理對象水(例如,待處理水WA) 時,只要將DOt的監測值設定在0以上至2 mg/L之範圍(即,設定值A為2 mg/L),就能夠讓H2 O2 的添加量得到良好的控制(即最佳H2 O2 /Fe+2 加藥比),並效率良好地完成Fenton反應系統之處理。然而,使用者可以視實際情況需要而改變設定值A的數值大小,舉例來說,例如,其可以是將DOt的監測值設定在3 mg/L之範圍(即,設定值A為3 mg/L),甚至是3mg/L以上的數值,如6 mg/L、10 mg/L等。 (2)  當利用Fenton反應系統來處理對象水(例如,待處理水WA) 時,除了如上述(1)將DOt的監測值設定在0以上至2 mg/L之範圍(即,設定值A為2 mg/L)以外,亦可以另外偵測系統中初始DOt值(例如,DOt值為0 mg/L時,即,A1=0 mg/L)或從初始值變化至設定值A的過程中的DOt數值(例如,DOt的值(即A1)為0、0.1、0.5、1.0、1.1、1.5 mg/L等時)、以及同一情況對應的ORPt值(例如,ORPt為X),當X為小於設定值B1(即前述對應的ORPt值的上限,例如B1=545 mV)時則繼續添加H2 O2 ,當X為大於該設定值B1時則可以進入輔助處理模式(如停止添加H2 O2 ),如此亦能夠得到效率良好地完成Fenton反應系統處理。而B1的數值可參考表1而得。 (3)  此外,對於ORPt的檢測,除了上述(2)所述的設定值B1做為ORPt的上限以外,更可依據表1來設定ORPt的下限(即設定值C1),當X為大於設定值C1(例如C1=520 mV)時則繼續添加H2 O2 ,當X為小於該設定值C1時則可以進入輔助處理模式(如停止添加H2 O2 ),如此亦能夠得到效率良好地完成Fenton反應系統處理。而C1的數值可參考表1而得。 (4) 又,除了應用如上述(1)、(2)或(3)的方式利用Fenton反應系統來處理對象水(例如,待處理水WA) 以外,亦可另外偵測系統中的H2 O2 /Fe+2 加藥比(例如,偵測的加藥比以Y表示),當Y大於目標加藥比(例如,4.45,請參考表1)時,添加Fe+2 於該Fenton反應系統內。當Y小於該目標加藥比時,添加H2 O2 於該Fenton反應系統內。當Y等於該目標加藥比時,停止添加該氧化劑及該催化劑。如此,亦能夠讓H2 O2 的添加量得到良好的控制(即最佳H2 O2 /Fe+2 加藥比),並效率良好地完成Fenton反應系統之處理。然而,使用者可以視實際情況需要而改變該目標加藥比大小,舉例來說,例如,其可以是將該目標加藥比設定在6.46、9.18等數值。Therefore, it can be confirmed from the above experimental results that: (1) When the target water (for example, water to be treated WA) is treated by the Fenton reaction system, the monitoring value of DOt is set to be in the range of 0 or more to 2 mg/L. (ie, the set value A is 2 mg/L), the amount of H 2 O 2 added can be well controlled (ie, the optimum H 2 O 2 /Fe +2 dosing ratio), and Fenton can be completed efficiently. Treatment of the reaction system. However, the user may change the value of the set value A as needed, for example, it may be to set the monitored value of DOt to a range of 3 mg/L (ie, the set value A is 3 mg/ L), even values above 3 mg/L, such as 6 mg/L, 10 mg/L, etc. (2) When the Fenton reaction system is used to treat the target water (for example, the water to be treated WA), in addition to the above (1), the monitored value of DOt is set in the range of 0 or more to 2 mg/L (that is, the set value A). In addition to 2 mg/L, it is also possible to additionally detect the initial DOt value in the system (for example, when the DOt value is 0 mg/L, ie, A1 = 0 mg/L) or from the initial value to the set value A. The DOt value in (for example, the value of DOt (ie, A1) is 0, 0.1, 0.5, 1.0, 1.1, 1.5 mg/L, etc.), and the ORPt value corresponding to the same case (for example, ORPt is X), when X If it is less than the set value B1 (ie, the upper limit of the corresponding corresponding ORPt value, for example, B1=545 mV), H 2 O 2 is continuously added, and when X is greater than the set value B1, the auxiliary processing mode can be entered (eg, stop adding H) 2 O 2 ), so that the Fenton reaction system treatment can be completed efficiently. The value of B1 can be obtained by referring to Table 1. (3) In addition, for the detection of ORPt, in addition to the above-mentioned (2) set value B1 as the upper limit of ORPt, the lower limit of ORPt (ie, set value C1) can be set according to Table 1, when X is greater than the setting When the value C1 (for example, C1=520 mV), H 2 O 2 is continuously added. When X is less than the set value C1, the auxiliary processing mode can be entered (for example, H 2 O 2 is stopped), so that the efficiency can be obtained efficiently. Complete Fenton reaction system processing. The value of C1 can be obtained by referring to Table 1. (4) In addition, in addition to applying the Fenton reaction system to treat the target water (for example, the water to be treated WA) as in the above (1), (2) or (3), the H 2 in the system may be additionally detected. O 2 /Fe +2 dosing ratio (for example, the detected dosing ratio is represented by Y), when Y is greater than the target dosing ratio (for example, 4.45, please refer to Table 1), Fe +2 is added to the Fenton reaction. Within the system. When Y is less than the target dosing ratio, H 2 O 2 is added to the Fenton reaction system. When Y is equal to the target dosing ratio, the addition of the oxidant and the catalyst is stopped. In this way, the addition amount of H 2 O 2 can be well controlled (i.e., the optimum H 2 O 2 /Fe +2 dosing ratio), and the treatment of the Fenton reaction system can be performed efficiently. However, the user can change the target dosing ratio according to actual needs. For example, it may be that the target dosing ratio is set to a value of 6.46, 9.18, and the like.

此外,在實務上由於儀器監測或計算上難免有誤差存在,在利用前述之上限或下限或目標加藥量比之設定值進行某種條件之判斷時,可視為在一容忍度(例如1%、5%等)之下該條件是否滿足。In addition, in practice, due to the inevitable error in instrument monitoring or calculation, it can be regarded as a tolerance (for example, 1%) when the above-mentioned upper or lower limit or the target dosing amount is used to judge certain conditions. , 5%, etc.) Whether the condition is met.

又上述實施例1-4的結果,更可推廣至各種待處理水。例如對於某種待處理水,當可仿照實施例1-4找出如表1中的參數,從而利用前述任一實施態樣,對該種待處理水進行處理。然而本發明的實現方式並不以此為限。Further, the results of the above Examples 1-4 can be further extended to various waters to be treated. For example, for some water to be treated, the parameters as in Table 1 can be found in accordance with Examples 1-4, thereby treating the water to be treated with any of the foregoing embodiments. However, the implementation of the present invention is not limited thereto.

總之,對於某種待處理水,藉由至少對於DO值的監控,使其保於所需要的設定值A,就能夠得到在該特定條件下之個別最適的H2 O2 加藥量或H2 O2 /Fe+2 加藥比。此外,當可配合對ORP值進行監控;或可進一步配合對H2 O2 /Fe+2 加藥比、Fe+2 濃度、殘存H2 O2 濃度進行監控,從而得到在該等條件下之個別最適的H2 O2 加藥量或H2 O2 /Fe+2 加藥比。In summary, for a certain water to be treated, by monitoring the DO value at least for the desired set value A, it is possible to obtain an individual optimum H 2 O 2 dosing amount or H under the specific conditions. 2 O 2 /Fe +2 dosing ratio. In addition, when the ORP value can be monitored, or the H 2 O 2 /Fe +2 dosing ratio, the Fe +2 concentration, and the residual H 2 O 2 concentration can be further monitored, thereby obtaining the conditions under the conditions. Individual optimum H 2 O 2 dosing or H 2 O 2 /Fe +2 dosing ratio.

惟,以上所述者僅為本發明之實施例而已,然而本發明之範圍當然不以此為限。熟習本項技術者應當可以理解到:在不脫離本發明之精神範圍內,皆可對於申請專利範圍及發明說明內容進行簡單的等效變化與修飾,而且彼等皆仍屬於本發明專利所涵蓋之範圍內。另外,本發明的任一實施例或申請專利範圍並不需要包括說明書所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。However, the above is only an embodiment of the present invention, but the scope of the present invention is of course not limited thereto. It should be understood by those skilled in the art that the present invention can be easily modified and modified without departing from the spirit and scope of the invention. Within the scope. In addition, any of the embodiments or the claims of the present invention are not required to include all of the objects or advantages or features disclosed in the specification. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.

1‧‧‧廢水處理系統
10‧‧‧Fenton反應系統控制裝置
11‧‧‧溶氧度感測裝置
12‧‧‧氧化還原電位感測裝置
13‧‧‧本地控制單元
20‧‧‧Fenton反應槽
30‧‧‧藥液添加單元
31‧‧‧泵
40‧‧‧處理槽
50‧‧‧遠端控制單元
60‧‧‧終端裝置
70‧‧‧Fenton反應系統控制裝置
71‧‧‧反應槽
72‧‧‧pH感測裝置
73‧‧‧ORP感測裝置
74‧‧‧DO感測裝置
75‧‧‧控制單元
76‧‧‧導電度感測裝置
77‧‧‧電源供應器
78‧‧‧氧化劑泵
79‧‧‧催化劑泵
80‧‧‧待處理水泵
111‧‧‧資料處理裝置
112‧‧‧儲存裝置
113‧‧‧通訊裝置
SC1、SC2‧‧‧加藥控制訊號
LK‧‧‧通訊連結
S10、S20、S25‧‧‧步驟
S30、S40、S50‧‧‧步驟
S55、S57、S59‧‧‧步驟
S65、S67、S69‧‧‧步驟
1‧‧‧Waste treatment system
10‧‧‧Fenton Reaction System Control Unit
11‧‧‧Dissolved oxygen sensing device
12‧‧‧Oxidation reduction potential sensing device
13‧‧‧Local Control Unit
20‧‧‧Fenton reaction tank
30‧‧‧Drug Addition Unit
31‧‧‧ pump
40‧‧‧Processing tank
50‧‧‧Remote control unit
60‧‧‧ Terminal devices
70‧‧‧Fenton Reaction System Control Unit
71‧‧‧Reaction tank
72‧‧‧pH sensing device
73‧‧‧ORP sensing device
74‧‧‧DO sensing device
75‧‧‧Control unit
76‧‧‧Conductivity sensing device
77‧‧‧Power supply
78‧‧‧Oxidant pump
79‧‧‧ catalyst pump
80‧‧‧pending water pump
111‧‧‧Data processing device
112‧‧‧Storage device
113‧‧‧Communication device
SC1, SC2‧‧‧ Dosing control signals
LK‧‧‧Communication Link
S10, S20, S25‧‧‧ steps
S30, S40, S50‧‧‧ steps
S55, S57, S59‧‧‧ steps
S65, S67, S69‧ ‧ steps

圖1顯示依據本發明之實施態樣的Fenton反應系統控制方法之流程圖。 圖2顯示依據本發明之另一實施態樣的Fenton反應系統控制方法的流程圖。 圖3顯示依據本發明之另一實施態樣的Fenton反應系統控制方法的流程圖。 圖4顯示在廢水處理系統中使用依據本發明之實施態樣的Fenton反應系統控制裝置的示意方塊圖。 圖5顯示依據本發明的Fenton反應系統控制裝置的其他實施態樣的示意方塊圖。 圖6顯示廢水處理系統的其他實施態樣的示意方塊圖。 圖7顯示使用依據本發明的Fenton反應系統控制裝置之實施態樣以進行實驗的示意圖。 圖8A至圖8D顯示本發明之實施例1至實施例4的COD去除率變化曲線圖。 圖9A至圖9D顯示本發明之實施例1至實施例4的色度去除率變化曲線圖。 圖10A至圖10D顯示本發明之實施例1至實施例4的過氧化氫殘餘濃度變化曲線圖。 圖11A至圖11D顯示本發明之實施例1至實施例4的亞鐵殘餘濃度變化曲線圖。 圖12A至圖12D是本發明之實施例1至實施例4的H2O2/Fe+2 加藥比變化曲線圖。1 shows a flow chart of a Fenton reaction system control method in accordance with an embodiment of the present invention. 2 is a flow chart showing a method of controlling a Fenton reaction system in accordance with another embodiment of the present invention. 3 is a flow chart showing a method of controlling a Fenton reaction system in accordance with another embodiment of the present invention. 4 is a schematic block diagram showing the use of a Fenton reaction system control apparatus in accordance with an embodiment of the present invention in a wastewater treatment system. Figure 5 is a schematic block diagram showing another embodiment of the Fenton reaction system control apparatus in accordance with the present invention. Figure 6 shows a schematic block diagram of other embodiments of a wastewater treatment system. Fig. 7 is a view showing an embodiment in which the Fenton reaction system control apparatus according to the present invention is used to carry out an experiment. 8A to 8D are graphs showing changes in COD removal rate of Examples 1 to 4 of the present invention. 9A to 9D are graphs showing changes in chromaticity removal rate of Embodiments 1 to 4 of the present invention. 10A to 10D are graphs showing changes in residual hydrogen peroxide concentration in Examples 1 to 4 of the present invention. 11A to 11D are graphs showing changes in ferrous residual concentration of Examples 1 to 4 of the present invention. 12A to 12D are graphs showing changes in the H2O2/Fe +2 dosing ratio of Examples 1 to 4 of the present invention.

S10、S20、S25、S30、S40‧‧‧步驟 S10, S20, S25, S30, S40‧‧‧ steps

Claims (15)

一種芬頓(Fenton)反應系統控制方法,其包括: 監測一Fenton反應系統內之溶氧(DO)濃度並得到DO濃度值 (DOt); 添加一催化劑於該Fenton反應系統中,其中該Fenton反應系統含有待處理水; 當該DOt等於0或小於設定值A時,則添加或產生氧化劑於該Fenton反應系統內;當該DOt為等於或大於該設定值A時,則停止添加或停止產生該氧化劑;其中該氧化劑係至少包含過氧化氫,該設定值A係大於0,而該DOt的初始值係小於A。A Fenton reaction system control method comprising: monitoring a dissolved oxygen (DO) concentration in a Fenton reaction system and obtaining a DO concentration value (DOt); adding a catalyst to the Fenton reaction system, wherein the Fenton reaction The system contains water to be treated; when the DOt is equal to 0 or less than the set value A, an oxidant is added or generated in the Fenton reaction system; when the DOt is equal to or greater than the set value A, the addition or stop of the generation is stopped. An oxidizing agent; wherein the oxidizing agent comprises at least hydrogen peroxide, the set value A is greater than 0, and the initial value of the DOt is less than A. 如請求項1所記載之方法,其中該設定值A係為1.0 mg/L或以上。The method of claim 1, wherein the set value A is 1.0 mg/L or more. 如請求項1所記載之方法,其更包括: 監測該Fenton反應系統內之氧化還原電位(ORP)並得到ORP值(ORPt);以及 當該DOt為A1及該ORPt係為小於該DOt為A1時所對應的設定值B1時,則添加或產生該氧化劑於該Fenton反應系統內;當該DOt為A1及該ORPt為等於或大於該設定值B1時,則停止添加或停止產生該氧化劑,其中A>A1³0。The method of claim 1, further comprising: monitoring an oxidation-reduction potential (ORP) in the Fenton reaction system and obtaining an ORP value (ORPt); and when the DOt is A1 and the ORPt system is less than the DOt is A1 When the set value B1 corresponding to the time is set, the oxidant is added or generated in the Fenton reaction system; when the DOt is A1 and the ORPt is equal to or greater than the set value B1, the addition or stop of generating the oxidant is stopped, wherein A>A130. 如請求項1所記載之方法,其更包括: 監測該Fenton反應系統內之氧化還原電位(ORP)並得到ORP值(ORPt);及 當該DOt為A1、該ORPt係為小於該DOt為A1時所對應的設定值B1、且該ORPt係為大於或等於該DOt為A1時所對應的設定值C1時,則添加或產生該氧化劑於該Fenton反應系統內;當該DOt為A1及該ORPt為等於或大於該設定值B1或該ORPt為小於該設定值C1時,則停止添加或停止產生該氧化劑,其中A>A1³0,B1>C1。The method of claim 1, further comprising: monitoring an oxidation-reduction potential (ORP) in the Fenton reaction system and obtaining an ORP value (ORPt); and when the DOt is A1, the ORPt is less than the DOt is A1 When the corresponding set value B1 and the ORPt is greater than or equal to the set value C1 corresponding to the DOt being A1, the oxidant is added or generated in the Fenton reaction system; when the DOt is A1 and the ORPt When it is equal to or greater than the set value B1 or the ORPt is less than the set value C1, the addition or stop of generating the oxidant is stopped, wherein A>A130, B1>C1. 如請求項1所記載之方法,其更包括: 監測該氧化劑及該催化劑之加藥量; 當該氧化劑及該催化劑之加藥量之比值大於一加藥比時,則添加該催化劑於該Fenton反應系統內; 當該氧化劑及該催化劑之加藥量之比值小於該加藥比時,則添加或產生該氧化劑於該Fenton反應系統內;及 當該氧化劑及該催化劑之加藥量之比值等於該加藥比時,則停止添加或停止產生該氧化劑,並且停止添加該催化劑。The method of claim 1, further comprising: monitoring the oxidizing agent and the dosing amount of the catalyst; and adding the catalyst to the Fenton when the ratio of the oxidizing agent to the catalyst is greater than a dosing ratio; In the reaction system; when the ratio of the oxidant to the catalyst is less than the dosing ratio, the oxidant is added or produced in the Fenton reaction system; and when the ratio of the oxidant to the catalyst is equal to At the dosing ratio, the addition or stop of the generation of the oxidant is stopped, and the addition of the catalyst is stopped. 如請求項1所記載之方法,其中該催化劑係為亞鐵。The method of claim 1, wherein the catalyst is ferrous iron. 如請求項1至6中之任一項所記載之方法,其中該Fenton反應系統係為傳統Fenton反應系統、電解還原-Fenton反應系統、流體化床-Fenton反應系統、或光-Fenton反應系統。The method of any one of claims 1 to 6, wherein the Fenton reaction system is a conventional Fenton reaction system, an electrolytic reduction-Fenton reaction system, a fluidized bed-Fenton reaction system, or a photo-Fenton reaction system. 一種芬頓(Fenton)反應系統控制裝置,其包括: 一溶氧度感測裝置,用以監測一Fenton反應槽中的溶氧度(DO)以得到DO濃度值(DOt); 及 一本地控制單元, 其至少依據DOt發出一控制訊號C1以添加或產生氧化劑於該Fenton反應槽,其中當DOt等於0或小於設定值A時,則添加或產生一氧化劑於該Fenton反應系統內,當DOt為等於或大於該設定值A時,停止添加或停止產生該氧化劑,該設定值A係大於0,而該DOt的初始值係小於A。A Fenton reaction system control device comprising: a dissolved oxygen sensing device for monitoring the dissolved oxygen (DO) in a Fenton reaction tank to obtain a DO concentration value (DOt); and a local control a unit that emits a control signal C1 according to at least DOt to add or generate an oxidant in the Fenton reaction tank, wherein when DOt is equal to 0 or less than the set value A, an oxidant is added or generated in the Fenton reaction system, when DOt is When it is equal to or greater than the set value A, the addition or stop of generating the oxidant is stopped, the set value A is greater than 0, and the initial value of the DOt is less than A. 如請求項8所記載之控制裝置,其更包括: 一氧化還原電位感測裝置,用以監測該Fenton反應槽中的氧化還原電位ORP以得到ORP值(ORPt); 其中該本地控制單元更依據DOt及ORPt發出該控制訊號SC1以將該氧化劑添加至該Fenton反應槽,其中當DOt為A1及ORPt係為小於DOt為A1時所對應的設定值B1時,該本地控制單元發出該控制訊號SC1以添加或產生該氧化劑於該Fenton反應系統內,當DOt為A1及ORPt為等於或大於該設定值B1時,則該本地控制單元停止添加或停止產生該氧化劑,其中A>A1³0。The control device of claim 8, further comprising: a redox potential sensing device for monitoring an oxidation-reduction potential ORP in the Fenton reaction tank to obtain an ORP value (ORPt); wherein the local control unit is further based The control signal SC1 is sent by the DOt and the ORPt to add the oxidant to the Fenton reaction tank. When the DOt is A1 and the ORPt is less than the set value B1 corresponding to the DOt being A1, the local control unit sends the control signal SC1. To add or generate the oxidant in the Fenton reaction system, when DOt is A1 and ORPt is equal to or greater than the set value B1, then the local control unit stops adding or stops producing the oxidant, wherein A>A130. 如請求項8所記載之控制裝置,其更包括: 一氧化還原電位感測裝置,用以監測該Fenton反應槽中的氧化還原電位ORP以得到ORP值(ORPt); 其中該本地控制單元更依據DOt及ORPt發出該控制訊號SC1以將該氧化劑添加至該Fenton反應槽,其中當DOt為A1、ORPt係為小於DOt為A1時所對應的設定值B1、且ORPt係為大於或等於DOt為A1時所對應的設定值C1時,該本地控制單元發出該控制訊號SC1以添加或產生該氧化劑於該Fenton反應系統內;當DOt為A1及ORPt為等於或大於該設定值B1或ORPt為小於該設定值C1時,則該本地控制單元停止添加或停止產生該氧化劑,其中A>A1³0,B1>C1。The control device of claim 8, further comprising: a redox potential sensing device for monitoring an oxidation-reduction potential ORP in the Fenton reaction tank to obtain an ORP value (ORPt); wherein the local control unit is further based DOt and ORPt send the control signal SC1 to add the oxidant to the Fenton reaction tank, wherein when DOt is A1, ORPt is less than DOt is A1 corresponding set value B1, and ORPt is greater than or equal to DOt is A1 When the set value C1 corresponding to the time, the local control unit sends the control signal SC1 to add or generate the oxidant in the Fenton reaction system; when DOt is A1 and ORPt is equal to or greater than the set value B1 or ORPt is less than When the value C1 is set, the local control unit stops adding or stopping the generation of the oxidant, where A>A130, B1>C1. 如請求項8所記載之控制裝置,其中該本地控制單元更監測該氧化劑及該催化劑之加藥量;當該氧化劑及該催化劑之加藥量之比值大於一加藥比時,該本地控制單元發出一控制訊號SC2以添加該催化劑於該Fenton反應系統內;當該氧化劑及該催化劑之加藥量之比值小於該加藥比時,該本地控制單元發出該控制訊號SC1以添加或產生該氧化劑於該Fenton反應系統內;當該氧化劑及該催化劑之加藥量之比值為該加藥比時,該本地控制單元停止添加或停止產生該氧化劑,並且停止添加該催化劑。The control device of claim 8, wherein the local control unit monitors the oxidant and the dosing amount of the catalyst; and when the ratio of the oxidant to the catalyst is greater than a dosing ratio, the local control unit Sending a control signal SC2 to add the catalyst to the Fenton reaction system; when the ratio of the oxidant to the catalyst is less than the dosing ratio, the local control unit sends the control signal SC1 to add or generate the oxidant In the Fenton reaction system; when the ratio of the oxidant to the catalyst is the dosing ratio, the local control unit stops adding or stopping the production of the oxidant, and stops adding the catalyst. 如請求項8所記載之控制裝置,其中該本地控制單元包括: 一資料處理裝置,其收集複數個關於該Fenton反應槽之控制參數之數值,該複數個控制參數至少包括DOt; 一儲存裝置,用以供該資料處理裝置使用;及 一通訊裝置,用以使該資料處理裝置與外部溝通,其中該通訊裝置將至少部分收集之數值藉由一通訊連結傳輸至外部。The control device of claim 8, wherein the local control unit comprises: a data processing device that collects a plurality of values relating to control parameters of the Fenton reaction tank, the plurality of control parameters including at least DOt; a storage device, For communication with the data processing device; and a communication device for communicating the data processing device with the outside, wherein the communication device transmits the at least partially collected value to the outside via a communication link. 如請求項12所記載之控制裝置,其更包括: 一遠端控制單元,其依據該複數個控制參數來指示該本地控制單元至少發出該控制訊號SC1以將該氧化劑添加至該Fenton反應槽。The control device of claim 12, further comprising: a remote control unit that instructs the local control unit to emit at least the control signal SC1 to add the oxidant to the Fenton reaction tank according to the plurality of control parameters. 如請求項8所記載之控制裝置,其中該Fenton反應槽係為傳統Fenton反應槽、電解還原-Fenton反應槽、流體化床-Fenton反應槽、或光-Fenton反應槽。The control device of claim 8, wherein the Fenton reaction tank is a conventional Fenton reaction tank, an electrolytic reduction-Fenton reaction tank, a fluidized bed-Fenton reaction tank, or a light-Fenton reaction tank. 一種廢水處理系統,其包括: 一芬頓(Fenton)反應槽,供以Fenton法處理待處理水; 一如請求項14至23中任一項所記載之Fenton反應系控制裝置;及 一藥液添加單元,回應該加藥控制訊號以選擇性地至少將該氧化劑添加至該Fenton反應槽。A wastewater treatment system comprising: a Fenton reaction tank for treating water to be treated by a Fenton method; a Fenton reaction system control device as claimed in any one of claims 14 to 23; The unit is added and the dosing control signal is returned to selectively add at least the oxidant to the Fenton reaction tank.
TW103141294A 2014-11-28 2014-11-28 Method and apparatus for controlling fenton system, and wastewater processing system TWI576316B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103141294A TWI576316B (en) 2014-11-28 2014-11-28 Method and apparatus for controlling fenton system, and wastewater processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103141294A TWI576316B (en) 2014-11-28 2014-11-28 Method and apparatus for controlling fenton system, and wastewater processing system

Publications (2)

Publication Number Publication Date
TW201619066A true TW201619066A (en) 2016-06-01
TWI576316B TWI576316B (en) 2017-04-01

Family

ID=56754890

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103141294A TWI576316B (en) 2014-11-28 2014-11-28 Method and apparatus for controlling fenton system, and wastewater processing system

Country Status (1)

Country Link
TW (1) TWI576316B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107162332A (en) * 2017-06-16 2017-09-15 广东莞绿环保工程有限公司 A kind of textile printing and dyeing wastewater processing system and method
CN113603207A (en) * 2021-07-30 2021-11-05 沪士电子股份有限公司 Method and device for adding sodium hypochlorite
CN114291920A (en) * 2021-11-26 2022-04-08 岭澳核电有限公司 Method for treating hydrazine-containing waste liquid of nuclear power station

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082997A1 (en) * 2005-02-02 2006-08-10 Kurita Water Industries Ltd. Soluble-cod ingredient remover, method of water treatment, and apparatus for water treatment
TW200738323A (en) * 2006-04-04 2007-10-16 Chu-Chin Hsieh System for treating waste gas and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107162332A (en) * 2017-06-16 2017-09-15 广东莞绿环保工程有限公司 A kind of textile printing and dyeing wastewater processing system and method
CN113603207A (en) * 2021-07-30 2021-11-05 沪士电子股份有限公司 Method and device for adding sodium hypochlorite
CN114291920A (en) * 2021-11-26 2022-04-08 岭澳核电有限公司 Method for treating hydrazine-containing waste liquid of nuclear power station

Also Published As

Publication number Publication date
TWI576316B (en) 2017-04-01

Similar Documents

Publication Publication Date Title
Cotillas et al. Use of carbon felt cathodes for the electrochemical reclamation of urban treated wastewaters
CN104085962B (en) Electrochemical in-situ produces the method and apparatus of hydroxyl radical free radical
Hu et al. Application of response surface methodology in electrochemical degradation of amoxicillin with Cu-PbO2 electrode: optimization and mechanism
Linares Hernandez et al. Soft drink wastewater treatment by electrocoagulation–electrooxidation processes
JP4627337B2 (en) Sterilization method and sterilization apparatus
JPH02111708A (en) Sterilizing water
TWI576316B (en) Method and apparatus for controlling fenton system, and wastewater processing system
CN104609532B (en) Method for removing PPCPs in treatment process of drinking water
EP3103771B1 (en) Method and apparatus for controlling concentration of free chlorine
CN104129872B (en) The control method of bromate growing amount in drinking water treatment process
KR101274983B1 (en) Method and apparatus for determining of the remained chlorine concentration using a sensor, and purified-water treatment system using the same
KR101376048B1 (en) Ferrate synthesis method and apparatus by electrochemical method
Lacasa et al. Arsenic removal from high-arsenic water sources by coagulation and electrocoagulation
Cañizares et al. Coagulation and electrocoagulation of wastes polluted with colloids
CN109809652A (en) A kind of chemical nickel Wastewater by Electric treatment by catalytic oxidation and system
CN204125535U (en) A kind of device and slightly acidic electrolyzed oxidizing water spray disinfection system preparing slightly acidic electrolyzed oxidizing water
CN105347445A (en) Method for removing micropollutants in water by activating peroxysulphate through iron electrode
CN108975566A (en) A kind of processing method of electroplating wastewater
Vijayaraghavan et al. In situ hypochlorous acid generation for the treatment of distillery spentwash
Muthukumar et al. Comparative study of electrocoagulation and electrooxidation processes for the degradation of ellagic acid from aqueous solution
CN113213613B (en) Method for controlling dosage of ammonia nitrogen wastewater chlorination and oxidation agent
EP3737648A1 (en) Wastewater treatment method
CN212127656U (en) Automatic chemical dosing system for wastewater treatment
TWI647338B (en) Hypochlorite water preparation and supply equipment
CN204143234U (en) A kind of Full-automatic circulation cooling water quality online monitoring system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees