TW201618591A - 用於無線通信系統中由d2d終端接收鄰近細胞之信號的方法及裝置 - Google Patents

用於無線通信系統中由d2d終端接收鄰近細胞之信號的方法及裝置 Download PDF

Info

Publication number
TW201618591A
TW201618591A TW104131885A TW104131885A TW201618591A TW 201618591 A TW201618591 A TW 201618591A TW 104131885 A TW104131885 A TW 104131885A TW 104131885 A TW104131885 A TW 104131885A TW 201618591 A TW201618591 A TW 201618591A
Authority
TW
Taiwan
Prior art keywords
resource pool
resource
d2dss
cell
signal
Prior art date
Application number
TW104131885A
Other languages
English (en)
Other versions
TWI665934B (zh
Inventor
蔡赫秦
徐翰瞥
Original Assignee
Lg電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg電子股份有限公司 filed Critical Lg電子股份有限公司
Publication of TW201618591A publication Critical patent/TW201618591A/zh
Application granted granted Critical
Publication of TWI665934B publication Critical patent/TWI665934B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本發明揭露一種無線通信系統中由裝置對裝置(D2D)終端接收鄰近細胞之信號的方法。該方法包括接收一偏置參數與一週期性參數;考慮到該週期性參數與包含在一資源池週期集合中的子幀的最大可能數量之間的關係來確定鄰近細胞的一資源池;以及接收所確定的資源池中鄰近細胞的信號。

Description

用於無線通信系統中由D2D終端接收鄰近細胞之信號的方法及裝置
本發明係有關於一種無線通信系統,尤其是,有關於一種通過裝置對裝置通信接收鄰近細胞(neighboring cell)之信號的方法及其裝置。
無線通信系統已經被廣泛地開發來提供各類通信服務,例如音訊、資料等。通常,無線通信系統為能夠藉由分享可用的系統資源(頻帶寬、發送功率等)支援具有多個使用者的通信的多重存取(multiple access)系統。多重存取系統的範例包括碼分多重存取(CDMA,code division multiple access)系統、頻分多重存取(FDMA,frequency division multiple access)系統、時分多重存取(TDMA,time division multiple access)系統、正交頻分多重存取(OFDMA,orthoganol frequency division multiple access)系統、單載波頻分多重存取(SC-FDMA,single carrier frequency division multiple access)系統、多載波頻分多重存取(MC-FDMA,multi-carrier frequency division multiple access)系統等。
裝置對裝置(D2D,device-to-device)通信指的是藉由在使用者設備(UEs,user equipments)之間配置直接鏈路而在UEs之間直接交換音訊、資料等而不通過基地臺(演進型NodeB(eNB))的通信方案。D2D通信可包括例如UE對UE通信、點對點(peer-to-peer)通信等方案。此外,D2D通信方案可應用於機器對機器(M2M,machine-to-machine)通信、機器類型通信(MTC,machine type communication)等。
D2D通信被視為能夠減輕因迅速增加資料流量而對基地臺造成的負擔的方案。例如,依據D2D通信,不同於傳統無線通信系統資料,由於沒有通過基地臺而在裝置之間執行交換,因此可減少網路超載。此外,當引入D2D通信時,可能獲得的效果有例如減少基地臺的程序、減少參與D2D通信的裝置的功耗、提高資料傳送速率、增加網路容量、負載平衡、細胞覆蓋範圍的延伸等。
據此,本發明係針對一種用於無線通信系統中D2D UE接收鄰近細胞之信號的方法及其裝置,其實質上消除了因先前技術的限制與缺點所造成的一個或多個問題。
本發明的一目的在於提供用於通過D2D通信接收鄰近細胞之信號的方法,特別是TDD。
本發明額外的優點、目的以及特徵將在下面部分闡述在說明書中,並且經隨後的審查部分優點、目的以及特徵對本領域普通技術人員將是顯而易見的,或者可從本發明的實施中習得。本發明的目的與其他優點可藉由文字說明與本發明的申請專利範圍以及所附的圖式中特別指出的結構實現並獲得。
為了達成該些目的與其他優點,並根據本發明的意圖,如本文中體現並概括描述的,一種無線通信系統中由裝置對裝置(D2D)終端接收鄰近細胞之信號的方法包括:接收一偏置參數與一週期性參數;考慮到該週期性參數與包含在一資源池週期集合(resource pool period set)中的子幀的最大可能數量之間的關係來確定鄰近細胞的一資源池;以及接收所確定的資源池中該鄰近細胞的信號。
在本發明的另一方面,提供一種無線通信系統中的裝置對裝置(D2D)終端,該裝置對裝置(D2D)終端包括:一接收模組;以及一處理器,其中該處理器被配置以接收一偏置參數與一週期性參數;考慮到週期性參數與包含在一資源池週期集合中的子幀的最大可能數量之間的關係來確定鄰近細胞的一資源池;以及接收所確定的資源池中鄰近細胞的信號。
當該週期性參數為不是子幀的該最大可能數量的約數(divisor) 的一值時,則D2D終端可假設該鄰近細胞的系統幀號碼(SFNs)與一服務細胞的SFNs對準。
當該週期性參數為不是子幀的最大可能數量的約數的一值時,TDD配置可對應於配置0。
該週期性參數可為70ms。
當執行該鄰近細胞的該資源池的確定時,可基於該服務細胞的SFN(系統幀號碼)0施加一偏置。
子幀的該最大可能數量可為10240。
當該資源池的一週期超過子幀的該最大可能數量時,可基於該服務細胞的SFN(系統幀號碼)0重新確定該資源池的週期。
要理解的是,本發明的前述概括說明與以下詳細說明均為示範性與解釋性的,並且意在提供所主張的本發明的進一步說明。
10‧‧‧發送點
11、21‧‧‧接收模組
12、22‧‧‧發送模組
13、23‧‧‧處理器
14、24‧‧‧記憶體
15、25‧‧‧天線
20‧‧‧UE
所附圖式,被包括以提供本發明的進一步理解,以及納入到本案申請中並構成本案申請的一部分,舉例說明本發明的實施例,同時與說明一同提供解釋本發明的原理。在圖式中:第1圖係舉例說明無線電幀結構;第2圖係舉例說明一個下行鏈路槽的下行鏈路資源網格;第3圖係舉例說明下行鏈路子幀的結構;第4圖係舉例說明上行鏈路子幀的結構;第5圖係舉例說明同步信號的中繼;第6圖係舉例說明可應用本發明的實施例的通信環境;第7圖至第11圖係舉例說明依據本發明一實施例的頻率資源區域的配置與發信;第12圖至第18圖係舉例說明時間資源區域的發信、鄰近細胞的同步信號的接收以及通過它的鄰近細胞資源的配置的獲取;以及第19圖係舉例說明發送裝置與接收裝置的配置。
下文中所述的本發明的實施例為本發明的元件與特徵的組合。除非另有提及,否則所述元件或者特徵可被認為是選擇性的。每個元件或者特徵可在不與其他元件或者特徵結合的情況下實施。進一步地,本發明的實施例可藉由組合部分元件及/或特徵而構成。本發明的實施例中所述的操作順序可被重新安排。任何一個實施例的某些構造或者特徵可包含在另一實施例中,並且可替換為另一實施例的相應構造或者特徵。
在本發明的實施例中,集中於基地臺(BS)與使用者設備(UE)之間的資料發送與接收關係作出描述。BS為網路的終端節點,其直接與UE通信。在某些情況下,描述為由BS執行的特定操作可由BS的上節點來執行。
亦即,顯然,在由包括一BS的複數個網路節點組成的網路中,為了與UE執行通信而執行的各種操作均可由BS執行或者由不同於BS的網路節點執行。術語「BS」可替換為術語「固定站」、「Node B」、「演進型Node B(eNode B或者eNB)」、「存取點(AP,Access Point)」等。術語「中繼」可替換為術語「中繼節點(RN,Relay Node)」或者「中繼站(RS,Relay Stateion)」。術語「終端」可替換為術語「UE」、「行動站(MS,Mobile Station)」、「行動訂戶站(MSS,Mobile Subscriber Station)」、「訂戶站(SS,Subscriber Station)」等。
用於本發明實施例的特定術語被提供用以幫助理解本發明。在本發明的範圍與精神內該些特定術語可替換為其他術語。
在某些情況下,為了防止本發明的概念引起歧義,將省略眾所周知的技術的結構與裝置,或者將根據每個結構與裝置的主要功能以方塊圖的形式顯示眾所周知的技術的結構與裝置。並且,只要有可能,相同的參考數字將貫穿圖式與說明書中用來指相同或相似的部分。
本發明的實施例能夠得到披露有關無線存取系統、電機電子工程師協會(IEEE,Institute of Electric and Electronic Engineers)802、第三代合作夥伴計畫(3GPP,3rd Generation Partnership Project)、3GPP長期演進(3GPP LTE,3GPP Long Term Evolution)、高級版LTE(LTE-A,LTE-Advanced)以及3GPP2的至少其中之一的標準文件的支援。為了闡明 本發明的技術特徵而沒有描述的步驟或者部分能夠得到該些文件的支持。進一步地,本文中所闡述的所有術語能夠通過所述標準文件執行說明。
本文中所述的技術能夠在各種無線存取系統中使用,例如碼分多重存取(CDMA)、頻分多重存取(FDMA)、時分多重存取(TDMA)、正交頻分多重存取(OFDMA)、單載波頻分多重存取(SC-FDMA)等。CDMA可作為例如通用陸地無線電存取(UTRA,Universal Terrestrial Radio Access)或者CDMA2000這樣的無線電技術來實施。TDMA可作為例如全球行動通信系統(GSM,Global System for Mobile communications)/一般封包無線電服務(GPRS,General Packet Radio Service)/增強資料速率型GSM演進(EDGE,Enhance Data Rates for GSM Evolution)這樣的無線電技術來實施。OFDMA可作為例如IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、演進型UTRA(E-UTRA,Evolved-UTRA)等這樣的無線電技術來實施。UTRA為通用行動通信系統(UMTS)的一部分。3GPP LTE為利用E-UTRA的演進型UMTS(E-UMTS,Evolved-UMTS)的一部分。3GPP LTE在下行鏈路採用OFDMA,在上行鏈路採用SC-FDMA。LTE-A為3GPP LTE的演進版本。IEEE 802.16e標準(無線都會區網路(WirelessMAN)-OFDMA參考系統)與IEEE 802.16m標準(WirelessMAN-OFDMA高級系統)能夠描述WiMAX。為了清楚,本案申請聚焦於3GPP LTE與LTE-A系統。然而,本發明的技術特徵不限於此。
LTE/LTE-A資源配置/通道
參考第1圖,下面將描述無線電幀的結構。
在細胞(cellular)正交頻分多工(OFDM,Orthogonal Frequency Division Multiplexing)無線封包通信系統中,上行鏈路及/或下行鏈路資料封包在子幀中發送。一個子幀被定義為包括複數個OFDM符號的一預定時間週期。3GPP LTE標準支援可應用於頻分雙工(FDD,Frequency Division Duplex)的類型1的無線電幀結構以及可應用於時分雙工(TDD,Time Division Duplex)的類型2的無線電幀結構。
第1圖(a)舉例說明類型1的無線電幀結構。一下行鏈路無線電幀被分成10個子幀。每個子幀在時間領域中被進一步分成兩個槽(slots)。發送一個子幀的單位時間被定義為發送時間間隔(TTI,Transmission Time Inteval)。例如,一個子幀持續的時間可為1ms,而一個槽持續的時間可為0.5ms。一槽在時間領域中包括複數個OFDM符號,在頻率領域中包括複數個資源區塊(RBs,Resource Blocks)。因為3GPP LTE系統在下行鏈路採用OFDMA,因此一OFDM符號代表一個符號週期。一OFDM符號可被稱為一SC-FDMA符號或者符號週期。一RB為在一槽中包括複數個連續子載波的一資源分配單元。
一個槽中的OFDM符號個數可依循環首碼(CP,Cyclic Prefix)配置而變化。有兩類CP:延伸CP與正常CP。在正常CP的情況下,一個槽包括7個OFDM符號。在延伸CP的情況下,一個OFDM符號的長度被增加,因此一個槽中的OFDM符號個數小於正常CP的情況。因此當使用延伸CP的時候,例如,一個槽中可包括6個OFDM符號。如果通道狀態變得不好,例如,在UE快速移動時,可使用延伸CP來進一步減少符號間干擾(ISI,Inte-Symbol Interference)。
在正常CP的情況下,因為一個槽包括7個OFDM符號,所以一個子幀包括14個OFDM符號。每個子幀的前兩個或三個OFDM符號可分配給實體下行鏈路控制通道(PDCCH,Physical Downlink Control Channel),並且其他OFDM符號可分配給實體下行鏈路共享通道(PDSCH,Physical Downlink Shared Channel)。
第1圖(b)舉例說明類型2的無線電幀結構。類型2的無線電幀包括兩個半幀,每個半幀具有5個子幀、一下行鏈路導頻時間槽(DwPTS,Downlink Pilot Time Slot)、一保護週期(GP,Guard Period)以及一上行鏈路導頻時間槽(UpPTS,uplink Pilot Time Slot)。每個子幀被分成兩個槽。DwPTS用於在UE執行初始細胞搜尋、同步或者通道估計。UpPTS用於在eNB執行通道估計與到UE的上行鏈路發送同步的獲取。GP為上行鏈路與下行鏈路之間的一段時間,其消除下行鏈路信號的多重路徑延遲所導致的上行鏈路干擾。不考慮無線電幀的類型,一個子幀包括兩個槽。
上述無線電幀結構僅為範例性的,因此要注意的是,一無線電幀中的子幀個數、一子幀中的槽個數或者一槽中的符號個數可改變。
第2圖舉例說明在一個下行鏈路槽持續時間內的下行鏈路資源網格(downlink resource grid)的結構。一下行鏈路槽在時間領域中包括7 個OFDM符號,並且一RB在頻率領域中包括12個子載波,這沒有限制本發明的範圍與精神。例如,在正常CP的情況下一下行鏈路槽可包括7個OFDM符號,然而在延伸CP的情況下一下行鏈路槽可包括6個OFDM符號。資源網格的每個元素被稱為一資源元素(RE,Resource Element)。一RB包括12×7個REs。一下行鏈路槽中的RB個數NDL取決於下行鏈路發送頻帶寬。一上行鏈路槽可具有與一下行鏈路槽相同的結構。
第3圖舉例說明下行鏈路子幀的結構。在一下行鏈路子幀中的第一個槽的起始多達三個OFDM符號用於一控制區域,控制通道被分配到控制區域,並且下行鏈路子幀的其他OFDM符號用於一資料區域,一PDSCH被分配到該資料區域。3GPP LTE系統中使用的下行鏈路控制通道包括一實體控制格式指示符通道(PCFICH,Physical Control Format Indicator Channel)、一實體下行鏈路控制通道(PDCCH,Physical Downlink Control Channel)以及一實體混成自動重複請求(HARQ,Hybrid Automatic Repeat Request)指示符通道(PHICH,Physical Indicator Channel)。PCFICH位於一子幀的第一個OFDM符號中,攜帶關於用於子幀中控制通道發送的OFDM符號個數的資訊。PHICH傳送一HARQ確認/不確認(ACK/NACK)信號,以回應一上行鏈路發送。PDCCH上所攜帶的控制資訊稱為下行鏈路控制資訊(DCI,Downlink Control Information)。DCI傳輸上行鏈路或下行鏈路排程資訊或者用於UE群組的上行鏈路發送功率控制命令。PDCCH傳送關於資源分配與下行鏈路共享通道(DL-SCH,Downlink Shared Channel)的發送格式的資訊、關於上行鏈路共享通道(UL-SCH,uplink Shared Channel)的資源分配資訊、傳呼通道(PCH,Paging Channel)的傳呼資訊、DL-SCH的系統資訊、關於更高層控制信息(例如PDSCH上發送的隨機存取回應)的資源分配的資訊、用於UE群組的個別UE的一組發送功率控制命令、發送功率控制資訊、網際網路協定語音(VoIP,Voice Over Internet Protocol)啟動資訊等。在控制區域中可發送複數個PDCCHs。一UE可監測複數個PDCCHs。一PDCCH是藉由聚合一個以上連續的控制通道元素(CCEs,Control Channel Elements)而形成。一CCE為一邏輯分配單位,邏輯分配單元用來在一編碼比率下基於一無線通道狀態提供一PDCCH。一CCE包括複數個RE群組。PDCCH的格式與可用於PDCCH的位元個數依據CCEs 個數與CCEs所提供的編碼比率之間的相關性來確定。eNB依據發送至UE的DCI確定PDCCH格式,並將一循環冗餘檢查(CRC,Cyclic Redundancy Check)添加至控制資訊。CRC依據PDCCH的所有人或使用被已知為無線電網路臨時識別碼(RNTI,Radio Network Temporary Indentifier)的一識別碼(ID,Indentifier)遮蔽。如果PDCCH針對一特定UE,則其CRC可被該UE的細胞RNTI(C-RNTI,cell-RNTI)掩蔽。如果PDCCH是為了傳呼信息,則該PDCCH的CRC可被傳呼指示符識別碼(P-RNTI,paging-RNTI)遮蔽。如果PDCCH攜帶系統資訊,特別是,系統區塊(SIB,System Informetion Block),則其CRC可被系統資訊ID與系統資訊RNTI(SI-RNTI,System Information RNTI)遮蔽。為了指示PDCCH攜帶隨機存取回應以回應UE所發送的隨機存取前導碼,其CRC可被隨機存取RNTI(RA-RNTI,Random Access RNTI)遮蔽。
第4圖舉例說明上行鏈路子幀的結構。上行鏈路子幀在頻率領域中可被分成一控制區域與一資料區域。攜帶上行鏈路控制資訊的實體上行鏈路控制通道(PUCCH,Physical Uplink Control Channel)被分配到該控制區域,並且攜帶使用者資料的實體上行鏈路共享通道(PUSCH,Physical Uplink Shared Channel)被分配到該資料區域。為了維持單個載波的性質,UE不同時發送PUSCH與PUCCH。用於UE的PUCCH被分配到一子幀中的一RB對。RB對的RB佔用兩個槽中的不同子載波。因此,要說的是,分配到PUCCH的RB對跳頻到一槽邊界上。
D2D UE之間同步的獲取
以下,基於上述說明和傳統LTE/LTE-A系統提出獲取D2D通信之中UE之間同步的說明。如果在OFDM系統中時間/頻率同步沒有匹配,OFDM信號由於細胞間干擾(inter-cell interference)不能在不同的UE之間多工。所有D2D UEs藉由直接發送和接收同步信號各自匹配同步是沒有效率的。因此,在分散式節點系統中例如D2D系統,特定節點可以發送一代表同步信號,並且其他UEs隨後匹配同步。換言之,為了執行D2D信號的發送和接收,一些節點(其被稱為eNB,UE,SRN(synchronization reference nodes,同步參考節點)或同步源)週期性發送D2D同步信號(D2DSS,D2Dsynchronization signal),並且其他UEs可以發送或接收與其同步的信號。
D2DSS的發送週期短於40ms,子幀(SF)中的至少一個符號可以用於D2DSS的發送。
D2DSS可以包括一初級同步信號(初級D2DSS(PD2DSS,primary D2DSS)或初級側鏈路同步信號(PSSS,primary sidelink synchronization signal))和一次級同步信號(次級D2DSS(SD2DSS,secondary D2DSS)或次級側鏈路同步信號(SSSS,secondary sidelink synchronization signal))。PD2DSS具有具有預定長度的扎德夫-朱(Zadoff-Chu)序列或PSS的類似/修改/重複結構。SD2DSS具有M-序列或SSS的類似/修改/重複結構。
當D2D UE選擇D2D同步資源時,應該應用相同優先順序參考。在覆蓋範圍之外的情況中,如果所有接收的D2DSSs的強度小於預設值則UE可以成為同步源。在覆蓋範圍內,藉由eNB可將UE配置為同步資源。如果UEs將同步與eNB相匹配,eNB可以是同步源,並且D2DSS可以是PSS/SSS。自eNB獲得的同步資源不同於不是自eNB獲得的同步資源。
實體D2D同步通道(PD2DSCH,physical D2D synchronization channel)可以是其上發送基礎(系統)訊息(例如,關於D2DSS的訊息、雙工模式(DM,duplex mode)、TDD UL/DL配置、資源池相關資訊、有關D2DSS的應用類型,等)的(廣播)通道,在發送和接收D2D信號之前UE須要檢查基礎(系統)訊息。PD2DSCH可以在其中發送D2DSS的子幀中發送或者PD2DSCH可以在隨後的子幀中發送。
D2DSS可採用特定序列的形式,並且PD2DSCH可採用表示特定訊息的序列或通過預定通道編碼而獲得的編碼字的形式。於此,SRN可以是eNB或者特定D2D UE。在「部分網路覆蓋範圍」或「網路覆蓋範圍外」的情況下,UE可以是同步源。
在第5圖所示的情況中,D2DSS可以為了與覆蓋範圍外的UE做D2D通信而被中繼。可藉由多點跳臺(multiple hopping)而中繼D2DSS。在以下說明中,中繼同步信號不僅意味著eNB的同步信號的直接AF中繼而且在同步信號的接收時間時的獨立格式的D2D同步信號的發送的直接AF中繼。由於D2D同步信號如上中繼,覆蓋範圍內的UE與覆蓋範圍外的UE之間可以執行直接通信。
第6圖舉例說明D2D UE 610從中繼UE 620和D2D UE 610接收信號的範例情況。在此情況下,D2D UE須要將藉由中繼UE發送的信號與藉由D2D UE發送的信號區來區別。為公共安全(PS,public safety)的目的,如果中繼UE允許覆蓋範圍之外的UE存取網路,來自中繼UE的信號需要區別於典型D2D信號。儘管未顯示在附圖中,同樣可必須確定藉由D2D UE接收的信號是否為藉由PS UE發送的信號或藉由非PS(NPS,non-PS)UE發送的信號。以下,將提出D2D UE確定接收的信號是否來自於中繼UE或典型D2D UE(或來自PS UE或NPS UE)的方法的說明。為了簡潔,將提出用於確定已經發送信號的UE是否為中繼UE或典型D2D UE的方法的說明。然而,此方法同樣用在確定已經發送信號的UE是否為PS UE或NPS UE中。
以下,基於以上說明,將提出用於確定D2D時間和/或頻率資源池的方法,用於發信(signaling)D2D時間和/或頻率資源池的方法,以及用於接收與鄰近細胞有關的D2D同步信號和確定鄰近細胞的D2D資源的方法的說明。以下說明有關執行如第6圖所示的D2D通信的裝置/D2D UE。發送採用D2D信號形式的信號的eNB或存取點(AP,access point)同樣可以被視為執行D2D通信的裝置/D2D UE。關於D2D信號的發送和接收,D2D發送/通信模式1可以表示其中eNB直接指定發送資源的位置以執行D2D通信的方案,並且D2D發送/通信模式2可以表示其中資源池藉由eNB指定或者預指定並且UE從資源池中選擇特定資源以及使用特定資源來發送D2D通信封包的方案。此外,發現類型1表示其中eNB指定資源池,並且UE從資源池中選擇特定資源以及使用特定資源來發送發現信號的方案,並且發現類型2可以表示其中eNB直接指定UE發送發現信號的資源位置的方案。以下提出的說明主要應用於模式2和發現類型1,但本發明實施例並不侷限於此。以下提出的方法同樣可以應用於其中發送D2D控制信號(例如,排程分配(SA,scheduling assignment)、D2DSS(D2D synchronization signal,D2D同步信號))的資源池。於此,SA可以表示一信號,D2D控制信號通過該信號可以發送,並且SA可以包括表示D2D資料被發送的位置和D2D資料發送格式的訊息。以下,將提出配置D2D資源池 而不管D2D信號類型的方法的說明。用於配置資源池的不同方法可以用於不同類型的D2D信號。
以RRC發信、藉由SIB發信以及藉由(特定或公共UE)PDCCH/EPDCCH發信之中的一種的方式可以實施資源池的發信。或者,資源池集可以藉由RRC預先發信,並且應用於特定ST或特定無線電幀或者應用於特定週期(例如,40ms)的D2D資源池可以通過(E)PDCCH發信。
頻率資源池的確定及其發信
D2D UE可以確定於其中D2D UE要在子幀中發送D2D信號的時間-頻率資源區域,並且D2D UE藉由確定的時間-頻率資源區域發送D2D信號。於此,時間資源,亦即於其中發送D2D信號的子幀可以利用本發明的發明者所設計之與PCT/KR2015/003534所公開的方法來確定。此外,頻率資源區域,亦即於其上為了D2D發送在子幀中發送D2D信號的PRB通過例如藉由更高的層發信表示的參數(表示資源區域的開始點和結束點的RB索引,及資源區域大小的參數)來確定。
更具體而言,於其中將發送D2D信號的子幀中的頻率資源區域包括第一頻率資源區域和第二頻率資源區域。第一頻率資源區域和第二頻率資源區域的位置可以通過獨立的參數確定,並且第一頻率資源區域和第二頻率資源區域的大小可以通過共同參數確定。如果兩個頻率資源區域具有相同大小(藉由共用參數所確定的),通過確定頻率資源區域的位置就發信消耗(signaling overhead),頻率分集(frequency diversity)、以及資源分配的公平性方面而言可以獲得增益。更具體而言,如果只有一個頻率資源區域通過只考慮發信消耗而被確定,不能獲得分集增益。如果兩個頻率資源區域的位置和大小通過共用參數確定,就發信消耗方面而言可以確定增益。然而,在資源分置到複數個UEs的情況中,UEs的分集增益可不相等。
獨立的參數可以是開始PRB索引,其為開始點的RB索引,和結束PRB索引,其為結束點的RB索引,並且共用參數可以是表示資源區域大小的PRBs數目。在PRB索引之中,具有高於或等於開始PRB索引並且低於開始PRB索引+PRBs數目的PRBs可以被包括在第一頻率資源區域中,並且具有高於結束PRB索引-PRBs數目並且低於結束PRB索引的PRBs可以被包括在第二頻率資源區域中。
在利用上述方法確定的資源上發送的D2D信號可以是實體側鏈路共享通道(PSSCH,physical sidelink shared channel)上發送的D2D資料信號,實體側鏈路發現通道(PSDCH,physical sidelink discovery channel)上發送的發現信號或者在實體側鏈路控制通道(PSCCH,physical sidelink control channel)上發送的D2D控制信號。
如果D2D信號的頻率領域劃分成將被分配的兩個區域,用於細胞信號發送的資源可以防止被分裂。尤其,對於用於LTE上行鏈路信號的SC-FDMA調變方案,只有當D2D資源被連續的分配到頻率領域中時,峰值平均功率比(PAPR,peak-to average power ratio)被降低。如果D2D資源區域在頻率領域中沒有連續分配到系統頻帶寬的兩端,細胞資源可以使用中間連續的頻率區域從而防止細胞資源的頻率區域的分裂。
以下,將提出利用根據本發明另一實施例方法用於發送D2D信號的頻率資源的說明。將根據頻率資源池的粒度(granularity)對用於確定頻率資源的訊息的發信方面提出說明。
1)RB單位
頻率資源池的基本單位可以是RB,並且以RB為單位發信頻率資源池。例如,系統中出現50個PRB(10MHz),並且每個頻帶邊緣的3個RBs可以用於PUCCH,則有44個PUSCH PRBs並且用於44個PUSCH PRB的44位元點陣圖可以被發信出去。在此情況下,藉由通過除了PUCCH區域之外的區域表示整個系統頻率頻帶寬可以發信頻率領域中的點陣圖。如果點陣圖表示整個系統頻率頻帶寬,則根據實施例以50位元發信頻率領域資源池。如果頻率資源池以RB為單位被發信,而藉由若干RB配置於其中發送D2D信號的的真實單位,則需要確定資源池中檢索D2D資源的方法。在此情況下,可以使用第7圖(a)至第7圖(d)所示的方法中的一種。
第7圖(a)舉例說明從最低的D2D資源索引中確定D2D資源索引的方法。如果頻率資源池以RBs的順序布置為{0,...,N-1}並且藉由M個RBs配製一個D2D信號,則索引能夠以D2D資源索引0={0,...,M-1},D2D資源索引1={M,...,2*M-1},...,D2D資源索引floor(N/M)-1={M*(floor(N/M)-1},...,M*floor{N/M}-1}的方式被執行。如圖所示,資源池的最後幾個RBs可以不被使用。
第7圖(b)舉例說明分配具有擁有更高頻率資源索引的RBs的D2D資源的方法。與第7圖(a)中的方法對照,頻率資源池中分配了較低索引的一些RBs可以不被使用。
第7圖(c)舉例說明一種將D2D資源分佈為盡可能靠近頻率資源池中心的方法。例如,資源池中的中心PRB索引可以被排列以被D2D資源的中心索引使用。利用此方法,可以減弱頻帶內發射到PUCCH或PUSCH。
根據第7圖(d)所示的方法,當N mod M不為0時多達M-1個頻率區域沒有用於D2D。於此,N是頻率領域中RBs的數目,並且M為頻率領域中由一個D2D信號佔據的區域的RB大小。在此情況下,前幾個RBs,最後幾個RBs,或者前幾個和最後幾個RBs可以不用於D2D池,或者中心RB可以不用於D2D池。但考慮頻帶內發射時由於如第8圖所示的載波洩漏,則中心RB比其他區域承受更強的干擾。如果多個UEs同時執行發送,因為UEs的載波洩漏重疊則中心RB很可能承受強干擾。因此,當配置資源池時可以排除中心RB。例如,可以除了中心RB之外的具有最低頻率索引的RB的順序表示D2D資源池。
D2D信號單位大小的單位
當表示D2D資源池時,以D2D信號單位大小為單位來發信資源池的粒度。如果D2D資源的單位包括多個PRBs(或多個SFs)而不是一個PRB,則D2D資源單位中的點陣圖可以被發信出去。例如,如果發現信號單位包括2個PRB對,則頻率資源池藉由以2個PRBs為單位的點陣圖表示。當頻率領域中的50個PRBs中的一些表示作為D2D資源池時,以PRB為單位的點陣圖需要50位元,而D2D資源單位中的點陣圖只需要25位元從而發信的位元數量被減少。
當表示D2D資源池時,以D2D信號單位大小的倍數為單位(例如,p乘以D2D信號單位大小)發信D2D資源池的粒度。於此,p的值依據系統頻帶寬確定。
如果存在用於一個資源池中發送的D2D信號的各種單位大小時,具有最小單位大小(或最大單位大小,或中間或平均單位大小)的單位被用作資源池指示粒度。如果D2D信號的MAC PDU的PRB大小為2、 3和4,以2個PRB為單位發信D2D資源池。例如,當頻率領域中的50個PRB對中的一些發信作為D2D資源池,25位元點陣圖可以被發信。
以下,參考第9圖至第11圖提出用於確定和發信資源池的方法的說明。
第9圖(a)舉例說明發信偏置值L和使用除了在區域兩邊中每個LRB之外的PUSCH區域的方法。於此,L的值旨在不僅保護PUCCH區域而且當細胞具有不同的PUCCH區域大小時防止D2D資源池在執行細胞間D2D的細胞之中有所不同,L的值可以特別設定使得D2D資源池對應於整數倍的D2D信號單位。第9圖(b)舉例說明一種設置兩個值L1和L2以表示D2D資源池的方法。與第9圖(a)類似,L1和L2可以細胞特定地設置。
第10圖舉例說明為了預防WAN的PUSCH資源被分割成多個區域而將D2D資源配置靠近PUCCH區域的一種方法。第10圖(a)舉例說明一種當只有L被發信出去時用於確定資源區域的方法,並且第10圖(b)舉例說明一種當L1和L2被發信出去時用於確定資源區域的方法,第10圖(c)和第10圖(d)所示的方法中,一些RBs用作防護以保護PUCCH區域。為了這個目的,除了L或L1以及L2之外,表示被用作防護頻帶的RBs大小的參數K可以被額外發信出去或預定。在發信K和L/L1/L2之中,i)K和L兩者(或L1、L2)可以以RB為單位發信,ii)K可以以RB為單位被發信出去,並且L(或L1、L2)以D2D信號單位大小為單位被發信出去,或者iii)K和L兩者(或L1、L2)以D2D信號單位大小為單位被發信出去。第10圖(c)和第10圖(d)舉例說明當使用一防護時確定一頻率資源區域。
D2D資源池不需要關於頻率領域中的中心頻率對稱,為了防止(WAN)PUSCH資源被分割,D2D資源池可以偏置到頻帶邊緣,亦即在頻率領域中配置為非連續的。藉由結合以上兩種方法,可以配置關於中心頻率非對稱並且在頻率領域中非連續的D2D資源池。如下發信資源池:i)發信頻率領域中每個非連續資源區域的開始和結束點的RB索引;ii)在此情況下,如果非連續頻率資源區域在一個D2D資源池中具有相同大小,只有一個資源區域大小的參數被發信,藉此減少發信消耗;iii)方法i)和ii)中,資源區域的開始點和/或結束點和/或每個資源區域的大小可以RBs為單位或以D2D信號單位大小為單位被發信。如果在一個資源池中具有多種大小的 D2D信號被發送,基於最小單位大小,最大單位大小或特定單位大小執行發信。
當應用了所提出的方法時,如果細胞中的多個D2D資源池(例如,頻率領域中被多工處理的類型1發現資源池和類型2B發現資源池,或多個細胞的D2D資源池)配置在相同時間資源上(例如,SF),或者如果頻率領域中的非連續的多個資源區域配置用於每個D2D資源池,每個D2D資源池的非連續資源區域在每個資源池中被均勻地隔開。在此情況下,每個D2D資源池獲得均勻的頻率分集增益。當資源池只以第11圖(a)所示的頻率領域中以對稱形式配置時,如果在頻率領域中分裂的多個D2D資源池配置在相同的時間資源上,分配到靠近頻帶中心部位的D2D資源池不會獲得足夠的頻率分集。如果為了解決這個問題消除了關於中心頻率對稱並且靈活分配資源,則利用相同間隔分裂的頻率資源分配給不同的D2D資源池。第11圖(b)舉例說明在頻率領域中不連續並且相對於中心頻率不對稱的D2D資源池配置的實施例。於此,在頻率領域中多工處理兩個資源池,並且兩個資源池具有利用相同頻率間隔來分裂的頻率資源區域。因此,當跳頻應用在每個D2D資源池中時,可以獲得類似的頻率分集。所提議的方法根據參數配置彈性地執行第9圖和第10圖所舉例說明的所有方法。
在此實施例中,LA和LB可彼此相等,並且LA(LB)和LA'(LB')可同樣具有相同值。前一種情況對應於在頻率領域中被多工處理的不同的資源池以相同方式配置的情況,並且後一種情況對應於非連續的資源區域在在頻率領域中配置為具有相同大小的情況。兩種情況在配置資源池上可作為額外限制。如果配置了該等限制,發信消耗可以被減少。例如,如果LA=LA',發信每個非連續資源區域的開始點和LA以減少發信消耗。或者,發信第一資源區域的開始點和第二資源區域的結束點,而LA RBs被定義從第一資源區域的開始點用於第一資源區域以及LA RBs在第二資源區域的結束點之內被用於第二資源區域。雖然以上實施例中已經將兩個非連續資源區域舉例說明為配置在用於一個D2D資源池的頻率領域中,在頻率領域中非連續資源區域的數目並不侷限於2。在此情況下,D2D資源池可以分成三個或更多資源區域且被發信出去。在此情況下,表示在頻率 領域中一個D2D資源池被分裂成的資源區域的數目的參數可以通過更高層信號被發信出去。
同時,如果多個D2D資源池配置在細胞中(或者配置多個細胞的D2D資源池),用於每個D2D資源池的頻率資源區域可以分別被發信出去。在此情況下,為了減少發信消耗,只有一塊關於D2D資源池的頻率資源訊息被發信出去,並且用於其他資源池的預定偏置被發信出去。於此,偏置可表示為RB的單位或者表示為特定D2D信號的單位大小的倍數。例如,當資源區域非連續地配置在頻率領域中時,如第11圖中的情況,如果在頻率領域中多個資源池配置在細胞中,一個資源池的每個資源區域的開始和結束RBs可以被發信出去,然後利用預定偏置(藉由只額外發信一個參數)可配置其他D2D資源池。第11圖(c)和第11圖(d)係藉由發信有關一個資源池和表示多個池的偏置的頻率資源訊息來舉例說明配置多個D2D資源池的實施例。具體而言,第11圖(c)舉例說明頻率領域中多個非連續D2D資源池的配置,以及第11圖(d)舉例說明頻率領域中多個連續D2D資源池。
當多個D2D資源池配置在時間領域中時上述原理同樣適用。例如,當多個D2D資源池配置在時間領域中時,可連同特定D2D資源池的時間資源一起發信預定偏置以發信多個D2D資源池。然而,利用此方法,當預定偏置應用在TDD中時,一些子幀可以不是上行鏈路子幀,從而不能使用作為D2D資源。在此情況下,建立一條規則使得只有用於SIB或者DL參考配置(在eIMTA中具有最少數目的UL子幀的配置)上的UL的子幀被配置為有效D2D資源池。例如,當用於特定D2D資源池的點陣圖被發信出去,並且偏置被發信出去用於其他D2D資源池時,只有作為位移點陣圖中的D2D子幀和SIB(或DL參考配置)上的UL子幀的子幀被定義為D2D資源池。
上述方法中,雖然已經說明D2D資源池被配置使得在PUSCH區域邊緣的一些RBs保持為未被使用,系統頻帶寬的邊緣RBs而不是PUSCH區域可以配置為未被使用。例如,L、L1、L2以及K可不是細胞特定地而是共用地設置到網路。
根據前述方法,頻率資源池的粒度可取決於D2D信號的單位大小,但D2D資源池的開始點(或者從PUCCH區域、L、L1、L2以及K 的偏置值)能夠以RBs為單位被發信出去。例如,如果D2D單位大小為2個RBs,當在連續分配D2D資源池上假設a=ceil(log2(-1))時,對應於(開始點指示)+ceil(log2(floor((-a)/2)))(資源池大小指示)的位元數可以用來指示資源池。
頻率資源池配置指示
根據上述方法關於頻率資源池的配置可藉由點陣圖發信。亦即,基於上述頻率資源粒度藉由點陣圖可發信該配置。在此情況下,每個位元可以指示在頻率資源池中是否對應的區域使用於D2D。作為用於發信點陣圖的特定方法,用於分配PUSCH資源的傳統方法可以被使用(參見LTE規格36.213 8.1)。根據分配PUSCH資源的傳統方法,當假設頻率PUSCH區域包括N個RBs時,則需要個位元。如果使用PUSCH資源配置類型0、頻率區域包括N個RBs、並且頻率資源粒度M對應於2個或更多RBs,則可替換為。如果預定義D2D資源池的最小尺寸,則可以進一步減少位元數。D2D資源池的最小尺寸可以預設為一特定值或者通過D2D信號單位確定。在此情況下,小於D2D資源池的最小尺寸的用於資源配置的位元可不被使用。例如,如果D2D單位大小為2,則當RB大小為1時使用的資源配置是不必要的。在此情況下,如果 資源配置指示粒度是在1RB單位中,則如所示 可以減少指示發送的資源池的位元數。如果使用PUSCH資源配置類型1 (即,非連續頻率分配),則可以替換為。在此情況下,如果 為每個群集設置為最小尺寸,則藉由對應於小於最小群集大小的配置的位元可以減少資源池指示位元的數目。作為另一範例,在D2D資源池的粒度和偏置被發信出去的情況下,較佳地以RB為單位發信該偏置。或者,為簡單起見,可以發信D2D資源池的粒度。
時間資源池配置指示
以子幀為單位的用於時間資源池的點陣圖可被發信出去。在此情況下,點陣圖長度可配置為以無線電幀為單位或者預定子幀長度(例如,40ms)。或者,可以預定配置為點陣圖長度的一集合(例如,{8,10,20,40,64,128}),並且具有由集合中的特定元素指示的長度的點陣圖可以被發信出去。頻率資源池配置可不指示給每個子幀,假設相同的頻率資源池用在 全部D2D子幀中。在此情況下,為了表示應用點陣圖的無線電幀/子幀,同樣可以發信子幀偏置。亦即,點陣圖的應用從子幀偏置所指示的子幀開始以指示的D2D資源區域(資源池)。頻率池的大小在子幀之中可以不同。在此情況下,對於每個子幀頻率資源池配置可以被分別發信出去。
同時,如果D2D資源池的週期超過於其中週期可以表達為系統幀數(SFN)(SFN範圍為從0至1023並且可以只指示在10240ms之內的位置)的範圍時,則其不可能利用現有的SFN範圍表達週期。亦即,如果D2D資源池的週期超過10.24s,則其不可能表達為SFN,從而需要表達D2D資源池的另一種方法。在此情況下,可以使用以下方法中的一種。
首先,只有在10.24s之內的週期可以配置為D2D資源池的週期。亦即,當藉由網路配置的週期以無線電幀為單位表達時,可以配置的週期的最大值為1024。
第二,如果D2D資源池的週期超過10.24s,尤其,如果週期是10.24秒的倍數時,則可假設網路只在10.24s的倍數之中的特定位置配置資源池。例如,當2048個無線電幀配置作為週期時,則eNB在第一個1024個無線電幀內配置D2D資源池。只有當D2D資源池的週期超過1024時這個操作可以選擇性的發生。亦即,如果D2D資源池的週期在10.24s之內,eNB可以確定地配置資源池。另一方面,如果D2D資源池的週期超過10.24s,eNB只在10.24s的倍數之中的特定位置配置D2D資源池(例如,如果D2D資源池的週期為20.48s,D2D資源池只在10.24s的偶數倍或奇數倍處配置。)
第三,當配置D2D資源池時,指示對應於10.24s倍數的位置的指示位元可以被發送出去,eNB在對應於10.24s倍數的位置配置D2D資源池。例如,如果D2D資源池的最大週期為40.96s時,則發送2位元指示符。具體而言,參考第12圖,當2位元池配置被發信出去時,2位元指示符可以使用如下:i)如果指示符指示00,則當前SFN應用作為無線電幀偏置;ii)如果指示符指示01或11並且週期為2048,則SFN+1024應用作為無線電幀偏置;iii)如果指示符指示01,10或11並且週期為4096,則當下一個池表示為01,10以及11時接收具有設置為4096週期的池配置的UE預期下一個池將出現在偏置+3072,偏置+2048,以及偏置+1024處。
同時,D2D資源池可以不使用從SFN0的恆定偏置。相反,偏置值或資源池間隔在資源池週期之中可以變化。+或-x可以應用至發信的或預設的偏置以改變配置池中週期之間的間隔。於此,用於各自的週期的X值的集合或X值的型式根據一(公共安全或特定)群組、細胞或者細胞群組、或PLMN的ID可以不同地配置。例如,可利用PLMN的ID確定X值的序列。這旨在防止具有不同屬性的群組的池持續重疊,其妨礙特定池的資源被使用。在此情況下,接收池配置的UE或在池中發送或接收D2D信號的UE需要知道對應於接收的池的週期的位置。尤其,如果週期超過SFN發信範圍(1024個無線電幀=10.24s),UE可不識別池的週期的位置而沒有明確的發信。例如,如果範圍設置為1024個無線電幀,只有具有一個週期的池出現在SFN發信範圍中,從而池的序列位置不能彼此區分。亦即,當必須改變每個週期的池的位置或必須改變與每個週期的池相關的特定參數時,則以下兩種方法可以用於D2D發送/接收UE以識別週期索引。
首先,當期望改變每個週期的屬性時,可以使用表達D2D資源池的前述第三種方法(發送指示D2D資源週期在1024個無線電幀(SFN發信範圍)的倍數之中所配置的位置的指示位元)。於此,指示位元藉由實體層信號或更高層信號被發信至UE。例如,藉由RRC Idle UE的SIB可以執行發信。當週期超過SFN發信範圍並且週期不可識別時該方法包括指示符來識別SFN的序列位置。據此方法,當D2D資源週期小於1024個無線電幀時,藉由相對於SFN0只示週期的序列位置的資訊和指示被發信的SFN週期之中的週期位置的位元可以改變D2D資源池的時間位置。如果D2D資源週期大於或等於1024個無線電幀,則可藉由被發信的指示位元確定D2D資源池的時間位置。
第二,網路可以發信週期的序列位置。用此方法,網路在每個週期中可以發信對應週期的序列位置,從而允許D2D UE識別週期的序列位置。在此情況下,網路藉由實體層信號或更高層信號可以發信週期的序列位置。為了允許RRC閒置UE識別位置,可藉由SIB執行發信。可藉由N個位元表示週期的位置。在2^N個週期被指示之後,藉由執行模數運算(modulo operation)再次發信一週期。
鄰近細胞D2D同步信號的接收以及藉由該接收的鄰近細胞資源配置的獲取
同時,不僅服務細胞的D2D資源池而且鄰近細胞的D2D資源池也可以通過實體層信號或更高層信號被發信出去。或者,多個D2D資源池可以配置在細胞中。只有當服務細胞如上所述的發信鄰近細胞的D2D資源時,不同細胞的UE之間的D2D通信是可能的。這是因為服務細胞D2DUE需要知道鄰近細胞的D2D資源區域的位置以試圖在D2D資源區域中解碼。用於發信鄰近細胞的資源池的方法可取決於是否在鄰近細胞之間匹配時序(timing)同步。服務細胞是否與鄰近細胞同步或不同步可以基於更高層發信來確定。
在該非同步網路中,UE可接收指示D2D同步信號的發送位置的偏置參數,然後利用偏置參數接收D2D同步信號。UE可假設D2D同步信號在從偏置參數所指示的資源+/- x ms之內發送。在基於此假設接收同步信號時,UE可獲取鄰近細胞的SF邊界並解譯鄰近細胞的D2D資源池。
非同步網路可分成兩種情況。在第一種情況下,為了細胞間的校準而繼續時鐘漂移(clock drift),使得兩個細胞間的同步錯誤在幾毫秒之內。在第二種情況下,在網路之間不能獲取同步資訊,因此甚至不能估計錯誤的近似值。在前者中,可預先發信關於鄰近細胞的資源池的偏置資訊,並且接收該資訊的UE可在偏置的範圍內或者對於偏置周圍的+/-x msec搜尋鄰近細胞的D2DSS,並獲取正確的SF邊界。在後者的情況下,另一方面,不可能知道偏置資訊,因此UE應為了鄰近細胞的D2DSS搜尋所有區域。據此,在後者的情況下,UE須為了鄰近細胞的D2DSS執行搜尋所有區域的操作。此外,在後者的情況下,可基於鄰近細胞的SFN#0發信鄰近細胞的D2D資源池資訊(下文中,SFN#0將涉及SFN#0的起點,亦即SFN#0的子幀#0的起始時間,除非另有說明)。在接收D2DSS時,UE可通過D2DSS或PD2DSCH獲取鄰近細胞的SFN,並基於所獲取的SFN解譯鄰近細胞的D2D資源池。如果沒有發送該PD2DSCH,則可發信D2DSS的發送週期、SF號碼以及鄰近細胞的無線電幀號(無線電幀偏置)的全部或者部分。因此,UE可檢測該D2DSS並獲取鄰近細胞的SFN。
在前者的情況下,可預先發信關於鄰近細胞D2DSS的發送池資訊(D2DSS發送子幀、週期以及相對於SFN0的子幀/無線電幀偏置),以幫助搜尋鄰近細胞的D2DSS。亦即,可預先發信鄰近細胞的D2D資源池與 用於鄰近細胞的D2DSS的發送的區域以及服務細胞的D2D資源池。在此種情況下,網路可通過實體層信號或者更高層發信一近似區域,在近似區域中,相對於服務細胞的SFN#0發送送鄰近細胞的D2DSS。例如,發送鄰近細胞的D2DSS的區域可藉由以當前服務細胞的D2DSS發送池中的偏置的形式被表達而被發信出去。抑或,分別自當前服務細胞的D2DSS發送池,鄰近細胞的近似D2DSS發送位置可被表達為自該服務細胞的SFN#0的偏置並被發信出去。一旦以上述方式發信鄰近細胞的D2DSS的(近似)發送區域,UE就首先搜尋鄰近細胞的D2DSS,以便接收鄰近細胞的D2D信號。在此種情況下,在對應於D2DSS發送偏置+/_x msec的區域中搜尋D2DSS。於此,可預先確定或者通過更高層發信x的值。一旦成功接收到D2DSS,則可通過PD2DSCH或者D2DSS獲取鄰近細胞的SPN,並且可在鄰近細胞的SFN中識別鄰近細胞的D2D資源池所在的SFN的位置。為此,可基於鄰近細胞的SFN#0表達並通過實體層信號或者更高層信號發信鄰近細胞的D2D資源池。例如,服務細胞將藉由服務細胞的時脈(即,服務細胞的SFN與一子幀索引指示的時間)所代表的某一時間間隔發信至UE,發信在時脈中傳送一特定鄰近細胞的D2DSS。就服務細胞定時而言,此間隔可為單一子幀(即,1ms間隔),考慮到細胞間的同步錯誤,該間隔可由複數個子幀(即,長於或等於1ms的間隔)來代表。第13圖顯示此範例。參考第13圖,服務細胞的子幀2與3被指定為這樣的子幀,並且UE試圖在對應區域中檢測鄰近細胞的D2DSS。在第13圖的範例中,假設D2DSS在出現於服務細胞的子幀2與3所代表的間隔中的鄰近細胞的子幀6中被發送。UE可檢測與D2DSS有關的PD2DSCH並獲取準確的時序、SFN以及鄰近細胞的子幀索引。另外,服務細胞發信鄰近細胞的D2D子幀的位置。子幀的位置藉由鄰近細胞的時序(即,服務細胞的SFN與子幀索引指示的時間)來代表。在第13圖中,子幀#8、#0以及#2被分配到D2D作為鄰近細胞時序,並且UE利用所識別的鄰近細胞時序與服務細胞發信來識別鄰近細胞的D2D子幀位置。
此操作可藉發信鄰近細胞的D2D資源池與一偏置(其中該偏置用來指示鄰近細胞與服務細胞之間的時序差異)而簡單地實施。於此,可發信以子幀為單位或者以比一個子幀更小的單位為單位的偏置。例如,該 單位可為μs。該單位意在當服務細胞知道關於鄰近細胞與服務細胞之間的時序未對準的資訊時指示正確的偏置資訊。如果發信以子幀為單位的偏置,則必須檢測鄰近細胞的D2DSS以及精確地識別SF邊界。一旦識別SF邊界與鄰近細胞的SFN(通過D2DSS及/或PD2DSCH),就可基於鄰近細胞的SFN辨識鄰近細胞的該D2D資源池。
同時,前述細胞間的時序偏置應區別於每個資源池的偏置。在以上描述中,表述「基於SFN」意指D2D資源池相對於SFN#0的位置偏置,並且細胞間的時序偏置意指意在指示細胞間子幀邊界未對準的偏置。通過此種方式,鄰近細胞的D2D資源池通過兩個不同偏置以被發信出去。為了簡便起見,細胞間的時序偏置將被稱為偏置1,並且基於SFN#0指示D2D資源池的位置的偏置將被稱為偏置2。如果在非同步網路中沒有辦法得知鄰近細胞的邊界,則可省略偏置1的發信。亦即,只在同步細胞時可發信偏置1,或者細胞間的非同步程度近似。抑或,在某些情況下資源池偏置可不同地解釋。因此,在與同步的細胞的部署或者於其中能夠近似地辨識細胞間的非同步程度的部署的情況下,對於鄰近細胞的D2D資源池,只有一個相對於服務細胞SFN#0的偏置(=偏置1+偏置2)可被發送。在於其中不能辨識鄰近細胞的同步的非同步部署的情況下,只有一個相對於鄰近細胞SFN#0的偏置(=偏置2)可被發送。亦即,可取決於部署以發信一個或兩個偏置。抑或,只有一個偏置可被發信出去,但是該偏置的含義可依據部署而不同地解釋。
同時,D2D UE可接收一偏置參數與一週期性參數,並利用其確定鄰近細胞的資源池。於此,偏置參數與週期性參數可通過更高層發信來傳送,並為鄰近細胞而配置。此外,偏置參數與週期性參數可為PSCCH、PSDCH等而所配置並共同使用。
作為確定鄰近細胞的資源池的特定方法,考慮到週期性參數與一資源池週期集合中所包含的子幀的最大可能數量之間的關係,可確定鄰近細胞的資源池(即,考慮到週期性參數是否為該資源池週期集合中所包含的子幀的最大可能數量(10240)的約數(例如,60、70、120、140、240、280ms等),可確定鄰近細胞的資源池)。如果週期性參數為不是子幀的最大可能數量的約數(70ms)的一值,則TDD配置可對應於TDD UL/DL配 置0或6。在確定鄰近細胞的資源池時,相對於服務細胞的SFN0可應用偏置。
特別是,如果週期性參數為不是子幀的最大可能數量的約數的一值,則UE可假設鄰近細胞的系統幀號碼(SFNs,system frame numbers)與服務細胞的系統幀號碼對準。這是為了防止當週期性參數不是子幀的最大可能數量的約數時,在SFN循環邊界週期的錯誤辨識(尾部問題(tail issue))。例如,如果藉由在非同步網路中繼續用於校準的時鐘漂移將兩個細胞之間的同步錯誤被限制到幾毫秒以內,基於服務細胞的SFN,可發信用於鄰近細胞的D2D資源池的偏置,如關於D2DSS的池資訊的情況。在此種情況下,D2D資源池週期的非連續點可出現在一個SFN循環(1024個無線電幀)的邊界。亦即,會發生資源池之間的不規則間隔。如果服務細胞的SFN與鄰近細胞的SFN不一致,則UE可能錯誤地辨識在SFN循環邊界的鄰近細胞的D2D資源池。將參考第14圖討論細節。
第14圖顯示SFN循環與資源池的週期。為了簡便起見,假設偏置參數的值為0,且該資源池的週期為70ms。如上簡要提及的,如果資源池的週期超過子幀的該最大可能數量(即,SFN循環,第14圖中的SFN1023),則基於服務細胞的SFN0重新確定資源池的週期。據此,已利用偏置與週期性參數從第一個SFN(即,第14圖中的SFN#0)檢查資源池的UE確定SFN#1022為一資源池。從為SFN#1022之後的第二個SFN的SFN#0(該SFN循環結束之後的一SFN),UE開始檢查該資源池,將此SFN作為參考。結果,第14圖的第二個SFN#0也被辨識為一資源池。在此種情況下,UE確定SFN#1022與SFN#0均為資源池,因此出現週期的未對準。為了防止此問題,如果週期性參數不是子幀的最大可能數量的約數,則假設鄰近細胞的SFN與服務細胞的SFN對準。
隨後,UE可接收依據上述方法所確定的資源池中之鄰近細胞的信號。
如上所述,如果基於服務細胞的SFNs指示鄰近細胞的該資源池,則在SFN循環邊界會辨識出錯誤的資源池。在TDD中,通常可假設在幾毫秒或幾微秒內在出錯的細胞之間匹配同步。在此種情況下,服務細胞的SFNs可與鄰近細胞的SFNs相同,因此UE可辨識在SFN邊界D2D資 源池週期的不連續。在FDD中,鄰近細胞的SFNs可在沒有其明確的發信的情況下被辨識出。例如,如果兩個細胞具有相同的D2DSS發送週期,並且兩個細胞之間的同步錯誤在+/-(D2DSS發送週期/2)以內,則可基於D2DSS接收時間辨識鄰近細胞的SFNs。據此,如果鄰近細胞的SFN資訊沒有透過網路或者PD2DSCH明確地被發信出去,則該網路應被實施成UE可持續地假設兩個細胞之間的同步錯誤在+/-(D2DSS發送週期/2)以內。
在某些情況下,在鄰近細胞之間SF索引及/或邊界可不同,並且在鄰近細胞之間D2D資源池的索引也可不同。例如,假如在細胞A中SFs #0、#1及#2用於D2D資源池,在細胞B中SFs #1、#2及#3用於D2D資源池,並且兩細胞之間的時序偏置基於細胞A為1SF。此種情況在第15圖中舉例說明。在此種情況下,細胞A的UE與細胞B的UE可在細胞A的SF #2中辨識不同的SF索引。
在此種情況下,可利用以下方法配置D2D資源池。首先,服務細胞的資源池可基於服務細胞的SF索引而被發信出去,並且鄰近細胞的資源池可基於鄰近細胞的SF索引而被發信出去。個別發信SF偏置,或者發信鄰近細胞的D2DSS發送SF。在此種情況下,發送鄰近細胞的D2DSS的SF索引可通過實體層信號或者更高層信號來發送出去。抑或,發送鄰近細胞的D2DSS的SF索引可不變地預設為特定值或者預設為與從服務細胞傳送的SF索引相同的值(亦即,所述細胞具有與發送D2DSS的SF相同的SF索引)。其次,服務細胞與鄰近細胞的資源池可基於服務細胞的SF索引而被發信出去。在此種情況下,鄰近細胞的SF索引偏置可通過更高層信號被個別發送出去,或者鄰近細胞的D2DSS發送SF或者D2DSS發送區域可通過實體層信號或者更高層被發信出去,並且於其中發送鄰近細胞的D2DSS的SF索引可通過實體層信號或者更高層被發信出去。抑或,於其中發送鄰近細胞的D2DSS的SF索引可不變地預設為特定值或者預設為與從服務細胞傳送的SF索引相同的值(亦即,所述細胞具有與發送D2DSS的SF相同的SF索引)。
依據以上提出的方法,鄰近細胞的D2D資源池基於鄰近細胞的SFNs或SF數量而發信。抑或,鄰近細胞的D2D資源池可基於服務細胞的時序(SFN、SF索引)而被發信出去。當鄰近細胞的D2D資源池基於服務 細胞的時序而被發信出去時,有鑒於服務細胞,鄰近細胞的D2D資源池的SF或者無線電幀可不完全同步,因此被發信的SF的位置不會是可區分的。當兩個細胞之間的同步偏置不是一SF位準(SF level)的整數倍時會發生此問題。為了識別位置,可利用以下三種方法的其中一種。
首先,可假設鄰近細胞的實際D2D資源池存在於服務細胞指示的時間或者存在於該時間之後。亦即,服務細胞的eNB必須指示鄰近細胞的D2D資源池,使得鄰近細胞的D2D資源池存在於與考慮到SF偏置而指示的SF索引對應的時間或者存在於該時間之後。第16圖舉例說明當SF偏置為正時(當鄰近細胞的時序出現在服務細胞的時序之後時)以及當SF偏置為負時,服務細胞如何通過SF索引指示鄰近細胞的該D2D資源池的實施例。第16圖(a)舉例說明當兩個細胞間的SF偏置為正數時服務細胞將服務細胞的SF索引2與3發信為鄰近細胞的D2D資源池的情況。第16圖(b)舉例說明當SF偏置為負數時服務細胞將服務細胞的SF索引1與2發信為該鄰近細胞的D2D資源池的情況。
其次,假設鄰近細胞的實際D2D資源池存在於服務細胞指示的時間或者存在於該時間之前。第16圖舉例說明當兩個細胞間的同步相對於服務細胞具有正偏置時,服務細胞指示鄰近細胞的D2D資源池的情況。
第三,假設鄰近細胞的實際D2D資源池相對於服務細胞指示的時間存在於+/- a(SFs)以內。例如,a可為0.5或CP長度的一半。前一範例可解釋為兩個細胞在SFs的單位內同步的含義。後一範例可解釋為在符號的單位內同步幾乎匹配的含義。該方法對應於服務細胞的eNB基於最接近當前SF邊界的SF指示鄰近細胞的D2D資源池的情況。例如,如果鄰近細胞的時序偏置相對於服務細胞的時序為正且超過0.5SF,則假設鄰近細胞的D2D資源池存在於服務細胞的時序之前。如果鄰近細胞的該時序偏置相對於服務細胞的時序為正但沒有超過0.5SF,則假該鄰近細胞的D2D資源池存在於服務細胞的時序之後。第17圖舉例說明該範例。即使當偏置的值為負時,鄰近細胞的D2D資源池也可基於最接近邊界的SF而被發信出去。
例如,假設在一SF位準在服務細胞與鄰近細胞之間製造時序偏置。當在服務細胞與鄰近細胞之間製造SF位準的偏置時,如果在產生擾碼序列與D2D信號的DMRS序列時(確定跳頻型式以及DMRS CS(循環位 移)/OCC(正交覆蓋碼)跳頻型式)涉及到槽/SF索引,則D2D接收UE應對不同SF索引執行解碼。在此種情況下,接收UE的複雜度會增加。為了防止複雜度增加,提出在產生DMRS序列與D2D信號的擾碼序列時槽/SF索引固定為特定值。利用此種方法,當鄰近細胞與服務細胞沒有精確同步因而在鄰近細胞與服務細胞之間SF索引不同時可利用服務細胞的SF索引與鄰近細胞的SF索引防止解碼被執行數次。此外,鄰近細胞與服務細胞之間的SF偏置的值不需被個別發信出去。
作為其他方法,可限制網路配置,使得服務細胞與鄰近細胞之間的SF位準偏置被固定為0。在此種情況下,一旦UE根據服務細胞的SF索引產生DMRS與擾碼序列,所述序列就可直接應用於鄰近細胞。如果如第12圖至第14圖中所示比一子幀小的時間單位中的偏置出現在服務細胞與鄰近細胞之間,則利用上述方法推導鄰近細胞的SF索引,假設在SF位準鄰近細胞的SF索引與服務細胞的SF索引之間的偏置為0。抑或,只有當服務細胞與鄰近細胞同步時(例如,於其間共享D2DSS),才可限制性地應用不變地將SF位準偏置設定為0的操作。在此種情況下,不與服務細胞同步的鄰近細胞相對於服務細胞仍可具有不同於0的SF位準偏置。該操作可被概括並應用於鄰近細胞之間的操作(例如,一個鄰近細胞當作SF索引的參考且其他鄰近細胞基於參考鄰近細胞而分配資源池的配置的情形下的操作)。例如,假設其間的SF位準偏置為0,並且基於該假設在相應細胞中網路配置相同的SF索引,則與參考鄰近細胞共享D2DSS的其他鄰近細胞運作(以便,例如,產生DMRS或者擾碼序列)。
在此種情況下,可假設具有由時間偏置區分的D2D資源池的細胞被同步。於此,被同步可意指在細胞之間SF邊界被對準且一個細胞的SF索引與其他細胞的SF索引一致。在此種同步網路中,可不個別傳送鄰近細胞的D2DSS發送區的信號。在此種情況下,UE可共享D2DSS序列或者D2D資源池,假設服務細胞與鄰近細胞同步。抑或,細胞的D2D資源池可藉一偏置而彼此區分開。在此種情況下,偏置簡單地表示細胞使用不同時間資源來配置D2D資源池。在產生並解碼DMRS序列或者擾碼序列時,基於服務細胞的SF索引發送/接收所有信號。可通過實體層信號或者更高層信號預先發信指示鄰近細胞與服務細胞同步的資訊,或者可預先假設屬於 特定群組的細胞ID的細胞被同步。在此種情況下,網路可通過實體層信號或者更高層信號將同步的細胞ID群組預先發信到UE。
在另一種情況下,在鄰近細胞之間可對準SF邊界,但是鄰近細胞可具有不同的SF索引。在此種情況下,服務細胞的eNB可將服務細胞與一鄰近細胞之間的SF偏置通過實體層信號或者更高層發信到UE。該偏置可用來指示D2D信號發送UE依據特定細胞的SF索引並考慮到SF偏置而產生DMRS序列或者擾碼序列。抑或,SF偏置可用於D2D信號接收UE以考慮到SF偏置而辨識並解碼鄰近細胞的DMRS序列與擾碼序列。
類似於在同步細胞之間能夠共享D2DSS或D2D資源池的特徵,非同步系統中的一些細胞可具有相同的SF邊界以及SF索引。在此種情況下,可共享D2D資源池與D2DSS發送區。在此種情況下,關於其他非同步鄰近細胞與鄰近細胞群組的D2D資源池、資源SF偏置、於其中發送D2DSS的區域、於其中發送D2DSS的SF索引以及偏置的資訊可全部或部分共享在同步細胞之間。
所提出的方法不僅可應用於細胞間操作,而且可應用於頻率間與操作者間的D2D操作。例如,假如網路操作者操作多個載波。在此種情況下,另一頻帶的網路時序可不同於當前服務細胞的時序。在此種情況下,網路基於當前服務細胞的SFNs將另一細胞的近似D2DSS發送區通過實體層信號或者更高層發信到UE。此外,網路表達相對於相應細胞的SFN#0的另一頻率的D2D資源池,並通過實體層信號或者更高層信號將其發信出去。UE只需藉由檢測鄰近細胞的D2DSS然後識別細胞的SFN來接收鄰近細胞的D2D資源池中的D2D信號。
前述的某些資源池配置方法也可用於配置D2DSS的發送資源。在此種情況下,服務細胞與鄰近細胞的D2DSS發送池可以相對於(服務細胞或鄰近細胞的)SFN 0發送的一子幀(或者無線電幀)偏置、一點陣圖以及一週期的形式被發信出去。
在TDD中,D2DSS的發送週期可不同地設定透過在FDD中的發送週期。由於TDD中的UL SFs的個數小於FDD中的,因此該方法意在穩固許多D2D信號發送SFs。抑或,D2DSS發送週期可設定為比FDD中的更長,以便減弱對細胞上行鏈路的影響。於此,比FDD中更長的D2DSS 週期可在不考慮TDD UL/DL配置的情況下使用,或者對於每個TDD UL/DL配置可不同地設定。例如,如果FDD使用40ms或者80ms作為D2DSS發送週期,則TDD使用80ms或者160ms作為D2DSS發送週期。
抑或,在TDD中,對於每個配置可不同地設定D2DSS。亦即,D2DSS發送週期被設定為與UL HARQ週期牽連/有關,以便確保與細胞HARQ程序的自然共存。例如,用於TDD UL/DL配置0的HARQ週期為70ms,因此D2DSS的發送週期可被設定為70ms或其倍數。類似地,用於TDD UL/DL配置6的HARQ週期為60ms,因此D2DSS的週期可被設定為60ms或其倍數。對於TDD UL/DL配置5,HARQ週期為10ms,並且一個無線電幀中只出現一個UL SF,因而D2DSS的發送週期可被設定為HARQ週期的相對大的倍數(例如,80ms或160ms),以便穩固UL資源。對於其他TDD UL/DL配置,可使用與FDD中相同的D2DSS週期,可使用與FDD的D2DSS週期不同的個別的D2DSS週期,或者D2DSS發送週期可被設定為與每一無線電幀的UL SF個數關聯的HARQ週期的倍數。作為執行與UL SFs個數關聯的發送的方法,隨著UL SFs的個數減少,要使用的D2DSS發送週期增加。這意在增加用於D2D信號發送的子幀的個數。例如,如果TDD UL/DL配置1中所使用的D2DSS週期為80ms,則由於TDD配置2的UL SsF的個數為配置1的UL SFs的個數的一半,因此TDD UL/DL配置2中所使用該D2DSS週期為160ms。表1顯示各TDD UL/DL配置的範例性D2DSS週期。參考該表,TDD UL/DL配置1至5被配置以使用相同的週期。
同時,可建立一規則,使得在發送D2DSS的子幀中在不同於發送D2DSS的頻率區域的區域中沒有發送其他D2D信號。這意在防止D2DSS因頻帶內發射而遭受嚴重干擾,這在另一頻率區域中發送D2D信號時會發生。在TDD中,然而,UL SFs的個數比FDD中的更小,並且在不發送D2DSS的SFs中可允許其他D2D信號或者WAN信號的發送,以便有效利用資源。在此種情況下,為了減弱到D2DSS的頻帶內發射,於其上發送D2DSS的RB周圍的一些RB可配置為保護區域,於其中沒有信號發送。這裡,應注意的是,由於在FDD中有很多UL SFs,因此就FDD中的性能方面而言除D2DSS發送頻率之外的頻率區域空置,而在TDD中允許在不同於D2DSS發送頻率區域的頻率區域中發送,以便確保有限的UL資源的有效利用,而非性能。規則可選擇性地僅應用於TDD中的特定TDD配置(例如,TDDUL/DL配置5)。亦即,可反映出資源的有效利用對於TDD UL/DL配置5的重要性,因為TDD UL/DL配置5具有較小數量的UL SFs,而TDD UL/DL配置0與6具有較大數量的UL SFs。
在D2DSS的發送週期在TDD UL/DL配置中有區別,或者FDD與TDD使用不同D2DSS發送週期的情況下,如果D2DSS接收UE位於另一細胞中或者在覆蓋範圍之外,但是UE沒有正確地辨識出關於TDD/FDD雙工模式的資訊或者TDD UL/DL配置資訊,則UE不會精確地辨識出該D2DSS發送週期,因而試圖在初始D2DSS檢測之後的錯誤週期中執行D2DSS檢測。為了防止該問題,i)D2DSS序列可不同地用於每個TDD UL/DL配置或者TDD/FDD。抑或,ii)TDD/FDD雙工模式資訊及/或TDD UL/DL配置資訊可通過PD2DSCH發送。抑或,iii)通過PD2DSCH明確地發送D2DSS的週期。抑或,iv)關於鄰近細胞的D2DSS週期的資訊或者從中能夠推導出D2DSS週期的資訊可通過實體層信號或者更高層被發信至UE。可依據接收D2DSS的UE是在鄰近細胞中還是在覆蓋範圍之外而選擇性地配置該些方法i)至iv)。例如,如果接收D2DSS的UE在鄰近細胞中, 則可使用方法iv)。如果接收D2DSS的UE在網路的覆蓋範圍之外,則可使用方法iii)。
同時,明確發信D2DSS的週期的前述方法僅依據TDD UL/DL配置或TDD/FDD雙工模式而不改變。該方法可用於其他目的,即,需要較頻繁/較不頻繁的D2DSS發送。例如,快速移動中的UE需要較頻繁的D2DSS發送。在此種情況下,可改變D2DSS的週期,並且週期變化的資訊可藉由UE的網路被發信出去,以告知接收UE。
擾碼序列的產生
下文中,將描述在D2D中產生擾碼序列的方法。在產生傳統LTEPUSCH的擾碼序列時,藉由等式確定初始化參數配置。於此,對於D2D信號,可依據D2D特點將n RNTI設定成不同值。例如,包含在SA(排程分配)中的ID或者細胞ID可被設定成傳統細胞ID範圍之外的一值(例如,510)。本文中,在產生D2D信號的擾碼序列時n s可固定為特定值。例如,n s可被設定為0,而不考慮槽索引。抑或,此變數可依據D2D信號類型或模式而被設定為不同值。
藉由以下等式產生傳統LTE PUSCH的DMRS序列。
u=(f gh(n s)+f ss)mod 30
在該等式中,為細胞ID的值,並且△ss具有藉由更高層接收的一值。v的值藉由 來確定。於此,用於c(i)的c init藉由來確定。的值藉 由細胞ID或者更高層發信來確定,並且藉由上面提出的等式來確定。於此,在D2D中以及△ss可被設定成不同值。例如,藉由包含於SA中的ID可產生可被設定成細胞ID範圍之外的一值(例如,510或者511)或者ID範圍之外的一值與包含於SA中的ID的總和,並且△ss可被設定成0。在用於產生DMRS的上述等式中,n s可固定為特定值,用作特定細胞的槽索引,或者由服務細胞的槽索引中的鄰近細胞之間的SF偏置來確定。
依據本發明實施例的裝置的配置
第19圖為舉例說明依據本發明一實施例之發送點與UE的配置的圖式。
參考第19圖,發送點10可包括一接收模組11、一發送模組12、一處理器13、一記憶體14以及複數個天線15。天線15代表支援MIMO發送與接收的發送點。接收模組11可在上行鏈路上從UE接收各種信號、資料以及資訊。發送模組12可在下行鏈路上將各種信號、資料以及資訊傳送至UE。處理器13可控制發送點10的全部操作。
依據本發明一實施例的發送點10的處理器13可執行上述實施例所必須的操作。
另外,發送點10的處理器13可運行以操作處理發送點10接收到的資訊或者要傳送至外部的資訊等。記憶體14可替換為例如緩衝器(圖中未顯示)這樣的元件,記憶體14可將處理過的資訊儲存一預定時間。
參考第19圖,UE 20可包括一接收模組21、一發送模組22、一處理器23、一記憶體24以及複數個天線25。天線25意指UE支援MIMO發送與接收。接收模組21可在下行鏈路上從eNB接收各種信號、資料以及 資訊。發送模組22可在上行鏈路上將各種信號、資料以及資訊傳送至eNB。處理器23可控制UE 20的全部操作。
依據本發明一實施例的UE 20的處理器23可執行上述實施例所必須的操作。
另外,處理器23可運行以操作處理UE 20接收到的資訊或者要傳送至外部的資訊,並且記憶體24可替換為例如緩衝器(圖中未顯示)這樣的元件,記憶體24可將處理過的資訊儲存一預定時間。
如上所述的發送點與UE的配置可實施,使得獨立應用上述實施例或者同時應用兩個以上上述實施例,並且為了清楚省略多餘部分的描述。
第19圖中的該發送點10的描述也可應用於當作下行鏈路傳送器或者上行鏈路接收器的中繼,並且UE 20的描述可應用於當作下行鏈路接收器或者上行鏈路傳送器的中繼。
本發明的實施例可通過各種手段來實施,例如,硬體、固件、軟體或者其結合。
當以硬體實施時,依據本發明實施例的方法可體現為一個以上應用特定積體電路(ASIC,application specific integrated circuits)、一個以上數位訊號處理器(DSP,digital signal processor)、一個以上數位信號處理裝置(DSPD,digital signal processor device)、一個以上可程式邏輯裝置(PLD,progammable logic device)、一個以上場可程式閘陣列(FPGA,field programmable gate array)、一處理器、一控制器、一微控制器、一微處理器等。
當以固件或軟體實施時,依據本發明實施例的方法可體現為執行上述功能或操作的一模組、一程式或者一功能。軟體代碼可儲存在記憶體單元中並由處理器來執行。記憶體單元位於處理器的內部或外部,並且可通過各種已知手段傳送資料到處理器以及從處理器接收資料。
上面已詳細描述本發明的較佳實施例,以使本領域的技術人員實施與實踐本發明。儘管上面已描述本發明的較佳實施例,但本領域的技術人員將領會的是,在不脫離本發明的精神或範圍的前提下能夠對本發明作出各種修改與變化。例如,本領域的技術人員可利用上述實施例中所闡 述的元件的組合。因此,本發明並非意在限制於本文中所述的實施例,而是意在具有對應於本文中公開的原理與新穎特徵的最寬的範圍。
在不脫離本發明的精神與本質特徵的前提下,可以與本文中闡述的方式不同的特定方式執行本發明。因此,應在所有方面將上述實施例解釋為說明性的,而非限制性的。本發明的範圍應由所附的申請專利範圍及其法律上的等效範圍來確定,並且落入所附的申請專利範圍的含義與相同範圍內的所有改變意在包含於其中。本發明並非意在限制於本文中所述的實施例,而是意在具有與本文中公開的原理與新穎特徵相符的最寬的範圍。另外,在所附申請專利範圍中彼此未明確引用的申請專利範圍可作為本發明的實施例出現在結合中或者在本案申請提出後通過後續修改作為新的申請專利範圍而被涵蓋。
如上所述的本發明實施例可應用於各種行動通信系統。
從以上描述中顯而易見的是,本發明具有以下效果。
依據本發明的實施例,可能出現在系統幀號碼循環尾端的資源池的週期的模糊性可得到處理。據此,UE可穩定地接收鄰近細胞信號。
本領域技術人員將顯而易見的是,在不脫離本發明的精神或範圍的情況下可對本發明作出各種修改與變化。因此,意圖是倘若所述修飾與變化落入所附的申請專利範圍及其等效的範圍內,則本發明涵蓋本發明的該些修改與變化。

Claims (14)

  1. 一種用於無線通信系統中由裝置對裝置(D2D)終端接收鄰近細胞之信號的方法,該方法包括:接收一偏置參數與一週期性參數;考慮到該週期性參數與包含在一資源池週期集合中的子幀的最大可能數量之間的關係來確定該鄰近細胞的一資源池;以及接收該確定的資源池中該鄰近細胞的信號。
  2. 依據申請專利範圍第1項所述的方法,其中,當該週期性參數為不是子幀的該最大可能數量的約數的一值時,則該D2D終端假設該鄰近細胞的系統幀號碼(SFNs)與一服務細胞的SFNs對準。
  3. 依據申請專利範圍第1項所述的方法,其中,當該週期性參數為不是子幀的該最大可能數量的約數的一值時,TDD配置對應於配置0。
  4. 依據申請專利範圍第3項所述的方法,其中,該值為70ms。
  5. 依據申請專利範圍第1項所述的方法,其中,當執行該鄰近細胞的該資源池的確定時,基於該服務細胞的SFN(系統幀號碼)0施加一偏置。
  6. 依據申請專利範圍第1項所述的方法,其中,子幀的該最大可能數量為10240。
  7. 依據申請專利範圍第1項所述的方法,其中,當該資源池的一週期超過子幀的該最大可能數量時,基於該服務細胞的SFN(系統幀號碼)0重新確定該資源池的該週期。
  8. 一種用於無線通信系統中的裝置對裝置(D2D)終端,該裝置對裝置(D2D)終端包括:一接收模組;以及 一處理器,其中該處理器被配置以:接收一偏置參數與一週期性參數;考慮到該週期性參數與包含在一資源池週期集合中的子幀的最大可能數量之間的關係來確定鄰近細胞的一資源池;以及接收該確定的資源池中該鄰近細胞的信號。
  9. 依據申請專利範圍第8項所述之用於無線通信系統中的裝置對裝置(D2D)終端,其中,當該週期性參數為不是子幀的該最大可能數量的約數的一值時,則該D2D終端假設該鄰近細胞的系統幀號碼(SFNs)與一服務細胞的SFNs對準。
  10. 依據申請專利範圍第8項所述之用於無線通信系統中的裝置對裝置(D2D)終端,其中,當該週期性參數為不是子幀的該最大可能數量的約數的一值時,TDD配置對應於配置0。
  11. 依據申請專利範圍第10項所述之用於無線通信系統中的裝置對裝置(D2D)終端,其中,該值為70ms。
  12. 依據申請專利範圍第8項所述之用於無線通信系統中的裝置對裝置(D2D)終端,其中,當執行該鄰近細胞的該資源池的確定時,基於該服務細胞的SFN(系統幀號碼)0施加一偏置。
  13. 依據申請專利範圍第8項所述之用於無線通信系統中的裝置對裝置(D2D)終端,其中,子幀的該最大可能數量為10240。
  14. 依據申請專利範圍第8項所述之用於無線通信系統中的裝置對裝置(D2D)終端,其中,當該資源池的一週期超過子幀的該最大可能數量時,基於該服務細胞的SFN(系統幀號碼)0重新確定該資源池的該週期。
TW104131885A 2014-09-25 2015-09-25 用於無線通信系統中由d2d終端接收鄰近細胞之信號的方法及裝置 TWI665934B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462055640P 2014-09-25 2014-09-25
US62/055,640 2014-09-25
US201462062138P 2014-10-09 2014-10-09
US62/062,138 2014-10-09

Publications (2)

Publication Number Publication Date
TW201618591A true TW201618591A (zh) 2016-05-16
TWI665934B TWI665934B (zh) 2019-07-11

Family

ID=54251908

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104131885A TWI665934B (zh) 2014-09-25 2015-09-25 用於無線通信系統中由d2d終端接收鄰近細胞之信號的方法及裝置

Country Status (6)

Country Link
US (1) US9813957B2 (zh)
EP (2) EP3211928B1 (zh)
KR (1) KR102446261B1 (zh)
CN (1) CN106716909B (zh)
TW (1) TWI665934B (zh)
WO (1) WO2016048075A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776032B (zh) * 2018-03-23 2022-09-01 美商高通公司 主細胞群組和次細胞群組共存
TWI795537B (zh) * 2018-05-31 2023-03-11 香港商阿里巴巴集團服務有限公司 基於中繼設備的通信、終端與基地台的通信方法和裝置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10575325B2 (en) * 2014-10-09 2020-02-25 Acer Incorporated Device and method of handling service in unlicensed cell
EP3425975B1 (en) * 2016-03-30 2021-12-01 Huawei Technologies Co., Ltd. V2x communication method and device
KR102221646B1 (ko) * 2016-08-08 2021-02-26 후아웨이 테크놀러지 컴퍼니 리미티드 장치 대 장치 통신 방법 및 단말 장치
TWI633803B (zh) * 2016-10-07 2018-08-21 宏碁股份有限公司 進行點對點通訊之方法及相關通訊系統
CN110460418B (zh) * 2016-10-10 2020-08-07 华为技术有限公司 同步信号的发送方法、接收方法及装置
WO2018129770A1 (zh) * 2017-01-11 2018-07-19 华为技术有限公司 终端通信方法及通信设备
WO2018131972A1 (ko) * 2017-01-13 2018-07-19 엘지전자 주식회사 무선 통신 시스템에서 단말의 사이드링크 전송 수행 방법 및 상기 방법을 이용하는 단말
CN110168999B (zh) * 2017-02-06 2022-09-06 苹果公司 一种用户设备UE的装置及其方法以及gNB的装置及其方法
CN108541074B (zh) * 2017-03-06 2023-10-31 中兴通讯股份有限公司 随机接入发送方法、接收方法及装置、发射端及接收端
KR102564327B1 (ko) * 2017-03-24 2023-08-08 소니그룹주식회사 통신 장치 및 단말 장치
US10334659B2 (en) 2017-05-09 2019-06-25 Verizon Patent And Licensing Inc. System and method for group device access to wireless networks
EP3624518B1 (en) * 2017-08-04 2021-05-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device-to-device communication
WO2019153248A1 (zh) 2018-02-09 2019-08-15 Oppo广东移动通信有限公司 发送同步信号的方法、设备及计算机存储介质
WO2020022845A1 (ko) * 2018-07-26 2020-01-30 엘지전자 주식회사 무선통신시스템에서 사이드 링크 단말이 신호를 전송하는 방법 및 장치
KR102586632B1 (ko) * 2018-09-28 2023-10-11 주식회사 아이티엘 Nr v2x 시스템을 위한 harq 동작을 수행하는 방법 및 장치
CN113366896B (zh) * 2019-02-03 2022-11-04 华为技术有限公司 参考信号接收与发送方法、装置及系统
CN111565447B (zh) * 2019-02-14 2022-09-09 大唐移动通信设备有限公司 一种同步广播信息的发送方法、接收方法及设备
WO2020180032A1 (ko) * 2019-03-05 2020-09-10 엘지전자 주식회사 Nr v2x에서 psfch를 전송하는 방법 및 장치
CN112564865B (zh) * 2019-09-26 2024-04-02 株式会社Kt 用于发送和接收侧链harq反馈信息的方法和装置
EP4165928A4 (en) * 2020-08-05 2023-08-02 Apple Inc. SIDELINK CELLULAR COMMUNICATIONS WITH FLEXIBLE SIDELINK RESOURCE CONFIGURATION
CN112365697A (zh) * 2020-11-12 2021-02-12 吕梁学院 一种使用机器人收集黄土高原苔藓结皮层以下土壤的方法及系统
CN116614339B (zh) * 2023-07-17 2023-10-03 天地信息网络研究院(安徽)有限公司 一种mc-cdma系统的papr抑制发射机

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7636331B2 (en) * 2004-04-19 2009-12-22 Lg Electronic Inc. Transmission of control information in wireless communication system
WO2010126842A1 (en) * 2009-04-27 2010-11-04 Interdigital Patent Holdings, Inc. Reference signals for positioning measurements
WO2011059521A1 (en) * 2009-11-13 2011-05-19 Qualcomm Incorporated Method and apparatus for resolving paging monitoring conflicts in multimode wireless equipment
CN101730220B (zh) * 2009-12-10 2012-02-01 北京天碁科技有限公司 邻小区任务的调度方法、系统以及终端
US8885507B2 (en) * 2009-12-11 2014-11-11 Nokia Corporation Method, apparatus and computer program product for allocating resources in wireless communication network
WO2012150815A2 (ko) * 2011-05-02 2012-11-08 엘지전자 주식회사 무선 접속 시스템에서 장치 간 통신 수행 방법 및 이를 위한 장치
DE102011085075A1 (de) 2011-10-24 2013-04-25 Rohde & Schwarz Gmbh & Co. Kg Dynamische HARQ-ID Reservierung
GB2496153B (en) * 2011-11-02 2014-07-02 Broadcom Corp Device-to-device communications
US9544082B2 (en) * 2012-08-03 2017-01-10 Qualcomm Incorporated Inter-UE interference cancellation
JP6031610B2 (ja) * 2012-08-23 2016-11-24 インターデイジタル パテント ホールディングス インコーポレイテッド デバイスツーデバイス発見を行うための方法および装置
CN103686689B (zh) * 2012-09-12 2017-11-07 华为技术有限公司 一种设备到设备通信中通信终端的发现方法及通信终端
EP2733971B1 (en) * 2012-11-16 2020-09-16 Innovative Sonic Corporation Method and apparatus of improving proximity service discovery in a wireless communication system
RU2629430C2 (ru) * 2013-01-16 2017-08-29 Интердиджитал Пэйтент Холдингз, Инк. Генерация и прием сигнала обнаружения
KR20150003534A (ko) 2013-07-01 2015-01-09 주식회사 엘지화학 Ac 모터와 ac 발전기를 이용한 전압 및 주파수 변경 장치
EP3090579A4 (en) * 2014-01-31 2016-12-14 Huawei Tech Co Ltd DEVICE, NETWORK AND METHOD FOR CELL DISCOVERY
US9918290B2 (en) * 2014-06-27 2018-03-13 Samsung Electronics Co., Ltd. Methods and apparatus for inter-cell device-to-device communication and discovery
US9894651B2 (en) * 2014-08-08 2018-02-13 Samsung Electronics Co., Ltd. Methods and apparatus for resource allocation for D2D communications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776032B (zh) * 2018-03-23 2022-09-01 美商高通公司 主細胞群組和次細胞群組共存
TWI795537B (zh) * 2018-05-31 2023-03-11 香港商阿里巴巴集團服務有限公司 基於中繼設備的通信、終端與基地台的通信方法和裝置

Also Published As

Publication number Publication date
TWI665934B (zh) 2019-07-11
EP3001710B1 (en) 2017-04-05
CN106716909B (zh) 2020-08-11
KR102446261B1 (ko) 2022-09-22
CN106716909A (zh) 2017-05-24
EP3211928B1 (en) 2018-12-26
EP3211928A1 (en) 2017-08-30
WO2016048075A1 (ko) 2016-03-31
EP3001710A1 (en) 2016-03-30
US9813957B2 (en) 2017-11-07
US20160095024A1 (en) 2016-03-31
KR20170060010A (ko) 2017-05-31

Similar Documents

Publication Publication Date Title
TWI665934B (zh) 用於無線通信系統中由d2d終端接收鄰近細胞之信號的方法及裝置
US10153890B2 (en) Method and apparatus for transmitting and receiving signal of device to device terminal in wireless communication system
US10873489B2 (en) Method of transmitting and receiving device-to-device UE signal in wireless communication system and apparatus therefor
US11297584B2 (en) Method and apparatus for device-to-device user equipment to transmit signal in wireless communication system
US10257817B2 (en) Method and apparatus for transmitting and receiving signal by device-to-device terminal in wireless communication system
US9807720B2 (en) Method and apparatus for receiving control information of device-to-device UE in wireless communication system
US9876666B2 (en) Method and apparatus for acquiring synchronization by device-to-device terminal in wireless communication system
US10321500B2 (en) Method and apparatus for transmitting/receiving signal by device-to-device UE in wireless communication system
US9985761B2 (en) Method and device for transceiving device-to-device terminal signal in wireless communication system
BR112016021580B1 (pt) Método e equipamento de usuário para transmitir um sinal de referência de demodulação em sistema de comunicação sem fio