TW201618212A - Method and device for treating a semiconductor material - Google Patents

Method and device for treating a semiconductor material Download PDF

Info

Publication number
TW201618212A
TW201618212A TW104125076A TW104125076A TW201618212A TW 201618212 A TW201618212 A TW 201618212A TW 104125076 A TW104125076 A TW 104125076A TW 104125076 A TW104125076 A TW 104125076A TW 201618212 A TW201618212 A TW 201618212A
Authority
TW
Taiwan
Prior art keywords
semiconductor material
particles
cleaning
discharged
steps
Prior art date
Application number
TW104125076A
Other languages
Chinese (zh)
Inventor
馬提亞斯 歐洛柏
Original Assignee
羅伯特博斯奇股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 羅伯特博斯奇股份有限公司 filed Critical 羅伯特博斯奇股份有限公司
Publication of TW201618212A publication Critical patent/TW201618212A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles

Abstract

The invention relates to a method (500) for treating a semiconductor material (100), wherein the method (500) comprises a step (504) of discharging, a step (502) of purifying, and a step (506) of providing. In the step (318, 336, 504) of discharging, the semiconductor material (100) is electrostatically discharged. In the step (306, 322, 328, 332, 334, 502) of purifying, particles (310) are removed from the semiconductor material (100). In the step (340, 344, 346, 350, 506) of providing, the semiconductor material (100) is made available for further use.

Description

將半導體材料加工的方法與裝置 Method and apparatus for processing semiconductor materials

本發明係有關於一種將半導體材料加工的方法、一種相關的裝置以及一種相關的電腦程式。 The present invention relates to a method of processing a semiconductor material, a related apparatus, and an associated computer program.

矽主要被應用在光伏工業及半導體工業領域中。光伏市場劃分成所謂的“低效”的大眾市場及“高效”的補缺市場。特定言之,補缺市場對矽之純度有特別的要求。在製造高效的單晶太陽電池時,矽的純度級至少需要達到9N+。 It is mainly used in the photovoltaic industry and semiconductor industry. The photovoltaic market is divided into so-called “inefficient” mass markets and “efficient” vacancies. In particular, the market for filling the market has special requirements for the purity of the cockroach. In the manufacture of highly efficient single crystal solar cells, the purity level of germanium needs to be at least 9N+.

迄今為止,就用於半導體領域的原料矽而言,在製造完畢後通常對其進行多重蝕刻、清洗及乾燥。此方案成本較高,且會產生不可忽略的材料損耗。特別是在“高效”應用中,由於對光伏矽有較高的要求,材料亦需具備較高品質並經過前置的清潔處理。具可持續之純度的無電位的矽目前在市面上難覓蹤跡,其中對光伏工業及半導體工業而言,此材料有重要意義。 Heretofore, as for the raw material ruthenium used in the semiconductor field, it has been subjected to multiple etching, washing and drying after the completion of the production. This solution is costly and produces non-negligible material losses. Especially in "efficient" applications, due to the high requirements for photovoltaic crucibles, the materials also need to be of high quality and cleaned by the front. Potential-free cesium with sustainable purity is currently difficult to trace on the market, which is important for the photovoltaic industry and the semiconductor industry.

有鑒於此,根據獨立項,本發明提出一種將半導體材料加工的方法,以及一種採用此方法的裝置,以及一種相關的電腦程式。較佳設計方案參閱附屬項及下文的說明。 In view of this, in accordance with an independent item, the present invention provides a method of processing a semiconductor material, and an apparatus using the same, and a related computer program. For a better design, see the attached item and the description below.

半導體矽或光伏矽之製造過程會導致粉塵的形成。所述矽採 用氣相沈積並凝固成所謂的“U形棒”。為進行進一步加工,藉由破碎過程對該等U形棒進行破碎,隨後以含塵的方式對其進行包裝。矽製造商不必確保無塵及無電荷(無ESD)的包裝,因為對主流產品而言無此種需求。 矽製造商當前拒絕針對補缺產品進行包裝方案調整。藉由下文描述的pSi精整方案則能滿足此需求。其中對當前市售之pSi的加工必不可缺,下文將對此進行說明。 The manufacturing process of semiconductor germanium or photovoltaic germanium can lead to the formation of dust. The mining It is deposited by vapor deposition and solidified into a so-called "U-shaped rod". For further processing, the U-shaped bars are broken by a crushing process and subsequently packaged in a dust-containing manner. Manufacturers do not have to ensure dust-free and no-charge (ESD-free) packaging because there is no such need for mainstream products. 矽 Manufacturers currently refuse to make adjustments to the packaging program for missing products. This requirement can be met by the pSi finishing scheme described below. Among them, the processing of the currently commercially available pSi is indispensable, which will be explained below.

矽之雜質度係透過以其他金屬之含量為參照的表面純度定 義。因此,透過對表面進行細粒清除,便能大幅提昇材料表面之純度。如此便能輕鬆地實現高品質的矽。 The impurity level of bismuth is determined by the surface purity based on the content of other metals. Righteousness. Therefore, by purifying the surface, the purity of the surface of the material can be greatly improved. This makes it easy to achieve high quality flaws.

藉由本文提出之精整過程,能夠實現75%的合理化潛力。藉由本文提出之方法能夠改善材料之銷售情況。該材料會發生根本變化。 With the finishing process proposed in this paper, 75% of the rationalization potential can be achieved. The sales of materials can be improved by the method proposed in this paper. The material will change radically.

本發明提出一種將半導體材料加工的方法,其中該方法包括以下步驟:對該半導體材料進行放電,其中對該半導體材料進行靜電放電;對該半導體材料進行清潔,其中將顆粒自該半導體材料移除;以及對該半導體材料進行製備,以供進一步使用。 The present invention provides a method of processing a semiconductor material, wherein the method comprises the steps of: discharging the semiconductor material, wherein the semiconductor material is electrostatically discharged; cleaning the semiconductor material, wherein the particles are removed from the semiconductor material And preparing the semiconductor material for further use.

特定言之,半導體材料係指碎片形態的矽或多晶矽。放電操作具體可為:透過帶相反電荷的電荷載子對電荷載子進行中和。清潔操作具體可為:藉由機械力將顆粒自該半導體材料移除。 In particular, a semiconductor material refers to germanium or polycrystalline germanium in the form of fragments. The discharge operation may specifically be: neutralizing the charge carriers through oppositely charged charge carriers. The cleaning operation may specifically be: removing particles from the semiconductor material by mechanical force.

在該放電步驟中,可對帶靜電的半導體材料進行放電,從而獲得經放電的半導體材料。在該清潔步驟中,可對該經放電的半導體材料 進行清潔,從而獲得經清潔的半導體材料。在該製備過程中,可對該經放電且經清潔的半導體材料進行製備。可在該清潔操作前執行放電,從而減小在將顆粒自該半導體材料移除時所需的機械力。 In the discharging step, the electrostatically charged semiconductor material can be discharged to obtain a discharged semiconductor material. In the cleaning step, the discharged semiconductor material can be Cleaning is performed to obtain a cleaned semiconductor material. The discharged and cleaned semiconductor material can be prepared during the preparation process. Discharge can be performed prior to the cleaning operation to reduce the mechanical force required to remove particles from the semiconductor material.

在該清潔步驟中,可藉由重力將(較粗的)顆粒篩出。可採 用流體流將微細的顆粒沖去。可將該流體流送至該半導體材料上,以及/或者使得該流體流穿過該半導體材料。作為替代或附加方案,可自該半導體材料對該流體流抽吸。可在該放電操作前將較粗之顆粒移除。流體流可為氣流。特定言之,該流體流可為由純淨空氣構成的氣流。可以橫向於該半導體材料之材料流的方式對該流體流進行導引。特定言之,該流體流可滲入該材料流。 In this cleaning step, the (thicker) particles can be sieved out by gravity. Can be taken The fine particles are washed away with a fluid stream. The fluid stream can be delivered to the semiconductor material and/or the fluid stream can be passed through the semiconductor material. Alternatively or additionally, the fluid stream can be drawn from the semiconductor material. The coarser particles can be removed prior to the discharge operation. The fluid stream can be a gas stream. In particular, the fluid stream can be a stream of pure air. The fluid stream can be directed transversely to the flow of material of the semiconductor material. In particular, the fluid stream can penetrate into the material stream.

可以至少兩個分步來實施該沖去操作。在該等分步之間可實 施一用於翻轉的中間步驟。藉由該翻轉操作,該流體流便能觸及該半導體材料先前被遮蓋的一側。如此便能改善清潔效率。 The flushing operation can be performed in at least two steps. Between these steps Apply an intermediate step for flipping. By this flipping operation, the fluid stream can reach the side of the semiconductor material that was previously covered. This can improve cleaning efficiency.

可使用電漿流來對該半導體材料進行放電。電漿流可為包含 一定比例之帶電荷氣體粒子的氣流。該等帶電荷之粒子被該半導體材料之表面上的帶相反電荷的粒子吸引。在發生接觸時,對該二粒子間的電壓電位進行平衡。如此一來,該表面上之帶電荷的粒子失去其帶靜電狀態,進而失去對該表面的電磁吸引力。可輕易地透過該流體流對經放電之表面進行清潔。 The plasma material can be used to discharge the semiconductor material. Plasma flow can be included A certain proportion of the gas stream of charged gas particles. The charged particles are attracted by oppositely charged particles on the surface of the semiconductor material. When a contact occurs, the voltage potential between the two particles is balanced. As a result, the charged particles on the surface lose their electrostatic charge and lose the electromagnetic attraction to the surface. The discharged surface can be easily cleaned through the fluid stream.

該電漿流可同時為該用於清潔半導體材料的流體流。如此便 能在同一加工步驟中實施放電及清潔操作。 The plasma stream can simultaneously be the fluid stream used to clean the semiconductor material. So The discharge and cleaning operations can be performed in the same processing step.

該方法可包括對該半導體材料之狀態進行檢驗的步驟。特定 言之,可就顆粒對該半導體材料進行檢驗。可透過檢驗來測定材料品質。如此便能在材料品質不符合要求的情況下進行修整。此外,可對材料品質進行記錄,以作為針對進一步使用的品質證明。 The method can include the step of verifying the state of the semiconductor material. specific In other words, the semiconductor material can be inspected for the particles. The quality of the material can be determined by inspection. This allows for trimming without material quality. In addition, material quality can be recorded as proof of quality for further use.

可使用具永久傳導性的(ESD)袋子來包裝該半導體材料。袋子能夠防止該半導體材料被再度污染。可方便地對袋子進行存儲及運輸。 The semiconductor material can be packaged using a permanent conductive (ESD) bag. The bag prevents the semiconductor material from being recontaminated. The bag can be conveniently stored and transported.

本發明還提出一種用於加工半導體材料的裝置,其適於在相應的單元中對本發明之方法的一種方案的步驟進行實施、控制及轉換。藉由本發明之此裝置實施方案,亦能快速及高效地達成本發明之目的。 The invention also proposes a device for processing a semiconductor material which is suitable for implementing, controlling and converting the steps of a solution of the method of the invention in a corresponding unit. With the device embodiment of the invention, the object of the invention can also be achieved quickly and efficiently.

本發明之裝置係指能處理感測器信號,並根據該感測器信號輸出控制信號及/或資料信號的電子設備。該裝置可具有實施為硬體及/或軟體的介面。在實施為硬體時,該等介面例如可為所謂“系統ASIC”之部件,該系統ASIC包含該裝置之各種功能。但該等介面亦可為獨立的積體電路,或者至少局部由分立組件構成。在實施為軟體時,該等介面例如為微控制器上除其他軟體模組以外的軟體模組。 The device of the present invention refers to an electronic device capable of processing a sensor signal and outputting a control signal and/or a data signal based on the sensor signal. The device may have an interface embodied as a hard body and/or a soft body. When implemented as a hardware, such interfaces may be, for example, components of a so-called "system ASIC" that includes various functions of the device. However, the interfaces may also be separate integrated circuits or at least partially constructed of discrete components. When implemented as a software, the interfaces are, for example, software modules on the microcontroller other than other software modules.

本發明亦提出一種包含程式碼的電腦程式產品或電腦程式,其可儲存在可機讀載體或儲存介質(如半導體記憶體、硬碟記憶體或光記憶體)上,且特別是當在電腦或裝置上執行該程式產品或程式的情況下,透過其對前述實施方式中任一項之處理步驟進行實施、轉換及/或控制。 The invention also provides a computer program product or computer program comprising a code, which can be stored on a machine readable carrier or a storage medium (such as a semiconductor memory, a hard disk memory or an optical memory), and especially when in a computer In the case where the program product or program is executed on the device, the processing steps of any of the foregoing embodiments are implemented, converted and/or controlled.

100‧‧‧半導體材料 100‧‧‧Semiconductor materials

102‧‧‧清潔機 102‧‧‧cleaning machine

104‧‧‧袋子 104‧‧‧ bags

200‧‧‧裝置 200‧‧‧ device

202‧‧‧放電用單元 202‧‧‧Discharge unit

204‧‧‧清潔用單元 204‧‧‧cleaning unit

206‧‧‧製備用單元 206‧‧‧Preparation unit

300‧‧‧第一分步 300‧‧‧First step

302‧‧‧運輸容器 302‧‧‧Transport container

304‧‧‧傳送帶 304‧‧‧Conveyor belt

306‧‧‧第二分步 306‧‧‧Second step

308‧‧‧篩子 308‧‧‧ sieve

310‧‧‧污物 310‧‧‧Stain

312‧‧‧第三分步 312‧‧‧ third step

314‧‧‧第四分步 314‧‧‧ fourth step

316‧‧‧相機 316‧‧‧ camera

318‧‧‧第五分步 318‧‧‧ fifth step

320‧‧‧電漿流 320‧‧‧ Plasma flow

322‧‧‧第六分步 322‧‧‧ sixth step

324‧‧‧氣流 324‧‧‧ airflow

326‧‧‧鼓風機 326‧‧‧Blowers

328‧‧‧第七分步 328‧‧‧ seventh step

330‧‧‧第八分步 330‧‧‧ eighth step

332‧‧‧第九分步 332‧‧‧Ninth step

334‧‧‧第十分步 334‧‧‧Step 11

336‧‧‧第十一分步 336‧‧11 eleventh step

338‧‧‧第十二分步 338‧‧‧12th step

340‧‧‧第十三分步 340‧‧‧13th step

342‧‧‧第十四分步 342‧‧‧14th step

344‧‧‧第十五分步 344‧‧‧ fifteenth step

346‧‧‧第十六分步 346‧‧‧16th step

348‧‧‧外包裝 348‧‧‧Overpack

350‧‧‧第十七分步 350‧‧‧17th step

352‧‧‧第十八分步 352‧‧‧18th step

502‧‧‧清潔步驟 502‧‧‧ cleaning steps

504‧‧‧放電步驟 504‧‧‧Discharge procedure

506‧‧‧製備步驟 506‧‧‧Preparation steps

圖1為本發明之一種實施例中的將半導體材料加工的處理過程;圖2為本發明之一種實施例中的,用於加工半導體材料的裝置的區塊 圖;圖3為本發明之一種實施例中的將半導體材料加工的處理過程及其分步;及圖4為本發明之一種實施例中的將半導體材料加工的方法的流程圖。 1 is a process of processing a semiconductor material in an embodiment of the present invention; and FIG. 2 is a block diagram of an apparatus for processing a semiconductor material in an embodiment of the present invention; 3 is a process of processing a semiconductor material and a step thereof in an embodiment of the present invention; and FIG. 4 is a flow chart of a method of processing a semiconductor material in an embodiment of the present invention.

下面結合附圖對本文提出之方案作詳細說明。 The solution proposed in this paper will be described in detail below with reference to the accompanying drawings.

在下文對本發明之較佳實施例的描述中,各附圖中功能相似的元件係用相同或相似的元件符號表示,其中不對此等元件作重複說明。 In the following description of the preferred embodiments of the present invention, the same or similar elements are denoted by the same or similar elements, and the description of the elements is not repeated.

圖1為本發明之一種實施例中的,將半導體材料100加工的處理過程。在本實施例中,半導體材料100為碎矽片。亦即,半導體材料100呈現為散裝物料。採用本發明之方法時,首先對半導體材料100進行機械預處理,以供後續處理步驟使用。其中,對半導體材料100進行篩選,以便將小於最小粒度的顆粒去除。在第二步驟中,對半導體材料100進行放電。其中使得半導體材料100自帶電狀態進入不帶電狀態。在第三步驟中,對該半導體材料100進行清潔。其中將微粒自半導體材料100移除。為此,使得半導體材料100穿過清潔機102。在第四步驟中,對該半導體材料進行製備,並將其分裝至袋子104中。其中採用導電的袋子104,以便將靜電荷自該半導體材料導出。 1 is a process of processing semiconductor material 100 in one embodiment of the present invention. In the present embodiment, the semiconductor material 100 is a broken piece. That is, the semiconductor material 100 is presented as a bulk material. In the method of the present invention, the semiconductor material 100 is first mechanically pretreated for use in subsequent processing steps. Therein, the semiconductor material 100 is screened to remove particles smaller than the smallest particle size. In the second step, the semiconductor material 100 is discharged. The semiconductor material 100 is brought into an uncharged state from a self-charging state. In a third step, the semiconductor material 100 is cleaned. The particles are removed from the semiconductor material 100. To this end, the semiconductor material 100 is passed through the cleaning machine 102. In a fourth step, the semiconductor material is prepared and dispensed into a bag 104. A conductive bag 104 is employed to extract static charge from the semiconductor material.

基於預設的製造過程及包裝過程,在傳統方案中不對材料100進行無(矽)塵包裝。但對一直不斷擴大的市場而言卻需要此種無塵包裝。細粒及微粒之較大的表面-體積比(A/V比)會導致雜質量增大。 Based on the preset manufacturing process and packaging process, the material 100 is not packaged in a conventional manner. But for the ever-expanding market, this kind of dust-free packaging is needed. The large surface-to-volume ratio (A/V ratio) of fine particles and fine particles leads to an increase in the amount of impurities.

本文提出之方法描述了一透過靜電放電及清潔實現顆粒分 離,從而對多晶矽(pSi)100進行精整的方案。 The method presented in this paper describes the implementation of particle separation through electrostatic discharge and cleaning. Separate, thereby tailoring the polycrystalline germanium (pSi) 100.

下列加工步驟為主要加工步驟,且其係在10000級無塵室中 實施的加工的核心。 The following processing steps are the main processing steps and are in a Class 10,000 clean room. The core of the implementation of the process.

釋放微粒,以便在對半導體100進行進一步處理的過程中採 用高靈敏度設備。不易捕捉或無法加工之微粒可能會造成設備損壞、增大加工複雜度及/或造成分析失真。特定言之,微粒之較大的表面-體積比(A/V比)亦會導致雜質量增大。 Release the particles for use in the further processing of the semiconductor 100 Use high sensitivity equipment. Particles that are difficult to capture or that cannot be processed may cause equipment damage, increase processing complexity, and/or cause analytical distortion. In particular, the larger surface-to-volume ratio (A/V ratio) of the particles also leads to an increase in the amount of impurities.

除釋放微粒外,還需要實施其他精整操作。 In addition to releasing the particles, other finishing operations are required.

靜電放電,從而提供零電位的材料。零電位的材料100在半 導體工業中具有重要意義。試驗顯示,僅在當前的包裝中便偵測出超過1kV的電荷。故需要對材料100進行放電,並確保隨後的電位。 Electrostatic discharge, which provides a zero potential material. Zero potential material 100 in half It is of great significance in the conductor industry. Tests have shown that more than 1 kV of charge is detected in the current package. It is therefore necessary to discharge the material 100 and ensure the subsequent potential.

靜電放電之原理為:將寄生電荷移除。電荷會導致非期望之 顆粒、如粉塵、小碎片及/或雜質的黏附,故此操作步驟特別關鍵。在確保將經清潔且無電位之製品送入包裝的情況下,能夠防止在客戶側發生非期望的黏附。 The principle of electrostatic discharge is to remove parasitic charges. Charge can cause undesired The adhesion of particles, such as dust, small fragments and/or impurities, is particularly critical. In the case of ensuring that the cleaned and non-potential product is fed into the package, undesired adhesion on the customer side can be prevented.

本文提出之方法描述了一過程,其包括打開步驟、靜電放電 步驟、顆粒釋放步驟、包裝及封口步驟。 The method presented herein describes a process that includes an opening step, electrostatic discharge Step, particle release step, packaging and sealing steps.

藉由此處示出的多晶矽精整方案,能夠滿足對具可持續之純 度的多晶矽的需求。在此就目前市售之多晶矽的改進方案進行說明。 With the polycrystalline germanium finishing scheme shown here, it is able to meet the sustainable purity The demand for polycrystalline germanium. An improvement of the currently commercially available polysilicon is described herein.

圖2為本發明之一種實施例中的,用於加工半導體材料的裝 置200的區塊圖。可在裝置200上實施圖1所示之處理步驟。裝置200具有放電用單元202、清潔用單元204以及製備用單元206。放電用單元202適 於對該半導體材料進行靜電放電。清潔用單元204適於將顆粒自該半導體材料移除。製備用單元206適於對該半導體材料進行製備,以供進一步使用。 2 is an apparatus for processing a semiconductor material in an embodiment of the present invention. Set the block diagram of 200. The processing steps shown in Figure 1 can be implemented on device 200. The device 200 has a discharge unit 202, a cleaning unit 204, and a preparation unit 206. The discharge unit 202 is suitable The semiconductor material is electrostatically discharged. Cleaning unit 204 is adapted to remove particles from the semiconductor material. The preparation unit 206 is adapted to prepare the semiconductor material for further use.

圖3為本發明之一種實施例中的將半導體材料加工100的處 理過程及其分步。該處理過程與圖1所示處理過程大體對應。該處理過程具有更多分步。 Figure 3 is a perspective view of a semiconductor material 100 in one embodiment of the invention. Process and its step by step. This process generally corresponds to the process shown in FIG. This process has more steps.

在第一分步300中,將半導體材料100自運輸容器302取出。 運輸容器302在此為包裝袋302。將半導體材料100堆至傳送帶304上。舉例而言,在此時間點上,在等級<=1000的無塵室中將多晶矽100自雙PE包裝袋302取出。 In a first step 300, the semiconductor material 100 is removed from the transport container 302. Shipping container 302 is here a packaging bag 302. The semiconductor material 100 is stacked onto a conveyor belt 304. For example, at this point in time, the polysilicon 100 is removed from the dual PE package 302 in a clean room of class <=1000.

在第二分步306中,使得半導體材料100穿過篩子308,從 而將粒度小於篩子308之網格寬度的半導體材料100或污物310去除。其中,可使得半導體材料100在篩子308上進行振動。由於支承在適宜的可穿透的傳送帶308(適用於ESD)上,透過輕微的振動便能將較大的塵粒及細粒釋放。 In a second step 306, the semiconductor material 100 is caused to pass through the screen 308 from The semiconductor material 100 or the dirt 310 having a mesh size smaller than the mesh width of the sieve 308 is removed. Therein, the semiconductor material 100 can be caused to vibrate on the screen 308. Due to the support on a suitable penetrable conveyor belt 308 (for ESD), large dust particles and fine particles can be released by slight vibration.

在第三分步312中,將半導體材料100分佈在較寬的傳送帶 304上。其中實現材料100的單體化,以便自上方或下方到達材料100的所有側。 In a third step 312, the semiconductor material 100 is distributed over a wider conveyor belt On 304. The singulation of the material 100 is achieved to reach all sides of the material 100 from above or below.

在第四分步314中,對半導體材料100進行檢驗。在此以使 用相機316實施的光學檢驗作為代表。例如亦可對該半導體材料進行抽樣檢驗。亦可對半導體材料100之電氣特性進行檢測。特定言之,實施顆粒測量。舉例而言,首先透過電位測定來確定材料100之初始電荷。 In a fourth step 314, the semiconductor material 100 is inspected. Here to make An optical inspection performed by the camera 316 is representative. For example, the semiconductor material can also be subjected to sampling inspection. The electrical properties of the semiconductor material 100 can also be tested. In particular, particle measurements are performed. For example, the initial charge of material 100 is first determined by potentiometry.

在第五分步318中,使用電漿流320來對半導體材料100進 行放電。其中,將電離氣體吹至半導體材料100上。在此情形下,電漿320之帶電粒子與半導體材料100上之帶相反電荷的粒子發生中和。在分步318中,例如將材料100曝露於大氣壓電漿320下。如此便能使材料100進入電中性狀態。 In a fifth step 318, the plasma stream 320 is used to feed the semiconductor material 100. Line discharge. Therein, an ionized gas is blown onto the semiconductor material 100. In this case, the charged particles of the plasma 320 are neutralized with the oppositely charged particles on the semiconductor material 100. In step 318, for example, material 100 is exposed to atmospheric piezoelectric slurry 320. This allows material 100 to enter an electrically neutral state.

可採用直接電漿源或間接電漿源來產生大氣壓電漿320。在 採用直接電漿源時,直接在電漿源與待處理材料100之間產生電漿320。在採用間接電漿源時,在電漿源內部產生電漿320,並透過氣流將該電漿吹向待處理材料100。藉由交變電場為電漿產生裝置供電。其中,可採用數赫茲的激勵頻率,乃至數十億赫的微波。較佳將常壓下的環境空氣用作工作氣體。作為替代方案,亦可採用任意由氮氣、氧氣及稀有氣體構成之混合物。 亦可與大氣壓存在偏差,但此點並非強制要求。該電漿源與待處理材料100間的距離應儘可能小,因為處理持續時間會隨該距離的增大而延長。 A direct plasma source or an indirect plasma source can be used to generate the atmospheric piezoelectric slurry 320. in When a direct plasma source is employed, a plasma 320 is produced directly between the plasma source and the material to be treated 100. When an indirect plasma source is employed, a plasma 320 is generated inside the plasma source and is blown through the gas stream to the material 100 to be treated. The plasma generating device is powered by an alternating electric field. Among them, the excitation frequency of several hertz, or even several billions of microwaves can be used. Ambient air at normal pressure is preferably used as the working gas. Alternatively, any mixture of nitrogen, oxygen and a rare gas may be employed. It can also deviate from atmospheric pressure, but this is not mandatory. The distance between the plasma source and the material to be treated 100 should be as small as possible since the duration of the treatment will increase as the distance increases.

在第六分步322中,藉由鼓風機326將氣流324吹至位於傳送帶304上之半導體材料100上。其中,將此時不再透過電磁力附著在半導體材料100上的極細小粒子吹去。 In a sixth step 322, airflow 324 is blown by blower 326 onto semiconductor material 100 on conveyor belt 304. Among them, extremely fine particles which are no longer adhered to the semiconductor material 100 by electromagnetic force are blown off at this time.

在第七分步328中,對半導體材料100進行吸濾。其中,將其他非期望的粒子及雜質移除。 In a seventh step 328, the semiconductor material 100 is subjected to suction filtration. Among them, other undesired particles and impurities are removed.

舉例而言,藉由純淨空氣324再度對零電位的材料100進行清潔。將適量的空氣流324直接吹至材料100上,並同時透過匹配的吸濾操作為整個材料表面實現最佳程度的顆粒釋放。 For example, the zero potential material 100 is again cleaned by the clean air 324. An appropriate amount of air stream 324 is blown directly onto the material 100 while at the same time achieving an optimum level of particle release across the surface of the material through a matched suction filtration operation.

根據一種實施例,使用單獨一個流體流來實施第五分步 318、第六分步322及第七分步328。在此情形下,該流體流既用於對半導體材料100進行放電,亦用於對其進行清潔。 According to one embodiment, a single fluid flow is used to implement the fifth step 318, sixth step 322, and seventh step 328. In this case, the fluid stream is used both to discharge the semiconductor material 100 and to clean it.

在第八分步330中,將半導體材料100翻轉。在此情形下, 半導體材料100自第一傳送帶掉落至第二傳送帶。如此一來,在後續的加工步驟中便能觸及半導體材料100之先前被該第一傳送帶遮蓋的部位。 In an eighth step 330, the semiconductor material 100 is flipped. In this case, The semiconductor material 100 is dropped from the first conveyor belt to the second conveyor belt. In this way, the portion of the semiconductor material 100 previously covered by the first conveyor belt can be accessed during subsequent processing steps.

在第九分步332、第十分步334及第十一分步336中,重新 對半導體材料100之當前曝露出來的部位進行吹洗、吸濾及放電。 In the ninth step 332, the tenth step 334 and the eleventh step 336, The currently exposed portions of the semiconductor material 100 are purged, filtered, and discharged.

在第十二分步338中,再度對半導體材料100進行檢驗。若 在先前分步中實施的清潔及放電操作未得到令人滿意的結果,則重新實施相應的分步318、322、328、330、332、334、336。下游的電位分析裝置340用於證明材料100的品質。 In a twelfth step 338, the semiconductor material 100 is again inspected. If The corresponding step 318, 322, 328, 330, 332, 334, 336 is re-implemented if the cleaning and discharging operations performed in the previous step have not yielded satisfactory results. The downstream potential analysis device 340 is used to prove the quality of the material 100.

在第十三分步340中,將經清潔及放電之半導體材料100逐 份填入袋子104。如圖1所示,為此採用導電的袋子104,以便將半導體材料100之靜電荷導出。以清潔的方式對材料100進行包裝。其中採用形式為ESD包裝袋104的抗靜電包裝材料104。此方案為持續性清潔的核心,其能於隨後防止靜電放電(ESD)及靜電吸引(ESA)。對再充電的防範尤為重要,其用於確保:即便在重新拆包後,材料100亦不會過度地吸引粉塵及污物顆粒。 In the thirteenth step 340, the cleaned and discharged semiconductor material 100 is The bag 104 is filled in. As shown in Figure 1, a conductive bag 104 is used for this purpose to derive the static charge of the semiconductor material 100. The material 100 is packaged in a clean manner. An antistatic packaging material 104 in the form of an ESD package 104 is employed. This solution is the core of continuous cleaning, which can subsequently prevent electrostatic discharge (ESD) and electrostatic attraction (ESA). Precaution against recharging is especially important to ensure that material 100 does not overly attract dust and dirt particles even after repacking.

在第十四分步342中,對半導體材料100之電荷進行測量及 記錄。 In a fourteenth step 342, the charge of the semiconductor material 100 is measured and recording.

在第十五分步344中,對袋子104進行封口。 In a fifteenth step 344, the bag 104 is sealed.

在第十六分步346中,透過外包裝348防止袋子104受到污 染。其中,至少將每個袋子104送入一外包裝348。增設的外包裝348能夠提供外部保護,從而確保ESD包裝袋104之外表面的清潔,以及,例如在運輸至無塵室的過程中防止雜質進入。 In the sixteenth step 346, the bag 104 is prevented from being soiled by the outer package 348. dye. Among them, at least each bag 104 is fed into an outer package 348. The additional outer package 348 can provide external protection to ensure cleanness of the outer surface of the ESD package 104 and, for example, to prevent the ingress of impurities during transport to the clean room.

在第十七分步350中,亦對外包裝344進行封口。 In the seventeenth step 350, the outer package 344 is also sealed.

在第十八分步352中,為外包裝344貼上標籤。在此便能將 經清潔、放電及被分成份的半導體材料提供給後續加工步驟。最後,在封口後分別為每個包裝單元348貼上標籤,以便實施跟蹤。 In the eighteenth step 352, the outer package 344 is labeled. Here you will be able to The cleaned, discharged, and sub-component semiconductor material is provided to subsequent processing steps. Finally, each packaging unit 348 is individually labeled after sealing to facilitate tracking.

根據一種經擴展之實施例,本文提出之顆粒分離方案包括以 下步驟:打開步驟300、篩選步驟306、單體化步驟312、第一顆粒測量步驟314、第一靜電放電分步318、透過氣壓及/或流體實現的第一顆粒釋放分步322、第一吸濾步驟328、翻轉或振動步驟330、透過氣壓及/或流體實現的第二顆粒釋放分步332、第二吸濾步驟334、第二靜電放電分步336、第二顆粒測量步驟338、以ESD防護方式實現的第一包裝分步340、電荷檢測步驟342、第一封口分步344、第二包裝分步346、第二封口分步350及貼標籤步驟352。 According to an extended embodiment, the particle separation scheme proposed herein includes The following steps: opening step 300, screening step 306, singulation step 312, first particle measuring step 314, first electrostatic discharge step 318, first particle release step 322 through gas pressure and/or fluid, first a suction filtration step 328, a reverse or vibration step 330, a second particle release step 332, a second suction filtration step 334, a second electrostatic discharge step 336, a second particle measurement step 338, by means of a gas pressure and/or a fluid, The first package step 340, the charge detection step 342, the first seal step 344, the second package step 346, the second seal step 350, and the labeling step 352 are implemented by the ESD protection method.

圖4為本發明之一種實施例中的將半導體材料加工的方法 500的流程圖。方法500與圖3所示方法大體對應。如圖3所示,方法500包括以下步驟:第一打開或拆包分步300、第二篩選分步306、第三單體化分步312、第四測量分步314、第五放電分步318、第六吹洗分步322、第七吸濾分步328、第八翻轉或振動分步330、第九吹洗分步332、第十吸濾分步334、第十一放電分步336、第十二測量分步338、第十三包裝分步340、第十四檢測分步342、第十五封口分步344、第十六包裝分步346、第十七 封口分步350及第十八貼標籤分步352。 4 is a method of processing a semiconductor material in an embodiment of the present invention Flow chart of 500. Method 500 generally corresponds to the method illustrated in FIG. As shown in FIG. 3, the method 500 includes the following steps: a first opening or unpacking step 300, a second screening step 306, a third singulation step 312, a fourth measuring step 314, and a fifth discharging step. 318, a sixth purge step 322, a seventh suction filter step 328, an eighth flip or vibration step 330, a ninth purge step 332, a tenth suction step 334, and an eleventh discharge step 336 , the twelfth measurement step 338, the thirteenth package step 340, the fourteenth test step 342, the fifteenth seal step 344, the sixteenth package step 346, the seventeenth The sealing step 350 and the eighteenth labeling step are 352.

本文提出之方法描述了一種以將材料損耗最小化的方式對 多晶矽進行清潔的節約型方案。可持續之純度(具體形式為零電位狀態)係一種必不可缺的需求。對材料的後續處理並非總是在所需的無塵室條件下進行,故需要此可持續之純度。 The method presented in this paper describes a way to minimize material loss. A saving solution for cleaning polysilicon. Sustainable purity (specific form of zero potential state) is an indispensable requirement. Subsequent processing of the material is not always carried out under the required clean room conditions, so this sustainable purity is required.

透過防止該材料之電磁吸引,便能在後續過程中減少雜質粒 子數。 By preventing the electromagnetic attraction of the material, the hybrid plasmid can be reduced in the subsequent process. Child number.

根據一種實施例,加工方法500包括清潔步驟502、放電步 驟504及製備步驟506。其中,第二篩選分步306、第六吹洗分步322、第七吸濾分步328、第九吹洗分步332及/或第十吸濾分步334係整合成清潔步驟502。第五放電分步318及第十一放電分步336係整合成放電步驟504。第十三包裝分步340、第十五封口分步344、第十六包裝分步346及/或第十七封口分步350係整合在製備步驟506中。 According to an embodiment, the processing method 500 includes a cleaning step 502 and a discharging step Step 504 and preparation step 506. The second screening step 306, the sixth purging step 322, the seventh suction filtering step 328, the ninth purging step 332, and/or the tenth suction filtering step 334 are integrated into the cleaning step 502. The fifth discharge step 318 and the eleventh discharge step 336 are integrated into a discharge step 504. The thirteenth package step 340, the fifteenth seal step 344, the sixteenth package step 346, and/or the seventeenth seal step 350 are integrated in the preparation step 506.

加工的核心為:將多晶矽之表面上的微粒及細粒移除,並且 可持續性地防止重新附著。藉由本文提出之方案,能夠以節約材料、低成本且可靠的方式實現對多晶矽之表面的清潔。 The core of the process is: removing particles and fine particles on the surface of the polycrystalline silicon, and Sustainably prevent reattachment. With the solution proposed herein, the cleaning of the surface of the polysilicon can be achieved in a material-saving, low-cost and reliable manner.

前述圖示實施例僅起示範作用。不同實施例可組合應用,可 將相應實施例作為整體予以結合,或將其中之個別特徵予以結合。某個實施例的特徵亦可作為另一實施例之補充。 The foregoing illustrated embodiment is merely exemplary. Different embodiments can be combined and applied The respective embodiments are combined as a whole, or individual features thereof are combined. Features of an embodiment may also be supplemented by another embodiment.

此外,可按照本文述及之順序,以及按照與其不同之順序來 實施本文提出之處理步驟。 In addition, in the order described herein, and in a different order Implement the processing steps presented in this paper.

若在實施例中用“及/或”將第一特徵與第二特徵連接,則 應理解為,根據一種實施方式,該實施例兼具該第一特徵及該第二特徵,而根據另一實施方式,該實施例僅具該第一特徵或僅具該第二特徵。 If the first feature is connected to the second feature by "and/or" in the embodiment, then It should be understood that, according to an embodiment, the embodiment has both the first feature and the second feature, and according to another embodiment, the embodiment has only the first feature or only the second feature.

100‧‧‧半導體材料 100‧‧‧Semiconductor materials

104‧‧‧袋子 104‧‧‧ bags

300‧‧‧第一分步 300‧‧‧First step

302‧‧‧運輸容器 302‧‧‧Transport container

304‧‧‧傳送帶 304‧‧‧Conveyor belt

306‧‧‧第二分步 306‧‧‧Second step

308‧‧‧篩子 308‧‧‧ sieve

310‧‧‧污物 310‧‧‧Stain

312‧‧‧第三分步 312‧‧‧ third step

314‧‧‧第四分步 314‧‧‧ fourth step

316‧‧‧相機 316‧‧‧ camera

318‧‧‧第五分步 318‧‧‧ fifth step

320‧‧‧電漿流 320‧‧‧ Plasma flow

322‧‧‧第六分步 322‧‧‧ sixth step

324‧‧‧氣流 324‧‧‧ airflow

326‧‧‧鼓風機 326‧‧‧Blowers

328‧‧‧第七分步 328‧‧‧ seventh step

330‧‧‧第八分步 330‧‧‧ eighth step

332‧‧‧第九分步 332‧‧‧Ninth step

334‧‧‧第十分步 334‧‧‧Step 11

336‧‧‧第十一分步 336‧‧11 eleventh step

338‧‧‧第十二分步 338‧‧‧12th step

340‧‧‧第十三分步 340‧‧‧13th step

342‧‧‧第十四分步 342‧‧‧14th step

344‧‧‧第十五分步 344‧‧‧ fifteenth step

346‧‧‧第十六分步 346‧‧‧16th step

348‧‧‧外包裝 348‧‧‧Overpack

350‧‧‧第十七分步 350‧‧‧17th step

352‧‧‧第十八分步 352‧‧‧18th step

Claims (12)

一種將半導體材料(100)加工的方法(500),其中該方法(500)包括以下步驟:對該半導體材料(100)進行放電(318,336,504),其中對該半導體材料(100)進行靜電放電;對該半導體材料(100)進行清潔(306,322,328,332,334,502),其中將顆粒(310)自該半導體材料(100)移除;以及對該半導體材料(100)進行製備(340,344,346,350,506),以供進一步使用。 A method (500) for processing a semiconductor material (100), wherein the method (500) includes the step of discharging (318, 336, 504) the semiconductor material (100), wherein the semiconductor material (100) is subjected to Electrostatic discharge; cleaning (306, 322, 328, 332, 334, 502) of the semiconductor material (100), wherein the particles (310) are removed from the semiconductor material (100); and the semiconductor material (100) Preparation (340, 344, 346, 350, 506) was carried out for further use. 如申請專利範圍第1項之方法(500),其中在該放電步驟(504)中對帶靜電的半導體材料(100)進行放電,從而獲得經放電的半導體材料(100),其中在該清潔步驟(502)中對該經放電之半導體材料(100)進行清潔,從而獲得經清潔的半導體材料(100),其中在該製備步驟(506)中對該經清潔且經放電的半導體材料(100)進行製備。 The method (500) of claim 1, wherein the electrostatically charged semiconductor material (100) is discharged in the discharging step (504) to obtain a discharged semiconductor material (100), wherein the cleaning step is performed The discharged semiconductor material (100) is cleaned in (502) to obtain a cleaned semiconductor material (100), wherein the cleaned and discharged semiconductor material (100) is in the preparation step (506) Preparation was carried out. 如前述申請專利範圍中任一項之方法(500),其中在該清潔步驟(502)中利用重力將顆粒(310)篩出。 The method (500) of any of the preceding claims, wherein the particles (310) are screened out by gravity in the cleaning step (502). 如前述申請專利範圍中任一項之方法(500),其中在該清潔步驟(502)中使用流體流(324)來將顆粒沖去。 The method (500) of any of the preceding claims, wherein the fluid stream (324) is used in the cleaning step (502) to flush the particles. 如申請專利範圍第4項之方法(500),其中在該清潔步驟(502)中,將該流體流(324)送至該半導體材料(100)上,以及/或者,使得該流體流穿過該半導體材料,以及/或者,自該半導體材料(100)對該流體流進行抽吸。 The method (500) of claim 4, wherein in the cleaning step (502), the fluid stream (324) is sent to the semiconductor material (100), and/or the fluid stream is passed through The semiconductor material, and/or from the semiconductor material (100), draws the fluid stream. 如申請專利範圍第4至5項中任一項之方法(100),其中在該清潔步驟(502)中,以至少兩個分步(322,328,332,334)來實施該沖去操作,其中在該等分步(322,328,332,334)之間實施用於翻轉的中間步驟(330)。 The method (100) of any one of claims 4 to 5, wherein in the cleaning step (502), the flushing operation is performed in at least two steps (322, 328, 332, 334) , wherein an intermediate step (330) for flipping is implemented between the steps (322, 328, 332, 334). 如前述申請專利範圍中任一項之方法(500),其中在該放電步驟(504)中,使用電漿流(320)來對該半導體材料(100)進行放電。 The method (500) of any of the preceding claims, wherein in the discharging step (504), the semiconductor material (100) is discharged using a plasma stream (320). 如前述申請專利範圍中任一項之方法(500),包括對該半導體材料(100)之狀態進行檢驗的步驟(314,338,342),其中特別是就顆粒對該半導體材料(100)進行檢驗。 The method (500) of any one of the preceding claims, comprising the step (314, 338, 342) of inspecting the state of the semiconductor material (100), wherein the semiconductor material (100) is carried out, in particular, in terms of particles. test. 如前述申請專利範圍中任一項之方法(500),其中在該製備步驟(506)中,用袋子(104)對該半導體材料(100)進行包裝。 The method (500) of any of the preceding claims, wherein in the preparing step (506), the semiconductor material (100) is packaged with a bag (104). 一種裝置(200),其適於實施如前述申請專利範圍中任一項之方法(500)的所有步驟。 A device (200) adapted to carry out all the steps of the method (500) of any of the preceding claims. 一種電腦程式,其適於實施如前述申請專利範圍中任一項之方法(500)的所有步驟。 A computer program adapted to carry out all the steps of the method (500) of any of the preceding claims. 一種可機讀的儲存介質,在該儲存介質上儲存有如申請專利範圍第11項之電腦程式。 A machine readable storage medium on which a computer program as claimed in claim 11 is stored.
TW104125076A 2014-08-05 2015-08-03 Method and device for treating a semiconductor material TW201618212A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014215404.9A DE102014215404A1 (en) 2014-08-05 2014-08-05 Method and device for processing a semiconductor material

Publications (1)

Publication Number Publication Date
TW201618212A true TW201618212A (en) 2016-05-16

Family

ID=53762178

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104125076A TW201618212A (en) 2014-08-05 2015-08-03 Method and device for treating a semiconductor material

Country Status (3)

Country Link
DE (1) DE102014215404A1 (en)
TW (1) TW201618212A (en)
WO (1) WO2016020242A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677704A (en) * 1986-04-22 1987-07-07 Huggins Richard A Cleaning system for static charged semiconductor wafer surface
JPH06262150A (en) * 1992-05-12 1994-09-20 Matsui Mfg Co Method and device for removing depositions
DE19906224B4 (en) * 1999-02-15 2006-05-24 Infineon Technologies Ag off device
US6809809B2 (en) * 2000-11-15 2004-10-26 Real Time Metrology, Inc. Optical method and apparatus for inspecting large area planar objects
EP1436218B1 (en) * 2001-10-19 2006-08-02 Infineon Technologies AG A bag
JP5002471B2 (en) * 2008-01-31 2012-08-15 東京エレクトロン株式会社 Substrate cleaning apparatus, substrate cleaning method, program, and computer storage medium
DE102011052325A1 (en) * 2011-08-01 2013-02-07 Roth & Rau Ag Cleaning module and cleaning method for substrates and / or substrate carrier

Also Published As

Publication number Publication date
DE102014215404A1 (en) 2016-02-11
WO2016020242A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
US10307763B2 (en) Polycrystalline silicon fragment, method for manufacturing polycrystalline silicon fragment, and polycrystalline silicon block fracture device
JP5784683B2 (en) Polycrystalline silicon packaging
TW200847310A (en) Semiconductor device inspecting apparatus and semiconductor device inspecting method using the same
JP2003237722A (en) Method and apparatus for packaging high purity polysilicon fragments with less contamination and at lower cost, and use of automatic packaging machine
JP2013241330A (en) Polycrystalline silicon
JP2014122153A (en) Packaging of polycrystalline silicon
CN105044586B (en) The continuous inspection method of the electrical characteristics of chip electronic component
TW201618212A (en) Method and device for treating a semiconductor material
CN102683166B (en) Packaged-chip detecting and classifying device
US20180257116A1 (en) Method and apparatus for backside cleaning of substrates
US20120313308A1 (en) Component Supporting Device
CN102744216A (en) High-efficiency environmental-friendly aluminum-plastic dry-type separation system
JP2007003342A (en) Test classification system of electronic component
JP2005028285A (en) Minute magnetic material removing apparatus
TW201321543A (en) Cleaning module and cleaning method for substrates and/or substrate carriers
JP2015058382A (en) Sorting device and sorting system
CN106898559A (en) A kind of semiconductor crystal wafer film magazine particle detection technique
CN108454915A (en) solid state disk static bag packaging production line
JP2013504873A (en) Method and apparatus for detecting a wafer release event in a plasma processing chamber
TWI781986B (en) Manufacturing method of polysilicon processed product and polysilicon processed product
JP4240910B2 (en) Electronic component handling apparatus and electronic component handling method
JP6107305B2 (en) Case cleaning method and case cleaning apparatus
US20120234730A1 (en) Radiation assisted electrostatic separation of semiconductor materials
JP2022039650A (en) Device having roller electrode contact for chip electronic component for inspection
JP2020083421A (en) Packaging device