TW201616928A - Manufacturing method of embedded component package structure - Google Patents

Manufacturing method of embedded component package structure Download PDF

Info

Publication number
TW201616928A
TW201616928A TW103136436A TW103136436A TW201616928A TW 201616928 A TW201616928 A TW 201616928A TW 103136436 A TW103136436 A TW 103136436A TW 103136436 A TW103136436 A TW 103136436A TW 201616928 A TW201616928 A TW 201616928A
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
package
core
circuit
Prior art date
Application number
TW103136436A
Other languages
Chinese (zh)
Other versions
TWI572258B (en
Inventor
余丞博
陳盈儒
Original Assignee
欣興電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欣興電子股份有限公司 filed Critical 欣興電子股份有限公司
Priority to TW103136436A priority Critical patent/TWI572258B/en
Publication of TW201616928A publication Critical patent/TW201616928A/en
Application granted granted Critical
Publication of TWI572258B publication Critical patent/TWI572258B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73259Bump and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92222Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92224Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a build-up interconnect

Abstract

A manufacturing method of embedded component package structure including the following steps is provided. A carrier having two opposite surfaces is provided. The carrier has at least two positioning pillars located on one of the surfaces. A stacked component module is disposed on the surface having the at least two positioning pillars, wherein the stacked component module is located between the at least two positioning pillars. A circuit substrate is provided. The circuit substrate includes a first dielectric layer. The first dielectric layer has at least two positioning holes, a through opening and at least one conductive through-via. Each of the at least two positioning pillars is aligned to the corresponding positioning hole and the circuit substrate is disposed on the carrier, so that each of the at least two positioning pillars is embedded into the corresponding positioning hole and the stacked component module is embedded in the through opening.

Description

內埋式元件封裝結構的製作方法 Buried component packaging structure manufacturing method

本發明是有關於一種封裝結構的製作方法,且特別是有關於一種內埋式元件封裝結構的製作方法。 The present invention relates to a method of fabricating a package structure, and more particularly to a method of fabricating a buried component package structure.

一般而言,線路基板主要是由多層經過圖案化的線路層(patterned circuit layer)以及介電層(dielectric layer)交替疊合所構成。其中,圖案化線路層是由銅箔層(copper foil)經過微影與蝕刻製程定義形成,而介電層配置於圖案化線路層之間,用以隔離圖案化線路層。此外,相疊之圖案化線路層之間是透過貫穿介電層的鍍通孔(Plating Through Hole,PTH)或導電孔道(conductive via)而彼此電性連接。最後,在線路基板的表面配置各種電子元件(例如,主動元件或被動元件),並藉由內部線路之電路設計而達到電子訊號傳遞(electrical signal propagation)之目的。 In general, the circuit substrate is mainly composed of a plurality of patterned patterned circuit layers and a dielectric layer alternately stacked. Wherein, the patterned circuit layer is formed by a copper foil layer through a lithography and etching process, and a dielectric layer is disposed between the patterned circuit layers for isolating the patterned circuit layer. In addition, the stacked patterned circuit layers are electrically connected to each other through a through hole (PTH) or a conductive via that penetrates the dielectric layer. Finally, various electronic components (for example, active components or passive components) are disposed on the surface of the circuit substrate, and electronic signal propagation is achieved by circuit design of the internal circuit.

然而,隨著市場對於電子產品需具有輕薄短小且攜帶方便的需求,因此在目前的電子產品中,係將原先焊接於線路基板 上的電子元件設計為可埋設於線路基板內部的內埋式元件,如此可以增加基板表面之佈局面積,以達到電子產品薄型化之目的。在習知內埋式元件封裝結構的製作過程中,通常是先在介電層形成通孔或盲孔,再將單一個元件內埋於前述通孔或盲孔。因此,在使多個元件內埋於同一層介電層或不同層介電層時,需反覆進行形成通孔或盲孔於介電層以及將元件內埋於前述通孔或盲孔等步驟,不僅製作流程複雜,亦會造成材料的耗費。此外,內埋元件與前述通孔或盲孔的內側壁仍存在間隙,前述間隙不但容易影響壓合時基板與內埋元件之結合性,也會影響壓合時內埋元件與接點對位時的準確度。 However, as the market needs to be light, short, and portable for electronic products, in the current electronic products, the original soldering is to the circuit substrate. The upper electronic component is designed as a buried component that can be buried inside the circuit substrate, so that the layout area of the substrate surface can be increased to achieve the purpose of thinning the electronic product. In the fabrication process of the conventional buried component package structure, a through hole or a blind via is usually formed in the dielectric layer, and a single component is buried in the through hole or the blind via. Therefore, when a plurality of components are buried in the same dielectric layer or different dielectric layers, steps of forming vias or blind vias in the dielectric layer and embedding the components in the vias or blind vias are repeated. Not only the production process is complicated, but also the cost of materials. In addition, there is still a gap between the embedded component and the inner sidewall of the through hole or the blind hole. The gap not only affects the bonding between the substrate and the embedded component during pressing, but also affects the alignment of the embedded component and the contact when pressing. Time accuracy.

本發明提供一種內埋式元件封裝結構的製作方法,具有簡易的製作流程,並能降低製作成本及提高製作良率。 The invention provides a manufacturing method of a buried component packaging structure, which has a simple manufacturing process, can reduce the manufacturing cost and improve the production yield.

本發明提出一種內埋式元件封裝結構的製作方法,其包括以下步驟。首先,提供具有相對兩表面之載板。載板具有位於其中一個表面上的至少兩對位柱。將堆疊元件模組設置於具有前述至少兩對位柱的表面上,其中堆疊元件模組位在前述至少兩對位柱之間。接著,提供線路基板。線路基板包括第一介電層,其中第一介電層具有相對的第一表面與第二表面、位於第二表面的至少兩對位孔以及貫穿第一表面與第二表面的貫穿開口及至少一導通孔。之後,使各個對位柱對準於對應的對位孔,並將線路基 板設置於載板上,以令各個對位柱嵌入對應的對位孔,且堆疊元件模組埋設於貫穿開口內。 The invention provides a method for fabricating a buried component package structure, which comprises the following steps. First, a carrier plate having opposite surfaces is provided. The carrier has at least two alignment posts on one of the surfaces. The stacked component module is disposed on a surface having the foregoing at least two pairs of pillars, wherein the stacked component module is located between the at least two pairs of the pillars. Next, a circuit substrate is provided. The circuit substrate includes a first dielectric layer, wherein the first dielectric layer has opposite first and second surfaces, at least two alignment holes on the second surface, and through openings through the first surface and the second surface and at least a through hole. Afterwards, align the alignment posts to the corresponding alignment holes and route the base The plate is disposed on the carrier plate such that the respective alignment posts are embedded in the corresponding alignment holes, and the stacked component modules are embedded in the through openings.

在本發明的一實施例中,上述的堆疊元件的製作方法包括以下步驟。a.提供核心板,包括核心介電層與位於核心介電層上的核心金屬層。b.圖案化核心金屬層以形成核心線路層,並形成多個貫孔於心介電層。c.形成膠層於核心介電層上,其中膠層與核心線路層位於核心介電層的相對兩側,且膠層覆蓋這些貫孔。將多個元件分別設置於這些貫孔內,且由膠層所固定。e.形成增層結構於核心介電層上,並覆蓋核心線路層、這些貫孔及這些元件。接著,重複上述步驟a.至e.,以分別形成第一封裝體與第二封裝體。之後,利用第一封裝體與第二封裝體形成多個堆疊元件。 In an embodiment of the invention, the method for fabricating the stacked component described above includes the following steps. a. Providing a core board comprising a core dielectric layer and a core metal layer on the core dielectric layer. b. Patterning the core metal layer to form a core circuit layer and forming a plurality of vias in the core dielectric layer. c. forming a glue layer on the core dielectric layer, wherein the glue layer and the core circuit layer are located on opposite sides of the core dielectric layer, and the glue layer covers the through holes. A plurality of components are respectively disposed in the through holes and fixed by the adhesive layer. e. Forming a build-up structure on the core dielectric layer and covering the core circuit layer, the vias, and the components. Next, the above steps a. to e. are repeated to form the first package and the second package, respectively. Thereafter, a plurality of stacked elements are formed using the first package and the second package.

在本發明的一實施例中,上述的利用第一封裝體與第二封裝體以形成多個堆疊元件的製作方法包括以下步驟。首先,單體化第一封裝體以形成多個第一封裝單元。接著,單體化第二封裝體以形成多個第二封裝單元。接著,翻轉這些第二封裝單元,使各個第二裝單元的膠層朝向對應的第一裝單元的膠層。之後,移除各個第二裝單元的膠層,並使各個第一封裝單元疊置於對應的第二封裝單元上,其中各個第一封裝單元的膠層連接對應的第二封裝單元的核心介電層。 In an embodiment of the invention, the method for fabricating the first package and the second package to form a plurality of stacked components includes the following steps. First, the first package is singulated to form a plurality of first package units. Next, the second package is singulated to form a plurality of second package units. Then, the second package units are turned over so that the glue layers of the respective second loading units face the glue layers of the corresponding first loading units. Afterwards, the glue layers of the second package units are removed, and the first package units are stacked on the corresponding second package unit, wherein the glue layers of the first package units are connected to the core of the corresponding second package unit. Electrical layer.

在本發明的一實施例中,上述的e.形成增層結構於核心介電層上,並覆蓋核心線路層、這些貫孔及這些元件的製作方法 包括以下步驟。首先,提供增層介電層與增層金屬層,其中增層金屬層位於增層介電層的表面上。接著,使增層介電層壓合至核心介電層,以令增層介電層覆蓋核心線路層、這些貫孔及這些元件。之後,圖案化增層金屬層以形成增層線路層,並形成多個導電通孔於增層介電層,其中各個導電通孔電性連接增層線路層與對應的元件。 In an embodiment of the present invention, the e. forming a build-up structure on the core dielectric layer, covering the core circuit layer, the through holes, and the manufacturing method of the components Includes the following steps. First, a build-up dielectric layer and a build-up metal layer are provided, wherein the build-up metal layer is on the surface of the build-up dielectric layer. Next, the build-up dielectric is laminated to the core dielectric layer such that the build-up dielectric layer covers the core circuit layer, the vias, and the components. Thereafter, the metallization layer is patterned to form a build-up wiring layer, and a plurality of conductive vias are formed in the build-up dielectric layer, wherein each of the conductive vias is electrically connected to the build-up wiring layer and the corresponding component.

在本發明的一實施例中,上述的載板的製作方法包括以下步驟。首先,提供第二介電層,其中第二介電層的相對兩表面上分別設置有第一金屬層與第二金屬層。之後,圖案化第一金屬層,以形成前述至少兩對位柱。 In an embodiment of the invention, the method for fabricating the above carrier board comprises the following steps. First, a second dielectric layer is provided, wherein the first metal layer and the second metal layer are respectively disposed on opposite surfaces of the second dielectric layer. Thereafter, the first metal layer is patterned to form the aforementioned at least two pairs of pillars.

在本發明的一實施例中,上述的第一金屬層的厚度大於第二金屬層的厚度。 In an embodiment of the invention, the thickness of the first metal layer is greater than the thickness of the second metal layer.

在本發明的一實施例中,上述的線路基板的製作方法包括以下步驟。首先,提供第一介電層、位於第一介電層的第一表面上的第三金屬層以及位於第一介電層的第二表面上的第四金屬層。接著,圖案化第三金屬層與第四金屬層,以分別形成第三線路層與第四線路層。接著,形成貫穿第一表面與第二表面的前述至少一導通孔,以電性連接第三線路層與第四線路層。之後,形成位於第二表面的前述至少兩對位孔,並形成貫穿第一表面與第二表面的貫穿開口。 In an embodiment of the invention, the method for fabricating the above circuit substrate includes the following steps. First, a first dielectric layer, a third metal layer on a first surface of the first dielectric layer, and a fourth metal layer on a second surface of the first dielectric layer are provided. Next, the third metal layer and the fourth metal layer are patterned to form a third wiring layer and a fourth wiring layer, respectively. Then, the at least one via hole penetrating the first surface and the second surface is formed to electrically connect the third circuit layer and the fourth circuit layer. Thereafter, the at least two alignment holes on the second surface are formed, and a through opening penetrating the first surface and the second surface is formed.

在本發明的一實施例中,在將設置於載板上的堆疊元件埋設於凹槽內之後,更包括以下步驟。首先,形成第三介電層以 及第五金屬層於第一介電層的第一表面上,其中第三介電層覆蓋第一介電層的第一表面、第三線路層、前述至少一導通孔、貫穿開口與堆疊元件模組。接著,圖案化第五金屬層以形成第五線路層,並形成至少一第一導電盲孔於第三介電層以電性連接第五線路層與第三線路層。之後,圖案化第二金屬層以形成第二線路層,並形成至少一第二導電盲孔於第二介電層以電性連接第二線路層與第四線路層。 In an embodiment of the invention, after the stacked component disposed on the carrier is embedded in the recess, the following steps are further included. First, a third dielectric layer is formed And a fifth metal layer on the first surface of the first dielectric layer, wherein the third dielectric layer covers the first surface of the first dielectric layer, the third circuit layer, the at least one via hole, the through opening and the stacked component Module. Then, the fifth metal layer is patterned to form a fifth circuit layer, and at least one first conductive via hole is formed on the third dielectric layer to electrically connect the fifth circuit layer and the third circuit layer. Thereafter, the second metal layer is patterned to form a second circuit layer, and at least one second conductive via is formed on the second dielectric layer to electrically connect the second circuit layer and the fourth circuit layer.

在本發明的一實施例中,上述的內埋式元件封裝結構的製作方法,更包括以下步驟。首先,形成第四介電層與第六線路層於第二介電層上,其中第四介電層具有至少一第三導電盲孔,以電性連接第六線路層與第二線路層。接著,形成第五介電層與第七線路層於第三介電層上,其中第五介電層具有至少一第四導電盲孔,以電性連接第七線路層與第五線路層。之後,形成第一焊罩層於第四介電層與第六線路層上,並暴露出前述至少一第三導電盲孔。形成第二焊罩層於第五介電層與第七線路層上,並暴露出前述至少一第四導電盲孔。 In an embodiment of the invention, the method for fabricating the embedded component package structure further includes the following steps. First, a fourth dielectric layer and a sixth circuit layer are formed on the second dielectric layer, wherein the fourth dielectric layer has at least one third conductive via hole to electrically connect the sixth circuit layer and the second circuit layer. Next, a fifth dielectric layer and a seventh circuit layer are formed on the third dielectric layer, wherein the fifth dielectric layer has at least one fourth conductive via hole to electrically connect the seventh circuit layer and the fifth circuit layer. Thereafter, a first solder mask layer is formed on the fourth dielectric layer and the sixth circuit layer, and the at least one third conductive via hole is exposed. Forming a second solder mask layer on the fifth dielectric layer and the seventh circuit layer, and exposing the at least one fourth conductive via hole.

在本發明的一實施例中,上述的對位孔的數量是對應於對位柱而設置。 In an embodiment of the invention, the number of the alignment holes is set corresponding to the alignment pillar.

基於上述,本發明的內埋式元件封裝結構的製作方法是先將欲埋設於線路基板的元件進行堆疊封裝的步驟,其中堆疊元件模組中的元件的數量可視設計需求而有所調整,故能提高製程上的彈性與封裝的積集度(integrity)。接著,將堆疊元件中設置於 具有對位柱的載板上,其中對位柱可作為後續封裝時的對位基準點。另一方面,線路基板具有容置堆疊元件模組所用的貫穿開口以及位於凹槽旁側且對應於對位柱而設置的對位孔,因此在將設置於載板上的堆疊元件模組埋設於線路基板的貫穿開口時,可先使對位柱對準於對位孔並將線路基板設置於載板上,以令對位柱嵌入對位孔,進而將堆疊元件模組埋設於凹槽內,藉以提高封裝對位時的準確度。總體而言,本發明的內埋式元件封裝結構的製作方法不僅具有較為簡易的製作流程,更能提高製作良率、效率以及節省製作成本。 Based on the above, the method for fabricating the embedded component package structure of the present invention is a step of stacking components to be buried in the circuit substrate, wherein the number of components in the stacked component module can be adjusted according to design requirements, It can improve the flexibility of the process and the integrity of the package. Next, the stacked components are placed in A carrier plate with a counter column, wherein the alignment column can be used as a registration reference point for subsequent packaging. On the other hand, the circuit substrate has a through opening for accommodating the stacked component module and a matching hole disposed on the side of the groove and corresponding to the alignment post, thereby burying the stacked component module disposed on the carrier In the through-opening of the circuit substrate, the alignment pillar may be aligned with the alignment hole and the circuit substrate is disposed on the carrier board, so that the alignment pillar is embedded in the alignment hole, and the stacked component module is buried in the groove. In order to improve the accuracy of the package alignment. In general, the method for fabricating the embedded component package structure of the present invention not only has a relatively simple manufacturing process, but also improves production yield, efficiency, and production cost.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

1‧‧‧內埋式元件封裝結構 1‧‧‧Internal component package structure

10‧‧‧核心板 10‧‧‧ core board

11、11’‧‧‧核心介電層 11, 11'‧‧‧ core dielectric layer

11a‧‧‧上表面 11a‧‧‧ upper surface

12‧‧‧核心金屬層 12‧‧‧ core metal layer

12a‧‧‧核心線路層 12a‧‧‧core circuit layer

13、13’‧‧‧貫孔 13, 13’‧‧‧Tongkong

14、14’‧‧‧膠層 14, 14'‧‧‧ glue layer

15、15’‧‧‧元件 15, 15' ‧ ‧ components

15a‧‧‧接墊 15a‧‧‧ pads

16‧‧‧增層結構 16‧‧‧Additional structure

17‧‧‧增層介電層 17‧‧‧Additional dielectric layer

17a、31a、31b‧‧‧表面 17a, 31a, 31b‧‧‧ surface

17b、17c‧‧‧導通孔 17b, 17c‧‧‧ vias

18‧‧‧增層金屬層 18‧‧‧Additional metal layer

18a‧‧‧增層線路層 18a‧‧‧Additional circuit layer

19a‧‧‧第一封裝體 19a‧‧‧First package

19b‧‧‧第二封裝體 19b‧‧‧Second package

19c‧‧‧第一封裝單元 19c‧‧‧First package unit

19d‧‧‧第二封裝單元 19d‧‧‧Second package unit

20‧‧‧堆疊元件模組 20‧‧‧Stacking component module

30‧‧‧載板 30‧‧‧ Carrier Board

31‧‧‧第二介電層 31‧‧‧Second dielectric layer

32‧‧‧第一金屬層 32‧‧‧First metal layer

32a‧‧‧對位柱 32a‧‧‧ alignment column

33‧‧‧第二金屬層 33‧‧‧Second metal layer

33a‧‧‧第二線路層 33a‧‧‧Second circuit layer

34‧‧‧第二導電盲孔 34‧‧‧Second conductive blind hole

40‧‧‧線路基板 40‧‧‧Line substrate

41‧‧‧第一介電層 41‧‧‧First dielectric layer

41a‧‧‧第一表面 41a‧‧‧ first surface

41b‧‧‧第一表面 41b‧‧‧ first surface

42‧‧‧第三金屬層 42‧‧‧ Third metal layer

42a‧‧‧第三線路層 42a‧‧‧ third circuit layer

43‧‧‧第四金屬層 43‧‧‧Fourth metal layer

43a‧‧‧第四線路層 43a‧‧‧4th circuit layer

44‧‧‧導通孔 44‧‧‧through holes

45‧‧‧對位孔 45‧‧‧ alignment hole

46‧‧‧貫穿開口 46‧‧‧through opening

51‧‧‧第三介電層 51‧‧‧ Third dielectric layer

52‧‧‧第五金屬層 52‧‧‧ fifth metal layer

52a‧‧‧第五線路層 52a‧‧‧ fifth circuit layer

53‧‧‧第一導電盲孔 53‧‧‧First conductive blind hole

55a‧‧‧第四介電層 55a‧‧‧4th dielectric layer

55b‧‧‧第六線路層 55b‧‧‧ sixth circuit layer

55c‧‧‧第三導電盲孔 55c‧‧‧3rd conductive blind hole

56a‧‧‧第五介電層 56a‧‧‧ fifth dielectric layer

56b‧‧‧第七線路層 56b‧‧‧ seventh circuit layer

56c‧‧‧第四導電盲孔 56c‧‧‧4th conductive blind hole

57‧‧‧第一焊罩層 57‧‧‧First welding cap

58‧‧‧第二焊罩層 58‧‧‧Second welding cap

圖1A至圖1H是本發明一實施例的堆疊元件的製作流程示意圖。 1A to 1H are schematic diagrams showing a manufacturing process of a stacked component according to an embodiment of the present invention.

圖2A至圖2B是本發明一實施例的載板的製作流程示意圖。 2A to 2B are schematic views showing a manufacturing process of a carrier board according to an embodiment of the present invention.

圖3A至圖3G是圖1H的堆疊元件設置於圖2B的載板後而埋設於線路基板的製作流程示意圖。 3A to FIG. 3G are schematic diagrams showing the manufacturing process of the stacked component of FIG. 1H after being disposed on the carrier of FIG. 2B and buried in the circuit substrate.

圖1A至圖1H是本發明一實施例的堆疊元件的製作流程 示意圖。首先,請參考圖1A,提供核心板10,其包括核心介電層11與位於核心介電層11上的核心金屬層12。核心介電層11的材質可為環氧樹脂、玻璃纖維或玻纖環氧樹脂,而核心金屬層12的材質可為銅,但本發明不限於此。 1A to 1H are diagrams showing a manufacturing process of a stacked component according to an embodiment of the present invention. schematic diagram. First, referring to FIG. 1A, a core board 10 is provided that includes a core dielectric layer 11 and a core metal layer 12 on the core dielectric layer 11. The material of the core dielectric layer 11 may be epoxy resin, glass fiber or glass epoxy resin, and the core metal layer 12 may be made of copper, but the invention is not limited thereto.

接著,請參考圖1B,圖案化核心金屬層12以形成核心線路層12a,並形成多個貫孔13於核心介電層11,其中圖案化核心金屬層12的方式可包括微影蝕刻製程,而形成貫孔11b的方式可包括雷射鑽孔或機械鑽孔。接著,形成膠層14於核心介電層11上,其中膠層14可為聚醯亞胺膠帶(或膠膜)、乙烯膠帶(或膠膜)或玻璃紙膠帶(或膠膜),惟本發明不限於此。詳細而言,膠層14與核心線路層12a位於核心介電層11的相對兩側,且膠層14覆蓋了這些貫孔13。亦即,這些貫孔13僅暴露出鄰近核心線路層12a所在側的開口,以供後續製程所用。 Next, referring to FIG. 1B, the core metal layer 12 is patterned to form the core wiring layer 12a, and a plurality of through holes 13 are formed in the core dielectric layer 11. The manner of patterning the core metal layer 12 may include a photolithography process. The manner in which the through holes 11b are formed may include laser drilling or mechanical drilling. Next, a glue layer 14 is formed on the core dielectric layer 11, wherein the glue layer 14 can be a polyimide film (or film), a vinyl tape (or film) or a cellophane tape (or film), but the invention Not limited to this. In detail, the glue layer 14 and the core circuit layer 12a are located on opposite sides of the core dielectric layer 11, and the glue layer 14 covers the through holes 13. That is, the through holes 13 expose only the opening adjacent to the side where the core wiring layer 12a is located for use in subsequent processes.

接著,請參考圖1C,將多個元件15,例如是被動元件或主動元件,分別設置於這些貫孔13內。此時,元件15可接合至膠層14,並透過膠層14黏貼固定於貫孔13內,藉以防止元件15在後續製程中產生偏移。另一方面,元件15的接墊15a與核心介電層11的上表面11a實質上為共平面。接著,請參考圖1D與圖1E,形成增層結構16於核心介電層11上,並覆蓋核心線路層12a、貫孔13及元件15。具體來說,增層結構16的製作是先提供增層介電層17與增層金屬層18,其中增層金屬層18位於增層介電層17的表面17a上。接著,使增層介電層17壓合至核心介電層11, 以令增層介電層17覆蓋核心線路層12a、這些貫孔13及這些元件15。通常而言,增層介電層17的材質可為聚醯亞胺、聚二甲基矽氧烷或ABF膜,又以ABF膜為佳,因此當增層介電層17壓合至核心介電層11時,可填入貫孔13內,並包覆貫孔13內的元件15,藉以將元件15牢固地埋設於核心介電層11。之後,圖案化增層金屬層18以形成增層線路層18a,並形成多個導電通孔17b於增層介電層17,其中各個導電通孔17b電性連接增層線路18a層與對應的元件15。接著,重複如圖1A至圖1E的製作步驟,以分別形成第一封裝體19a與第二封裝體19b(繪示於圖1G)。 Next, referring to FIG. 1C, a plurality of components 15, such as passive components or active components, are disposed in the through holes 13, respectively. At this time, the component 15 can be bonded to the adhesive layer 14 and adhered to the through hole 13 through the adhesive layer 14, thereby preventing the component 15 from being displaced in the subsequent process. On the other hand, the pads 15a of the component 15 are substantially coplanar with the upper surface 11a of the core dielectric layer 11. Next, referring to FIG. 1D and FIG. 1E, a build-up structure 16 is formed on the core dielectric layer 11 and covers the core circuit layer 12a, the via 13 and the component 15. Specifically, the build-up structure 16 is formed by first providing a build-up dielectric layer 17 and a build-up metal layer 18, wherein the build-up metal layer 18 is on the surface 17a of the build-up dielectric layer 17. Next, the build-up dielectric layer 17 is pressed to the core dielectric layer 11, The build-up dielectric layer 17 covers the core circuit layer 12a, the through holes 13, and the elements 15. Generally, the material of the build-up dielectric layer 17 may be a polyimide, a polydimethylsiloxane or an ABF film, and an ABF film is preferred, so that the build-up dielectric layer 17 is pressed to the core. The electric layer 11 can be filled into the through hole 13 and cover the element 15 in the through hole 13 to firmly embed the element 15 in the core dielectric layer 11. Thereafter, the build-up metal layer 18 is patterned to form the build-up wiring layer 18a, and a plurality of conductive vias 17b are formed in the build-up dielectric layer 17, wherein each of the conductive vias 17b is electrically connected to the layer of the build-up line 18a and the corresponding layer Element 15. Next, the fabrication steps of FIGS. 1A to 1E are repeated to form a first package 19a and a second package 19b (shown in FIG. 1G), respectively.

之後,利用第一封裝體19a與第二封裝體19b以形成多個堆疊元件模組20,其製作步驟如圖1F至圖1H所示。首先,單體化第一封裝體19a以形成多個第一封裝單元19c,並單體化第二封裝體19b以形成多個第二封裝單元19d。通常而言,單體化製程可藉由雷射切割的方式以完成,且任兩相鄰的貫孔13的其一的中心軸線(圖未示)與預定切割線(圖未示)之間的距離以及任兩相鄰的貫孔13的另一的中心軸線(圖未示)與預定切割線(圖未示)之間的距離實質上相等。另一方面,第一封裝單元19c可透過膠層14而彼此連接,且第二封裝單元19d可透過膠層14’而彼此連接。接著,翻轉這些第二封裝單元19d,使膠層14’朝向膠層14。之後,移除膠層14’並使各個第一封裝單元19c疊置於對應的第二封裝單元19d上,其中膠層14會連接對應的第二封裝單元19d的核心介電層11’,以令第一封裝單元19c與對應的第二封裝單元 19d膠合固定。此時,各個第一封裝單元19c的元件15會與對應的第二封裝單元19d的元件15’並列設置,且核心介電層11的貫孔13的中心軸線(圖未示)與核心介電層11’的貫孔13’的中心軸線(圖未示)為同軸。又,連接各個第一封裝單元19c的膠層14經施力後可分離成多個片段,並接合於第一封裝單元19c與對應的第二封裝單元19d之間。至此,由各個第一封裝單元19c與對應的第二封裝單元19d堆疊而成的多個堆疊元件模組20(圖1H示意地繪示出一個)已大致完成。 Thereafter, the first package body 19a and the second package body 19b are used to form a plurality of stacked component modules 20, and the manufacturing steps thereof are as shown in FIGS. 1F to 1H. First, the first package 19a is singulated to form a plurality of first package units 19c, and the second package 19b is singulated to form a plurality of second package units 19d. In general, the singulation process can be accomplished by laser cutting, and between the center axis of one of the two adjacent through holes 13 (not shown) and the predetermined cutting line (not shown). The distance and the distance between the other central axis (not shown) of any two adjacent through holes 13 and the predetermined cutting line (not shown) are substantially equal. On the other hand, the first package unit 19c can be connected to each other through the adhesive layer 14, and the second package unit 19d can be connected to each other through the adhesive layer 14'. Next, the second package units 19d are turned over so that the glue layer 14' faces the glue layer 14. Thereafter, the adhesive layer 14' is removed and the respective first package units 19c are stacked on the corresponding second package unit 19d, wherein the glue layer 14 is connected to the core dielectric layer 11' of the corresponding second package unit 19d. Having the first package unit 19c and the corresponding second package unit 19d glued to fix. At this time, the elements 15 of the respective first package units 19c are juxtaposed with the elements 15' of the corresponding second package unit 19d, and the central axis (not shown) of the through holes 13 of the core dielectric layer 11 and the core dielectric The central axis (not shown) of the through hole 13' of the layer 11' is coaxial. Moreover, the glue layer 14 connecting the first package units 19c can be separated into a plurality of segments after being applied, and is bonded between the first package unit 19c and the corresponding second package unit 19d. So far, a plurality of stacked component modules 20 (one of which is schematically illustrated in FIG. 1H) stacked by the respective first package units 19c and the corresponding second package units 19d have been substantially completed.

需說明的是,本發明並不限定於圖1F至圖1H所示的利用第一封裝體19a與第二封裝體19b以形成多個堆疊元件模組20的製作步驟。在未繪示的實施例中,在單體化第一封裝體19a與第二封裝體19b之前,可先翻轉第二封裝體19b,使第二封裝體19b的膠層14’朝向第一封裝體19a的膠層14。接著,移除膠層14’,並使第一封裝體19a疊置於第二封裝體19b上,其中膠層14膠層會連接第二封裝體19b的核心介電層11’。之後,進行單體化製程,以沿預定切割線(圖未示)切割相疊構的第一封裝體19a與第二封裝體19b,進而分割出多個堆疊元件模組20。 It should be noted that the present invention is not limited to the manufacturing steps of forming the plurality of stacked component modules 20 by using the first package 19a and the second package 19b as shown in FIG. 1F to FIG. 1H. In the embodiment, the second package 19b may be flipped before the first package 19a and the second package 19b are singulated, so that the glue layer 14' of the second package 19b faces the first package. The glue layer 14 of the body 19a. Next, the adhesive layer 14' is removed, and the first package 19a is stacked on the second package 19b, wherein the adhesive layer 14 is bonded to the core dielectric layer 11' of the second package 19b. Thereafter, a singulation process is performed to cut the stacked first package body 19a and the second package body 19b along a predetermined cutting line (not shown), thereby dividing the plurality of stacked element modules 20.

圖2A至圖2B是本發明一實施例的載板的製作流程示意圖。請參考圖2A至圖2B,首先,提供第二介電層31,其中第二介電層31的相對兩表面31a、31b上分別設置有第一金屬層32與第二金屬層33,且第一金屬層32的厚度例如是大於第二金屬層33的厚度。之後,圖案化第一金屬層32,以形成至少兩對位柱 32a(圖2B示意地繪示出兩個),並暴露出表面31a的部分。至此,已大致完成載板30的製作。 2A to 2B are schematic views showing a manufacturing process of a carrier board according to an embodiment of the present invention. Referring to FIG. 2A to FIG. 2B, first, a second dielectric layer 31 is provided, wherein the first metal layer 32 and the second metal layer 33 are respectively disposed on the opposite surfaces 31a, 31b of the second dielectric layer 31, and The thickness of a metal layer 32 is, for example, greater than the thickness of the second metal layer 33. Thereafter, the first metal layer 32 is patterned to form at least two pairs of pillars 32a (two are schematically depicted in Figure 2B) and expose portions of surface 31a. So far, the production of the carrier 30 has been substantially completed.

圖3A至圖3G是圖1H的堆疊元件設置於圖2B的載板後而埋設於線路基板的製作流程示意圖,其中圖3A至圖3C繪示出線路基板40的製作步驟。請參考圖3A至圖3C,首先,提供第一介電層41,其中第一介電層41具有相對的第一表面41a與第二表面41b,且在的第一表面41a與第二表面41b分別形成有第三金屬層42與第四金屬層43。接著,圖案化第三金屬層42與第四金屬層43,以分別形成第三線路層42a與第四線路層43a。接著,形成貫穿第一表面41a與第二表面41b的至少一導通孔44(圖3C示意地繪示出兩個),以電性連接第三線路層42a與第四線路層43a。之後,形成位於第二表面41b的至少兩對位孔45(圖3C示意地繪示出兩個),並形成貫穿第一表面41a與第二表面41b的貫穿開口46。至此,已大致完成線路基板40的製作。 3A to FIG. 3G are schematic diagrams showing the fabrication process of the stacked substrate of FIG. 1H after being disposed on the carrier of FIG. 2B and embedded in the circuit substrate, wherein FIGS. 3A to 3C illustrate the steps of fabricating the circuit substrate 40. Referring to FIG. 3A to FIG. 3C, first, a first dielectric layer 41 is provided, wherein the first dielectric layer 41 has opposite first and second surfaces 41a, 41b, and the first surface 41a and the second surface 41b. A third metal layer 42 and a fourth metal layer 43 are formed, respectively. Next, the third metal layer 42 and the fourth metal layer 43 are patterned to form a third wiring layer 42a and a fourth wiring layer 43a, respectively. Next, at least one via hole 44 (two are schematically shown in FIG. 3C) penetrating through the first surface 41a and the second surface 41b is formed to electrically connect the third wiring layer 42a and the fourth wiring layer 43a. Thereafter, at least two alignment holes 45 (two are schematically illustrated in FIG. 3C) on the second surface 41b are formed, and a through opening 46 penetrating the first surface 41a and the second surface 41b is formed. So far, the fabrication of the circuit substrate 40 has been substantially completed.

通常而言,導通孔44、對位孔45與貫穿開口46可以是透過雷射鑽孔或機械鑽孔的方式製作而得,其中導通孔44是在形成貫孔於第一介電層41後,再以電鍍銅或其他導電材質(例如導電膏)填充於前述貫孔的方式製作而得。 Generally, the via hole 44, the alignment hole 45 and the through hole 46 may be formed by laser drilling or mechanical drilling, wherein the via hole 44 is formed after the through hole is formed in the first dielectric layer 41. And then made by electroplating copper or other conductive material (for example, conductive paste) filled in the through hole.

接著,請參考圖3D,將堆疊元件模組20設置於載板30中具有對位柱32的表面31a上,其中堆疊元件模組20例如是位於這兩個對位柱32a之間。此處,對位孔45的數量是對應對位柱32a而設置,且各個對位孔45的深度實質上等於對應的對位柱32a 的高度。另一方面,使各個對位柱32a對準於對應的對位孔45,並將線路基板40設置於載板30上,以令各個對位柱32a嵌入對應的對位孔45,且堆疊元件模組20埋設於貫穿開口46內。此時,第四線路層43a會與第二介電層31的表面31a相連接。簡言之,在上述製作步驟中,可透過對位柱32a與對位孔45的對位,以提高封裝對位時的準確度。 Next, referring to FIG. 3D, the stacked component module 20 is disposed on the surface 31a of the carrier 30 having the alignment pillar 32, wherein the stacked component module 20 is located, for example, between the two alignment pillars 32a. Here, the number of the alignment holes 45 is set corresponding to the alignment pillars 32a, and the depth of each of the alignment holes 45 is substantially equal to the corresponding alignment pillar 32a. the height of. On the other hand, each of the alignment posts 32a is aligned with the corresponding alignment holes 45, and the circuit substrate 40 is disposed on the carrier 30 so that the respective alignment posts 32a are embedded in the corresponding alignment holes 45, and the stacked components are stacked. The module 20 is embedded in the through opening 46. At this time, the fourth wiring layer 43a is connected to the surface 31a of the second dielectric layer 31. In short, in the above manufacturing step, the alignment of the alignment pillar 32a and the alignment hole 45 can be transmitted to improve the accuracy of the package alignment.

接著,請參考圖3E,形成第三介電層51以及第五金屬層52於第一介電層41的第一表面41a上,其中第三介電層51可覆蓋第一表面41a、第三線路層42a、導通孔44、貫穿開口46與堆疊元件模組20。通常而言,第三介電層51的材質可為聚醯亞胺、聚二甲基矽氧烷或ABF膜,又以ABF膜為佳,因此當第三介電層51壓合至第一介電層41的第一表面41a時,可填入導通孔44與貫穿開口46內,並包覆貫穿開口46內的堆疊元件模組20,藉以將堆疊元件模組20牢固地埋設於第一介電層41。 Next, referring to FIG. 3E, a third dielectric layer 51 and a fifth metal layer 52 are formed on the first surface 41a of the first dielectric layer 41, wherein the third dielectric layer 51 covers the first surface 41a and the third surface. The wiring layer 42a, the via hole 44, the through opening 46, and the stacked component module 20. Generally, the material of the third dielectric layer 51 may be a polyimide, a polydimethyl siloxane or an ABF film, and an ABF film is preferred, so when the third dielectric layer 51 is pressed to the first The first surface 41a of the dielectric layer 41 can be filled into the via hole 44 and the through opening 46, and covers the stacked component module 20 in the through opening 46, thereby firmly burying the stacked component module 20 in the first Dielectric layer 41.

接著,請參考圖3F,圖案化第五金屬層52以形成第五線路層52a,並形成至少一第一導電盲孔53(圖3F繪示出多個)於第三介電層51以電性連接第五線路層52a與第三線路層42a以及導電通孔17b。另一方面,圖案化第二金屬層33以形成第二線路層33a,並形成至少一第二導電盲孔34(圖3F繪示出多個)於第二介電層31以電性連接第二線路層33a與第四線路層43a以及導電通孔17c。 Next, referring to FIG. 3F, the fifth metal layer 52 is patterned to form a fifth wiring layer 52a, and at least one first conductive blind via 53 (a plurality of FIG. 3F is illustrated) is electrically formed on the third dielectric layer 51. The fifth wiring layer 52a and the third wiring layer 42a and the conductive via 17b are connected. On the other hand, the second metal layer 33 is patterned to form the second wiring layer 33a, and at least one second conductive blind via 34 (shown in FIG. 3F) is electrically connected to the second dielectric layer 31. The second wiring layer 33a and the fourth wiring layer 43a and the conductive via 17c.

最後,請參考圖3G,形成第四介電層55a與第六線路層 55b於第二介電層31上,其中第四介電層55a具有至少一第三導電盲孔55c(圖3G繪示出多個),以電性連接第六線路層55b與第二線路層33a以及第二導電通孔34。另一方面,形成第五介電層56a與第七線路層56b於第三介電層51上,其中五介電層56a具有至少一第四導電盲孔56c(圖3G繪示出多個),以電性連接第七線路層56b與第五線路層52a與第一導電盲孔53。一般而言,為防止線路誤焊的情事產生,可形成第一焊罩層57於第四介電層55a與第六線路層55b上,而僅暴露出第三導電盲孔55c。相似地,形成第二焊罩層58於第五介電層56a與第七線路層56b上,僅暴露出第四導電盲孔56c。至此,已大致完成內埋式元件封裝結構1的製作。 Finally, referring to FIG. 3G, a fourth dielectric layer 55a and a sixth circuit layer are formed. 55b is on the second dielectric layer 31, wherein the fourth dielectric layer 55a has at least one third conductive blind via 55c (shown in FIG. 3G) to electrically connect the sixth circuit layer 55b and the second circuit layer. 33a and a second conductive via 34. On the other hand, the fifth dielectric layer 56a and the seventh wiring layer 56b are formed on the third dielectric layer 51, wherein the five dielectric layers 56a have at least one fourth conductive blind via 56c (a plurality of FIG. 3G is illustrated) The seventh circuit layer 56b and the fifth circuit layer 52a and the first conductive blind via 53 are electrically connected. In general, to prevent the occurrence of line mis-welding, the first solder mask layer 57 may be formed on the fourth dielectric layer 55a and the sixth wiring layer 55b, and only the third conductive blind via 55c may be exposed. Similarly, a second solder mask layer 58 is formed on the fifth dielectric layer 56a and the seventh wiring layer 56b, and only the fourth conductive via hole 56c is exposed. So far, the fabrication of the buried component package structure 1 has been substantially completed.

綜上所述,本發明的內埋式元件封裝結構的製作方法是先將欲埋設於線路基板的元件進行堆疊封裝的步驟,其中堆疊元件模組中的元件的數量可視設計需求而有所調整,故能提高製程上的彈性與封裝的積集度(integrity)。接著,將堆疊元件中設置於具有對位柱的載板上,其中對位柱可作為後續封裝時的對位基準點。另一方面,線路基板具有容置堆疊元件所用的貫穿開口以及位於貫穿開口旁側且對應於對位柱而設置的對位孔,因此在將設置於載板上的堆疊元件模組埋設於線路基板的貫穿開口時,可先使對位柱柱對準於對位柱孔並將線路基板設置於載板上,以令對位柱柱嵌入對位柱孔,進而將堆疊元件模組埋設於凹槽內,藉以提高封裝對位時的準確度。總體而言,本發明的內埋式元件封裝 結構的製作方法不僅具有較為簡易的製作流程,更能提高製作良率、效率以及節省製作成本。 In summary, the method for fabricating the embedded component package structure of the present invention is a step of stacking components to be buried in a circuit substrate, wherein the number of components in the stacked component module can be adjusted according to design requirements. Therefore, the flexibility of the process and the integrity of the package can be improved. Next, the stacked components are disposed on the carrier having the alignment pillars, wherein the alignment pillars can serve as alignment reference points for subsequent packaging. On the other hand, the circuit substrate has a through opening for accommodating the stacked component and a registration hole disposed on the side of the through opening and corresponding to the alignment post, thereby embedding the stacked component module disposed on the carrier on the line When the substrate is penetrated through the opening, the alignment pillar can be aligned with the alignment pillar hole and the circuit substrate is disposed on the carrier plate, so that the alignment pillar is embedded in the alignment pillar hole, and the stacked component module is buried in the substrate. In the groove, to improve the accuracy of the package alignment. In general, the embedded component package of the present invention The method of fabricating the structure not only has a relatively simple production process, but also improves the production yield, efficiency, and production cost.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

1‧‧‧內埋式元件封裝結構 1‧‧‧Internal component package structure

20‧‧‧堆疊元件模組 20‧‧‧Stacking component module

30‧‧‧載板 30‧‧‧ Carrier Board

31‧‧‧第二介電層 31‧‧‧Second dielectric layer

32a‧‧‧對位柱 32a‧‧‧ alignment column

33a‧‧‧第二線路層 33a‧‧‧Second circuit layer

34‧‧‧第二導電盲孔 34‧‧‧Second conductive blind hole

40‧‧‧線路基板 40‧‧‧Line substrate

41‧‧‧第一介電層 41‧‧‧First dielectric layer

42a‧‧‧第三線路層 42a‧‧‧ third circuit layer

43a‧‧‧第四線路層 43a‧‧‧4th circuit layer

44‧‧‧導通孔 44‧‧‧through holes

45‧‧‧對位孔 45‧‧‧ alignment hole

46‧‧‧貫穿開口 46‧‧‧through opening

51‧‧‧第三介電層 51‧‧‧ Third dielectric layer

52a‧‧‧第五線路層 52a‧‧‧ fifth circuit layer

53‧‧‧第一導電盲孔 53‧‧‧First conductive blind hole

55a‧‧‧第四介電層 55a‧‧‧4th dielectric layer

55b‧‧‧第六線路層 55b‧‧‧ sixth circuit layer

55c‧‧‧第三導電盲孔 55c‧‧‧3rd conductive blind hole

56a‧‧‧第五介電層 56a‧‧‧ fifth dielectric layer

56b‧‧‧第七線路層 56b‧‧‧ seventh circuit layer

56c‧‧‧第四導電盲孔 56c‧‧‧4th conductive blind hole

57‧‧‧第一焊罩層 57‧‧‧First welding cap

58‧‧‧第二焊罩層 58‧‧‧Second welding cap

Claims (10)

一種內埋式元件封裝結構的製作方法,包括:提供一具有相對兩表面之載板,該載板具有位於該兩表面的其中一者上的至少兩對位柱;將一堆疊元件模組設置於具有該至少兩對位柱的該表面上,其中該堆疊元件模組位在該至少兩對位柱之間;提供一線路基板,包括一第一介電層,其中該第一介電層具有相對的一第一表面與一第二表面、位於該第二表面的至少兩對位孔以及貫穿該第一表面與該第二表面的一貫穿開口及至少一導通孔;以及使各該對位柱對準於對應的該對位孔,並將該線路基板設置於該載板上,以令各該對位柱嵌入對應的該對位孔,且該堆疊元件模組埋設於該貫穿開口內。 A method of fabricating a buried component package structure includes: providing a carrier having opposite surfaces, the carrier having at least two alignment posts on one of the two surfaces; and setting a stacked component module On the surface having the at least two pairs of pillars, wherein the stacked component module is located between the at least two pairs of pillars; providing a circuit substrate comprising a first dielectric layer, wherein the first dielectric layer Having a first surface and a second surface, at least two pairs of holes on the second surface, and a through opening and at least one through hole extending through the first surface and the second surface; Positioning the column on the corresponding alignment hole, and arranging the circuit substrate on the carrier, so that each of the alignment posts is embedded in the corresponding alignment hole, and the stacked component module is embedded in the through opening Inside. 如申請專利範圍第1項所述的內埋式元件封裝結構的製作方法,其中該堆疊元件模組的製作方法包括:a.提供一核心板,包括一核心介電層與位於該核心介電層上的一核心金屬層;b.圖案化該核心金屬層以形成一核心線路層,並形成多個貫孔於該核心介電層;c.形成一膠層於該核心介電層上,其中該膠層與該核心線路層位於該核心介電層的相對兩側,且該膠層覆蓋該些貫孔;d.將多個元件分別設置於該些貫孔內,且由該膠層所固定; e.形成一增層結構於該核心介電層上,並覆蓋該核心線路層、該些貫孔及該些元件;重複上述步驟a.至e.,以分別形成一第一封裝體與一第二封裝體;以及利用該第一封裝體與該第二封裝體形成多個該堆疊元件模組。 The manufacturing method of the embedded component package structure according to claim 1, wherein the method for fabricating the stacked component module comprises: a. providing a core board, including a core dielectric layer and a dielectric layer located at the core a core metal layer on the layer; b. patterning the core metal layer to form a core circuit layer, and forming a plurality of through holes in the core dielectric layer; c. forming a glue layer on the core dielectric layer, Wherein the adhesive layer and the core circuit layer are located on opposite sides of the core dielectric layer, and the adhesive layer covers the through holes; d. a plurality of components are respectively disposed in the through holes, and the adhesive layer is Fixed e. forming a build-up structure on the core dielectric layer, and covering the core circuit layer, the through holes and the components; repeating the steps a. to e. to form a first package and a a second package; and forming a plurality of the stacked component modules by using the first package and the second package. 如申請專利範圍第2項所述的內埋式元件封裝結構的製作方法,其中利用該第一封裝體與該第二封裝體以形成多個該堆疊元件模組的製作方法包括:單體化該第一封裝體以形成多個第一封裝單元;單體化該第二封裝體以形成多個第二封裝單元;翻轉該些第二封裝單元,使各該第二裝單元的該膠層朝向對應的該第一裝單元的該膠層;以及移除各該第二裝單元的該膠層,並使各該第一封裝單元疊置於對應的該第二封裝單元上,其中各該第一封裝單元的該膠層連接對應的該第二封裝單元的該核心介電層。 The manufacturing method of the embedded component package structure according to the second aspect of the invention, wherein the method for manufacturing the plurality of the stacked component modules by using the first package and the second package comprises: singulation The first package body is formed to form a plurality of first package units; the second package body is singulated to form a plurality of second package units; and the second package units are turned over to make the glue layer of each of the second package units And facing the corresponding layer of the first loading unit; and removing the glue layer of each of the second loading units, and stacking the first packaging units on the corresponding second packaging unit, wherein each of the layers The glue layer of the first package unit is connected to the corresponding core dielectric layer of the second package unit. 如申請專利範圍第2項所述的內埋式元件封裝結構的製作方法,其中e.形成該增層結構於該核心介電層上,並覆蓋該核心線路層、該些貫孔及該些元件的製作方法包括:提供一增層介電層與一增層金屬層,其中該增層金屬層位於該增層介電層的一表面上;使該增層介電層壓合至該核心介電層,以令該增層介電層覆 蓋該核心線路層、該些貫孔及該些元件;以及圖案化該增層金屬層以形成增層線路層,並形成多個導電通孔於該增層介電層,其中各該導電通孔電性連接該增層線路層與對應的該元件。 The method for fabricating a buried component package structure according to claim 2, wherein e. forming the buildup structure on the core dielectric layer, covering the core circuit layer, the through holes, and the The method of manufacturing the device includes: providing a build-up dielectric layer and a build-up metal layer, wherein the build-up metal layer is on a surface of the build-up dielectric layer; and the build-up dielectric is laminated to the core a dielectric layer to cover the build-up dielectric layer Covering the core circuit layer, the through holes and the components; and patterning the build-up metal layer to form a build-up wiring layer, and forming a plurality of conductive vias in the build-up dielectric layer, wherein each of the conductive vias The holes are electrically connected to the build-up wiring layer and the corresponding component. 如申請專利範圍第1項所述的內埋式元件封裝結構的製作方法,其中該載板的製作方法包括:提供一第二介電層,其中該第二介電層的相對兩表面上分別設置有一第一金屬層與一第二金屬層;以及圖案化該第一金屬層,以形成該至少兩對位柱。 The method of fabricating a buried component package structure according to claim 1, wherein the method of fabricating the carrier comprises: providing a second dielectric layer, wherein the opposite surfaces of the second dielectric layer are respectively A first metal layer and a second metal layer are disposed; and the first metal layer is patterned to form the at least two pairs of pillars. 如申請專利範圍第5項所述的內埋式元件封裝結構的製作方法,其中該第一金屬層的厚度大於該第二金屬層的厚度。 The method of fabricating a buried component package structure according to claim 5, wherein the thickness of the first metal layer is greater than the thickness of the second metal layer. 如申請專利範圍第5項所述的內埋式元件封裝結構的製作方法,其中該線路基板的製作方法包括:提供該第一介電層、位於該第一介電層的該第一表面上的一第三金屬層以及位於該第一介電層的該第二表面上的一第四金屬層;圖案化該第三金屬層與該第四金屬層,以分別形成一第三線路層與一第四線路層;形成貫穿該第一表面與該第二表面的該至少一導通孔,以電性連接該第三線路層與該第四線路層;以及形成位於該第二表面的該至少兩對位孔,並形成貫穿該第一表面與該第二表面的該貫穿開口。 The method of fabricating a buried component package structure according to claim 5, wherein the method of fabricating the circuit substrate comprises: providing the first dielectric layer on the first surface of the first dielectric layer a third metal layer and a fourth metal layer on the second surface of the first dielectric layer; patterning the third metal layer and the fourth metal layer to form a third circuit layer and a fourth circuit layer; the at least one via hole penetrating the first surface and the second surface to electrically connect the third circuit layer and the fourth circuit layer; and forming the at least the second surface Two alignment holes and forming the through opening through the first surface and the second surface. 如申請專利範圍第7項所述的內埋式元件封裝結構的製作方法,其中在將設置於該載板上的該堆疊元件模組埋設於該貫穿開口中之後,更包括:形成一第三介電層以及一第五金屬層於該第一介電層的該第一表面上,其中該第三介電層覆蓋該第一介電層的該第一表面、該第三線路層、該至少一導通孔、該貫穿開口與該堆疊元件;圖案化該第五金屬層以形成一第五線路層,並形成至少一第一導電盲孔於該第三介電層以電性連接該第五線路層與該第三線路層;以及圖案化該第二金屬層以形成一第二線路層,並形成至少一第二導電盲孔於該第二介電層以電性連接該第二線路層與該第四線路層。 The method of manufacturing the embedded component package structure according to claim 7, wherein after the stacked component module disposed on the carrier is embedded in the through opening, the method further comprises: forming a third a dielectric layer and a fifth metal layer on the first surface of the first dielectric layer, wherein the third dielectric layer covers the first surface of the first dielectric layer, the third circuit layer, At least one via hole, the through opening and the stacked component; patterning the fifth metal layer to form a fifth circuit layer, and forming at least one first conductive blind via to electrically connect the third dielectric layer a fifth wiring layer and the third wiring layer; and patterning the second metal layer to form a second wiring layer, and forming at least one second conductive blind via to the second dielectric layer to electrically connect the second wiring a layer and the fourth circuit layer. 如申請專利範圍第8項所述的內埋式元件封裝結構的製作方法,更包括:形成一第四介電層與一第六線路層於該第二介電層上,其中該第四介電層具有至少一第三導電盲孔,以電性連接該第六線路層與該第二線路層;形成一第五介電層與一第七線路層於該第三介電層上,其中該第五介電層具有至少一第四導電盲孔,以電性連接該第七線路層與該第五線路層;以及形成一第一焊罩層於該第四介電層與該第六線路層上,並暴露出該至少一第三導電盲孔,形成一第二焊罩層於該第五介電層 與該第七線路層上,並暴露出該至少一第四導電盲孔。 The method for fabricating a buried component package structure according to claim 8 , further comprising: forming a fourth dielectric layer and a sixth circuit layer on the second dielectric layer, wherein the fourth dielectric layer The electrical layer has at least one third conductive via hole electrically connected to the sixth circuit layer and the second circuit layer; forming a fifth dielectric layer and a seventh circuit layer on the third dielectric layer, wherein The fifth dielectric layer has at least one fourth conductive via hole electrically connected to the seventh circuit layer and the fifth circuit layer; and a first solder mask layer is formed on the fourth dielectric layer and the sixth Forming, on the circuit layer, the at least one third conductive via hole to form a second solder mask layer on the fifth dielectric layer And the seventh circuit layer and exposing the at least one fourth conductive blind hole. 如申請專利範圍第1項所述的內埋式元件封裝結構的製作方法,其中該些對位孔的數量是對應於該些對位柱而設置。 The method of fabricating a buried component package structure according to claim 1, wherein the number of the alignment holes is set corresponding to the alignment pillars.
TW103136436A 2014-10-22 2014-10-22 Manufacturing method of embedded component package structure TWI572258B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103136436A TWI572258B (en) 2014-10-22 2014-10-22 Manufacturing method of embedded component package structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103136436A TWI572258B (en) 2014-10-22 2014-10-22 Manufacturing method of embedded component package structure

Publications (2)

Publication Number Publication Date
TW201616928A true TW201616928A (en) 2016-05-01
TWI572258B TWI572258B (en) 2017-02-21

Family

ID=56508729

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103136436A TWI572258B (en) 2014-10-22 2014-10-22 Manufacturing method of embedded component package structure

Country Status (1)

Country Link
TW (1) TWI572258B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI778628B (en) * 2021-05-07 2022-09-21 大陸商鵬鼎控股(深圳)股份有限公司 Circuit boardwith at least one embedded electronic component and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771229B (en) * 2021-11-18 2022-07-11 恆勁科技股份有限公司 Semiconductor packaging substrate and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI438882B (en) * 2011-11-01 2014-05-21 Unimicron Technology Corp Package substrate having embedded capacitors and fabrication method thereof
TWI517312B (en) * 2012-10-17 2016-01-11 鈺橋半導體股份有限公司 Wiring board with shielding lid and shielding slots as electromagnetic shields for embedded device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI778628B (en) * 2021-05-07 2022-09-21 大陸商鵬鼎控股(深圳)股份有限公司 Circuit boardwith at least one embedded electronic component and method for manufacturing the same

Also Published As

Publication number Publication date
TWI572258B (en) 2017-02-21

Similar Documents

Publication Publication Date Title
US9852973B2 (en) Manufacturing method of chip package and package substrate
US9646852B2 (en) Manufacturing process for substrate structure having component-disposing area
TWI553792B (en) Package structure and manufacturing method thereof
US9578750B2 (en) Package carrier and manufacturing method thereof
TW201620087A (en) Package structure and method of manufacture
JP4950743B2 (en) Multilayer wiring board and manufacturing method thereof
CN109788665B (en) Circuit substrate containing electronic element and manufacturing method thereof
US20160079151A1 (en) Package structure with an embedded electronic component and method of fabricating the package structure
TWI506753B (en) Coreless package structure and method for manufacturing same
TWI611523B (en) Method for fabricating semiconductor package
TWI572258B (en) Manufacturing method of embedded component package structure
CN105655258B (en) The production method of embedded element encapsulating structure
WO2019189063A1 (en) Methods for manufacturing semiconductor device and wiring struture
KR101441466B1 (en) Ultra-thin package board and manufacturing method thereof
JP6387226B2 (en) Composite board
TWI454202B (en) Electronic module structure and method for same
CN112151433B (en) Substrate structure, packaging structure and manufacturing method thereof
TWI512921B (en) Carrier structure, chip package structure and manufacturing method thereof
TWI494033B (en) Methods of forming coreless package structure and coreless package substrate
TWI405524B (en) Circuit board and manufacturing method thereof
JP2018160708A (en) Composite substrate and rigid substrate
TW200849531A (en) Integrated circuit package and the method for fabricating thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees