TW201611261A - Self-aligned metal oxide transistors and methods of fabricating the same - Google Patents

Self-aligned metal oxide transistors and methods of fabricating the same Download PDF

Info

Publication number
TW201611261A
TW201611261A TW104118498A TW104118498A TW201611261A TW 201611261 A TW201611261 A TW 201611261A TW 104118498 A TW104118498 A TW 104118498A TW 104118498 A TW104118498 A TW 104118498A TW 201611261 A TW201611261 A TW 201611261A
Authority
TW
Taiwan
Prior art keywords
metal oxide
oxide semiconductor
gate
semiconductor layer
transistor
Prior art date
Application number
TW104118498A
Other languages
Chinese (zh)
Inventor
謝信弘
蕭仲欽
安東尼歐 菲奇提
Original Assignee
波利亞有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 波利亞有限公司 filed Critical 波利亞有限公司
Publication of TW201611261A publication Critical patent/TW201611261A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Abstract

A self-aligned metal oxide transistor can be fabricated by contacting the source and drain regions of the metal oxide active layer with a reductive polymer, thereby doping the source and drain regions with valence electrons from the reductive polymer and reducing the electrical resistance in the source and drain regions. The reductive polymer can be an electrically insulating polymer that has, in its backbone and/or its pendant group(s), one or more nitrogen atoms with a lone pair of electrons. The reductive polymer can be deposited over the oxide semiconductor layer as the organic interlayer dielectric.

Description

自我對齊金屬氧化物電晶體及其製造方法 Self-aligned metal oxide transistor and method of manufacturing same 相關申請案之交互參照 Cross-references to related applications

這是一專利合作條約(PCT)申請案,其主張於2014年6月6日申請之美國臨時專利申請案序號第62/009,144號之提交日期的優先權及權利,其全部揭示內容以參照方式併入本文中,用於所有目的。 This is a Patent Cooperation Treaty (PCT) application which claims priority and rights to the filing date of US Provisional Patent Application Serial No. 62/009,144, filed on Jun. 6, 2014, the entire disclosure of which is incorporated by reference. Incorporated herein for all purposes.

本發明係有關於自我對齊金屬氧化物電晶體及其製造方法。 The present invention relates to self-aligned metal oxide transistors and methods of making the same.

發明背景 Background of the invention

平板顯示器(諸如液晶顯示器,有機發光顯示器、及電泳顯示器)業經採用作為目前的主流顯示器技術。這些顯示器比傳統的陰極射線管顯示器輕且薄得多了,因此允許其等之應用範圍不僅在電視機及視頻顯示器方面,而係應用在膝上型電腦、行動電話、數位相機、攝錄器(Camcorders)、及其它較小的可攜式裝置。 Flat panel displays such as liquid crystal displays, organic light emitting displays, and electrophoretic displays have been adopted as current mainstream display technologies. These displays are much lighter and thinner than conventional cathode ray tube displays, thus allowing them to be used in applications such as laptops, mobile phones, digital cameras, and camcorders, not only in televisions and video displays. (Camcorders), and other smaller portable devices.

具有一薄膜電晶體背板的平板顯示器稱為主動矩陣平板顯示器。在該背板內之該等薄膜電晶體係用以切接或驅動該顯示器之面板內的像素,因此各像素可各別地 經開啟及關掉。因此,該等薄膜電晶體為該顯示器性能的主要因素之一。 A flat panel display having a thin film transistor backplane is referred to as an active matrix flat panel display. The thin film electro-crystal system in the backplane is used to cut or drive pixels in the panel of the display, so each pixel can be individually Turned on and off. Therefore, these thin film transistors are one of the main factors for the performance of the display.

平板顯示器的研發趨勢中之一者為獲得更高的 解析度,其意指較小的像素大小,其結果為較小的薄膜電晶體。不同的方法業經建議用以縮小薄膜電晶體的尺寸。 One of the development trends in flat panel displays is to achieve higher Resolution, which means a smaller pixel size, results in a smaller thin film transistor. Different methods have been proposed to reduce the size of thin film transistors.

近年來,以半導體金屬氧化物為基礎之新的薄膜 電晶體技術已引起極大的注意。使用作為通道層之半導體金屬氧化物(諸如ZnO、In2O3、IGZO等)製成這些電晶體。 金屬氧化物薄膜電晶體(或氧化物TET)可得到許多優點,其包括高遷移率、均勻性、及操作穩定性;因此,其等已成為與以非晶矽或多晶形矽為基礎的傳統薄膜電晶體技術競爭之適合物。 In recent years, new thin film transistor technology based on semiconductor metal oxides has attracted great attention. These transistors are made using a semiconductor metal oxide (such as ZnO, In 2 O 3 , IGZO, etc.) as a channel layer. Metal oxide thin film transistors (or oxide TET) can provide a number of advantages including high mobility, uniformity, and operational stability; therefore, they have become a tradition based on amorphous or polymorphous germanium. Suitable for the competition of thin film transistor technology.

氧化物TFT之最普通使用的結構為一可具有一 蝕刻中止構件或背通道蝕刻(BCE)構形的底閘極結構。這兩種構形具有其等之各別優點及缺點。例如該蝕刻中止構形典型上比該背通道蝕刻類型更穩定,因為該背通道係藉該蝕刻中止層而保護,而在該等源極及汲極之蝕刻方法進行期間,一BCE、氧化物TFT之該背通道會受損。然而,由於該額外蝕刻中止層,所以該蝕刻中止氧化物TFT之元件尺寸大於BCE氧化物TFT。 The most commonly used structure of an oxide TFT is one having one The bottom gate structure of the etch stop member or back channel etch (BCE) configuration. These two configurations have their respective advantages and disadvantages. For example, the etch stop configuration is typically more stable than the back channel etch type because the back channel is protected by the etch stop layer, while during the source and drain etch methods, a BCE, oxide The back channel of the TFT is damaged. However, due to the additional etch stop layer, the etch stop oxide TFT has a larger element size than the BCE oxide TFT.

就元件尺寸而言,一重要特徴為該TFT之通道長度。參考圖1,其係闡明具有一BCE類型結構之氧化物TFT10,該通道長度係藉該等源汲極105、106之間隔而界定。因此,最小的通道長度係藉可獲得之該等源極與汲極間的 最小間隔而決定。 In terms of component size, an important feature is the channel length of the TFT. Referring to Figure 1, there is illustrated an oxide TFT 10 having a BCE type structure defined by the spacing of the source drains 105, 106. Therefore, the minimum channel length is obtained between the source and the drain Determined by the minimum interval.

作為比較,具有一蝕刻中止類型結構之氧化物 TFT 20係闡明在圖2內。如圖2內所示,在氧化物半導體204與源極/汲極205、206之間有一蝕刻中止層(或蝕刻停止層)208。在本架構內,該TFT之通道長度實際上係藉該蝕刻中止層的寬度而界定。因此,一蝕刻中止類型TFT之該最小通道長度不僅藉可獲得該等源極與汲極之最小間隔而測定,而且藉與在各側上之該等源極與汲極重疊的該通道長度而測定。因此,該蝕刻中止類型結構之該最小通道長度本質上大於該背通道蝕刻類型結構之最小通道長度,其意指由於具較小的元件尺寸,所以BCE電晶體比蝕刻中止類型TFT更適於形成高解析度顯示器。然而,如上述,當製造BCE結構時,在源極及汲極蝕刻進行期間,該背通道通常會受損,其會導致不良的偏壓應力穩定性及其它元件性能爭議。 For comparison, an oxide having an etch stop type structure The TFT 20 system is illustrated in Figure 2. As shown in FIG. 2, there is an etch stop layer (or etch stop layer) 208 between the oxide semiconductor 204 and the source/drain electrodes 205, 206. Within this architecture, the channel length of the TFT is actually defined by the width of the etch stop layer. Therefore, the minimum channel length of an etch stop type TFT is determined not only by the minimum spacing between the source and the drain but also by the length of the channel overlapping the source and drain on each side. Determination. Therefore, the minimum channel length of the etch stop type structure is substantially greater than the minimum channel length of the back channel etch type structure, which means that the BCE transistor is more suitable for forming than the etch stop type TFT due to the smaller component size. High resolution display. However, as described above, when the BCE structure is fabricated, the back channel is typically damaged during source and drain etching, which can result in poor bias stress stability and other component performance controversies.

最近,該參考文獻內的數項研究已建議一用於氧 化物TFT之新的自我對齊上閘極(SA-TG)結構。如圖3-6內所示,在一自我對齊氧化物TFT 30內,一金屬氧化物半導體(例如IGZO)島狀物304係在基板301上形成,繼而閘極介電質(或閘極絕緣層,GI)303及閘極302係在該金屬氧化物半導體之頂上形成。該閘極及閘極介電質係經相同圖案蝕刻以暴露該金屬氧化物半導體層之側區域309、310。然後,這些經暴露的側區域經處置以使其等得到比在該閘極下方之未經處置區域(亦即通道區域311)還更低電阻。層間介電質 (ILD)材料307係沉積在該金屬氧化物島狀物304之經暴露側區域309、310,該閘極介電質303、及該閘極302上。該ILD 307接著經圖案化以開啟用於沉積該等源極及汲極305、306(其等係與該金屬氧化物半導體層304之源汲極區域309、310接觸)之通孔。本結構類型之最小通道長度係藉操作者使用該閘極可獲得之最小寬度而界定(換言之,該通道長度係與該閘極之寬度自我對齊),其係與操作者使用該BCE類型結構可獲得的最小通道長度類似,因為並不需要額外的蝕刻中止層。同時,由於該等源極及閘極並未在該通道區域之頂上被蝕刻,所以自我對齊TFT亦傾向於提供更穩定的元件性能。因此,自我對齊TFT具有提供該等BCE類型TFT及蝕刻中止類型TFT兩者之優點的潛力,且可以是一實現未來高解析度平板顯示器應用的良好選擇方案。 Recently, several studies in this reference have suggested an oxygen application. The new self-aligned upper gate (SA-TG) structure of the TFT. As shown in Figures 3-6, within a self-aligned oxide TFT 30, a metal oxide semiconductor (e.g., IGZO) island 304 is formed over the substrate 301, followed by a gate dielectric (or gate insulation). A layer, GI) 303 and a gate 302 are formed on top of the metal oxide semiconductor. The gate and gate dielectrics are etched through the same pattern to expose side regions 309, 310 of the metal oxide semiconductor layer. These exposed side regions are then disposed of such that they are less resistant than the untreated region (i.e., channel region 311) below the gate. Interlayer dielectric An (ILD) material 307 is deposited over the exposed side regions 309, 310 of the metal oxide island 304, the gate dielectric 303, and the gate 302. The ILD 307 is then patterned to turn on vias for depositing the source and drain electrodes 305, 306 (which are in contact with the source drain regions 309, 310 of the metal oxide semiconductor layer 304). The minimum channel length of this type of construction is defined by the minimum width available to the operator using the gate (in other words, the length of the channel is self-aligned with the width of the gate), which is used by the operator to use the BCE type structure. The minimum channel length obtained is similar because no additional etch stop layer is required. At the same time, self-aligned TFTs tend to provide more stable component performance since the sources and gates are not etched on top of the channel region. Thus, self-aligned TFTs have the potential to provide both of these BCE type TFTs and etch stop type TFTs, and can be a good choice for implementing future high resolution flat panel display applications.

但是,得到SA-TG氧化物TFT的困難之一為如何 降低該金屬氧化物層之該等源極及汲極的電阻。該參考文獻內已敍述3種不同方法。第一種方法使用電漿處理法,其製法流程係示於圖4內。具體而言,在該金屬氧化物島狀物(例如IGZO)304業經形成、且該閘極介電質303及閘極302依序沉積並接著一起經圖案化之後,如圖4(c)內所示,操作者可施加一電漿處理312(諸如Ar電漿或NH3電漿)至該等經暴露金屬氧化物區域309、310。經該處理後,該等經暴露金屬氧化物區域309、310之電降可降低,因為該電漿處理法可在該等經暴露金屬氧化物區域內產生氧空位(例如IGZO→n+IGZO),因此可增加其中之電荷載體數且使這些 經暴露區域309、310比藉該閘極介電質303及閘極302而保護的該金屬氧化物島狀物304之通道區域311更具導電性。 然而,所產生的該等氧空位並不穩定,且在該電漿處理法進行後,經過一段時間,在該等經暴露金屬氧化物區域內的電阻可輕易地再增加。見,例如Park等人,Applied Phys.Letts,93:053501(2008);及Kim等人,IEEE Electron Device Letts.,30(4):374-376(2009)。 However, one of the difficulties in obtaining a SA-TG oxide TFT is how to reduce the resistance of the source and the drain of the metal oxide layer. Three different methods have been described in this reference. The first method uses a plasma treatment method, and the preparation process thereof is shown in Fig. 4. Specifically, after the metal oxide island (for example, IGZO) 304 is formed, and the gate dielectric 303 and the gate 302 are sequentially deposited and then patterned together, as shown in FIG. 4(c). As shown, the operator can apply a plasma treatment 312 (such as Ar plasma or NH 3 plasma) to the exposed metal oxide regions 309, 310. After this treatment, the voltage drop of the exposed metal oxide regions 309, 310 can be reduced because the plasma processing method can generate oxygen vacancies in the exposed metal oxide regions (eg, IGZO→n + IGZO). Therefore, the number of charge carriers therein can be increased and the exposed regions 309, 310 can be made more conductive than the channel region 311 of the metal oxide island 304 protected by the gate dielectric 303 and the gate 302. . However, the generated oxygen vacancies are not stable, and after the plasma treatment process, the resistance in the exposed metal oxide regions can be easily increased over a period of time. See, for example, Park et al, Applied Phys. Letts, 93: 053501 (2008); and Kim et al, IEEE Electron Device Letts., 30(4): 374-376 (2009).

第二種方法稱為氫擴散法,其製法流程圖闡明在 圖5內。如圖5(c)內所示,該氫擴散法包括將一富含氫之薄膜313(通常為SiNx:H,其亦可作為該層間介電質)沉積在閘極302及該等經暴露金屬氧化物區域309、310之頂上。當氫自該富含氫之薄膜313擴散入該等經暴露金屬氧化物區域309、310內時,在彼等區域內產生電荷載體,因此會降低其等之電阻。可惜的是,如同該電漿處理法,由於尤其一旦進行熱退火時,部份氫亦可擴散入該通道區域內,其會使該通道區域過度導電,所以藉該氫擴散法而產生的低電阻金屬氧化物區域並不穩定。見,例如Wu等人,J.Display Technology,5(12):515-519(2009)。 The second method is called hydrogen diffusion, and its process flow diagram is illustrated in Figure 5. As shown in FIG. 5(c), the hydrogen diffusion method includes depositing a hydrogen-rich film 313 (generally SiN x :H, which can also serve as the interlayer dielectric) on the gate 302 and the like. The top of the metal oxide regions 309, 310 are exposed. When hydrogen diffuses from the hydrogen-rich film 313 into the exposed metal oxide regions 309, 310, charge carriers are generated in these regions, thereby reducing the electrical resistance thereof. Unfortunately, as with the plasma processing method, since, in particular, once the thermal annealing is performed, part of the hydrogen can also diffuse into the channel region, which causes the channel region to be excessively conductive, so that the hydrogen diffusion method is low. The resistive metal oxide region is not stable. See, for example, Wu et al., J. Display Technology, 5(12): 515-519 (2009).

第三種方法稱為金屬反應法,其製法流程圖係闡 明在圖6內。本方法包括將一很薄的反應性金屬層314(諸如鋁箔)沉積在如圖6(c)內所示之閘極302及該等經暴露的金屬氧化物區域309、310之頂上。然後,進行氧化步驟(例如藉退火步驟)以將該鋁箔氧化成Al2O3。在該金屬膜314之氧化反應中,係使用該等經暴露金屬氧化物區域309、310內 之部份氧。其可產生氧空位,並在該等經暴露金屬氧化物區域內產生載體,且與該通道區域311比較,其可降低該等區域309、310內的電阻。然而,與本方法有關的一問題在於該薄反應性金屬之膜厚或氧化方法皆不容易控制。見,例如美國專利申請案公開號第2012/0001167號。 The third method is called the metal reaction method, and the process flow chart thereof is illustrated in Fig. 6. The method includes depositing a very thin reactive metal layer 314, such as an aluminum foil, on top of the gate 302 and the exposed metal oxide regions 309, 310 as shown in Figure 6(c). Then, an oxidation step (for example, by an annealing step) is performed to oxidize the aluminum foil to Al 2 O 3 . In the oxidation reaction of the metal film 314, a portion of the oxygen in the exposed metal oxide regions 309, 310 is used. It can generate oxygen vacancies and create a carrier within the exposed metal oxide regions, and which can reduce the electrical resistance within the regions 309, 310 as compared to the channel region 311. However, a problem associated with the present method is that the film thickness or oxidation method of the thin reactive metal is not easily controlled. See, for example, U.S. Patent Application Publication No. 2012/0001167.

因此,在本項技藝內有研發一用於降低一自我對 齊氧化物TFT之源極/汲極區域內的電阻之新方法的渴望。 Therefore, there is a research and development within this art to reduce one self-right The desire for a new method of resistance in the source/drain region of a Zener TFT.

發明概要 Summary of invention

根據上文,本發明之教示提供一自我對齊氧化物TFT,其中係藉使用一還原聚合物接觸該等源極/汲極區域,因此以得自該還原聚合物的價電子摻雜該等源極/汲極區域並降低該等源極/汲極區域內之電阻而產生該氧化物半導體層之源極/汲極區域。該還原聚合物可以是一電性絕緣的聚合物;其主鏈及/或其側基圍(群)具有一或多個備有一孤對電子的氮原子。該還原聚合物可沉積在該氧化物半導體層上以作為有機層間介電質。本發明之自我對齊氧化物TFT的製法如下。先在一基片上形成一金屬氧化物(例如IGZO)層,繼而在該金屬氧化物層的頂上形成一閘極介電質(或閘極絕緣層,GI)及一閘極。該閘極及閘極介電質經相同圖案蝕刻以暴露該金屬氧化物層的側部份。不像需要一各別的方法(不論是藉電漿處理法、氫擴散法、或金屬反應)以降低該源極/汲極區域(亦即於其上可形成該等源極及 汲極的該等經暴露金屬氧化物區域)內之電阻的先前技藝方法,本發明方法係使用一還原聚合物以作為該層間介電質(ILD)。使該ILD沉積在該金屬氧化物主動層之該等源極/汲極區域上面後,得自該還原聚合物之價電子會擴散入該等源極/汲極區域(但不是該藉閘極介電質/閘極而遮蔽的通道區域)內,其會增加該等源極/汲極區域內的電荷載體數且因此,會降低該等源極/汲極區域內的電阻。然後使該ILD經圖案化以開啟用於沉積該等源極及汲極的通孔。 In accordance with the above, the teachings of the present invention provide a self-aligned oxide TFT in which the source/drain regions are contacted by a reducing polymer, thereby doping the sources with valence electrons from the reduced polymer. The source/drain regions of the oxide semiconductor layer are generated by reducing the resistance in the source/drain regions. The reduced polymer may be an electrically insulating polymer; its main chain and/or its side groups (groups) have one or more nitrogen atoms provided with a lone pair of electrons. The reduced polymer may be deposited on the oxide semiconductor layer as an organic interlayer dielectric. The self-aligned oxide TFT of the present invention is produced as follows. A metal oxide (e.g., IGZO) layer is first formed on a substrate, and then a gate dielectric (or gate insulating layer, GI) and a gate are formed on top of the metal oxide layer. The gate and gate dielectrics are etched through the same pattern to expose side portions of the metal oxide layer. Rather than requiring a separate method (whether by plasma treatment, hydrogen diffusion, or metal reaction) to reduce the source/drain region (ie, the source can be formed thereon) Prior art methods of electrical resistance in the exposed metal oxide regions of the drain, the method of the present invention uses a reduced polymer as the interlayer dielectric (ILD). After depositing the ILD on the source/drain regions of the metal oxide active layer, valence electrons from the reduced polymer diffuse into the source/drain regions (but not the gate) Within the channel region where the dielectric/gate is shielded, it increases the number of charge carriers in the source/drain regions and, therefore, reduces the resistance in the source/drain regions. The ILD is then patterned to open vias for depositing the source and drain.

自以下圖式、說明文、實例、及申請專利範圍可更徹底地瞭解上文以及本教示之其它特徵與優點。 The above and other features and advantages of the present teachings will be more fully understood from the following description, description, claims, and claims.

10‧‧‧底閘極背通道蝕刻氧化物薄膜電晶體 10‧‧‧ bottom gate back channel etch oxide film transistor

20‧‧‧底閘極蝕刻中止氧化物薄膜電晶體 20‧‧‧Bottom gate etch stop oxide thin film transistor

30、40‧‧‧自我對齊頂閘極氧化物薄膜電晶體 30, 40‧‧‧ Self-aligned top gate oxide film transistor

50‧‧‧自我對齊底閘極氧化物薄膜電晶體;底閘極結構 50‧‧‧ Self-aligned bottom gate oxide film transistor; bottom gate structure

60‧‧‧元件結構 60‧‧‧Component structure

70‧‧‧比較元件結構 70‧‧‧Comparative component structure

101、201、301、401、501、601、701‧‧‧基片 101, 201, 301, 401, 501, 601, 701‧‧‧ substrates

102、202、302、502、402‧‧‧閘極 102, 202, 302, 502, 402‧‧ ‧ gate

103、203、303、403‧‧‧閘極絕緣層 103, 203, 303, 403‧‧ ‧ gate insulation

104、204、304、404、604、704‧‧‧氧化物半導體主動層 104, 204, 304, 404, 604, 704‧‧‧ oxide semiconductor active layer

105、205、305、405、505‧‧‧汲極 105, 205, 305, 405, 505‧‧ ‧ bungee

106、206、306、406、506‧‧‧源極 106, 206, 306, 406, 506‧‧‧ source

107、207‧‧‧鈍化層 107, 207‧‧‧ Passivation layer

208、508‧‧‧蝕刻中止層 208, 508‧‧‧ etching stop layer

307、407、507、607‧‧‧層間介電質 307, 407, 507, 607‧‧ ‧ interlayer dielectric

309、409、509‧‧‧汲極區域 309, 409, 509‧‧ ‧ bungee area

310、410‧‧‧源極區域 310, 410‧‧‧ source area

311、511‧‧‧通道區域 311, 511‧‧‧ passage area

312‧‧‧電漿處理 312‧‧‧ Plasma treatment

313‧‧‧薄膜 313‧‧‧ Film

314‧‧‧金屬膜;反應性金屬層 314‧‧‧Metal film; reactive metal layer

411‧‧‧通道 411‧‧‧ channel

503‧‧‧閘極介電質 503‧‧‧gate dielectric

504‧‧‧金屬氧化物半導體層 504‧‧‧Metal oxide semiconductor layer

507‧‧‧還原性有機ILD 507‧‧‧Reducing organic ILD

605、606、705、706‧‧‧圖案化源/汲極 605, 606, 705, 706‧‧‧ patterned source/bungee

609、709‧‧‧通道區域 609, 709‧‧‧ passage area

應該瞭解下述圖式僅用於闡明。該等圖式未必按比例,其通常係強調本發明之教示的原理之闡明。該等圖式並無論如何並無意限制該等教示的範圍。 It should be understood that the following figures are for illustration only. The illustrations are not necessarily to scale, and are generally intended to clarify the principles of the teachings of the invention. The drawings are not intended to limit the scope of the teachings in any way.

圖1係闡明一底閘極背通道蝕刻(BCE)氧化物薄膜電晶體10的結構,其包括基片101、閘極102、閘極絕緣層103、氧化物半導體主動層104、源汲極105,106、及鈍化層107。 1 illustrates the structure of a bottom gate back channel etch (BCE) oxide thin film transistor 10 including a substrate 101, a gate 102, a gate insulating layer 103, an oxide semiconductor active layer 104, and source drains 105, 106. And a passivation layer 107.

圖2係闡明一底閘極蝕刻中止氧化物薄膜電晶體20的結構,其包括基片201、閘極202、閘極絕緣層203、氧化物半導體主動層204、源汲極205,206、鈍化層207、及蝕刻中止層208。 2 illustrates the structure of a bottom gate etch stop oxide thin film transistor 20 including a substrate 201, a gate 202, a gate insulating layer 203, an oxide semiconductor active layer 204, source drains 205, 206, and a passivation layer 207. And etching the stop layer 208.

圖3係闡明一自我對齊頂閘極(SA-TG)氧化物薄 膜電晶體30的結構,其包括基片301、閘極302、閘極絕緣層303、氧化物半導體主動層304、源汲極305,306、及層間介電質307。該氧化物半導體層304包括源汲極區域309,310,與通道區域311比較,其等具有較低的電阻。 Figure 3 illustrates a self-aligned top gate (SA-TG) oxide thin The structure of the film transistor 30 includes a substrate 301, a gate 302, a gate insulating layer 303, an oxide semiconductor active layer 304, source drains 305, 306, and an interlayer dielectric 307. The oxide semiconductor layer 304 includes source drain regions 309, 310 which have a lower resistance than the channel region 311.

圖4係闡明如何製造SA-TG氧化物薄膜電晶體的製法流程,其中該等低電阻源極/汲極區域係藉使用先前技藝之電漿處理法部份摻雜該氧化物半導體層而形成。 4 is a flow chart showing how to fabricate a SA-TG oxide thin film transistor, wherein the low resistance source/drain regions are formed by partially doping the oxide semiconductor layer by a prior art plasma processing method. .

圖5係闡明如何製造SA-TG氧化物薄膜電晶體的製法流程,其中該等低電阻源極/汲極區域係藉使用先前技藝之氫擴散法部份摻雜該氧化物半導體層而形成。 Fig. 5 is a flow chart showing how to fabricate a SA-TG oxide thin film transistor in which the low resistance source/drain regions are formed by partially doping the oxide semiconductor layer by a hydrogen diffusion method of the prior art.

圖6係闡明如何製造SA-TG氧化物薄膜電晶體的製法流程,其中該等低電阻源極/汲極區域係藉使用先前技藝的金屬反應法部份摻雜該氧化物半導體層而形成。 Figure 6 is a diagram showing a process for fabricating a SA-TG oxide thin film transistor in which the low resistance source/drain regions are formed by partially doping the oxide semiconductor layer using a metal reaction method of the prior art.

圖7係闡明一根據本發明教示之自我對齊頂閘極(SA-TG)氧化物薄膜電晶體40的結構,其係合併一由還原聚合物組成的有機層間介電質(ILD)407。該電晶體40包括基片401、閘極402、閘極絕緣層403、氧化物半導體主動層404、源汲極405,406、及該由還原聚合物所組成的層間介電質407。該氧化物半導體層404包括源汲極區域409,410,與通道411比較,其等具有較低的電阻。 Figure 7 illustrates the structure of a self-aligned top gate (SA-TG) oxide thin film transistor 40 in accordance with the teachings of the present invention incorporating an organic interlayer dielectric (ILD) 407 comprised of a reduced polymer. The transistor 40 includes a substrate 401, a gate 402, a gate insulating layer 403, an oxide semiconductor active layer 404, source drains 405, 406, and an interlayer dielectric 407 composed of a reduced polymer. The oxide semiconductor layer 404 includes source drain regions 409, 410 which have a lower resistance than the channel 411.

圖8係闡明如何製造一根據本發明教示之SA-TG氧化物薄膜電晶體的製法流程,其中該等低電阻源極/汲極區域係藉使用一由還原聚合物所組成的有機層間介電質(ILD)接觸該等源極/汲極區域而形成。 8 is a diagram showing a process for fabricating a SA-TG oxide thin film transistor according to the teachings of the present invention, wherein the low resistance source/drain regions are formed by using an organic interlayer dielectric composed of a reduced polymer. The mass (ILD) is formed by contacting the source/drain regions.

圖9係闡明如何製造一根據本發明教示之自我對齊底閘極氧化物薄膜電晶體50的製法流程,其中該等低電阻源極/汲極區域係藉使用一由還原聚合物所組成的有機層間介電質(ILD)507接觸該等源極/汲極區域而形成。 9 is a diagram showing a process for fabricating a self-aligned bottom gate oxide film transistor 50 in accordance with the teachings of the present invention, wherein the low resistance source/drain regions are organically composed of a reduced polymer. An interlayer dielectric (ILD) 507 is formed in contact with the source/drain regions.

圖10係闡明(a)本發明者用以測定直接將根據本發明教示之還原ILD 607沉積在金屬氧化物半導體層604之一曝露表面上之摻雜效應的元件結構60、及(b)一比較元件結構70,其中金屬氧化物半導體層704係未經處理。該元件結構60包括基片601、金屬氧化物半導體層604、可界定通道區域609之圖案化源汲極605,606、及沉積在該通道區域609與該等源汲極605,606上面且與其等直接接觸之還原ILD 607。該比較元件結構70包括基片701、金屬氧化物半導體層704、及可界定一已曝露之通道區域709的圖案化源汲極705,706。 Figure 10 is a diagram showing the (a) element structure 60, and (b) of the present inventors for determining the doping effect of directly depositing the reduced ILD 607 deposited on one of the exposed surfaces of the metal oxide semiconductor layer 604 in accordance with the teachings of the present invention. The element structure 70 is compared wherein the metal oxide semiconductor layer 704 is untreated. The device structure 60 includes a substrate 601, a metal oxide semiconductor layer 604, patterned source drains 605, 606 that define the channel region 609, and is deposited on the channel region 609 and directly in contact with the source drains 605, 606. Restore ILD 607. The comparison element structure 70 includes a substrate 701, a metal oxide semiconductor layer 704, and patterned source drains 705, 706 that define an exposed channel region 709.

圖11係比較在該比較元件結構70(不含有機ILD覆蓋層)內之通道區709中所測定之金屬氧化物半導體層(IGZO)的薄膜電阻及具有一根據本發明教示之還原有機ILD覆蓋層之該元件結構60內之通道區域609中所測定之該IGZO的薄膜電阻。明確地,聚(2-乙烯基吡啶)、聚(4-乙烯基吡啶)、分支聚乙烯亞胺、及聚乙烯基吡咯啶酮係作為代表性還原有機ILD。 Figure 11 is a comparison of the sheet resistance of a metal oxide semiconductor layer (IGZO) measured in the channel region 709 in the comparison element structure 70 (without the organic ILD cap layer) and having a reduced organic ILD coverage in accordance with the teachings of the present invention. The sheet resistance of the IGZO measured in the channel region 609 in the element structure 60 of the layer. Specifically, poly(2-vinylpyridine), poly(4-vinylpyridine), branched polyethyleneimine, and polyvinylpyrrolidone are representative reduction organic ILDs.

詳細說明 Detailed description

在本申請案從頭至尾,若組成物被描述為具有、 包括、或包含特定組份,或若方法被描述為具有、包括、或包含特定製程步驟,則預期本發明教示之組成物亦基本上由所列舉該等組份所組成,或由其等所組成,且本發明教示之方法亦基本上由所列舉該等製程步驟所組成、或由其等所組成。 In the present application from the beginning to the end, if the composition is described as having, Including or including a particular component, or if the method is described as having, including, or comprising a particular process step, it is contemplated that the compositions of the present teachings are also substantially comprised of the listed components, or Compositions, and methods of the present teachings, also consist essentially of, or consist of, the recited process steps.

在本申請案內,若一元件或組份據稱包括在及/或選自所列舉元件或組份之清單,則應該瞭解該元件或組份可以是所列舉該等元件或組份中之任一者,或該元件或組份可選自一由所列舉該等元件或組份中之二或多者所組成的群組。此外,應瞭解只要不違背本發明教示之精神及範圍(不論是明確的或隱含的),可以以各種方式合併文中所述之組成物、裝置、或方法的元件及/或特徵。 In the present application, if an element or component is said to be included in and/or selected from the list of listed elements or components, it should be understood that the element or component may be in the listed elements or components. Either or the component or component may be selected from the group consisting of two or more of the listed elements or components. In addition, it will be appreciated that elements and/or features of the compositions, devices, or methods described herein may be combined in various ways, without departing from the spirit and scope of the invention.

除非另有明確指定,該等名詞”包括”、”具有”之使用應該通常被認為具可修訂性及非限制性。 The use of the terms "including" and "having" should be construed as being

除非另有明確指定,文中單數之使用包括複數(且反之亦然)。此外,若該名詞”約”之使用係在一數值前,則除非另有明確指定,本發明教示亦包括該等定數值本身。如文中使用,除非另有指定或推論,該名詞”約”係指與該標稱數值相差±10%。 The use of the singular includes the plural (and vice versa) unless otherwise specified. In addition, if the use of the term "about" is preceded by a value, the teachings of the present invention also include the numerical values themselves unless otherwise specifically indicated. As used herein, unless otherwise specified or inferred, the term "about" means ±10% of the nominal value.

應該瞭解只要本發明教示保持可實施,步驟之順序或用於進行某些作用之順序無關緊要。而且,可同時進行二或多步驟或作用。 It should be understood that as long as the teachings of the present invention remain practicable, the order of the steps or the order in which they are used to perform certain functions does not matter. Moreover, two or more steps or actions can be performed simultaneously.

在本專利說明書從頭至尾,可或可不提供具有化學名稱的化學結構。若命名產生任何問題,則該結構奏效。 From the beginning to the end of this patent specification, a chemical structure having a chemical name may or may not be provided. If the naming produces any problems, the structure works.

為了解決藉用於摻雜一自我對齊金屬氧化物薄膜電晶體內之該等源極/汲極區域之先前技藝方法而產生的限制,本發明教示提供一在金屬氧化物半導體層內產生經摻雜源極/汲極區域的新方法,其係藉使用一旦直接接觸時可改變該金屬氧化物半導體層之導電性的疊置有機層接觸彼等區域。更明確地,本有機層可包含一還原聚合物,一旦接觸該金屬氧化物半導體層時,可以使用價電子摻雜該等源極/汲極區域,因此可減少該等源極/汲極區域內的薄膜電阻。在某些實施例中,本有機層可以是一在該摻雜效應業經達成後,可經移除的犠牲層。在其它實施例中,本有機層可以是一於其上可沉積厚很多的層間介電質(ILD)以完成該元件之額外層。然而,在較佳實施例中,為了簡化該製法並減少光蝕刻法步驟數,含該還原聚合物之有機層具電絕緣性且因此可經合併作為該ILD。本有機層亦可經調製成一可光圖案化材料,因此不需要使用光阻劑,其可直接經光圖案化(例如允許介洞開口)。 In order to address the limitations imposed by prior art methods for doping the source/drain regions of a self-aligned metal oxide thin film transistor, the present teachings provide for the creation of a blend in a metal oxide semiconductor layer. A new method of the hetero-source/drain region is to contact the regions of the stacked organic layer which change the conductivity of the metal oxide semiconductor layer upon direct contact. More specifically, the organic layer may comprise a reducing polymer which, when contacting the metal oxide semiconductor layer, may be doped with the valence electrons, thereby reducing the source/drain regions Thin film resistance inside. In some embodiments, the organic layer can be a layer that can be removed after the doping effect is achieved. In other embodiments, the organic layer can be an additional layer on which an interlayer dielectric (ILD) can be deposited to complete the element. However, in the preferred embodiment, in order to simplify the process and reduce the number of photoetching steps, the organic layer containing the reduced polymer is electrically insulating and thus may be combined as the ILD. The organic layer can also be modulated into a photo-patternable material, thus eliminating the need for a photoresist, which can be directly photopatterned (eg, allowing via openings).

根據本發明教示之自我對齊頂閘極氧化物半導體係闡明在圖7內。參考圖7,該自我對齊頂閘極金屬氧化物薄膜電晶體40按順序從底部至頂部包括基片401、金屬氧化物半導體層404、閘極介電質403、閘極402、包括一如下文更詳細描述的還原聚合物之有機層間介電質407、及該等源汲極405,406。在該金屬氧化物半導體層404上面的閘極介電質402及閘極403係經相同圖案蝕刻,因此該金屬氧化物半導體層包括一經遮蔽區域411(其係位於該閘介電質及 閘極的下方)及兩未經遮蔽區域(經曝露)側區域409、410。 該經遮蔽區域411可界定金屬氧化物半導體層404內之通道區域且係與該閘極402對齊。因此,該通道長度相當於該閘極的寬度。如圖7內所示,這兩未經遮蔽側區409、410係與該有機ILD 407直接接觸,而該經遮蔽通道區411係藉該閘介電質403及閘極402而保護。由於價電子係自該有機ILD擴散入該等未經遮蔽側區域內,所以與該金屬氧化物半導體層內之經遮蔽通道區域比較,在該未經遮蔽側區域內之導電度增加,且產生低電阻源極/汲極區域。沉積在該有機ILD上之源汲極405、406係經由該有機ILD內之通孔而延伸以和該金屬氧化物半導體層內之該等低電阻源/汲極區域409、410產生電接觸。 A self-aligned top gate oxide semiconductor system in accordance with the teachings of the present invention is illustrated in FIG. Referring to FIG. 7, the self-aligned top gate metal oxide thin film transistor 40 includes a substrate 401, a metal oxide semiconductor layer 404, a gate dielectric 403, and a gate 402 in order from bottom to top, including the following The organic interlayer dielectric 407 of the reduced polymer, and the source drains 405, 406, are described in more detail. The gate dielectric 402 and the gate 403 on the metal oxide semiconductor layer 404 are etched in the same pattern, so the metal oxide semiconductor layer includes a masked region 411 (which is located in the gate dielectric) Below the gate) and two unmasked (exposed) side regions 409, 410. The masked region 411 can define a channel region within the metal oxide semiconductor layer 404 and is aligned with the gate 402. Therefore, the length of the channel is equivalent to the width of the gate. As shown in FIG. 7, the two unshielded side regions 409, 410 are in direct contact with the organic ILD 407, and the shielded channel region 411 is protected by the gate dielectric 403 and the gate 402. Since the valence electrons diffuse from the organic ILD into the unmasked side regions, the conductivity in the unshielded side region increases and is generated as compared with the masked channel region in the metal oxide semiconductor layer. Low resistance source/drain region. Source drains 405, 406 deposited on the organic ILD extend through vias in the organic ILD to make electrical contact with the low resistance source/drain regions 409, 410 within the metal oxide semiconductor layer.

圖8係闡明如何製造根據本發明教示之SA-TG氧化物薄膜電晶體的製法流程。用於該氧化物TFT之基片401可以是本項技藝內已知的基片材料中之任一者,其包括,但不限於:經摻雜矽、氧化銦錫(ITO)、經ITO塗覆的玻璃、經ITO塗覆的聚醯亞胺或其它塑膠、銅、鉬、鉻、鋁或單獨或塗覆在一聚合物或其它基片上的其它金屬。在較佳實施例中,該基片可以是透明基片,諸如玻璃或高溫度塑膠,其等之實例包括聚碳酸酯(PC)、聚醚碸(PES)、聚丙烯酸酯(PA)、聚降烯(PNB)、聚對酞酸乙二酯(PET)、聚醚醚酮(PEEK)、聚萘二甲酸乙二酯(PEN)或聚醚醯亞胺(PEI)。 Figure 8 is a diagram showing the process flow for how to fabricate a SA-TG oxide thin film transistor in accordance with the teachings of the present invention. The substrate 401 for the oxide TFT may be any of the substrate materials known in the art including, but not limited to, doped yttrium, indium tin oxide (ITO), ITO coated Covered glass, ITO coated polyimide or other plastic, copper, molybdenum, chromium, aluminum or other metal coated alone or on a polymer or other substrate. In a preferred embodiment, the substrate may be a transparent substrate such as glass or a high temperature plastic, examples of which include polycarbonate (PC), polyether enamel (PES), polyacrylate (PA), poly. drop Alkene (PNB), polyethylene terephthalate (PET), polyetheretherketone (PEEK), polyethylene naphthalate (PEN) or polyetherimine (PEI).

可使用本項技藝內已知的方法將一金屬氧化物半導體島狀物404沉積在該基片上(圖8(a))。合適的金屬氧 化物半導體包括,但不限於:氧化銦(In2O3)、氧化銦鋅(IZO)、氧化鋅錫(ZTO)、氧化銦鎵(IGO)、氧化銦鎵鋅(IGZO)、氧化銦鎵(IGO)、氧化銦釔(IYO)、氧化銦錫鋅(ITZO)、氧化錫(SnO2)、氧化鋅(ZnO)、氧化鋯銦鋅(ZrInZnO)、及氧化鋯鋅錫(ZrZnSnO)。在較佳實施例中,在本TFT內之該金屬氧化物半導體層包含IGZO。在習知方法內,該金屬氧化物半導體層係經氣相加工(例如藉自一靶材進行DC濺鍍)。然而,液相方法業經描述在,例如美國專利第8,017,458號內。可進行一退火步驟(介於約250-400℃之間,較佳約300℃以下)以改善該金屬氧化物層之半導體。為了將該金屬氧化物層圖案化,可使用光阻劑,繼而根據該光阻劑的顯像圖案進行該金屬氧化物半導體之蝕刻。可使用濕蝕刻劑,諸如草酸,或可進行乾蝕刻步驟。 A metal oxide semiconductor island 404 can be deposited on the substrate using methods known in the art (Fig. 8(a)). Suitable metal oxide semiconductors include, but are not limited to, indium oxide (In 2 O 3 ), indium zinc oxide (IZO), zinc tin oxide (ZTO), indium gallium oxide (IGO), indium gallium zinc oxide (IGZO), Indium gallium oxide (IGO), indium bismuth oxide (IYO), indium tin zinc oxide (ITZO), tin oxide (SnO 2 ), zinc oxide (ZnO), zirconia indium zinc (ZrInZnO), and zirconia zinc tin (ZrZnSnO) ). In a preferred embodiment, the metal oxide semiconductor layer in the TFT comprises IGZO. In a conventional method, the metal oxide semiconductor layer is subjected to vapor phase processing (for example, DC sputtering by a target). However, liquid phase processes are described, for example, in U.S. Patent No. 8,017,458. An annealing step (between about 250-400 ° C, preferably about 300 ° C or less) can be performed to improve the semiconductor of the metal oxide layer. In order to pattern the metal oxide layer, a photoresist may be used, and then the metal oxide semiconductor is etched according to the development pattern of the photoresist. A wet etchant such as oxalic acid can be used, or a dry etching step can be performed.

接著,可沉積該閘極介電質403及閘極402,且藉習知光蝕刻法步驟而圖案化。該閘極介電質403可以由無機物(例如氧化物,諸如SiOx、Al2O3、或HfO2;氮化物,諸如SixNy;及氧氮化物,諸如氧氮化矽SiOxNy)、有機物(例如聚合物,諸如聚甲基丙烯酸甲酯、聚酯、聚苯乙烯、聚鹵乙烯、及本項技藝內已知的其它有機介電質聚合物)、或混成有機/無機材料。若使用無機介電質,諸如氧化矽或氮化矽,則可使用氣相沉積法,諸如電漿增強的化學蒸汽沉積法(PECVD)。液相方法(諸如印製法、旋塗法、狹縫塗覆法、或噴塗法)通常可用於機介電質。可藉濺鍍金屬(例如Mo或Ag)薄層在該閘極介電質之頂上而形成該閘極402。然 後藉光蝕刻法而將該閘極圖案化,並如上述,經該金屬氧化物半導體層之圖案蝕刻。經由使用該經圖案化之閘極作為一硬遮罩,該閘極介電質可藉乾或濕蝕刻法而圖案化以得到與該閘極相同的圖案(圖8(b))。如圖8(b)及圖8(c)內所示,該金屬氧化物半導體層404之一中央區域411係藉該閘極介電質403及閘極402而遮蔽,然而兩側區域409、410係經曝露(未經遮蔽)。該中央經遮蔽區域411可界定該通道區域,而在該中央經遮蔽區域之兩側上的該等未經遮蔽區域409、410在下一步驟可經摻雜以使其等之導電度高於該含固有的金屬氧化物之經遮蔽通道區域。 Next, the gate dielectric 403 and the gate 402 can be deposited and patterned by a photolithography process. The gate dielectric 403 may be composed of an inorganic substance such as an oxide such as SiO x , Al 2 O 3 , or HfO 2 ; a nitride such as Si x N y ; and an oxynitride such as yttrium oxynitride SiO x N y ), organic matter (e.g., polymers such as polymethyl methacrylate, polyester, polystyrene, polyvinyl halide, and other organic dielectric polymers known in the art), or mixed organic/inorganic material. If an inorganic dielectric such as hafnium oxide or tantalum nitride is used, a vapor phase deposition method such as plasma enhanced chemical vapor deposition (PECVD) may be used. Liquid phase methods such as printing, spin coating, slot coating, or spray coating are commonly used for machine dielectrics. The gate 402 can be formed by a thin layer of sputtered metal (e.g., Mo or Ag) on top of the gate dielectric. The gate is then patterned by photolithography and etched through the pattern of the metal oxide semiconductor layer as described above. By using the patterned gate as a hard mask, the gate dielectric can be patterned by dry or wet etching to obtain the same pattern as the gate (Fig. 8(b)). As shown in FIG. 8(b) and FIG. 8(c), a central region 411 of the MOS layer 404 is shielded by the gate dielectric 403 and the gate 402, but the side regions 409, The 410 system was exposed (unmasked). The central shaded region 411 can define the channel region, and the unmasked regions 409, 410 on both sides of the central shielded region can be doped in the next step to make the conductivity higher than the A masked channel region containing an intrinsic metal oxide.

然後使一包括還原聚合物之有機層間介電質407沉積在該部份堆疊上,其可直接接觸該金屬氧化物半導體層404內之該等未經遮蔽側區域409、410(圖8(c))。該還原聚合物通常為一電絕緣聚合物,其主鏈及/或側基團(群)包括一或多個具有孤對電子的氮原子。例如,該還原聚合物可為一電絕緣聚合物,其主鏈及/或側基團(群)包括一胺分子團、一亞胺分子團、一醯胺分子團、一醯亞胺分子團、一分子團、一唑分子團、或其等之組合。在某些實施例中,該還原聚合物之主鏈可包括以下分子團中之一者: An organic interlayer dielectric 407 comprising a reduced polymer is then deposited over the portion of the stack, which directly contacts the unshielded side regions 409, 410 within the metal oxide semiconductor layer 404 (Fig. 8 (c )). The reduced polymer is typically an electrically insulating polymer having a backbone and/or pendant groups (groups) comprising one or more nitrogen atoms having a lone pair of electrons. For example, the reduced polymer may be an electrically insulating polymer, and its main chain and/or side groups (groups) include an amine molecular group, an imine molecular group, a guanamine group, and a quinone group. ,One A combination of a molecular group, an azole group, or the like. In certain embodiments, the backbone of the reduced polymer can include one of the following molecular groups:

其中L為共價鍵或二價有機基團;且各R獨立為H、或C1-20烷基。在某些實施例中,該還原聚合物可包括以下側 基團中之一者: 其中L為共價鍵或二價有機基團;且各R獨立為H、或C1-20烷基。可作為該根據本發明教示之自我對齊氧化物TFT內之有機ILD的代表性還原聚合物包括:i)聚亞胺,諸如: ii)亞胺共聚物,諸如: 或C1-20烷基、 iii)聚烯丙基胺,諸如: 其包括;及 包括一含氮環狀(例如吡啶、吡咯、吡咯啶酮、咪唑、苯并咪唑)分子團的聚合物,諸如: 具有以下重覆單元的聚合物 、其中R為C1-20烷基。 Wherein L is a covalent bond or a divalent organic group; and each R is independently H or a C 1-20 alkyl group. In certain embodiments, the reduced polymer can include one of the following side groups: Wherein L is a covalent bond or a divalent organic group; and each R is independently H or a C 1-20 alkyl group. Representative reduced polymers that can serve as organic ILDs within the self-aligned oxide TFTs in accordance with the teachings of the present invention include: i) polyimines such as: Ii) an imine copolymer such as: Or C 1-20 alkyl, Iii) Polyallylamine, such as: It includes and And a polymer comprising a nitrogen-containing cyclic (eg, pyridine, pyrrole, pyrrolidone, imidazole, benzimidazole) molecular group, such as: Polymer with the following repeating unit Wherein R is a C 1-20 alkyl group.

可經由各種液相法(例如印製法、旋塗法、狹縫塗覆法、噴塗法等),在一溶劑內使該有機層間介電質自一含該還原聚合物的組成物沉積。可使用交聯劑調配該還原聚合物以改善所形成有機ILD之機械及熱穩定性。各種交聯劑在本項技藝內係已知,其等之實例包括各種環氧化物、丙烯酸酯、順丁烯二醯亞胺、二烯、及桂皮酸酯。在較佳實施例中,該還原聚合物組成物係經調配成光可圖案化組成物,因此,不必使用光阻劑,該有機ILD可經光交聯並圖案化。此組成物的實施例可包括一或多種光交聯劑及/或光敏劑。有用的光敏劑實例包括茀酮、茚、硝酮、及啡啉。為了改善該有機ILD與下一層間的黏著性,該還原聚合物組成物亦可包括一助黏劑,諸如矽酸鹽、矽烷、膦酸鹽、或羧酸酯。 The organic interlayer dielectric can be deposited from a composition containing the reduced polymer in a solvent via various liquid phase methods (e.g., printing, spin coating, slit coating, spray coating, etc.). The reduced polymer can be formulated using a crosslinking agent to improve the mechanical and thermal stability of the formed organic ILD. Various crosslinkers are known in the art, and examples thereof include various epoxides, acrylates, maleimide, dienes, and cinnamic acid esters. In a preferred embodiment, the reduced polymer composition is formulated into a photo-patternable composition, thus, without the use of a photoresist, the organic ILD can be photocrosslinked and patterned. Embodiments of this composition can include one or more photocrosslinkers and/or photosensitizers. Examples of useful photosensitizers include anthrone, anthracene, nitrone, and morpholine. In order to improve the adhesion between the organic ILD and the next layer, the reduced polymer composition may also include an adhesion promoter such as a decanoate, a decane, a phosphonate, or a carboxylic acid ester.

實驗數據確認一旦與根據本發明教示的還原聚合物直接接觸時,一金屬氧化物薄膜半導體之該電阻可降低至少10倍(一數量級)。在某些實施例中,該電阻之減少業經顯示為2-3數量級(亦即>100-1000倍)。因此,本發明方法可用以在一自我對齊氧化物TFT內產生經摻雜源極/汲極區域。 Experimental data confirms that the resistance of a metal oxide thin film semiconductor can be reduced by at least a factor of 10 (on the order of magnitude) upon direct contact with the reduced polymer in accordance with the teachings of the present invention. In some embodiments, the reduction in resistance is shown to be 2-3 orders of magnitude (i.e., >100-1000 times). Thus, the method of the present invention can be used to create a doped source/drain region within a self-aligned oxide TFT.

參考圖8(d),該還源ILD 407可經圖案化以產生通孔,其可曝露該等未經遮蔽源極/汲極區域409、410之 一部份。接著,藉在該還原ILD 407之頂上沉積例如濺鍍並圖案化金屬(例如Mo)薄膜而形成源/汲極405、406並經由該等通孔以和該金屬氧化物半導體層404內之該等低電阻源/汲極區域409、410產生電接觸圖8(e)。可將一鈍化層(圖中未顯示)沉積在該堆疊之頂上以完成該元件。 Referring to FIG. 8(d), the source ILD 407 can be patterned to create vias that expose the unmasked source/drain regions 409, 410 a part. Next, source/drain electrodes 405, 406 are formed by depositing, for example, a thinned and patterned metal (eg, Mo) film on top of the reduced ILD 407 and via the vias to neutralize the metal oxide semiconductor layer 404. The equal low resistance source/drain regions 409, 410 create electrical contact with Figure 8(e). A passivation layer (not shown) can be deposited on top of the stack to complete the component.

可製成如圖9內所示的具有一底閘極結構50之自我對齊氧化物TFT。具體上,係使用一蝕刻中止層508取代閘極介電質503/閘極502以遮蔽金屬氧化物通道區域511。整體而言,該底閘極結構50從底部到頂部依序包括基片501、閘極502、閘極介電質503、金屬氧化物半導體層504、蝕刻中止層508、根據本發明教示之還原性有機ILD 507、及源汲極505,506。經由將該欲與閘極502對齊之蝕刻中止層508圖案化而使該通道區域511與該閘極502對齊。如下文更詳細描述,可藉使用該閘極502作為光罩且經由該透明基片501(亦即自該元件之底部)使該蝕刻中止層508曝露於照射下。 A self-aligned oxide TFT having a bottom gate structure 50 as shown in FIG. 9 can be fabricated. Specifically, an etch stop layer 508 is used in place of the gate dielectric 503/gate 502 to shield the metal oxide channel region 511. In general, the bottom gate structure 50 includes a substrate 501, a gate 502, a gate dielectric 503, a metal oxide semiconductor layer 504, an etch stop layer 508, and a reduction according to the teachings of the present invention, from bottom to top. Sexual organic ILD 507, and source bungee 505, 506. The channel region 511 is aligned with the gate 502 by patterning the etch stop layer 508 to be aligned with the gate 502. As described in greater detail below, the etch stop layer 508 can be exposed to illumination via the transparent substrate 501 (i.e., from the bottom of the component) by using the gate 502 as a reticle.

參考圖9(a),可藉濺鍍一薄金屬膜(例如Mo)在一透明基片下,繼而如參考該頂閘極結構所述,進行光蝕刻圖案化及蝕刻而形成該閘極。可藉將一有機介電質(例如藉旋塗)或一無機介電質(例如藉PECVD而沉積SiOx)沉積在該閘極上而形成該閘極介電質。然後如在圖9b內所示,可藉,例如濺鍍IGZO,繼而進行圖案化而在該閘極介電質上形成一金屬氧化物半導體島狀物。然後,可以使一蝕刻中止(ES)層(諸如SiOx)沉積在該金屬氧化物半導體層上,且藉光蝕刻 法以背側曝露而使其經圖案化(圖9c)。一有機材料(較佳為光可圖案化聚合物材料)亦可作為該ES層,且類似地,經背側曝露而圖案化。該ES層因此可具有與該閘極相同的圖案,而且可界定該通道區域之在該ES層下方的該金屬氧化物半導體層之經遮蔽區域可以與該閘極對齊。後續步驟與該頂閘極結構之製法相同。亦即,使包括一根據本發明教示之還原聚合物的有機層間介電質係沉積在該部份堆疊上,並直接接觸該金屬氧化物半導體層內之該等未經遮蔽側區域(圖9(d))。該有機ILD可經圖案化以產生可曝露該等未經遮蔽源極/汲極區域之一部份的通孔(圖9(e))。接著,藉沉積(例如濺鍍)金屬(例如Mo)薄膜在該有機ILD之頂上而形成源極/汲極,並經由該等介電孔以和該金屬氧化物半導體層內之該等低電阻源極/汲極區域產生電接觸,繼而進行圖案化(圖9(f))。可以使一鈍化層沉積在該堆疊的頂部上以完成該元件。 Referring to Figure 9(a), the gate can be formed by sputtering a thin metal film (e.g., Mo) under a transparent substrate, followed by photoetching patterning and etching as described with reference to the top gate structure. The gate dielectric can be formed by depositing an organic dielectric (e.g., by spin coating) or an inorganic dielectric (e.g., depositing SiOx by PECVD) on the gate. Then, as shown in FIG. 9b, IGZO may be sputtered, for example, and patterned to form a metal oxide semiconductor island on the gate dielectric. Then, an etch stop (ES) layer (such as SiO x ) may be deposited on the metal oxide semiconductor layer and patterned by photoetching with backside exposure (Fig. 9c). An organic material, preferably a photo-patternable polymeric material, can also be used as the ES layer and, similarly, patterned by backside exposure. The ES layer can thus have the same pattern as the gate, and the masked region of the metal oxide semiconductor layer below the ES layer that can define the channel region can be aligned with the gate. The subsequent steps are the same as the top gate structure. That is, an organic interlayer dielectric comprising a reduced polymer according to the teachings of the present invention is deposited on the portion of the stack and directly contacts the unmasked side regions of the metal oxide semiconductor layer (FIG. 9). (d)). The organic ILD can be patterned to create vias that expose portions of the unmasked source/drain regions (Fig. 9(e)). Next, a source (drain) metal (eg, Mo) film is deposited on top of the organic ILD to form a source/drain, and through the dielectric holes to neutralize the low resistance in the metal oxide semiconductor layer The source/drain regions are electrically contacted and then patterned (Fig. 9(f)). A passivation layer can be deposited on top of the stack to complete the element.

文中所述之該等電晶體的各種實施例可排成一列,且作為以下主動矩陣顯示器內之開關元件或周邊驅動器:諸如主動矩陣液晶顯示器(AMLCD)、主動矩陣有機發光顯示器、及主動矩陣電泳顯示器;及作為用於主動矩陣有機發光二極體(AMOLED)之像素驅動器。 The various embodiments of the transistors described herein can be arranged in a row and serve as switching elements or peripheral drivers in active matrix displays such as active matrix liquid crystal displays (AMLCDs), active matrix organic light emitting displays, and active matrix electrophoresis. a display; and as a pixel driver for an active matrix organic light emitting diode (AMOLED).

提供以下實例以進一步闡明並促進本發明教示的理解,且無論如何並無意限制本發明。 The following examples are provided to further illustrate and facilitate the understanding of the teachings of the present invention and are not intended to limit the invention in any way.

實例1:還原聚合物之摻雜效應 Example 1: Doping effect of reduced polymer

為了證實以一金屬氧化物薄膜半導體接觸一還 原聚合物的摻雜效應,製成具有示於圖10內之結構的試驗元件。示於圖10(b)內之該結構為一不含還原聚合物塗覆物的對照元件。該等元件之製法如下。IGZO係作為該代表性金屬氧化物,且使用具有300瓦之DC功率、100sccm之Ar流率、及10sccm之O2流率的濺鍍系統將IGZO之薄膜(30奈米)濺鍍在一玻璃基片上。藉光蝕刻法而將該IGZO薄膜圖案化並在草酸內進行濕蝕刻以形成IGZO島狀物。然後藉光蝕刻法而將鉬圖案化且進行濕蝕刻以在各IGZO島狀物之兩側上形成接觸墊。各IGZO之寬度為約500微米,且該通道長度(兩鉬墊間之距離)為約250微米。就該對照元件而言,經測定,在這兩金屬墊間之IGZO的平均初薄膜電阻為約2.95 x 1010ohm。 In order to confirm the doping effect of contacting a reduced polymer with a metal oxide thin film semiconductor, a test element having the structure shown in Fig. 10 was fabricated. The structure shown in Figure 10(b) is a control element that does not contain a reduced polymer coating. The methods for making these components are as follows. IGZO is used as the representative metal oxide, and a film of IGZO (30 nm) is sputtered on a glass using a sputtering system having a DC power of 300 watts, an Ar flow rate of 100 sccm, and an O 2 flow rate of 10 sccm. On the substrate. The IGZO film was patterned by photolithography and wet etched in oxalic acid to form an IGZO island. Molybdenum is then patterned by photolithography and wet etched to form contact pads on both sides of each IGZO island. Each IGZO has a width of about 500 microns and the channel length (distance between the two molybdenum pads) is about 250 microns. For this control element, the average initial sheet resistance of IGZO between the two metal pads was determined to be about 2.95 x 10 10 ohms.

就該等試驗元件而言,將四種不同調配物中之一者旋塗在該等金屬墊及該經曝露IGZO通道之頂上。這4種調配物分別包括聚(2-乙烯基吡啶)(P2VPy)、聚(4-乙烯基吡啶)(P4VPy)、分支聚乙烯亞胺(PEI)(聚乙烯亞胺、以乙二胺分支,來自Sigma-Aldrich)、及聚乙烯基吡咯啶酮。旋塗後,該有機ILD係於200℃下經固化。測定與該有機ILD接觸之該IGZO通道區域的薄膜電阻,且結果示於圖11內。 For the test elements, one of four different formulations is spin coated onto the top of the metal pads and the exposed IGZO channel. The four formulations include poly(2-vinylpyridine) (P2VPy), poly(4-vinylpyridine) (P4VPy), branched polyethyleneimine (PEI) (polyethyleneimine, ethylenediamine branch). , from Sigma-Aldrich), and polyvinylpyrrolidone. After spin coating, the organic ILD was cured at 200 °C. The sheet resistance of the IGZO channel region in contact with the organic ILD was measured, and the results are shown in FIG.

明確地,經聚(2-乙烯基吡啶)塗覆之IGZO顯示2.08 x 107ohm之平均電阻;經聚(4-乙烯基吡啶)塗覆之IGZO顯示7.99 x 106ohm之平均電阻,經分支PEI塗覆之IGZO顯示1.31 x 108ohm之平均電阻,且經聚乙烯基吡咯啶酮塗覆之IGZO顯示2.50 x 108ohm之平均電阻。因此,各該 經有機ILD塗覆之IGZO顯示電阻比固有的IGZO降低至少2~3數量級。 Specifically, the poly(2-vinylpyridine) coated IGZO showed an average resistance of 2.08 x 10 7 ohm; the poly(4-vinylpyridine) coated IGZO showed an average resistance of 7.99 x 10 6 ohm, The branched PEI coated IGZO showed an average resistance of 1.31 x 10 8 ohms, and the polyvinylpyrrolidone coated IGZO showed an average resistance of 2.50 x 10 8 ohms. Therefore, each of the organic ILD-coated IGZO display resistors is reduced by at least 2 to 3 orders of magnitude from the inherent IGZO.

因此,該等實驗數據確認以一金屬氧化物薄膜半導體接觸還原聚合物可有效降低該金屬薄膜半導體之電阻。 Therefore, the experimental data confirmed that the contact of the reduced polymer with a metal oxide thin film semiconductor can effectively reduce the resistance of the metal thin film semiconductor.

文中所提到的所有公開案、專利申請案、專利案、及其它參考文獻之全文係以參考方式併入。如有矛盾時,以本說明書(包括定義)為主。 All publications, patent applications, patents, and other references mentioned herein are incorporated by reference. In case of conflicts, this manual (including definitions) is the main one.

只要不違背本發明教示之精神或基本特徴,本發明教示可以以其它特定形式具體化。上述實施例因而視為具闡明性而非對文中所述之本發明教示的限制。因此,本發明之範圍係藉附加申請專利範圍而非藉以上說明文而表示,且符合該等請求項之意義及同意義的範圍之所有變化均意欲涵蓋於本文中。 The teachings of the present invention may be embodied in other specific forms without departing from the spirit or scope of the invention. The above-described embodiments are therefore considered as illustrative and not as a limitation of the invention. Therefore, the scope of the invention is to be construed as being limited by the scope of the claims

40‧‧‧自我對齊頂閘極氧化物薄膜電晶體 40‧‧‧ Self-aligned top gate oxide film transistor

401‧‧‧基片 401‧‧‧ substrates

402‧‧‧閘極 402‧‧‧ gate

403‧‧‧閘極絕緣層 403‧‧‧ gate insulation

404‧‧‧氧化物半導體主動層 404‧‧‧Oxide semiconductor active layer

405‧‧‧汲極 405‧‧‧汲polar

406‧‧‧源極 406‧‧‧ source

407‧‧‧層間介電質 407‧‧‧Interlayer dielectric

409‧‧‧汲極區域 409‧‧‧Bungee area

410‧‧‧源極區域 410‧‧‧ source area

411‧‧‧通道 411‧‧‧ channel

Claims (30)

一種自我對齊金屬氧化物薄膜電晶體,其含一基片、一金屬氧化物半導體層、一閘極介電質、一有機層間介電質、一閘極、及源極與汲極,其中該金屬氧化物半導體層包含一經遮蔽區域及未經遮蔽區域,該經遮蔽區域係對齊未與該有機層間介電質直接接觸的閘極,而該未經遮蔽區域係與該有機層間介電質直接接觸,且其中該有機層間介電質包含一旦直接接觸時會增加該金屬氧化物半導層之導電度的聚合物材料。 A self-aligned metal oxide thin film transistor comprising a substrate, a metal oxide semiconductor layer, a gate dielectric, an organic interlayer dielectric, a gate, and a source and a drain, wherein The metal oxide semiconductor layer includes a shielded region and an unmasked region, the shielded region is aligned with a gate that is not in direct contact with the dielectric of the organic layer, and the unmasked region is directly interposed between the organic layer and the dielectric layer. Contact, and wherein the inter-organic dielectric comprises a polymeric material that increases the conductivity of the metal oxide semiconducting layer upon direct contact. 如請求項1之電晶體,其中該聚合物材料包含一還原聚合物。 The transistor of claim 1, wherein the polymeric material comprises a reduced polymer. 如請求項2之電晶體,其中該還原聚合物為一電絕緣聚合物其主鏈及/或側基團(群)包含一或多個具有一孤對電子之氮原子。 The transistor of claim 2, wherein the reduced polymer is an electrically insulating polymer whose backbone and/or pendant groups (groups) comprise one or more nitrogen atoms having a lone pair of electrons. 如請求項2之電晶體,其中該還原聚合物為一其主鏈及/或側基團(群)含有一胺分子團、一亞胺分子團、一醯胺分子團、一醯亞胺分子團、一分子團、一唑分子團、或其等之組合的電絕緣聚合物。 The transistor of claim 2, wherein the reduced polymer is a main chain and/or a side group (group) comprising an amine group, an imine group, a monoamine group, and an imine molecule. Group, one An electrically insulating polymer of a molecular group, an azole group, or a combination thereof. 如請求項4之電晶體,其中該還原聚合物包含以下側基團中之一者: 其中L為共價鍵或二價有機基團;且各R獨立為H、或C1-20烷基。 The transistor of claim 4, wherein the reduced polymer comprises one of the following side groups: Wherein L is a covalent bond or a divalent organic group; and each R is independently H or a C 1-20 alkyl group. 如請求項4之電晶體,其中該還原聚合物之主鏈包含以下分子團中之一者: 其中L為共價鍵或二價有機基團;且各R獨立為H、或C1-20烷基。 The transistor of claim 4, wherein the backbone of the reduced polymer comprises one of the following molecular groups: Wherein L is a covalent bond or a divalent organic group; and each R is independently H or a C 1-20 alkyl group. 如請求項4之電晶體,其中該還原聚合物為一聚亞胺。 The transistor of claim 4, wherein the reduced polymer is a polyimine. 如請求項4之電晶體,其中該還原聚合物為一聚烯丙胺。 The transistor of claim 4, wherein the reduced polymer is a polyallylamine. 如請求項4之電晶體,其中該還原聚合物之主鏈及/或側基團(群)包含一吡啶分子團、一吡咯分子團、一咪唑分子團、一苯并咪唑分子團、一吡咯啶酮分子團、或其等之組合。 The transistor of claim 4, wherein the main chain and/or the side group (group) of the reduced polymer comprises a pyridine molecule group, a pyrrole group, an imidazole group, a benzimidazole group, a pyrrole group. a ketone ketone molecular group, or a combination thereof. 如請求項2之電晶體,其中該還原聚合物係選自以下所組成的群組:聚(乙烯基吡啶)、聚(乙烯基吡咯啶酮)、及聚(乙烯亞胺)。 The transistor of claim 2, wherein the reduced polymer is selected from the group consisting of poly(vinylpyridine), poly(vinylpyrrolidone), and poly(ethyleneimine). 如請求項2之電晶體,其中該聚合物材料包含該還原聚 合物之一經交聯基質。 The transistor of claim 2, wherein the polymeric material comprises the reduced poly One of the compounds is crosslinked to the matrix. 如請求項1之電晶體,其中該金屬氧化物半導體層包含氧化銦鎵鋅(IGZO)。 The transistor of claim 1, wherein the metal oxide semiconductor layer comprises indium gallium zinc oxide (IGZO). 如請求項1之電晶體,其中該閘極介電質包含氧化矽、氮化矽、或氧氮化矽。 The transistor of claim 1, wherein the gate dielectric comprises hafnium oxide, tantalum nitride, or hafnium oxynitride. 如請求項1之電晶體,其中該閘極介電質包含一有機材料。 The transistor of claim 1, wherein the gate dielectric comprises an organic material. 如請求項1之電晶體,其中該基片包含一可撓性塑膠基片。 The transistor of claim 1, wherein the substrate comprises a flexible plastic substrate. 如請求項1之電晶體,其中與該有機層間介電質直接接觸的該金屬氧化物半導體層之該等未經遮蔽區域具有比未與該有機層間介電質直接接觸的該金屬氧化物半導體層之該等經遮蔽區域的導電度高超過10倍之導電度。 The transistor of claim 1, wherein the unmasked regions of the metal oxide semiconductor layer in direct contact with the organic interlayer dielectric have a metal oxide semiconductor that is in direct contact with the dielectric of the organic interlayer. The conductivity of the masked regions of the layer is more than 10 times higher than the conductivity. 如請求項16之電晶體,其中與該有機層間介電質直接接觸的該金屬氧化物半導體層之該等未經遮蔽區域具有比未與該有機層間介電質直接接觸的該金屬氧化物半導體層之該等經遮蔽區域的導電度高超過100倍之導電度。 The transistor of claim 16, wherein the unmasked regions of the metal oxide semiconductor layer in direct contact with the organic interlayer dielectric have a metal oxide semiconductor that is in direct contact with the dielectric of the organic interlayer. The conductivity of the masked regions of the layer is greater than 100 times the conductivity. 如請求項17之電晶體,其中與該有機層間介電質直接接觸的該金屬氧化物半導體層之該等未經遮蔽區域具有比未與該有機層間介電質直接接觸的該金屬氧化物半導體層之該等經遮蔽區域的導電度高超過1000倍之導電度。 The transistor of claim 17, wherein the unmasked regions of the metal oxide semiconductor layer in direct contact with the organic interlayer dielectric have a metal oxide semiconductor that is in direct contact with the organic interlayer dielectric. The conductivity of the masked regions of the layer is greater than 1000 times the conductivity. 如請求項1-18中任一項之電晶體,其中該電晶體具有一頂閘極結構,其按順序自底部至頂部包含:該基板、該金屬氧化物半導體層、該閘極介電質、該閘極、該有機層間介電質、及該源極與汲極,其中該金屬氧化物半導體層之經遮蔽區域係與該閘極介電質及閘極對齊,且該有機層間介電質包含通孔,該等源極及汲極可經由該等通孔而接觸該金屬氧化物半導體層之該等未經遮蔽區域。 The transistor of any one of claims 1 to 18, wherein the transistor has a top gate structure comprising, in order from bottom to top, the substrate, the metal oxide semiconductor layer, the gate dielectric The gate, the organic interlayer dielectric, and the source and the drain, wherein the masked region of the metal oxide semiconductor layer is aligned with the gate dielectric and the gate, and the organic layer is dielectrically The material includes vias through which the source and drain contacts the unmasked regions of the metal oxide semiconductor layer. 如請求項1-18中任一項之電晶體,其中該電晶體具有一底閘極結構,其按順序自底部至頂部包含:該基板、該閘極、該閘極介電質、該金屬氧化物半導體層、一蝕刻中止層、該有機層間介電質、及該源極與汲極,其中該金屬氧化半導體層之經遮蔽區域係與該閘極及蝕刻中止層對齊,且該有機層間介電質包含通孔,該等源極及汲極可經由該等通孔而接觸該金屬氧化物半導體層之該等未經遮蔽區域。 The transistor of any one of claims 1 to 18, wherein the transistor has a bottom gate structure comprising, in order from bottom to top, the substrate, the gate, the gate dielectric, the metal An oxide semiconductor layer, an etch stop layer, the organic interlayer dielectric, and the source and drain electrodes, wherein the masked region of the metal oxide semiconductor layer is aligned with the gate and the etch stop layer, and the organic layer is interposed The dielectric material includes via holes through which the source and drain electrodes contact the unmasked regions of the metal oxide semiconductor layer. 一種製造自我對齊金屬氧化物薄膜電晶體之方法,該方法包含:在一基片上形成一金屬氧化物半導體層;在該金屬氧化物半導體層上形成一閘極介電質;在該閘極介電質上形成一閘極,且將該閘極及閘極介電質一起圖案化以提供該金屬氧化物半導體層之一經遮蔽區域、及該金屬氧化物半導體層之未經遮蔽區域; 藉將一含還原聚合物之組成物沉積在該金屬氧化物半導體層之該閘極及該等未經遮蔽區域上而形成一有機層間介電質;將該有機層間介電質圖案化以提供通孔,其可穿過該有機層間介電質並延伸至該金屬氧化物半導體層之該等未經遮蔽區域;且經由該等通孔而形成與該金屬氧化物半導體層之該等未經遮蔽區域接觸的源極及汲極。 A method of fabricating a self-aligned metal oxide thin film transistor, the method comprising: forming a metal oxide semiconductor layer on a substrate; forming a gate dielectric on the metal oxide semiconductor layer; Forming a gate on the electrolyte, and patterning the gate and the gate dielectric together to provide a masked region of the metal oxide semiconductor layer and an unmasked region of the metal oxide semiconductor layer; Forming an organic interlayer dielectric by depositing a composition containing a reduced polymer on the gate of the metal oxide semiconductor layer and the unmasked regions; patterning the organic interlayer dielectric to provide a via hole extending through the organic interlayer dielectric and extending to the unmasked regions of the metal oxide semiconductor layer; and forming the same with the metal oxide semiconductor layer via the via holes The source and the drain of the shielded area. 如請求項21之方法,其中該含還原聚合物之組成物進一步包含一交聯劑。 The method of claim 21, wherein the composition comprising the reduced polymer further comprises a crosslinking agent. 如請求項22之方法,其中該交聯劑係選自由以下所組成的群組:桂皮酸酯、二烯、順丁烯二醯亞胺、丙烯酸酯、及環氧化物。 The method of claim 22, wherein the crosslinking agent is selected from the group consisting of cinnamic acid esters, dienes, maleimide, acrylates, and epoxides. 如請求項21之方法,其中該含還原聚合物之組成物進一步包含一助黏劑。 The method of claim 21, wherein the composition comprising the reduced polymer further comprises an adhesion promoter. 如請求項24之方法,其中該助黏劑係選自由以下所組成的群組:矽酸酯、矽烷、膦酸酯、及羧酸酯。 The method of claim 24, wherein the adhesion promoter is selected from the group consisting of phthalates, decanes, phosphonates, and carboxylates. 如請求項21之方法,其中該含還原聚合物之組成物進一步包含一光敏劑。 The method of claim 21, wherein the composition comprising the reduced polymer further comprises a photosensitizer. 如請求項26之方法,其中該光敏劑係選自以下所組成的群組:茀酮、茚、硝酮、及啡啉。 The method of claim 26, wherein the photosensitizer is selected from the group consisting of anthrone, anthracene, nitrone, and morpholine. 如請求項21之方法,其進一步含在該有機層間介電質及該等源極與汲極上形成一鈍化層。 The method of claim 21, further comprising forming a passivation layer between the organic interlayer dielectric and the source and drain electrodes. 一種製造自我對齊金屬氧化物薄膜電晶體之方法,該方 法含:在一基片上形成一閘極;在該閘極上形成一閘極介電質;在該閘極介電質上形成一金屬氧化物半導體層;在該金屬氧化物半導體層上形成一蝕刻中止層;圖案化該蝕刻中止層,以與該閘極對齊並提供一該金屬氧化物半導體層之一經遮蔽區域及該金屬氧化物半導體層之未經遮蔽區域;藉將一含還原聚合物之組成物沉積在該金屬氧化物半導體層之該蝕刻中止層及該等未經遮蔽區域上而形成一有機層間介電質;將該有機層間介電質圖案化以提供通孔其可穿過該有機層間介電質並延伸至該金屬氧化物半導體層之該等未經遮蔽區域;且經由該等通孔而形成與該金屬氧化物半導體層之該等未經遮蔽區域接觸的源極及汲極。 A method of manufacturing a self-aligned metal oxide thin film transistor, the method The method comprises: forming a gate on a substrate; forming a gate dielectric on the gate; forming a metal oxide semiconductor layer on the gate dielectric; forming a gate on the metal oxide semiconductor layer Etching a stop layer; patterning the etch stop layer to align with the gate and providing a masked region of the metal oxide semiconductor layer and an unmasked region of the metal oxide semiconductor layer; a composition deposited on the etch stop layer and the unmasked regions of the metal oxide semiconductor layer to form an organic interlayer dielectric; the organic interlayer dielectric is patterned to provide a via hole through which The organic interlayer dielectric extends to the unmasked regions of the metal oxide semiconductor layer; and a source that is in contact with the unmasked regions of the metal oxide semiconductor layer is formed through the vias and Bungee jumping. 如請求項29之方法,其中該含還原聚合物之組成物進一步包含一交聯劑,一助黏劑,及/或一光敏劑。 The method of claim 29, wherein the composition comprising the reduced polymer further comprises a crosslinking agent, an adhesion promoter, and/or a photosensitizer.
TW104118498A 2014-06-06 2015-06-08 Self-aligned metal oxide transistors and methods of fabricating the same TW201611261A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462009144P 2014-06-06 2014-06-06

Publications (1)

Publication Number Publication Date
TW201611261A true TW201611261A (en) 2016-03-16

Family

ID=54767501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104118498A TW201611261A (en) 2014-06-06 2015-06-08 Self-aligned metal oxide transistors and methods of fabricating the same

Country Status (2)

Country Link
TW (1) TW201611261A (en)
WO (1) WO2015188181A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI818008B (en) * 2018-04-04 2023-10-11 日商半導體能源研究所股份有限公司 Semiconductor device and method of manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420971B (en) * 2020-11-25 2023-04-18 合肥福纳科技有限公司 Method for optimizing light-emitting diode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074957A1 (en) * 2000-04-04 2001-10-11 Asahi Kasei Kabushiki Kaisha Coating composition for the production of insulating thin films
JP5216204B2 (en) * 2006-10-31 2013-06-19 株式会社半導体エネルギー研究所 Liquid crystal display device and manufacturing method thereof
KR20090065254A (en) * 2007-12-17 2009-06-22 한국전자통신연구원 Composition for photo-reactive organic polymer gate insulating layer and thin-film transistor using the same
KR100964773B1 (en) * 2008-07-21 2010-06-21 테크노세미켐 주식회사 Chemically amplified Positive Extremely High Sensitive Organic Insulator Composition And Method of Foming Organic Insulator Using Thereof
JP2012015436A (en) * 2010-07-05 2012-01-19 Sony Corp Thin film transistor and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI818008B (en) * 2018-04-04 2023-10-11 日商半導體能源研究所股份有限公司 Semiconductor device and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
WO2015188181A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
US8445902B2 (en) Thin film transistor and method of manufacturing the same
TWI542014B (en) Thin film transistor and method for producing the same, image display device having thin film transistor
US8420457B2 (en) Thin film transistor and method of manufacturing the same
US10707236B2 (en) Array substrate, manufacturing method therefor and display device
KR101413655B1 (en) Fabrication method of oxide semiconductor thin film transistor
CN102386204B (en) Organic light-emitting display device and manufacture method thereof
US10615266B2 (en) Thin-film transistor, manufacturing method thereof, and array substrate
US9246007B2 (en) Oxide thin film transistor and method for manufacturing the same, array substrate, and display apparatus
JP6134230B2 (en) Thin film transistor and display device
JP2010080936A (en) Amorphous oxide semiconductor and thin film transistor using the same
TW201322341A (en) Semiconductor device and manufacturing method thereof
JP2014131047A (en) Thin-film transistor and thin-film transistor display board
US20130122649A1 (en) Method for manufacturing thin film transistor
KR20080052107A (en) Filed-effect thin film transistor including a oxidized semiconductor
CN106898551A (en) Manufacture method, thin film transistor base plate and the panel display apparatus of thin film transistor (TFT)
US9704998B2 (en) Thin film transistor and method of manufacturing the same, display substrate, and display apparatus
US20130234135A1 (en) Thin film transistor and method for manufacturing same
US20170077271A1 (en) Array substrate for liquid crystal display device and method of manufacturing the same
WO2015096307A1 (en) Oxide thin-film transistor, display device and manufacturing method for array substrate
WO2018223476A1 (en) Manufacturing method for indium gallium zinc oxide thin film transistor
US10243004B2 (en) Low-temperature polycrystalline silicon thin film transistor, and manufacturing method for fabricating the same, array substrate, display panel and display device
WO2017034203A1 (en) Oxide transistor and manufacturing method therefor
TW201611261A (en) Self-aligned metal oxide transistors and methods of fabricating the same
WO2015182888A1 (en) Oxide semiconductor thin-film transistor manufacturing method
CN109742089A (en) The manufacturing method of display base plate, display device and display base plate