TW201610731A - 擷取線上製程控制工具之全面設計導引及其方法 - Google Patents

擷取線上製程控制工具之全面設計導引及其方法 Download PDF

Info

Publication number
TW201610731A
TW201610731A TW104119181A TW104119181A TW201610731A TW 201610731 A TW201610731 A TW 201610731A TW 104119181 A TW104119181 A TW 104119181A TW 104119181 A TW104119181 A TW 104119181A TW 201610731 A TW201610731 A TW 201610731A
Authority
TW
Taiwan
Prior art keywords
design
information
process control
potential
margins
Prior art date
Application number
TW104119181A
Other languages
English (en)
Other versions
TWI644225B (zh
Inventor
沙格A 基凱爾
瑟吉G 巴卡雷恩
Original Assignee
克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 克萊譚克公司 filed Critical 克萊譚克公司
Publication of TW201610731A publication Critical patent/TW201610731A/zh
Application granted granted Critical
Publication of TWI644225B publication Critical patent/TWI644225B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本發明提供用於擷取晶圓之線上製程控制之全面設計導引之方法及系統。一種方法包含:自動識別待形成於一晶圓上之一裝置之一設計中的潛在邊限性。該方法亦包含:自動產生該等潛在邊限性之資訊。該自動產生之資訊用於設置對該晶圓之製程控制。

Description

擷取線上製程控制工具之全面設計導引及其方法
本發明大體而言係關於用於擷取晶圓之線上製程控制之全面設計導引之方法及系統。
以下說明及實例並不由於其包括在此章節中而被認為係先前技術。
製作諸如邏輯及記憶體裝置之半導體裝置通常包含使用大量半導體製作製程來處理諸如一半導體晶圓之一基板以形成半導體裝置之各種特徵及多個層級。舉例而言,微影係涉及將一圖案自一比例光罩轉印至配置於一半導體晶圓上之一抗蝕劑之一半導體製作製程。半導體製作製程之額外實例包含但不限於化學機械拋光、蝕刻、沈積及離子植入。可將多個半導體裝置製作於一單個半導體晶圓上之一配置中且然後將其分離成個別半導體裝置。
在一半導體製造製程期間在各種步驟處使用檢驗製程來偵測晶圓上之缺陷。檢驗製程始終係製作諸如積體電路之半導體裝置之一重要部分。然而,隨著半導體裝置之尺寸減小,檢驗製程變得對成功製造可接受半導體裝置更重要。舉例而言,隨著半導體裝置之尺寸減小,對減小大小之缺陷之偵測變得有必要,此乃因甚至相對小之缺陷亦可在半導體裝置中造成非想要之像差。
可在製作晶圓上之一裝置期間或之後對一晶圓執行其他製程控制。舉例而言,一旦已檢驗一晶圓是否有缺陷,即可在一缺陷再檢測製程中再檢測檢驗中偵測到之一或多個缺陷。缺陷再檢測製程可在不同於用於檢驗之工具之一工具上執行,該工具可經最佳化用於缺陷再檢測。在缺陷再檢測製程期間產生之額外資訊可用於分類及/或篩選晶圓上偵測到之缺陷。亦可對晶圓執行計量製程。在此等製程中,量測諸如線寬、薄膜厚度及諸如此類之晶圓之一或多個特性。此等製程亦可藉由針對計量經最佳化且專用於計量之工具執行。另外,亦可對晶圓執行故障分析(FA)製程,其中通常基於晶圓之電測試結果而判定關於晶圓之物理特性之資訊。
在某些例項中,基於形成於晶圓上之裝置之設計而執行諸如上文所闡述之實例之晶圓製作之製程控制。舉例而言,如今關於線上檢驗、再檢測及計量之某些導引開始來自設計團隊。然而,此等導引通常僅涵蓋設計團隊瞭解關於其晶片設計之資訊及可實質上用於線上檢驗及計量之資訊之一相對小分段。另外,如今實質上顯著缺少用於形成此導引之自動化。
因此,用於基於設計資料導引製程控制之當前方法及系統存在若干種缺點。舉例而言,在涵蓋一設計團隊的關於其晶片設計之知識之全部範圍系不切實際之程度上,實際上所使用方法係落後的。另外,某些類型之設計團隊之知識比用於線上檢驗及計量系統之知識簡單以消耗(例如)製造設計(DFM)誤差、由產品工程分析選取之實體FA位置等等。此外,此等輸入之比例由於缺少自動化而保持實際觀察之一實質上小百分比。
因此,開發部具有上文所闡述之缺點中之一或多者之用於擷取晶圓之線上製程控制之全面設計導引之方法及系統將係有利的。
各種實施例之以下說明不應以任何方式解釋為限制隨附申請專利範圍之標的物。
一項實施例係關於用於產生用於設置對一晶圓之製程控制之資訊之一電腦實施方法。該方法包含:自動識別待形成於一晶圓上之一裝置之一設計中之潛在邊限性。該方法亦包含:自動產生該等潛在邊限性之資訊。該自動產生之資訊用於設置對該晶圓之製程控制。自動識別該等潛在邊限性及自動產生該資訊係由一或多個電腦系統執行。
可如本文中進一步所闡述執行上文所闡述之方法之步驟中之每一者。上文所闡述之方法可包含本文中所闡述之(若干)任何其他方法之(若干)任何其他步驟。上文所闡述之該方法可藉由本文中所闡述之系統中之任何者來執行。
另一實施例係關於儲存可在一電腦系統上執行以用於產生用於設置對一晶圓之製程控制之資訊的程式指令之非暫時電腦可讀媒體。該電腦實施方法包含可如本文中進一步所闡述執行之上文所闡述之電腦實施方法之步驟中之每一步驟。另外,可為其執行該等程式指令之該電腦實施方法可包含本文中所闡述之(若干)任何其他方法之(若干)任何其他步驟。該非暫時性電腦可讀媒體可如本文中所闡述進一步組態。
一額外實施例係關於經組態以產生用於設置對一晶圓之製程控制之資訊之一系統。該系統包含一製程控制工具,該製程控制工具經組態以判定一裝置之至少一部分已形成於其上之一晶圓之一實體版本之一或多個特性之資訊。該系統亦包含經組態以用於自動識別該裝置之一設計中之潛在邊限性之一或多個電腦子系統。該(等)電腦子系統亦經組態以用於自動產生該等潛在邊限性之資訊。該自動產生之資訊用於設置由該製程控制工具執行之晶圓之製程控制。該系統可如本文中所闡述來進一步組態。
100‧‧‧非暫時性電腦可讀媒體
102‧‧‧程式指令
104‧‧‧電腦系統
200‧‧‧製程控制工具
202‧‧‧電腦子系統
204‧‧‧光源
206‧‧‧光束分裂器
208‧‧‧透鏡
210‧‧‧晶圓
212‧‧‧光束分裂器
214‧‧‧偵測器
216‧‧‧偵測器
在閱讀以下詳細說明且在參考附圖時,本發明之其他目標及優點將變得顯而易見,在圖式中:圖1係圖解說明一非暫時性電腦可讀媒體之一項實施例之一方塊圖,該非暫時性電腦可讀媒體儲存可儲存可在一電腦系統上執行以用於執行本文中所闡述之電腦實施方法實施例中之一或多者之程式指令;及圖2係圖解說明經組態以產生用於設置對一晶圓之製程控制之資訊之一系統之一項實施例之一側視圖之一示意圖。
雖然易於對本發明做出各種修改及替代形式,但其特定實施例係在圖式中以實例之方式展示且將在本文中詳細闡述。然而,應理解,圖式及對其之詳細說明並非意欲將本發明限制於所揭示之特定形式,而是相反,本發明意欲涵蓋歸屬於如由隨附申請專利範圍所界定之本發明之精神及範疇內之所有修改、等效形式及替代形式。
現在轉至圖式,應注意各圖並未按比例繪製。特定而言,該等圖之元件中之某些元件之比例被大為放大以強調該等元件之特性。亦應注意,該等圖並未按相同比例繪製。已使用相同元件符號指示可類似地組態之在一個以上圖中展示之元件。除非本文中另外提及,否則所闡述及所展示之元件中之任何元件可包含任何適合可商業購得之元件。
一項實施例係關於用於產生用於設置對一晶圓之製程控制之資訊之一電腦實施方法。如本文中將進一步闡述,實施例可用於選擇性實體擷取用於製作及在測試之後的故障分析(FA)期間導引線上檢驗、再檢測及計量之積體電路(IC)設計邊限性。舉例而言,製程控制可包含在將一裝置製作於一晶圓上期間執行之一檢驗製程、一缺陷再檢測 製程或一計量製程。另外,製程控制可包含在對裝置之電測試之後執行之一FA製程。此製程控制可包含此項技術中已知之任一此等製程控制。製程控制可藉由包含本文中進一步闡述之彼等工具之任一適合製程控制工具執行。
該方法包含:自動識別待形成於一晶圓上之一裝置之一設計中之潛在邊限性。舉例而言,本文中所闡述之實施例之一般目的係導引一晶圓廠中之線上檢驗、再檢測及計量操作及在測試之後的對一晶片內之幾何特定區域(其已被認為在製作期間應予以特別注意)之FA操作。在一項實施例中,基於由裝置之一設計者提供之資訊而自動識別潛在邊限性。舉例而言,晶片內之幾何特定區域可被一設計者認為在製作期間應予以特別注意。另外,新且獨特之設計元件可識別為潛在邊限性,此乃因其製作及效能可係大部分未知的。在另一實施例中,基於關於裝置內之不同區域之電屬性、邏輯屬性、功能屬性及行為屬性的資訊而自動識別潛在邊限性。舉例而言,晶片內之幾何特定區域可被認為就其電屬性、邏輯屬性、功能屬性及行為屬性方面在製作期間應予以特別注意。此等屬性可以任一適合方式判定。
在一項實施例中,透過一模擬來發現潛在邊限性中之至少一者。舉例而言,需要在製作期間特別注意之原因可係透過模擬發現(例如,裝置功能及/或裝置製作)之一邊限性。在另一實施例中,透過關於用於裝置之功能或測試之一設計元件之臨界性的資訊來發現潛在邊限性中之至少一者。舉例而言,需要在製作期間特別注意之原因可係出於功能或測試目的之一設計元件之臨界性。在又一實施例中,透過裝置之一設計元件之功能或效能缺陷之先前知識來發現潛在邊限性中之至少一者。舉例而言,需要在製作期間特別注意之原因可係一設計元件之功能或效能缺陷之先前知識(例如,透過測試及/或診斷)。另外,需要在製作期間特別注意之原因可係關於裝置中之設計元件之此 資訊中之任一者或全部。
自動識別潛在邊限性可包含以各種電、邏輯、功能及行為簽核驗證結果開始之一第一組步驟,諸如:1)在其變體中之靜態時序分析簽核;2)信號完整性簽核;3)閂鎖效應及靜電放電(ESD)規則檢查;及4)電遷移規則檢查。準則可應用於此等結果以選擇由上文所提及之簽核/驗證步驟中之每一者旗標之設計元件中之某些或全部設計元件。準則可與在每一簽核期間檢查之設計之特定屬性或與設計團隊對其晶片設計之理解相關之此等及其他參數之任一組合相關。因此所選擇之該等設計元件可透過其電、邏輯、功能或行為名稱而識別。
自動識別潛在邊限性亦可包含基於一設計團隊之嵌入於設計內之特定實體之知識之一第二組步驟。此等特定實體可包含在一折衷意義之情況下使用之設計元件,例如,因其高驅動而使用但亦因其洩漏特性而著稱之一標準晶胞。在一項實施例中,基於設計之元件與裝置之功能之電相關性而識別潛在邊限性中之至少一者。舉例而言,特定實體可係在與晶片功能不具有或具有減少電相關性之情況下使用之設計元件,例如純粹用作一填料且不以任一方式連接至實際電路之一標準晶胞或用於保證之一冗餘晶胞。在另一實施例中,基於經設計用於裝置之可測試性的設計之一或多個元件而識別潛在邊限性中之至少一者。舉例而言,特定實體可係可測試性設計(DFT)元件,諸如掃描鏈、掃描觸發器、暫存器等。另外,該等特定實體可係基於設計團隊之來自測試晶片特性或來自晶片之先前矽FA之先前知識之在當前製造能力之限制下之設計元件。在又一實施例中,基於對設計中之一區塊之效能之約束而識別潛在邊限性中之至少一者。舉例而言,該等特定實體亦可係對效能具有實質上高約束之所謂「IP」區塊,諸如類比電路中之匹配對等等。
該方法亦包含:自動產生該等潛在邊限性之資訊。自動產生之 資訊並不足以用於裝置整體之製作。替代地,資訊僅適於設置製程控制且可能供用於執行製程控制。如本文中所闡述而產生之資訊不可用於製作裝置,此乃因資訊中可僅包含經識別之潛在邊限性之資訊。舉例而言,自動產生之資訊不足以製作整體裝置,此乃因其以由一特定準則限制之一方式描述裝置以將設計內之各種元件分級。如此,所產生之資訊可不包含製作裝置所需之全部必需資訊。
在一項實施例中,自動產生資訊包含:對照裝置之一實體設計資料庫查詢對應於潛在邊限性之設計元件。舉例而言,可針對晶片設計之一實體設計資料庫查詢如上文所闡述選擇之設計元件。此資料庫可取決於晶片電路之性質、所使用之設計自動化工具、設計團隊之一偏好等而以數種表現形式存在。最常遇到資料庫可係庫交換格式-設計交換格式(LEF-DEF)、佈局對原理圖(LVS)等等,但亦可使用其他不常見資料庫。
在另一實施例中,自動產生資訊包含:產生含有自查詢產生之實體設計元件之一設計資料檔案。在一額外實施例中,潛在邊限性之自動產生之資訊包含對應於潛在邊限性之設計中之實體設計元件的一或多個實體屬性。舉例而言,匹配查詢之實體設計元件可從資料庫來識別且被註解於資料庫內、作為一單獨表複製於資料庫內,或被完全分出作為一新獨立資料庫。藉由查詢識別之實體設計元件亦可用於作為一GDS或OASIS檔案之輸出,或可經傳遞或讀取以感知其中所包含之實體設計元件的實體位置、形狀、周長、縱橫比、定向、對稱性,或任何此等實體屬性的任一其他可接受檔案格式。另外,實體設計元件可係由GDS、OASIS及其他此等格式提供之階層式結構中的任一者組織。此等組織可反映與實體設計元件或其任一子集相關聯的整個屬性範圍。
在某些實施例中,方法包含:基於製程控制之一或多個參數而 修改對應於潛在邊限性之設計中的一或多個實體設計元件。舉例而言,如本文中所闡述識別之實體設計元件可經修改以最佳地自檢驗、計量或本文中所闡述之其他類型製程控制獲益。此等修改可涵蓋全部或某些實體設計元件之結構以及內容脈絡改變之整個範圍。
上文所闡述的步驟可被應用於一整體系統單晶片(SoC)晶片裝置,以一可分離方式應用於一複雜晶片內之各別區塊或甚至子區塊單位級處,具有在全SoC級處將結果再次重新組合的能力。另外,上文所闡述的步驟可允許各種IP廠商報告其自身之關於欲對其各別IP區塊執行之製程控制的導引集。此IP級導引可與設計團隊之導引組合,以達成全SoC級導引。
該自動產生之資訊係用於設置對該晶圓之製程控制。舉例而言,上文所闡述之步驟的結果可用於形成實體設計元件之一命名,該命名可用於在本文中所闡述之一或多個類型之製程控制期間管理對元件中之每一者的適當處理。在一項此實例中,自動產生之資訊可包含關於應對晶圓執行之製程控制的位置、在製程控制期間對晶圓進行取樣的位置等等的資訊,使得資訊可能結合關於應如何執行此製程控制(例如,何種類型之量測及諸如此類)的導引而提供關於應對晶圓執行製程控制之位置的導引。設置製程控制可包含:判定製程控制之任何參數的一或多個值,包含輸出獲取參數(例如,一光學子系統、一電子光束子系統等的參數)及輸出處理參數(例如,用於處理一製程控制工具之一或多個偵測器之輸出之一電腦子系統的參數)。
亦可基於一潛在邊限性來判定製程控制參數。舉例而言,在一項實施例中,自動產生之資訊包含指示不同類型之潛在邊限性之資訊。此資訊可包含用於不同類型之潛在邊限性之某一類別的ID或代碼。ID或代碼可指示將潛在邊限性識別為邊限性之原因,藉此按類型將潛在邊限性來分類。在某些實施例中,指示不同類型之潛在邊限性 的資訊係由設計之一所有者加密。舉例而言,經指派至不同潛在邊限性之代碼或ID可係由設計所有者指派且具有僅為設計所有者已知的意義。在某些此等實施例中,指示不同類型之潛在邊限性的資訊係用於設置對晶圓之不同類型的製程控制。在一項實例中,針對包含於所產生資訊中之不同類型之潛在邊限性中之每一者,可單獨地判定製程控制之參數。以此方式,製程控制之參數可隨晶圓上之潛在邊限性而不同。以此方式,若一潛在邊限性對應於設計中之一單個設計元件,則製程控制之參數可在設計元件級上(亦即,隨設計元件)不同,但其他級之變化亦係可能的。
如上文進一步所闡述,以若干種不同方式自動識別潛在邊限性。另外,經識別之潛在邊限性可包含裝置中之所有潛在邊限性。因此,本文中所闡述之實施例具有優於當前所使用的用於基於設計導引良率控制製程之方法之若干種顯著優點。舉例而言,先前所嘗試的用於導引線上檢驗、再檢測及計量之方法中之任何者不展現方法步驟之此等詳細自動化,且如此,其無法全面地使一設計團隊之知識的整個範圍對線上檢驗及計量之效率及效用有影響。另外,考量已取代典型IC設計流程之大量自動化,尚未識別替代途徑以按其全比例及範疇達成此等實施例之能力。
在另一實施例中,自動識別潛在邊限性及自動產生資訊係由一無晶圓廠實體執行,且製程控制係由一晶圓廠在接收來自無晶圓廠實體之該自動產生之資訊之後基於該資訊而設置。舉例而言,本文中所闡述之基於設計之實施例藉助無晶圓廠設計公司形成製程控制資料之差異值,此乃因無晶圓廠設計公司可自其晶圓廠索取特定製程控制資料。另外,本文中所闡述之實施例可使得無晶圓廠設計公司不僅能夠尋求特定製程控制資料,而且能夠規定其晶圓廠關於何處及何時需要收集製程控制資料。
因此,本文中所闡述之實施例有利地組合可能以最自動化方式用於設計導引製程控制之最全面資訊。舉例而言,首先,本文中所闡述之實施例提供同化一全新知識體系以致力於使線上檢驗及其他製程控制更有效及高效之一途徑。另外,本文中所闡述之實施例經設計以自現有晶片設計自動化流程之大部分元件獲益,因此達成用於在此等工作中確保設計團隊之協作之一高度經濟方式。舉例而言,在一項實施例中,在針對設計執行之一電子設計自動化(EDA)製程中之不同點處自動識別潛在邊限性中之至少某些潛在邊限性,且自動產生之資訊包含在EDA製程中之不同點處自動識別之潛在邊限性中之至少兩者之資訊。以此方式,可在不同時間點處自動識別潛在邊限性,但經識別之潛在邊限性中之全部或至少某些潛在邊限性可共同或同時被認為如本文中所闡述自動產生資訊。換言之,可在不同時間處(例如,在EDA製程中之不同步驟處)單獨地識別經識別之潛在邊限性之不同部分,但用於產生資訊之經識別之潛在邊限性可包含潛在邊限性中之任一者或全部。以此方式,用於產生將用於設置製程控制之資訊之經自動識別之潛在邊限性可實際上係可已在不同製程中及/或在不同時間處經識別之所有潛在邊限性之一子組。如此,用於產生將用於設置製程控制之資訊之經自動識別之潛在邊限性可係多個來源之設計邊限性之一組合。
此外,本文中所闡述之實施例在其輸入方面係全面的以允許來自一設計團隊之一先驗導引在任一矽以及基於早先矽測試及診斷之連續學習之前。舉例而言,在一項實施例中,用於自動識別潛在邊限性之裝置之設計包含在對設計執行設計規則檢查(DRC)之前可用之設計資訊。另外,在另一實施例中,在對設計執行DRC之前自動識別潛在邊限性中之至少某些潛在邊限性。本文中所闡述之實施例亦可用於補充關於根據基於設計分級(DBB)及基於內容脈絡檢驗(CBI)將設計用於 檢驗及計量之額外工作,該等額外工作之實例闡述於Zafar等人之於2009年8月4日發佈之美國專利第7,570,796號及Kulkarni等人於2010年3月9日發佈之美國專利第7,676,077號,該等美國專利兩者皆以猶如全部闡明之引用方式併入本文中。另外,本文中所闡述之實施例可用於幫助晶圓廠及設計公司中之下游分析團隊。舉例而言,相同自動產生之資訊可用於使製程控制資料與設計中之潛在邊限性相關,藉此促進潛在邊限性與實際邊限性之間的差異化以及實際製程控制資料與潛在邊限性之相關性。
如上文所述,本文中所闡述之實施例涉及識別對應於潛在邊限性之個別設計元件,其可然後用於基於經識別之個別設計元件而判定製程控制之一或多個參數。以此方式,在某些例項中,可以一設計元件規模判定製程控制之參數使得參數可自設計元件至設計元件不同。因此,在某些例項中,能夠以一設計元件級或關於設計識別由製程控制產生之輸出(例如,影像、量測值等等)之位置可係有幫助的。用於將此輸出對準於設計資料之某些特別有用方法及系統闡述於上文所提及Zafar及Kulkarni之的專利中。另外,用於執行此對準之某些特別有用之市售產品包含自加州苗必達之KLA-Tencor購得之NanoPointTM產品。本文中所闡述之實施例可利用或併入有此等方法及系統以藉此使NanoPoint產品與體積診斷配對以用於良率學習及校正動作。
就晶圓檢驗而言,缺陷檢驗通常包含以跨越晶圓上之多個晶粒(即,晶粒A、晶粒B及晶粒C)之一掃描帶進行掃描。晶粒A及晶粒C可位於晶粒B之相對側上。在缺陷偵測期間,可針對以下晶粒對比較在對應晶粒內位置處產生之輸出:晶粒A與晶粒B;晶粒B與晶粒C;及晶粒A與晶粒C。可注意不同晶粒對之間所偵測之任何差。若晶粒對之間存在差,則為產生差之晶粒對共有之晶粒可識別為缺陷晶粒。舉例而言,若晶粒A與晶粒B及晶粒B與晶粒C之比較展示一差,但晶粒 A與晶粒C之間的比較不展示差,則針對差之共同元件係晶粒B。因此,可判定缺陷位於晶粒B中。此缺陷偵測共同稱作為雙重仲裁(此乃因其涉及比較一個晶粒與兩個其他晶粒)。
在某些當前所使用之檢驗製程中,使用關注區域來標記一晶片中之經以不同於該晶片之其他部分之方式處理之一晶片中之大區域。舉例而言,某些關注區域可對應於晶片中之記憶體陣列,且可使用一晶胞對晶胞比較來檢驗彼等區域。其他關注區域可對應於晶片中之密集邏輯區域,且彼等區域可以相對高敏感度(與晶片中之其他區域相比)加以檢驗。額外關注區域可對應於晶片中之標稱邏輯區域,且彼等邏輯區域可以標稱敏感度及濾光器加以檢驗。進一步關注區域可對應於晶片中之(若干)類比區塊,且彼等區域可以標稱敏感度加以檢驗。
出於各種原因(包含其允許用於檢驗之晶圓上之關注區域之大小顯著減小),已證明NanoPoint有用。舉例而言,在通常執行之檢驗中,使用相對大關注區域(例如,大於10微米之關注區域)。因此,可用於此檢驗中之一晶片中之關注區域之數目係相對低的。相比而言,NanoPoint允許使用數百萬個微型關注區域(MCA)或納米型關注區域(舉例而言,可具有約350nm之一大小)。NanoPoint之關注區域可以一基於規則之方式基於諸如以下之若干種不同規則產生:關於主動區域之一規則、關於一陣列之邊緣之一規則、關於一晶胞內之一區之一規則、關於密集且經隔離細線之一規則、關於晶胞中心之一規則、關於重疊特徵之一規則、關於一陣列之一規則、關於晶胞範圍之一規則,或其一組合。一般而言,存在當在一新晶片上產生關注區域時使用之數個基本規則。此等規則並不固定且可由知曉晶片及其敏感區之團隊加以編輯或增補。
NanoPoint係可以兩種線上模式實施之基本上導引檢驗。第一者 係CBI,其係具有設計能力之NanoPoint,且可如上文提及專利中所闡述執行。第二者係基於目標之檢驗(TBI),其係具有影像能力之NanoPoint,且可如於2014年4月17日公開之Wu等人之美國專利申請公開案第2014/0105482號中所闡述執行,該美國專利申請公開案以猶如全部闡明之引用方式併入本文中。本文中所闡述之實施例可包含此公開案中所闡述之任何步驟且可如此公開案中所闡述進一步經組態。
如此,在習用檢驗中,一個偵測臨限值可用於一整個關注區域,該整個關注區域可由於其相對大之大小而可包含關於一缺陷之輸出(例如,信號)但亦可能包含關於雜訊之輸出。因此,為偵測一缺陷,亦可將諸多雜訊信號旗標為缺陷,儘管其僅僅係雜訊。相比而言,當使用由NanoPoint產品提供之實質上小關注區域時,偵測臨限值可在與一個先前使用關注區域相同之晶圓區域中改變諸多次(例如,每當掃描一不同微型或奈米型關注區域時)。因此,在掃描彼相同晶圓區域時,偵測臨限值可至少基於輸出中之雜訊而經更頻繁地調變,藉此允許偵測更多缺陷且較少地將雜訊偵測為潛在缺陷。如此,使用NanoPoint關注區域執行之晶圓檢驗將具有優於先前所使用檢驗之缺陷信號及座標準確度。另外,使用NanoPoint關注區域執行之檢驗將具有比先前所使用檢驗少之來自佈局圖案及基板之雜訊。
NanoPoint產品可用於若干個不同應用(包含良率相關活動之一全範圍)中。舉例而言,來自若干個不同來源之資訊可用於判定關於形成於一晶圓上之裝置之資訊,諸如功率域、速度路徑、關鍵時序路徑、寄生橋、設計規則檢查(DRC)旗標及DFM/光學規則檢查(ORC)旗標。彼資訊可然後用於預測裝置中何處可存在潛在邊限性,此可如本文中進一步闡述執行。來自若干個不同來源之製程控制相關資料亦可用於NanoPoint產品中以判定關於實體晶圓之資訊且可包含遮罩缺陷、遮罩計量、晶圓檢驗、晶圓計量、製作工具監測器、施工中 (WIP)資料等等。製程控制相關資料可然後與所預測資訊一起用於驗證所預測資訊。另外,製程控制相關資料可與所預測資訊一起用於校正設計、製作製程、製程控制或其一組合。以此方式,NanoPoint產品以先前不可能之一詳盡性比之前整合更全面地整合關於設計、製程及測試之資訊。
如上文更完整所述,本文中所闡述之實施例可包含:識別及累積待形成於一晶圓上之一裝置之一設計之所有預測弱點。可使此等步驟成為一標稱電腦輔助設計(CAD)流程之一部分。關於所有彼等預測弱點之資訊可然後如如本文中所闡述用於產生關於在一晶圓廠中之偵測及製程控制之適當導引。舉例而言,如本文中進一步闡述,資訊可係由一無晶圓廠實體產生且然後交遞至一晶圓廠以設置製程控制。另一選擇係,資訊可係由一無晶圓廠實體產生且然後由無晶圓廠實體用於設置製程控制,該製程控制然後經發送至一晶圓廠以供在晶片製作期間使用。所有此等步驟亦可由一晶圓廠執行。此外,若一個實體(例如,一無晶圓廠實體)產生一設計中之潛在邊限性之資訊,則可將彼資訊交遞至另一實體(例如,一晶圓廠),該另一實體添加至額外潛在邊限性之彼資訊。然後可使用彼組合來產生製程控制方法。舉例而言,一個實體可產生同樣多之關於在晶片製作之一設計側上為其所已知之所有潛在邊限性之資訊,且然後另一實體可將關於在晶片製作之一製作側上為其所已知之所有潛在邊限性之資訊(例如,晶圓代工廠製程、針對ORC之模擬、CMP等等)添加至彼資訊。彼組合資訊可然後用於產生製程控制,如本文中進一步闡述。
在於晶圓上製作裝置期間,可自所有製程控制方法(包含本文中所闡述之彼等方法中之任一者及全部)收集資料。在通過製程控制收集資料之前執行且包含通過製程控制收集資料之步驟可形成一「一次成功」方法之一「預測-偵測」迴圈。換言之,預測所有潛在弱點及 然後基於彼等潛在弱點執行一或多個製程控制方法可提供在第一次嘗試中在矽上正確地製作裝置之可能性。
在某些例項中,自動識別潛在邊限性可經執行為正式光學驗證。舉例而言,一裝置設計者可反覆地改變設計以使設計中之潛在邊限性(或「困境」)最小化。設計中之困境可由下線處一無晶圓廠公司識別,藉此產生「第三標準差(third sigma)」內容。困境可定義為可係潛在邊限性之設計中之區域或特徵。額外困境可由特定晶圓代工廠方法(諸如ORC、DRC、DRC+後填充添加等等)識別。此等困境可定義為可係潛在邊限性之設計中之區域或特徵。由無晶圓廠公司識別之困境中之某些困境可與由晶圓代工廠識別之困境重疊而其他困境可由一者或另一者專門地識別。在任一情形中,由無晶圓廠公司識別之所有困境可與由晶圓代工廠識別之困境組合以產生一「光學驗證」超集,或在第一矽之前經檢查之一規定集合。
關於所有所預測弱點之資料結合自所有製程控制收集之資料可與任何電故障相關且可用於優先化基於電故障執行之追蹤動作。相關製程控制資料及電故障資料亦可用於驅動裝置製作之適當校正動作。包含自製程控制方法收集之資料及可在其後執行之步驟之上文所闡述步驟可形成一快速學習方法之一「驗證-校正」迴圈。
上文所闡述之實施例可用於一「奈米診斷」應用。在此應用中,DFM可結合診斷以及製程窗口鑒定(PWQ)使用。PWQ之前尚未與DFM及診斷一起使用。此應用係藉由具有DFM變體之掃描可診斷測試晶片、具有NanoPoint檢驗之PWQ及使用NanoPoint之對PWQ位點之產品監視之一組合來達成。
已證明PWQ型檢驗在微影製程窗口隨每一技術節點縮小時有價值。舉例而言,製程窗口之損失跨越所有可能圖案形狀不均勻。特定而言,某些形狀提供比晶片之其餘部分少的微影製程邊限。發現此等 邊限形狀對製程集中及良率係關鍵的。PWQ檢驗可如以下美國專利中所闡述般執行:於2005年6月7日發佈之Peterson等人之美國專利第6,902,855號;2008年8月26日發佈之Peterson等人之美國專利第7,418,124號;2010年8月3日發佈之Kekare等人之美國專利第7,769,225號;2011年10月18日發佈之Pak等人之美國專利第8,041,106號,及於2012年7月3日發佈之Peterson等人之美國專利第8,213,704號,該等美國專利以猶如全部闡明之引用方式併入本文中。本文中所闡述之實施例可包含此等專利中所闡述之任一(何)方法之任一(何)步驟,且可如此等專利中所闡述進一步經組態。
PWQ通常涉及:印刷一特殊晶圓,其中在曝光工具之不同條件(亦即,不同調變條件)下印刷不同晶粒。以一相對高敏感度對彼晶圓執行檢驗。基於彼檢驗之結果,可擷取及優先化邊限形狀。然後,為了確認,可執行對所擷取邊限形狀之缺陷再檢測。然後可基於經確認為邊限之形狀來執行基於曝光之所判定限制的製程集中。
存在PWQ中常經歷之若干種挑戰。舉例而言,在以相對高敏感度之檢驗中,可擷取過多形狀作為潛在邊限。因此,可能難以僅挑選出係關鍵且與晶片功能相關者。換言之,可能難以篩選出非關鍵形狀。舉例而言,可能難以將諸如一橋接缺陷之所關注缺陷與諸如凸塊及粗糙度之由於全域雜訊而被偵測到的其他缺陷分離。另外,在邊限形狀之擷取及優先化中,可跨越一晶片擷取一邊限形狀數次。分組及分類類似形狀可係諸如基於設計分組(DBG)之若干個不同方式來執行,此可如Zafar等人及Kulkarni等人之上文所提及專利中闡述般執行,其可基於裝置之一設計中所關注之圖案來執行。然而,可能難以正確地分組及分類類似形狀以達成分級準確度及純度。
此一應用可達成第一矽之成功的最大化機會。舉例而言,本文中所闡述之實施例可用於以可能最高敏感度來觀察所有已知弱點並篩 選出所有雜訊來源。另外,此一應用可藉由快速獲取需要解決之最重要良率學習機制為何者來達成快速良率學習。此外,此一應用可藉由調整設計、製程及記錄之測試計劃中之任一者或全部以將風險自所發現機制撤除來達成精確校正導引。
深入觀察「驗證-校正」迴圈,在當前最佳情形根本原因分析流程中,最重要且最長步驟係故障位點優先化以確保僅最重要位點進行實體故障分析(PFA)。舉例而言,在一裝置之功能區域中,故障觀察可係BI故障,故障位置可包含電氣故障分析(EFA)技術,例如,IR發射等等,且故障位點優先化可係基於BIN良率影響而執行。然後可藉由典型PFA來檢查故障機制。在一裝置之記憶體區域中,故障觀察可係位元故障,故障定位可包含對故障位元及圖徵之一位元映射方法,且故障位點優先化可係基於位元圖徵良率影響而執行。可依據典型PFA加位元格模擬來檢查故障機制。在一裝置之邏輯區域中,故障觀察可係掃描故障,故障定位可包含對故障晶胞及網之一診斷射方法,且故障位點優先化可係基於晶胞/網良率影響而執行。可藉由典型PFA加納米探測或雷射移位來檢查故障機制。
在「驗證-校正」迴圈中,相對於產品斜坡存在情景差異。舉例而言,在一產品壽命週期階段中,在批量生產之前發生良率斜坡。在良率斜坡階段中,PFA候選者中之一典型柏拉圖分析(pareto)可呈現數個明顯離群值,藉此相對容易地顯現對PFA之挑選。然而,在批量生產階段中之PFA候選者之一典型柏拉圖分析中,柏拉圖分析可不展示任何明顯離群值,藉此相對不清楚地顯現PFA之缺陷之挑選。
線上缺陷資料可能夠藉由回看線上資料而輔助PFA取樣。舉例而言,類別故障位置可判定為晶粒級故障。另外,缺陷位置可係針對以晶粒級偵測之缺陷判定。類別故障位置亦可判定為區塊級故障。另外,缺陷位置可係針對以區塊級偵測之缺陷判定。因此,在此等情景 中之兩者中,針對PFA決策,懷疑一缺陷對一故障之貢獻且使用對應PFA之位置可係適合的。另外,判定PFA之位置可需要較長EFA。針對關於晶胞/網級特徵判定之類別故障位置,作出類似決策亦可係可能的。
缺陷與測試相關性中存在某些挑戰。舉例而言,在良率斜坡階段中,可偵測一相對高缺陷密度。因此,可判定諸多缺陷與故障晶胞/網相關。如此,可難以決定PFA是否係不需要的。在一項此實例中,可存在與一設計通用性相關之三個缺陷。如此,可能難以判定哪一者應視為致命缺陷。在批量生產階段中,可識別設計系統缺陷。另外,設計-製程互動要求依賴於豐富線上資料。然而,當針對所偵測缺陷無設計通用性引人注目,可能判定判定缺陷類型、層及圖案是否指示任何事物。
在良率損失根本原因分析中,PFA可係一瓶頸。舉例而言,可處理及檢驗多個晶圓。舉例而言,製程可包含薄膜形成、微影、蝕刻/植入、拋光等等。檢驗步驟可包含檢驗、缺陷再檢驗及資料歸檔。然後可在諸如功能、掃描、MBIST、IDDq/Param等等之測試中測試成品晶圓。然後可基於診斷、分析及柏拉圖分析產生而對故障晶粒進行取樣以用於PFA。甚至針對數個晶粒,對經取樣故障晶粒執行之PFA係相對緩慢的。
出於若干種原因,PFA可係一瓶頸。舉例而言,診斷技術遞送準確多邊級故障定位。PFA通常係驅動校正動作之故障機制之唯一確認。良率學習由於故障機制之串列累積發現而係緩慢的。若缺陷座標準確度相對高且缺陷之掃描電子顯微鏡(SEM)影像可用,則檢驗及缺陷再檢測資料可提供克服PFA瓶頸之一方式。
本文中所闡述之實施例可用於緩解良率損失根本原因分析中之PFA瓶頸。舉例而言,可處理及檢驗多個晶圓。然後可測試成品晶 圓。另外,可對故障晶粒進行取樣以用於PFA以選擇故障晶粒中之數者及僅重要之故障晶粒。舉例而言,在晶圓之製造期間產生(例如,藉由檢驗、缺陷再檢測及計量)之製程控制資料可用於線上資料與測試結果之多邊級準確相關性。診斷技術遞送準確多邊級故障定位。另外,NanoPoint及電子束缺陷再檢測提供多邊級缺陷定位及影像。因此,一缺陷與診斷相關性可優先化對未發現缺陷之PFA。此相關性可由NanoPoint產品執行,此乃因NanoPoint可容易接受來自診斷之多邊級故障定位。以此方式,針對PFA執行此區域可緩解PFA瓶頸。另外,針對PFA取樣故障晶粒之結果可回饋至製程及檢驗步驟以將良率控制製程對系統故障特徵之敏感性為目標。
在一NanoPoint實施方案及潛在方法步驟之一項實施例中,設計旗標及內容脈絡規則可用於判定NanoPoint關注區域。以此方式,設計旗標及內容脈絡規則可經前饋以使裝置之檢驗計劃最佳化。NanoPoint關注區域可然後用於判定一NanoPoint檢驗處方(例如,一PWQ類型檢驗及/或一標稱檢驗)。然後可藉由前饋檢驗結果以使所檢驗裝置之PFA取樣計劃最佳化來與體積診斷相關地執行PFA。PFA之結果然後可用於執行若干個步驟,諸如驗證DFM預測、發現新系統缺陷及執行對已知系統缺陷之偏移控制。基於PFA結果執行之步驟中之一或多者之結果可經回饋以使用於檢驗裝置之檢驗計劃亦及任何其他裝置之一般檢驗計劃最佳化。基於PFA結果執行之步驟中之一或多者之結果亦可經回饋至DFM以用於添加及/或編輯程式庫或規則。
電腦實施方法之步驟(諸如自動識別潛在邊限性及自動產生潛在邊限性之資訊)係由一或多個電腦系統執行,該一或多個電腦系統可如本文中進一步闡述經組態。
本文中所闡述之所有方法可包含將該等方法實施例之一或多個步驟之結果儲存於一電腦可讀儲存媒體中。該等結果可包含本文中所 闡述之結果中之任一者且可以此項技術中所已知之任一方式儲存。儲存媒體可包含本文中所闡述之任一儲存媒體或此項技術中所已知之任一其他適合之儲存媒體。在已儲存該等結果之後,該等結果可在儲存媒體中存取及由本文中所闡述之方法或系統實施例中之任一者使用、經格式化以顯示給一使用者、由另一軟體模組、方法或系統使用,等等。
另一實施例係關於儲存可在一電腦系統上執行以用於執行用於產生用於設置對一晶圓之製程控制之資訊之一電腦實施方法的程式指令之非暫時電腦可讀媒體。一項此實施例展示於圖1中。舉例而言,如圖1中所展示,非暫時性電腦可讀媒體100包含可在電腦系統104上執行以用於執行用於產生用於設置對一晶圓之製程控制之資訊之一電腦實施之方法的程式指令102。針對其可執行程式指令之電腦實施之方法包含本文中所闡述之(若干)方法之(若干)步驟。
實施諸如本文中所闡述之彼等方法之方法的程式指令102可儲存於非暫時性電腦可讀媒體100上。電腦可讀媒體可係一儲存媒體,諸如一磁碟或光碟、一磁帶或此項技術中已知之任一其他適合電腦可讀媒體。
可以包含基於製程之技術、基於組件之技術及/或物件導向之技術以及其他技術之各種方式中之任一者來實施程式指令。舉例而言,可視需要使用Matlab、VisualBasic、ActiveX控制項、C、C++物件、C#、JavaBeans、微軟基礎類別(「MFC」)或其他技術或方法來實施該等程式指令。
電腦系統104可採取各種形式,包含一個人電腦系統、主機電腦系統、工作站、系統電腦、影像電腦、可程式化影像電腦、平行處理器或此項技術中已知的任何其他裝置。一般而言,術語「電腦系統」可廣泛定義為囊括具有執行來自一記憶體媒體之指令之一或多個處理 器之任何裝置。
一額外實施例係關於經組態以產生用於設置對一晶圓之製程控制之資訊之一系統。圖2中展示此一系統之一項實施例。如圖2中所示,系統包含製程控制工具200及電腦子系統202。製程控制工具經組態以判定一裝置之至少一部分已形成於其上之一晶圓之一實體版本之一或多個特性之資訊。資訊及一或多個特性可係關於可由本文中所闡述之製程控制工具中之一或多者判定之晶圓之任何特性之任何資訊。圖2中所示之製程控制工具實施例將在本文中進一步闡述為一晶圓檢驗工具。然而,製程控制工具可經組態為本文中所闡述之其他製程控制工具中之任一者(例如,一晶圓缺陷再檢測工具、一計量工具及一FA工具等等)。
如圖2中所示,製程控制工具包含光源204,該光源204可包含此項技術中所已知之任一適合光源。來自光源之光可經引導至光束分裂器206,光束分裂器206經組態以將光自光源穿過透鏡208引導至晶圓210。光源可耦合至諸如一或多個聚光透鏡、準直透鏡、中繼透鏡、物鏡、光圈、光譜濾光器、偏光組件及諸如此類之任何其他適合元件(未展示)。如圖2中所展示,可以一垂直入射角將光引導至晶圓。然而,可以包含近乎法向及偏斜入射之任一適合入射角將光導引至晶圓。另外,可以一個以上入射角依序或同時將光或多個光束導引至晶圓。製程控制工具可經組態從而以任一適合方式用光在晶圓上方進行掃描。
自晶圓210散射之光可在掃描期間由製程控制工具之多個通道收集及偵測。舉例而言,自晶圓210鏡面反射之光可由透鏡208收集。透鏡208可包含如圖2中所展示之一折射光學元件。另外,透鏡208可包含一或多個折射光學元件及/或一或多個反射光學元件。由透鏡208收集之光可經引導穿過光束分裂器206至光束分裂器212,光束分裂器 212可經組態以將光分成兩個不同路徑,該兩個不同路徑中之一者經引導至偵測器214且另一者經引導至偵測器216。圖2中所示之光束分裂器可包含此項技術中所已知之任何適合光束分裂器。圖2中所示之偵測器可包含此項技術中所已知之任何適合偵測器,諸如電荷耦合裝置(CCD)或任一類型之成像偵測器。偵測器214及216經組態以產生對鏡面反射光作出回應之輸出。因此,偵測器中之每一者形成製程控制工具之一個通道。
由於圖2中所展示之製程控制工具經組態以偵測自晶圓鏡面反射之光,因此製程控制工具經組態為一明場(BF)光學子系統。然而,此一製程控制工具亦可經組態以用於其他類型之晶圓檢驗。舉例而言,圖2中所展示之製程控制工具亦可包含一或多個其他通道(未展示)。(若干)其他通道可包含組態為一散射光通道之本文中所闡述之光學組件(諸如,一透鏡及一偵測器)中之任何者。透鏡及偵測器可如本文中所闡述而進一步組態。以此方式,製程控制工具亦可經組態用於暗場(DF)檢驗。另外,可用一電子束檢驗工具來替換圖2中所示之製程控制工具。
電腦子系統202經組態以獲取由製程控制工具產生之輸出。舉例而言,可將由(若干)偵測器在掃描期間產生之輸出提供至電腦子系統202。特定而言,該電腦子系統可耦合至偵測器中之每一者(例如,藉由圖2中由虛線展示之一或多個傳輸媒體,其可包含此項技術中已知的任何適合傳輸媒體),使得該電腦子系統可接收由(若干)偵測器產生之輸出。電腦子系統202經組態以使用該輸出來判定晶圓之實體版本之一或多個特定之資訊。舉例而言,電腦子系統可經組態以使用該輸出偵測晶圓上之缺陷,此可以此項技術中所已知之任一適合方式執行。
圖2中所示之製程控制工具亦可藉由仔細選擇圖2中所示之元件 及/或藉由改變製程控制工具之元件之一或多個參數而經組態為一計量工具。舉例而言,由於製程控制工具在圖2中經展示為偵測經鏡面反射光,因此製程控制工具可經組態為一反射計。然而,藉由改變圖2中所示之製程控制工具之一或多個參數(諸如入射角、照明偏光、照明波長、收集角、收集偏光、偵測波長等等),製程控制工具可經組態為另一類型之計量工具,諸如一散射計、一橢圓偏光計、一繞射計或另一類型之基於光之計量工具。亦可用諸如SEM之一基於電子束之計量工具來替換基於光之計量工具。此外,可用此項技術中所已知之任一其他適合製程控制工具來替換製程控制工具。
製程控制工具可經組態從而以若干種不同方式對晶圓執行一線上製程。舉例而言,在一項例項中,製程控制工具可係位於一晶圓製作設施中且與設施中之其他工具實體隔離之一工具,且當對一實體晶圓執行一線上製程時,可將實體晶圓自其在製作設施中之當前位置轉移至工具。在另一物項中,製程控制工具可藉由一晶圓處置器(未展示)耦合至一製作工具(未展示),該晶圓操控器可使晶圓在製程控制工具與製作工具之間移動。在一額外例項中,製程控制工具可併入至製作工具之實體殼體中,使得其成為製作工具內之一子系統。製程控制工具亦可或替代地位於一製作工具之一處理室內或耦合至該處理室,使得製程控制工具可在製程工具對晶圓執行一製作製程時對晶圓執行一線上製程。在任一情形中,製程控制工具可以若干種不同方式經組態使得其可在一製程步驟期間原位、一個製程之兩個步驟之間原位、在整個製作製程之一製程之後原位或以任一其他適合方式執行一線上製程。
電腦子系統可經組態用於執行本文中進一步闡述之電腦實施方法之步驟。舉例而言,電腦子系統可經組態以用於自動識別裝置之一設計中之潛在邊限性及自動產生潛在邊限性之資訊。自動產生之資訊 可包含本文中所闡述之任何此類資訊。可如本文中進一步所闡述來執行此等步驟。電腦子系統可經組態以執行本文中所闡述之任一(何)方法實施例之任一(何)其他步驟。由於圖2中所示之電腦子系統直接耦合至製程控制工具之偵測器,因此此電腦子系統可經組態為可包含於任一晶圓檢驗、缺陷再檢測、計量等工具中之一電腦子系統。在圖2中所示之實施例紅,因此,判定晶圓之(若干)特性之資訊之相同電腦子系統可執行本文中所闡述之其他步驟。以此方式,製程控制工具(諸如一晶圓檢驗工具、一晶圓計量工具、一晶圓缺陷再檢測工具等等)可經組態以產生可如本文中進一步闡述用於設置製程控制之資訊。
然而,電腦實施方法之一或多個步驟可由一不同電腦子系統或額外(若干)電腦子系統(未展示)來執行。舉例而言,在一項實施例中,如本文中所闡述自動識別潛在邊限性及自動產生潛在邊限性之資訊可由一電腦子系統執行,該電腦子系統具有經裁適以用於處置及處理關於製作於晶圓上之裝置之設計資料之一組態。在一項此類例項中,此一電腦子系統可係已經組態以執行如本文中所闡述之一或多個步驟之一電子設計自動化(EDA)系統之一部分。在另一例項中,經組態以執行本文中所闡述之方法之步驟之一或多個電腦子系統可包含一EDA工具。另外,設置製程控制可如本文中所闡述由一EDA工具之一經適當組態電腦子系統或位於不同於執行本文中所闡述之自動識別及自動產生步驟之一電腦子系統之一設施中之一電腦子系統執行。舉例而言,如本文中進一步闡述,步驟中之某些步驟可由一無晶圓廠實體執行,且步驟中之其他步驟可在接收來自無晶圓廠實體之資訊之後由一晶圓廠執行。以此方式,本文中所闡述之系統可包含若干個不同電腦子系統,該等不同電腦子系統以某一方式(例如,經由可係「有線」或「無線」之傳輸媒體)耦合,使得可在其當中共用資訊。(若干) 電腦子系統、製程控制工具及系統可如本文中所闡述進一步經組態。
注意,本文中提供圖2以大體圖解說明可包含於本文中所闡述之系統實施例中之一製程控制工具之一種組態。明顯地,本文中所闡述之製程控制工具組態可經變更以使製程控制工具之效能最佳化,如通常在設計一商用製程控制工具時所執行。另外,本文中所闡述之系統可使用諸如自KLA-Tencor可商業購得之29xx/28xx系列工具之一現有製程控制工具來實施(例如,藉由將本文中所闡述之功能性添加至一現有製程控制工具)。針對某些此等系統,本文中所闡述之方法可提供為系統之選用功能性(例如,除系統之其他功能性外)。另一選擇係,本文中所闡述之系統可「從頭開始」設計以提供一全新系統。
鑒於此說明,熟習此項技術者將明瞭本發明之各種態樣之進一步修改及替代實施例。舉例而言,提供用於擷取晶圓之線上製程控制之全面設計導引之方法及系統。因此,此說明應視為僅係說明性的,且係出於教示熟習此項技術者實施本發明之一般方式之目的。應理解,本文中所展示及所闡述之本發明之形式應視為目前較佳之實施例。如熟習此項技術者在受益於本發明之此說明之後皆將明瞭,元件及材料可替代本文中所圖解說明及闡述之彼等元件及材料,部件及製程可顛倒,且本發明之某些特徵可獨立地利用。可在不背離如以下申請專利範圍中所闡述之本發明之精神及範疇之情況下對本文中所闡述之元件做出改變。
200‧‧‧製程控制工具
202‧‧‧電腦子系統
204‧‧‧光源
206‧‧‧光束分裂器
208‧‧‧透鏡
210‧‧‧晶圓
212‧‧‧光束分裂器
214‧‧‧偵測器
216‧‧‧偵測器

Claims (53)

  1. 一種用於產生用於設置對一晶圓之製程控制之資訊之電腦實施方法,其包括:自動識別待形成於一晶圓上之一裝置之一設計中之潛在邊限性;及自動產生該等潛在邊限性之資訊,其中該自動產生之資訊用於設置對該晶圓之製程控制,且其中該自動識別及該自動產生係由一或多個電腦系統執行。
  2. 如請求項1之方法,其中該自動產生之資訊並不足以用於該裝置整體之製作。
  3. 如請求項1之方法,其中基於由該裝置之一設計者提供之資訊而自動識別該等潛在邊限性。
  4. 如請求項1之方法,其中基於關於該裝置內之不同區域之電屬性、邏輯屬性、功能屬性及行為屬性的資訊而自動識別該等潛在邊限性。
  5. 如請求項1之方法,其中透過一模擬來發現該等潛在邊限性中之至少一者。
  6. 如請求項1之方法,其中透過關於用於該裝置之功能或測試之一設計元件之臨界性的資訊來發現該等潛在邊限性中之至少一者。
  7. 如請求項1之方法,其中透過該裝置之一設計元件之功能或效能缺陷之先前知識來發現該等潛在邊限性中之至少一者。
  8. 如請求項1之方法,其中基於該設計之元件與該裝置之功能之電相關性來識別該等潛在邊限性中之至少一者。
  9. 如請求項1之方法,其中基於經設計用於該裝置之可測試性之該 設計之一或多個元件來識別該等潛在邊限性中之至少一者。
  10. 如請求項1之方法,其中基於對該設計中之一區塊之效能之約束而識別該等潛在邊限性中之至少一者。
  11. 如請求項1之方法,其中自動產生該資訊包括:對照該裝置之一實體設計資料庫,查詢對應於該等潛在邊限性之設計元件。
  12. 如請求項11之方法,其中自動產生該資訊進一步包括:產生含有自該查詢產生之實體設計元件之一設計資料檔案。
  13. 如請求項1之方法,其中該等潛在邊限性之該自動產生之資訊包括對應於該等潛在邊限性之該設計中之實體設計元件的一或多個實體屬性。
  14. 如請求項1之方法,進一步包括:基於該製程控制之一或多個參數來修改對應於該等潛在邊限性之該設計中之一或多個實體設計元件。
  15. 如請求項1之方法,其中該自動識別及該自動產生係由一無晶圓廠實體執行,且其中該製程控制係由一晶圓廠在接收來自該無晶圓廠實體之該自動產生之資訊之後基於該資訊而設置。
  16. 如請求項1之方法,其中該製程控制包括在該裝置之製作期間執行之一檢驗製程。
  17. 如請求項1之方法,其中該製程控制包括在該裝置之製作期間執行之一缺陷再檢測製程。
  18. 如請求項1之方法,其中該製程控制包括在該裝置之製作期間執行之一計量製程。
  19. 如請求項1之方法,其中該製程控制包括在該裝置之電測試之後執行之一故障分析製程。
  20. 如請求項1之方法,其中該一或多個電腦系統包括一電子設計自動化工具。
  21. 如請求項1之方法,其中用於該自動識別之該裝置之該設計包括在對該設計執行設計規則檢查之前可用之設計資訊。
  22. 如請求項1之方法,其中在對該設計執行設計規則檢查之前自動識別該等潛在邊限性中之至少某些潛在邊限性。
  23. 如請求項1之方法,其中在針對該設計執行之一電子設計自動化製程中之不同點處自動識別該等潛在邊限性中之至少某些潛在邊限性,且其中該自動產生之資訊包括在該電子設計自動化製程中之該等不同點處自動識別之該等潛在邊限性中之至少兩者之資訊。
  24. 如請求項1之方法,其中該自動產生之資訊包括指示不同類型之該等潛在邊限性之資訊。
  25. 如請求項24之方法,其中指示該等不同類型之該等潛在邊限性之該資訊係由該設計之一所有者加密。
  26. 如請求項24之方法,其中指示該等不同類型之該等潛在邊限性之該資訊係用於設置對該晶圓之不同類型之該製程控制。
  27. 一種非暫時性電腦可讀媒體,其儲存可在一電腦系統上執行以用於執行用於產生用於設置對一晶圓之製程控制之資訊之一電腦實施方法的程式指令,其中該電腦實施方法包括:自動識別待形成於一晶圓上之一裝置之一設計中之潛在邊限性;及自動產生該等潛在邊限性之資訊,其中該自動產生之資訊用於設置對該晶圓之製程控制。
  28. 一種經組態以產生用於設置對一晶圓之製程控制之資訊之系統,其包括:一製程控制工具,其經組態以判定一裝置之至少一部分已經形成於其上之一晶圓之一實體版本之一或多個特性的資訊;及 一或多個電腦子系統,其經組態以用於:自動識別該裝置之一設計中之潛在邊限性;及自動產生該等潛在邊限性之資訊,其中該自動產生之資訊用於設置由該製程控制工具執行之對該晶圓之製程控制。
  29. 如請求項28之系統,其中該自動產生之資訊並不足以用於該裝置整體之製作。
  30. 如請求項28之系統,其中基於由該裝置之一設計者提供之資訊而自動識別該等潛在邊限性。
  31. 如請求項28之系統,其中基於關於該裝置內之不同區域之電屬性、邏輯屬性、功能屬性及行為屬性的資訊而自動識別該等潛在邊限性。
  32. 如請求項28之系統,其中透過一模擬來發現該等潛在邊限性中之至少一者。
  33. 如請求項28之系統,其中透過關於用於該裝置之功能或測試之一設計元件之臨界性的資訊來發現該等潛在邊限性中之至少一者。
  34. 如請求項28之系統,其中透過該裝置之一設計元件之功能或效能缺陷之先前知識來發現該等潛在邊限性中之至少一者。
  35. 如請求項28之系統,其中基於該設計之元件與該裝置之功能之電相關性來識別該等潛在邊限性中之至少一者。
  36. 如請求項28之系統,其中基於經設計用於該裝置之可測試性之該設計的一或多個元件來識別該等潛在邊限性中的至少一者。
  37. 如請求項28之系統,其中基於對該設計中之一區塊之效能之約束來識別該等潛在邊限性中之至少一者。
  38. 如請求項28之系統,其中自動產生該資訊包括:對照該裝置之一實體設計資料庫,查詢對應於該等潛在邊限性之設計元件。
  39. 如請求項38之系統,其中自動產生該資訊進一步包括:產生含有自該查詢產生之實體設計元件之一設計資料檔案。
  40. 如請求項28之系統,其中該等潛在邊限性之該自動產生之資訊包括對應於該等潛在邊限性之該設計中之實體設計元件之一或多個實體屬性。
  41. 如請求項28之系統,進一步包括:基於該製程控制之一或多個參數來修改對應於該等潛在邊限性之該設計中之一或多個實體設計元件。
  42. 如請求項28之系統,其中該自動識別及該自動產生係由一無晶圓廠實體執行,且其中該製程控制係由一晶圓廠在接收來自該無晶圓廠實體之該自動產生之資訊之後,基於該資訊而設置。
  43. 如請求項28之系統,其中該製程控制包括在該裝置之製作期間執行之一檢驗製程。
  44. 如請求項28之系統,其中該製程控制包括在該裝置之製作期間執行之一缺陷再檢測製程。
  45. 如請求項28之系統,其中該製程控制包括在該裝置之製作期間執行之一計量製程。
  46. 如請求項28之系統,其中該製程控制包括在該裝置之電測試之後執行之一故障分析製程。
  47. 如請求項28之系統,其中該一或多個電腦系統包括一電子設計自動化工具。
  48. 如請求項28之系統,其中用於該自動識別之該裝置之該設計包括在對該設計執行設計規則檢查之前可用的設計資訊。
  49. 如請求項28之系統,其中在對該設計執行設計規則檢查之前,自動識別該等潛在邊限性中之至少某些潛在邊限性。
  50. 如請求項28之系統,其中在針對該設計執行之一電子設計自動 化製程中之不同點處自動識別該等潛在邊限性中之至少某些潛在邊限性,且其中該自動產生之資訊包括在該電子設計自動化製程中之該等不同點處自動識別之該等潛在邊限性中之至少兩者之資訊。
  51. 如請求項28之系統,其中該自動產生之資訊包括指示不同類型之該等潛在邊限性之資訊。
  52. 如請求項51之系統,其中指示該等不同類型之該等潛在邊限性之該資訊係由該設計之一所有者加密。
  53. 如請求項51之系統,其中指示該等不同類型之該等潛在邊限性之該資訊係用於設置對該晶圓之不同類型之該製程控制。
TW104119181A 2014-06-13 2015-06-12 擷取線上製程控制工具之全面設計導引及其方法 TWI644225B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201462012155P 2014-06-13 2014-06-13
US62/012,155 2014-06-13
US201562136364P 2015-03-20 2015-03-20
US62/136,364 2015-03-20
US14/735,596 2015-06-10
US14/735,596 US9400865B2 (en) 2014-06-13 2015-06-10 Extracting comprehensive design guidance for in-line process control tools and methods

Publications (2)

Publication Number Publication Date
TW201610731A true TW201610731A (zh) 2016-03-16
TWI644225B TWI644225B (zh) 2018-12-11

Family

ID=54834339

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104119181A TWI644225B (zh) 2014-06-13 2015-06-12 擷取線上製程控制工具之全面設計導引及其方法

Country Status (6)

Country Link
US (1) US9400865B2 (zh)
KR (1) KR102178255B1 (zh)
CN (1) CN106415778B (zh)
IL (1) IL248262B (zh)
TW (1) TWI644225B (zh)
WO (1) WO2015191898A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10191112B2 (en) 2016-11-18 2019-01-29 Globalfoundries Inc. Early development of a database of fail signatures for systematic defects in integrated circuit (IC) chips

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9880550B2 (en) 2015-03-24 2018-01-30 Applied Materials Israel Ltd. Updating of a recipe for evaluating a manufacturing stage of an electrical circuit
US10303839B2 (en) 2016-06-07 2019-05-28 Kla-Tencor Corporation Electrically relevant placement of metrology targets using design analysis
US10408764B2 (en) 2017-09-13 2019-09-10 Applied Materials Israel Ltd. System, method and computer program product for object examination

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766091A (ja) * 1993-08-25 1995-03-10 Sony Corp ウェーハ、識別情報読み取り方法、集積回路製造装置及び集積回路製造方法
EP1300872A1 (en) * 2001-10-08 2003-04-09 Infineon Technologies SC300 GmbH & Co. KG Semiconductor device identification apparatus
US6902855B2 (en) 2002-07-15 2005-06-07 Kla-Tencor Technologies Qualifying patterns, patterning processes, or patterning apparatus in the fabrication of microlithographic patterns
WO2004008244A2 (en) 2002-07-15 2004-01-22 Kla-Tencor Technologies Corp. Defect inspection methods that include acquiring aerial images of a reticle for different lithographic process variables
US7379175B1 (en) 2002-10-15 2008-05-27 Kla-Tencor Technologies Corp. Methods and systems for reticle inspection and defect review using aerial imaging
JP4001559B2 (ja) 2003-03-04 2007-10-31 東京エレクトロン株式会社 インライン接続設定方法および装置
US7271609B2 (en) * 2005-05-16 2007-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method of automatically creating a semiconductor processing prober device file
US7769225B2 (en) 2005-08-02 2010-08-03 Kla-Tencor Technologies Corp. Methods and systems for detecting defects in a reticle design pattern
US20070050075A1 (en) * 2005-08-26 2007-03-01 Electro Scientific Industries, Inc. Automatic wafer tracking process and apparatus for carrying out the process
US7676077B2 (en) 2005-11-18 2010-03-09 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
US7570796B2 (en) 2005-11-18 2009-08-04 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
US7875530B2 (en) * 2005-12-02 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7694267B1 (en) * 2006-02-03 2010-04-06 Brion Technologies, Inc. Method for process window optimized optical proximity correction
US8213704B2 (en) 2007-05-09 2012-07-03 Kla-Tencor Corp. Methods and systems for detecting defects in a reticle design pattern
WO2009026358A1 (en) 2007-08-20 2009-02-26 Kla-Tencor Corporation Computer-implemented methods for determining if actual defects are potentially systematic defects or potentially random defects
JP4997069B2 (ja) * 2007-10-30 2012-08-08 株式会社東芝 不良検出方法及び不良検出装置
US7774153B1 (en) 2008-03-17 2010-08-10 Kla-Tencor Corp. Computer-implemented methods, carrier media, and systems for stabilizing output acquired by an inspection system
KR101287582B1 (ko) * 2008-07-07 2013-07-19 삼성테크윈 주식회사 칩 마운터 및 칩 마운터의 bga 패키지 인식 방법
US8041106B2 (en) 2008-12-05 2011-10-18 Kla-Tencor Corp. Methods and systems for detecting defects on a reticle
US8150140B2 (en) * 2008-12-22 2012-04-03 Ngr Inc. System and method for a semiconductor lithographic process control using statistical information in defect identification
US8112241B2 (en) * 2009-03-13 2012-02-07 Kla-Tencor Corp. Methods and systems for generating an inspection process for a wafer
US8549445B2 (en) 2010-08-24 2013-10-01 Synopsys, Inc. Targeted production control using multivariate analysis of design marginalities
US9189844B2 (en) 2012-10-15 2015-11-17 Kla-Tencor Corp. Detecting defects on a wafer using defect-specific information
US9645097B2 (en) * 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10191112B2 (en) 2016-11-18 2019-01-29 Globalfoundries Inc. Early development of a database of fail signatures for systematic defects in integrated circuit (IC) chips
TWI676041B (zh) * 2016-11-18 2019-11-01 美商格羅方德半導體公司 積體電路晶片中的系統缺陷的故障標識資料庫的早期開發之方法

Also Published As

Publication number Publication date
US9400865B2 (en) 2016-07-26
KR102178255B1 (ko) 2020-11-12
TWI644225B (zh) 2018-12-11
CN106415778B (zh) 2019-01-18
US20150363537A1 (en) 2015-12-17
WO2015191898A1 (en) 2015-12-17
IL248262A0 (en) 2016-11-30
KR20170018402A (ko) 2017-02-17
CN106415778A (zh) 2017-02-15
IL248262B (en) 2020-06-30

Similar Documents

Publication Publication Date Title
JP6326465B2 (ja) ウェーハー上の設計欠陥および工程欠陥の検出、ウェーハー上の欠陥の精査、設計内の1つ以上の特徴を工程監視特徴として使用するための選択、またはそのいくつかの組み合わせのための方法
US8194968B2 (en) Methods and systems for using electrical information for a device being fabricated on a wafer to perform one or more defect-related functions
JP6364036B2 (ja) 検査データと組み合わせて設計データを使用するための方法
JP5405453B2 (ja) 設計データ領域での検査データの位置を決める方法と装置
US7711514B2 (en) Computer-implemented methods, carrier media, and systems for generating a metrology sampling plan
TWI644225B (zh) 擷取線上製程控制工具之全面設計導引及其方法
TW201514513A (zh) 晶圓的可適性電性測試