TW201610415A - Optical gas sensor and sensing system thereof - Google Patents

Optical gas sensor and sensing system thereof Download PDF

Info

Publication number
TW201610415A
TW201610415A TW103131112A TW103131112A TW201610415A TW 201610415 A TW201610415 A TW 201610415A TW 103131112 A TW103131112 A TW 103131112A TW 103131112 A TW103131112 A TW 103131112A TW 201610415 A TW201610415 A TW 201610415A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
sensing device
optical gas
gas sensing
Prior art date
Application number
TW103131112A
Other languages
Chinese (zh)
Inventor
張議聰
魏章哲
李岳軒
Original Assignee
張議聰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 張議聰 filed Critical 張議聰
Priority to TW103131112A priority Critical patent/TW201610415A/en
Priority to CN201410504053.7A priority patent/CN105529377B/en
Publication of TW201610415A publication Critical patent/TW201610415A/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An optical gas sensor comprises a substrate having a first surface and a second surface, a reflection layer located on the first surface of the substrate, a plurality of electrode pads located on the first surface of the substrate and adjacent to the reflection layer, a sensing layer connected to the substrate by the plurality of electrode pads, an absorption layer located on the sensing layer, a first electrode layer located on the sensing layer and adjacent to the absorption layer, and a second electrode layer located on the second surface of the substrate.

Description

光學式氣體感測裝置及其感測系統Optical gas sensing device and sensing system thereof 【0001】【0001】

本發明是有關於一種光學式氣體感測裝置及其感測系統,特別是有關於一種紅外線氣體感測裝置及其感測系統。The present invention relates to an optical gas sensing device and a sensing system thereof, and more particularly to an infrared gas sensing device and a sensing system thereof.

【0002】【0002】

習知非色散紅外線(Non-dispersive Infrared, NDIR)技術通常被視為測量氣體濃度的最佳方法之一,其係依照比爾定律(Beer’s Law)以利用氣體在紅外線之吸收波段之特性來測量紅外線通過待測氣體前後之強度變化,進而藉由紅外線之強度變化得到待測氣體之濃度。
The Non-dispersive Infrared (NDIR) technique is generally regarded as one of the best methods for measuring gas concentration. It is based on Beer's Law to measure the infrared rays by utilizing the characteristics of gas in the absorption band of infrared rays. The concentration of the gas to be tested is obtained by the intensity change of the gas before and after the gas to be tested.

【0003】[0003]

一般而言,非色散紅外線技術中所使用之紅外線感測器係屬於熱能式紅外線感測器(如微熱輻射感測器(Microbolometer))。當微熱輻射感測器吸收紅外線之輻射能後,會使得微熱輻射感測器之溫度產生變化而改變其電阻值,接著將電阻值轉換成電壓或電流之形式輸出後,即可計算出待測氣體之濃度。其中,微熱輻射感測器之製造方法主要可分成面型微加工 (Surface Micromachining)技術及體型微加工(Bulk Micromachining)技術。這兩種結構均會使感測器懸浮在空中以減少上層感測器與下層基板之間的接觸,並且降低直接熱傳導所造成的能量損失。
In general, the infrared sensor used in the non-dispersive infrared technology belongs to a thermal infrared sensor (such as a microbolometer). When the micro-thermal radiation sensor absorbs the radiant energy of the infrared ray, the temperature of the micro-thermal radiation sensor changes and changes its resistance value, and then the resistance value is converted into a voltage or current output, and then the test is calculated. The concentration of the gas. Among them, the manufacturing method of the micro-thermal radiation sensor can be mainly divided into a surface micromachining technology and a bulk micromachining technology. Both of these configurations suspend the sensor in the air to reduce contact between the upper sensor and the underlying substrate and reduce the energy loss caused by direct thermal conduction.

【0004】[0004]

然而,習知面型微加工技術之上下層電極皆設置於基板之同一側或同一表面,使得當施加電壓於上下層電極時,上層之感測器容易吸附或接觸下層之下電極而使得熱導值增加,進而令微熱輻射感測器之整體響應度(Responsivity)下降。
However, in the conventional surface micromachining technology, the lower electrodes are disposed on the same side or the same surface of the substrate, so that when a voltage is applied to the upper and lower electrodes, the upper layer of the sensor easily adsorbs or contacts the lower layer of the electrodes to cause heat. The increase in the conductance further reduces the overall responsivity of the microbolometer.

【0005】[0005]

有鑑於上述習知技藝之問題,本發明之目的就是在提供一種光學式氣體感測裝置及其感測系統,以提高光學式氣體感測裝置之響應度及波長調諧表現。
In view of the above-mentioned problems of the prior art, it is an object of the present invention to provide an optical gas sensing device and a sensing system thereof for improving the responsiveness and wavelength tuning performance of an optical gas sensing device.

【0006】[0006]

根據本發明之一目的,提供一種光學式氣體感測裝置,包含:基板,具有第一表面及第二表面;反射層,位於基板之第一表面上;複數個電極墊,位於基板之第一表面上且鄰接反射層;感測層,藉由複數個電極墊連接基板,以令感測層與基板之反射層之間形成間隙;吸收層,位於相對於間隙之感測層上;第一電極層,位於感測層上且鄰接吸收層;以及第二電極層,位於基板之第二表面上。
According to an aspect of the present invention, an optical gas sensing device includes: a substrate having a first surface and a second surface; a reflective layer disposed on the first surface of the substrate; and a plurality of electrode pads located at the first of the substrate a surface of the reflective layer; the sensing layer is connected to the substrate by a plurality of electrode pads to form a gap between the sensing layer and the reflective layer of the substrate; the absorption layer is located on the sensing layer relative to the gap; An electrode layer on the sensing layer adjacent to the absorber layer; and a second electrode layer on the second surface of the substrate.

【0007】【0007】

前述之感測層之材料可例如為鍺(Ge)或其他高電阻溫度係數(Temperature Coefficient of Resistance,TCR)之熱敏材料。
The material of the foregoing sensing layer may be, for example, germanium (Ge) or other high temperature coefficient of resistance (TCR) heat sensitive material.

【0008】[0008]

前述之吸收層之材料可例如為氮化矽。
The material of the aforementioned absorption layer may be, for example, tantalum nitride.

【0009】【0009】

前述之第一電極層更包含第一金屬層及第二金屬層,其中第一金屬層及第二金屬層之材料可例如分別為金(Au)及鉻(Cr)。
The first electrode layer further includes a first metal layer and a second metal layer, wherein the materials of the first metal layer and the second metal layer are, for example, gold (Au) and chromium (Cr), respectively.

【0010】[0010]

前述之第二電極層更包含第三金屬層及第四金屬層,其中第三金屬層及第四金屬層之材料可例如分別為鋁(Al)及金(Au)。
The second electrode layer further includes a third metal layer and a fourth metal layer, wherein the materials of the third metal layer and the fourth metal layer are, for example, aluminum (Al) and gold (Au), respectively.

【0011】[0011]

前述之複數個電極墊之材料可例如為氮化矽。
The material of the plurality of electrode pads described above may be, for example, tantalum nitride.

【0012】[0012]

前述之基板之材料可例如為矽或其他半導體材料。
The material of the aforementioned substrate may be, for example, germanium or other semiconductor material.

【0013】[0013]

根據本發明之另一目的,提供一種光學式氣體感測系統,包含:氣室,具有提供氣體流入之氣體入口及提供氣體流出之氣體出口;光源,位於氣室之一端,用以提供光線射入氣室;光學式氣體感測裝置,位於氣室之另一端,用以接收通過氣室之光線,光學式氣體感測裝置依據所接收之光線之強度而改變光學式氣體感測裝置之電阻值,其中光學式氣體感測裝置包含:基板,具有第一表面及第二表面;複數個電極墊,位於基板之第一表面上;反射層,位於基板之第一表面上且鄰接複數個電極墊;感測層,藉由複數個電極墊連接基板,以令感測層與基板之反射層之間形成間隙;吸收層,位於相對於間隙之感測層上;第一電極層,位於感測層上且鄰接吸收層;以及第二電極層,位於基板之第二表面上;感測電路,電性連接光學式氣體感測裝置,以依據光學式氣體感測裝置之電阻值輸出電壓值或電流值,進而依據電壓值或電流值得到氣體之濃度。
According to another aspect of the present invention, there is provided an optical gas sensing system comprising: a gas chamber having a gas inlet for providing gas inflow and a gas outlet for providing gas outflow; and a light source located at one end of the gas chamber for providing light emission An air inlet chamber; an optical gas sensing device at the other end of the air chamber for receiving light passing through the air chamber, the optical gas sensing device changing the resistance of the optical gas sensing device according to the intensity of the received light The optical gas sensing device comprises: a substrate having a first surface and a second surface; a plurality of electrode pads on the first surface of the substrate; and a reflective layer on the first surface of the substrate adjacent to the plurality of electrodes a pad; a sensing layer, wherein the substrate is connected by a plurality of electrode pads to form a gap between the sensing layer and the reflective layer of the substrate; the absorbing layer is located on the sensing layer opposite to the gap; the first electrode layer is located And the second electrode layer is located on the second surface of the substrate; the sensing circuit is electrically connected to the optical gas sensing device to be optically Resistance of the gas sensing means sensing the output voltage value or current value, the concentration of the gas to be worth further based on a voltage value or a current.

【0014】[0014]

承上所述,依本發明之光學式氣體感測裝置及其感測系統,其可具有一或多個下述優點:
As described above, the optical gas sensing device and sensing system thereof according to the present invention may have one or more of the following advantages:

【0015】[0015]

(1) 本發明之光學式氣體感測裝置將第二電極設置於基板的第二表面,可令感測層不會吸附或接觸第二電極,而使得施加電壓所造成的間隙大小的改變不僅可減少能量損失以提高響應度,更可有效地令光學式氣體感測裝置之吸收波長具有調諧效果。
(1) The optical gas sensing device of the present invention has the second electrode disposed on the second surface of the substrate so that the sensing layer does not adsorb or contact the second electrode, so that the gap size caused by the applied voltage is not only changed. The energy loss can be reduced to improve the responsiveness, and the absorption wavelength of the optical gas sensing device can be effectively tuned.

【0016】[0016]

(2) 本發明之光學式氣體感測裝置之上層感測器使用鍺作為感測層,由於其具有高電阻溫度係數及對溫度之靈敏度,因此相對於矽材料而言,更適合用於室溫下。
(2) The upper layer sensor of the optical gas sensing device of the present invention uses germanium as the sensing layer, and is more suitable for the chamber than the germanium material because of its high temperature coefficient of resistance and sensitivity to temperature. Warm down.

【0017】[0017]

(3) 本發明之光學式氣體感測裝置使用氮化矽作為紅外線吸收層以達到高吸收率,因此可提供穩定的熱源給鍺感測層,進而提高光學式氣體感測裝置之靈敏度。
(3) The optical gas sensing device of the present invention uses tantalum nitride as an infrared absorbing layer to achieve a high absorption rate, thereby providing a stable heat source to the 锗 sensing layer, thereby improving the sensitivity of the optical gas sensing device.

【0018】[0018]

茲為使 貴審查委員對本發明之技術特徵及所達到之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明如後。
For a better understanding and understanding of the technical features and the efficacies of the present invention, the preferred embodiments and the detailed description are as follows.

【0041】[0041]

10‧‧‧基板
11‧‧‧第一表面
12‧‧‧第二表面
30‧‧‧反射層
40‧‧‧感測層
41‧‧‧間隙
50‧‧‧吸收層
60‧‧‧第一電極層
61‧‧‧第一金屬層
62‧‧‧第二金屬層
70‧‧‧第二電極層
71‧‧‧第三金屬層
72‧‧‧第四金屬層
100‧‧‧光學式氣體感測裝置
200‧‧‧氣室
201‧‧‧氣體入口
202‧‧‧氣體出口
300‧‧‧光源
400‧‧‧感測電路
10‧‧‧Substrate
11‧‧‧ first surface
12‧‧‧ second surface
30‧‧‧reflective layer
40‧‧‧Sensor layer
41‧‧‧ gap
50‧‧‧absorbing layer
60‧‧‧First electrode layer
61‧‧‧First metal layer
62‧‧‧Second metal layer
70‧‧‧Second electrode layer
71‧‧‧ Third metal layer
72‧‧‧Fourth metal layer
100‧‧‧Optical gas sensing device
200‧‧‧ air chamber
201‧‧‧ gas inlet
202‧‧‧ gas export
300‧‧‧Light source
400‧‧‧Sensor circuit

【0019】[0019]

圖1為本發明之光學式氣體感測裝置之較佳實施例之立體示意圖。
1 is a perspective view of a preferred embodiment of an optical gas sensing device of the present invention.

【0020】[0020]

圖2為圖1之光學式氣體感測裝置沿著A-A’剖面線剖開基板10、第二電極層70及反射層30之側視圖。
2 is a side elevational view of the optical gas sensing device of FIG. 1 taken along line AA' of the substrate 10, the second electrode layer 70, and the reflective layer 30.

【0021】[0021]

圖3為圖1之光學式氣體感測裝置之上視圖。
3 is a top view of the optical gas sensing device of FIG. 1.

【0022】[0022]

圖4為本發明之光學式氣體感測系統之較佳實施例之示意圖。4 is a schematic view of a preferred embodiment of an optical gas sensing system of the present invention.

【0023】[0023]

以下將參照相關圖式,說明依本發明之光學式氣體感測裝置及其感測系統之較佳實施例,為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the preferred embodiments of the optical gas sensing device and the sensing system thereof according to the present invention will be described with reference to the related drawings. For ease of understanding, the same components in the following embodiments are denoted by the same reference numerals. .

【0024】[0024]

請參閱圖1~3,圖1為本發明之光學式氣體感測裝置之較佳實施例之立體示意圖。圖2為圖1之光學式氣體感測裝置沿著A-A’剖面線剖開基板10、第二電極層70及反射層30之側視圖。圖3為圖1之光學式氣體感測裝置之上視圖。
1 to 3, FIG. 1 is a perspective view of a preferred embodiment of an optical gas sensing device of the present invention. 2 is a side elevational view of the optical gas sensing device of FIG. 1 taken along line AA' of the substrate 10, the second electrode layer 70, and the reflective layer 30. 3 is a top view of the optical gas sensing device of FIG. 1.

【0025】[0025]

本發明之光學式氣體感測裝置100至少包含基板10、複數個電極墊20、反射層30、感測層40、吸收層50、第一電極層60及第二電極層70。
The optical gas sensing device 100 of the present invention comprises at least a substrate 10, a plurality of electrode pads 20, a reflective layer 30, a sensing layer 40, an absorbing layer 50, a first electrode layer 60, and a second electrode layer 70.

【0026】[0026]

基板10具有第一表面11及第二表面12,且分別位於基板10之上下兩側。其中,基板10之材料可例如為矽(Si)或其他半導體材料。
The substrate 10 has a first surface 11 and a second surface 12, and is located on the upper and lower sides of the substrate 10, respectively. The material of the substrate 10 may be, for example, germanium (Si) or other semiconductor materials.

【0027】[0027]

反射層30係可例如利用物理氣相沉積(physical vapor deposition, PVD)法或化學氣相沉積(chemical vapor deposition, CVD)法形成於基板10之第一表面11上。其中,反射層30之材料可例如為二氧化矽(SiO2 )。
The reflective layer 30 can be formed on the first surface 11 of the substrate 10, for example, by a physical vapor deposition (PVD) method or a chemical vapor deposition (CVD) method. The material of the reflective layer 30 may be, for example, cerium oxide (SiO 2 ).

【0028】[0028]

接著,可例如利用微影及蝕刻製程定義出複數個電極墊20之圖案,並且利用物理氣相沉積法或化學氣相沉積法形成鄰接反射層30之複數個電極墊20於基板10之第一表面11上。其中,電極墊20之材料可例如為氮化矽(Si3 N4 ),且厚度大約為1.5μm。
Then, a pattern of the plurality of electrode pads 20 can be defined by, for example, a lithography and etching process, and a plurality of electrode pads 20 adjacent to the reflective layer 30 are formed on the substrate 10 by physical vapor deposition or chemical vapor deposition. On the surface 11. Wherein, the electrode pad 20 of material may be, for example, silicon nitride (Si 3 N 4), and a thickness of about 1.5μm.

【0029】[0029]

感測層40係利用面型微加工(Surface Micromachining)技術所形成,感測層40係藉由複數個電極墊20連接基板10,以令感測層40與基板10之反射層30之間形成間隙41。其中,此間隙41可例如為法布立-培若(Fabry-Perot)共振腔結構,且間隙41可例如由空氣或其他透光材料所構成,而間隙41上下兩側之感測層40及反射層30係相互平行。其中,感測層40之材料可例如為鍺(Ge)或其他高電阻溫度係數(Temperature Coefficient of Resistance,TCR)之熱敏材料。
The sensing layer 40 is formed by a surface micromachining technique, and the sensing layer 40 is connected to the substrate 10 by a plurality of electrode pads 20 to form a sensing layer 40 and a reflective layer 30 of the substrate 10. Clearance 41. The gap 41 can be, for example, a Fabry-Perot resonant cavity structure, and the gap 41 can be formed, for example, of air or other light transmissive material, and the sensing layer 40 on the upper and lower sides of the gap 41 and The reflective layers 30 are parallel to each other. The material of the sensing layer 40 can be, for example, germanium (Ge) or other high temperature coefficient of resistance (TCR) heat sensitive material.

【0030】[0030]

吸收層50係利用物理氣相沉積法或化學氣相沉積法形成於相對於間隙41之感測層40上。其中,吸收層50之材料可例如為氮化矽(Si3 N4 ),且厚度大約為0.5μm。
The absorbing layer 50 is formed on the sensing layer 40 with respect to the gap 41 by physical vapor deposition or chemical vapor deposition. The material of the absorbing layer 50 may be, for example, tantalum nitride (Si 3 N 4 ) and has a thickness of about 0.5 μm.

【0031】[0031]

第一電極層60係位於感測層40上且鄰接吸收層50,藉以形成光學式氣體感測裝置100之上層電極。其中,第一電極層60更包含第一金屬層61及第二金屬層62,且第一金屬層61及第二金屬層62之材料可例如分別為金(Au)及鉻(Cr),而第一金屬層61及第二金屬層62之厚度則大約為360nm及5nm。
The first electrode layer 60 is located on the sensing layer 40 and adjacent to the absorbing layer 50, thereby forming an upper electrode of the optical gas sensing device 100. The first electrode layer 60 further includes a first metal layer 61 and a second metal layer 62, and the materials of the first metal layer 61 and the second metal layer 62 may be, for example, gold (Au) and chromium (Cr), respectively. The thickness of the first metal layer 61 and the second metal layer 62 is approximately 360 nm and 5 nm.

【0032】[0032]

第二電極層70係位於基板10之第二表面12上,藉以形成光學式氣體感測裝置100之下層電極,使得第一電極層60與第二電極層70分別位於基板10之不同側或不同表面。其中,第二電極層70更包含第三金屬層71及第四金屬層72,且第三金屬層71及第四金屬層72之材料可例如分別為鋁(Al)及金(Au)而第三金屬層71及第四金屬層72之厚度則大約皆為0.1μm。
The second electrode layer 70 is located on the second surface 12 of the substrate 10, thereby forming a lower electrode of the optical gas sensing device 100, such that the first electrode layer 60 and the second electrode layer 70 are respectively located on different sides or different sides of the substrate 10. surface. The second electrode layer 70 further includes a third metal layer 71 and a fourth metal layer 72, and the materials of the third metal layer 71 and the fourth metal layer 72 may be, for example, aluminum (Al) and gold (Au), respectively. The thickness of the three metal layers 71 and the fourth metal layer 72 is approximately 0.1 μm.

【0033】[0033]

因此,當施加電壓於光學式氣體感測裝置100之第一電極層60與第二電極層70時,由於第二電極層70設置於基板10之第二表面12,因此會使得間隙41上下兩側之感測層40與反射層30之間產生靜電力減少,使得感測層40不容易吸附或接觸反射層以降低直接熱傳導所造成的能量損失。如此一來,不僅可提高光學式氣體感測裝置100之響應度,更可有效地藉由施加電壓來改變間隙41之大小以改變共振現象,使得吸收波長具有調諧效果。
Therefore, when a voltage is applied to the first electrode layer 60 and the second electrode layer 70 of the optical gas sensing device 100, since the second electrode layer 70 is disposed on the second surface 12 of the substrate 10, the gap 41 is caused to be upper and lower. The electrostatic force is reduced between the sensing layer 40 on the side and the reflective layer 30, so that the sensing layer 40 does not easily adsorb or contact the reflective layer to reduce energy loss caused by direct heat conduction. In this way, not only the responsiveness of the optical gas sensing device 100 can be improved, but also the magnitude of the gap 41 can be effectively changed by applying a voltage to change the resonance phenomenon, so that the absorption wavelength has a tuning effect.

【0034】[0034]

此外,本發明使用鍺作為此光學式氣體感測裝置100之感測層40,並且配合氮化矽之吸收層50,可有效地提高紅外線之吸收率,進而提高光學式氣體感測裝置100之靈敏度。
In addition, the present invention uses erbium as the sensing layer 40 of the optical gas sensing device 100, and cooperates with the lanthanum nitride absorbing layer 50 to effectively increase the infrared absorption rate, thereby improving the optical gas sensing device 100. Sensitivity.

【0035】[0035]

請參閱圖4,圖4為本發明之光學式氣體感測系統之較佳實施例之示意圖。本發明之光學式氣體感測系統至少包含光學式氣體感測裝置100、氣室200、光源300及感測電路400。其中,光學式氣體感測裝置100係包含如圖1~3所繪示之結構,故於此不再贅述。
Please refer to FIG. 4. FIG. 4 is a schematic diagram of a preferred embodiment of an optical gas sensing system of the present invention. The optical gas sensing system of the present invention includes at least an optical gas sensing device 100, a gas chamber 200, a light source 300, and a sensing circuit 400. The optical gas sensing device 100 includes the structures shown in FIGS. 1 to 3, and thus will not be described herein.

【0036】[0036]

氣室200具有提供氣體流入之氣體入口201及提供氣體流出之氣體出口202;光源300係位於氣室200之一端,用以提供光線射入氣室200。其中,光源300為紅外線光源;光學式氣體感測裝置100係位於氣室20之另一端,用以接收通過氣室之光線。其中,此光學式氣體感測裝置100係依據所接收之光線之強度而改變光學式氣體感測裝置100之電阻值;以及感測電路400係電性連接光學式氣體感測裝置100,以依據光學式氣體感測裝置100之電阻值輸出電壓值,進而依據電壓值得到氣體之濃度。
The gas chamber 200 has a gas inlet 201 for supplying gas and a gas outlet 202 for supplying gas. The light source 300 is located at one end of the gas chamber 200 for providing light into the gas chamber 200. The light source 300 is an infrared light source; the optical gas sensing device 100 is located at the other end of the gas chamber 20 for receiving light passing through the air chamber. The optical gas sensing device 100 changes the resistance value of the optical gas sensing device 100 according to the intensity of the received light; and the sensing circuit 400 is electrically connected to the optical gas sensing device 100 to The resistance value of the optical gas sensing device 100 outputs a voltage value, and then the concentration of the gas is obtained according to the voltage value.

【0037】[0037]

依照比爾定律(Beer’s Law)可得知,光源300所發出之紅外線在通過氣室200中之氣體後之強度I = I0e-KCl 。其中,I0為紅外線通過氣體前之強度;K為氣體在紅外線波段之吸收係數;C為氣體之濃度;l為氣室200之長度。
According to Beer's Law, the intensity of the infrared rays emitted by the light source 300 after passing through the gas in the gas chamber 200 is I = I0e - KCl . Wherein, I0 is the intensity before the infrared rays pass through the gas; K is the absorption coefficient of the gas in the infrared band; C is the concentration of the gas; and l is the length of the gas chamber 200.

【0038】[0038]

以一氧化碳為例,當氣室200通入特定濃度的一氧化碳氣體時,一氧化碳會吸收光源300所發出之波長為4.7μm之紅外線,使得光學式氣體感測裝置100所接收到之紅外線之強度減弱。而紅外線之強度的減弱會令光學式氣體感測裝置100產生溫度變化,進而改變其電阻值。感測電路400接著將所讀取到光學式氣體感測裝置100之電阻值轉換成電壓或電流之形式輸出,進而從紅外線通過氣體前後之電壓值或電流值的變化來準確地測得氣體的濃度。
Taking carbon monoxide as an example, when the gas chamber 200 is supplied with a specific concentration of carbon monoxide gas, the carbon monoxide absorbs infrared rays having a wavelength of 4.7 μm emitted from the light source 300, so that the intensity of the infrared rays received by the optical gas sensing device 100 is weakened. The decrease in the intensity of the infrared ray causes the optical gas sensing device 100 to change in temperature, thereby changing its resistance value. The sensing circuit 400 then converts the resistance value of the optical gas sensing device 100 read into a voltage or current output, thereby accurately measuring the gas from the change of the voltage value or current value before and after the infrared gas passes through the gas. concentration.

【0039】[0039]

因此,利用本發明之光學式氣體感測裝置100所形成之光學式氣體感測系統不僅可減少能量損失以提高響應度,更可有效地令吸收波長具有調諧效果,實具產業利用價值。
Therefore, the optical gas sensing system formed by the optical gas sensing device 100 of the present invention not only can reduce the energy loss to improve the responsiveness, but also can effectively make the absorption wavelength have a tuning effect, and has industrial utilization value.

【0040】[0040]

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.

no

no

10‧‧‧基板 10‧‧‧Substrate

11‧‧‧第一表面 11‧‧‧ first surface

12‧‧‧第二表面 12‧‧‧ second surface

30‧‧‧反射層 30‧‧‧reflective layer

40‧‧‧感測層 40‧‧‧Sensor layer

41‧‧‧間隙 41‧‧‧ gap

50‧‧‧吸收層 50‧‧‧absorbing layer

60‧‧‧第一電極層 60‧‧‧First electrode layer

61‧‧‧第一金屬層 61‧‧‧First metal layer

62‧‧‧第二金屬層 62‧‧‧Second metal layer

70‧‧‧第二電極層 70‧‧‧Second electrode layer

71‧‧‧第三金屬層 71‧‧‧ Third metal layer

72‧‧‧第四金屬層 72‧‧‧Fourth metal layer

100‧‧‧光學式氣體感測裝置 100‧‧‧Optical gas sensing device

Claims (10)

【第1項】[Item 1] 一種光學式氣體感測裝置,包含:
  一基板,具有一第一表面及一第二表面;
  一反射層,位於該基板之該第一表面上;
  複數個電極墊,位於該基板之該第一表面上且鄰接該反射層;
  一感測層,藉由該些電極墊連接該基板,以令該感測層與該基板之該反射層之間形成一間隙;
  一吸收層,位於相對於該間隙之該感測層上;
  一第一電極層,位於該感測層上且鄰接該吸收層;以及
  一第二電極層,位於該基板之該第二表面上。
An optical gas sensing device comprising:
a substrate having a first surface and a second surface;
a reflective layer on the first surface of the substrate;
a plurality of electrode pads on the first surface of the substrate and adjacent to the reflective layer;
a sensing layer, wherein the substrate is connected by the electrode pads to form a gap between the sensing layer and the reflective layer of the substrate;
An absorbing layer on the sensing layer opposite to the gap;
a first electrode layer on the sensing layer adjacent to the absorbing layer; and a second electrode layer on the second surface of the substrate.
【第2項】[Item 2] 如申請專利範圍第1項所述之光學式氣體感測裝置,其中該感測層之材料為鍺(Ge)或其他高電阻溫度係數(Temperature Coefficient of Resistance,TCR)之熱敏材料。
The optical gas sensing device of claim 1, wherein the sensing layer is made of germanium (Ge) or other high temperature coefficient of resistance (TCR) heat sensitive material.
【第3項】[Item 3] 如申請專利範圍第1項所述之光學式氣體感測裝置,其中該吸收層之材料為氮化矽。
The optical gas sensing device of claim 1, wherein the material of the absorbing layer is tantalum nitride.
【第4項】[Item 4] 如申請專利範圍第1項所述之光學式氣體感測裝置,其中該第一電極層更包含一第一金屬層及一第二金屬層。
The optical gas sensing device of claim 1, wherein the first electrode layer further comprises a first metal layer and a second metal layer.
【第5項】[Item 5] 如申請專利範圍第4項所述之光學式氣體感測裝置,其中該第一金屬層及該第二金屬層之材料分別為金(Au)及鉻(Cr)。
The optical gas sensing device of claim 4, wherein the materials of the first metal layer and the second metal layer are gold (Au) and chromium (Cr), respectively.
【第6項】[Item 6] 如申請專利範圍第1項所述之光學式氣體感測裝置,其中該第二電極層更包含一第三金屬層及一第四金屬層。
The optical gas sensing device of claim 1, wherein the second electrode layer further comprises a third metal layer and a fourth metal layer.
【第7項】[Item 7] 如申請專利範圍第6項所述之光學式氣體感測裝置,其中該第三金屬層及該第四金屬層之材料分別為鋁(Al)及金(Au)。
The optical gas sensing device of claim 6, wherein the materials of the third metal layer and the fourth metal layer are aluminum (Al) and gold (Au), respectively.
【第8項】[Item 8] 如申請專利範圍第1項所述之光學式氣體感測裝置,其中該些電極墊之材料為氮化矽。
The optical gas sensing device of claim 1, wherein the material of the electrode pads is tantalum nitride.
【第9項】[Item 9] 如申請專利範圍第1項所述之光學式氣體感測裝置,其中該基板之材料為矽或其他半導體材料。
The optical gas sensing device of claim 1, wherein the material of the substrate is germanium or other semiconductor material.
【第10項】[Item 10] 一種光學式氣體感測系統,包含:
  一氣室,具有提供一氣體流入之一氣體入口及提供該氣體流出之一氣體出口;
  一光源,位於該氣室之一端,用以提供一光線射入該氣室;
  一光學式氣體感測裝置,位於該氣室之另一端,用以接收通過該氣室之該光線,該光學式氣體感測裝置依據所接收之該光線之一強度而改變該光學式氣體感測裝置之一電阻值,其中該光學式氣體感測裝置包含:
    一基板,具有一第一表面及一第二表面;
    一反射層,位於該基板之該第一表面上;
    複數個電極墊,位於該基板之該第一表面上且鄰接該反射層;
    一感測層,藉由該些電極墊連接該基板,以令該感測層與該基板之該反射層之間形成一間隙;
    一吸收層,位於相對於該間隙之該感測層上;
    一第一電極層,位於該感測層上且鄰接該吸收層;以及
    一第二電極層,位於該基板之該第二表面上;以及
  一感測電路,電性連接該光學式氣體感測裝置,以依據該光學式氣體感測裝置之該電阻值輸出一電壓值或一電流值,進而依據該電壓值或該電流值得到該氣體之濃度。
An optical gas sensing system comprising:
a gas chamber having a gas inlet for supplying a gas into the gas inlet and a gas outlet for providing the gas;
a light source located at one end of the air chamber for providing a light into the air chamber;
An optical gas sensing device is disposed at the other end of the air chamber for receiving the light passing through the air chamber, and the optical gas sensing device changes the optical gas sense according to the intensity of one of the received light Measuring a resistance value of the device, wherein the optical gas sensing device comprises:
a substrate having a first surface and a second surface;
a reflective layer on the first surface of the substrate;
a plurality of electrode pads on the first surface of the substrate and adjacent to the reflective layer;
a sensing layer, wherein the substrate is connected by the electrode pads to form a gap between the sensing layer and the reflective layer of the substrate;
An absorbing layer on the sensing layer opposite to the gap;
a first electrode layer on the sensing layer adjacent to the absorbing layer; and a second electrode layer on the second surface of the substrate; and a sensing circuit electrically connected to the optical gas sensing And a device for outputting a voltage value or a current value according to the resistance value of the optical gas sensing device, and further obtaining the concentration of the gas according to the voltage value or the current value.
TW103131112A 2014-09-10 2014-09-10 Optical gas sensor and sensing system thereof TW201610415A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103131112A TW201610415A (en) 2014-09-10 2014-09-10 Optical gas sensor and sensing system thereof
CN201410504053.7A CN105529377B (en) 2014-09-10 2014-09-28 Optical gas sensing device and sensing system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103131112A TW201610415A (en) 2014-09-10 2014-09-10 Optical gas sensor and sensing system thereof

Publications (1)

Publication Number Publication Date
TW201610415A true TW201610415A (en) 2016-03-16

Family

ID=55771486

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103131112A TW201610415A (en) 2014-09-10 2014-09-10 Optical gas sensor and sensing system thereof

Country Status (2)

Country Link
CN (1) CN105529377B (en)
TW (1) TW201610415A (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI945124A0 (en) * 1994-10-31 1994-10-31 Valtion Teknillinen Spektrometer
EP2538201A1 (en) * 2010-02-16 2012-12-26 Hamamatsu Photonics K.K. Gas concentration calculation device, gas concentration measurement module, and light detector
CN101949836B (en) * 2010-08-25 2011-11-30 华中科技大学 Thermal radiation infrared transmitting and probing integrated device
TWI439679B (en) * 2011-08-03 2014-06-01 Univ Nat Chiao Tung Electrical calibrated radiometer
CN102315329B (en) * 2011-09-13 2013-05-22 烟台睿创微纳技术有限公司 Preparation method of thermosensitive-film infrared detector
CN103715307B (en) * 2013-12-31 2016-01-13 烟台睿创微纳技术有限公司 A kind of non-refrigerated infrared detector and preparation method thereof

Also Published As

Publication number Publication date
CN105529377A (en) 2016-04-27
CN105529377B (en) 2017-07-11

Similar Documents

Publication Publication Date Title
JP6380899B2 (en) Electromagnetic wave absorption and radiation material, method for producing the same, and infrared source
CN105977335B (en) Shortwave optics thermal detector and its focal plane array device
Chen et al. On-chip readout plasmonic mid-IR gas sensor
CN106298827B (en) A kind of non-refrigerated infrared focal plane probe pixel and preparation method thereof
Nishijima et al. Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion
EP3368871B1 (en) Infrared device
WO2016167052A1 (en) Electromagnetic wave detector, electromagnetic wave detector array, and gas analyzing apparatus
US10151638B2 (en) Bolometer, method of fabricating the same, and bolometric method
US9093594B2 (en) Multi-stack film bolometer
CN106129167B (en) A kind of graphene terahertz detector and preparation method thereof
JPWO2009081748A1 (en) Radiation temperature measurement method and radiation temperature measurement system
CN205940776U (en) Micro -bolometer
Xie et al. Zero‐bias long‐wave infrared nanoantenna‐mediated graphene photodetector for polarimetric and spectroscopic sensing
CN103557944A (en) CNT infrared sensor with low power consumption and high sensitivity
JP6269008B2 (en) Electromagnetic wave-surface polariton conversion element.
TW201610415A (en) Optical gas sensor and sensing system thereof
US10884225B2 (en) Highly-folding pendular optical cavity
TWI452272B (en) Thermopile sensing element
WO2018065755A1 (en) Infrared emitter or detector having enhanced emissivity and/or sensitivity at two or more different wavelengths
US10684214B2 (en) Optical cavity with strong dynamic
JP2001221689A (en) Infrared light source and infrared gas analyzer
JP5536437B2 (en) Light intensity measuring device and manufacturing method thereof
KR101449655B1 (en) Wavelength-selective light sensor and sensing method using the same
JP2016045080A (en) Light source and non-dispersive infrared analyzer type gas detector
CN105810773B (en) A kind of harmonic intensified pyroelectric infrared detector