TWI452272B - Thermopile sensing element - Google Patents
Thermopile sensing element Download PDFInfo
- Publication number
- TWI452272B TWI452272B TW100118101A TW100118101A TWI452272B TW I452272 B TWI452272 B TW I452272B TW 100118101 A TW100118101 A TW 100118101A TW 100118101 A TW100118101 A TW 100118101A TW I452272 B TWI452272 B TW I452272B
- Authority
- TW
- Taiwan
- Prior art keywords
- thermocouple
- layer
- metal layer
- dielectric layer
- ohm
- Prior art date
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Description
本發明是一種熱電堆感測元件,特別是指具三層結構紅外線吸收體之熱電堆感測元件。The present invention is a thermopile sensing element, and more particularly to a thermopile sensing element having a three-layer structure infrared absorber.
熱電堆感測元件在主要是由複數熱電偶串聯構成,熱電偶具有相對兩端,只要該兩端之間有溫度差,熱電偶即可輸出電壓信號,而溫度差越大,熱電偶輸出的電壓信號越大;藉由量測熱電偶輸出電壓的大小,即可推算出待測體的溫度,因此熱電堆感測元件可作為量測溫度使用。The thermopile sensing element is mainly composed of a plurality of thermocouples in series, and the thermocouple has opposite ends. As long as there is a temperature difference between the two ends, the thermocouple can output a voltage signal, and the larger the temperature difference, the thermocouple output The larger the voltage signal is, the temperature of the body to be measured can be estimated by measuring the output voltage of the thermocouple, so the thermopile sensing element can be used as the measuring temperature.
請參考圖8所示,係揭示美國專利第6949286號的熱電堆感測元件,其包含有一基板50,該基板50上形成一開口朝上的空穴51,該基板50上並設有一膜片52且該膜片52覆蓋該空穴51,該膜片52上形成一熱電偶層53,並於該熱電偶層53上局部形成一熱吸收層54;其中熱電偶層53被熱吸收層54覆蓋的區域稱為熱接點,未被熱吸收層54覆蓋的區域稱為冷接點。Referring to FIG. 8, a thermopile sensing component of U.S. Patent No. 6,949,286 is disclosed, which comprises a substrate 50 having an opening 51 facing upwardly, and a diaphragm disposed on the substrate 50. 52, the film 52 covers the cavity 51, a thermocouple layer 53 is formed on the film 52, and a heat absorbing layer 54 is partially formed on the thermocouple layer 53; wherein the thermocouple layer 53 is heated by the heat absorbing layer 54. The area covered is referred to as a hot junction, and the area not covered by the heat absorbing layer 54 is referred to as a cold junction.
當該熱吸收層54吸收紅外線熱能而溫度升高時,係可將溫度直接傳導至熱電偶層53的熱接點上,因冷接點未被熱吸收層54覆蓋,此時熱電偶層53於熱接點的溫度高於冷接點的溫度而產生溫度差,因此熱電偶層53即可輸出電壓訊號。When the heat absorbing layer 54 absorbs infrared heat energy and the temperature rises, the temperature can be directly transmitted to the hot junction of the thermocouple layer 53, since the cold junction is not covered by the heat absorbing layer 54, at this time, the thermocouple layer 53 The temperature difference between the hot junction and the cold junction creates a temperature difference, so the thermocouple layer 53 can output a voltage signal.
惟,該美國專利案所揭示的熱吸收層54係由二氧化矽與金(Au)顆粒混合構成的塊體,並非一般電晶體製程所 使用的材料,無法在半導體代工廠裡以廉價的標準製程生產製造,而需導入特殊的材料製程,導致成本提高。However, the heat absorbing layer 54 disclosed in the U.S. Patent is a block composed of a mixture of cerium oxide and gold (Au) particles, which is not a general transistor process. The materials used cannot be manufactured in a low-cost standard process in a semiconductor foundry, but a special material process is required, resulting in increased costs.
此外,因該熱吸收層54係額外製作,導致其體積較大導致熱容增加,使得與熱容成正比關係的熱反應時間也隨之增加,因此降低元件的熱反應速度。In addition, since the heat absorbing layer 54 is additionally fabricated, the bulk thereof is increased to cause an increase in heat capacity, so that the thermal reaction time proportional to the heat capacity is also increased, thereby reducing the thermal reaction speed of the element.
因此本發明的主要目的是提供一種熱電堆感測元件,使其上的熱吸收層可相容於一般的半導體製程,且可使熱吸收層的體積薄化以降低熱容。It is therefore a primary object of the present invention to provide a thermopile sensing element such that the heat absorbing layer thereon is compatible with a typical semiconductor process and the volume of the heat absorbing layer can be thinned to reduce heat capacity.
為達前揭目的,本發明所採用的技術手段係令熱電堆感測元件包含有:一基板,具有一空穴;一基底層,係形成在該基板上並覆蓋於該空穴上方;一熱電偶層,形成在該基底層上,其包含有複數串接的熱電偶對,各熱電偶對具有相對兩端,一端形成一熱接點部且位在對應於該空穴上方,另端形成一冷接點部且位在對應於該基板上方;以及一紅外線吸收體,係設置在該熱電偶層上,並與該複數熱電偶對的熱接點部構成熱接觸,該紅外線吸收體包含有:一第一金屬層;一介電質層,形成在該第一金屬層上;及一第二金屬層,形成在該介電質層上。For the purpose of the prior art, the technical means adopted by the present invention is such that the thermopile sensing element comprises: a substrate having a cavity; a substrate layer formed on the substrate and covering the cavity; a thermoelectric The dipole layer is formed on the base layer and comprises a plurality of thermocouple pairs connected in series, each thermocouple pair having opposite ends, one end forming a hot junction portion and being located above the hole, and forming the other end a cold junction portion corresponding to the substrate; and an infrared absorber disposed on the thermocouple layer and in thermal contact with the thermal contact portion of the plurality of thermocouple pairs, the infrared absorber comprising There is: a first metal layer; a dielectric layer formed on the first metal layer; and a second metal layer formed on the dielectric layer.
藉由上述構造,本發明之熱電堆感測元件可達以下功效:With the above configuration, the thermopile sensing element of the present invention can achieve the following effects:
1.該紅外線吸收體係一層狀結構,而可在一般電晶體製程中,以金屬沉積、介電質沉積及蝕刻製程手段完成,而可以低廉的成本生產製造。1. The infrared absorbing system has a layered structure, which can be completed by a metal deposition, a dielectric deposition and an etching process in a general transistor process, and can be manufactured at a low cost.
2.本發明之熱電堆感測元件可依欲吸收紅外線波段的需求,對應調整第一、第二金屬層的片電阻值與介電值層的厚度與折射率等參數,使紅外線吸收體在特定的紅外線波段有最佳的吸收率,且藉由控制該介電值層的厚度,進而將紅外線吸收體的體積控制在一定的範圍內,使紅外線吸收體的熱容降低而縮短紅外線吸收體的熱反應時間。2. The thermopile sensing element of the present invention can adjust the sheet resistance value of the first and second metal layers and the thickness and refractive index of the dielectric layer according to the requirement of absorbing the infrared band, so that the infrared absorber is The specific infrared ray band has an optimum absorption rate, and by controlling the thickness of the dielectric value layer, the volume of the infrared absorbing body is controlled within a certain range, so that the heat capacity of the infrared absorbing body is lowered to shorten the infrared absorbing body. Thermal reaction time.
請參考圖1與圖2所示,係揭示本發明的一較佳實施例,該熱電堆感測元件包含有一基板10、一基底層20、一熱電偶層30與一紅外線吸收體40。Referring to FIG. 1 and FIG. 2, a preferred embodiment of the present invention is disclosed. The thermopile sensing element comprises a substrate 10, a substrate layer 20, a thermocouple layer 30 and an infrared absorber 40.
該基板10具有一空穴100。The substrate 10 has a cavity 100.
該基底層20係形成在該基板10上並覆蓋於該空穴100上方,其中該基底層20可全面覆蓋於空穴100上方;或者該基底層20可形成一蝕刻窗口,而局部地覆蓋在該空穴100上方。The base layer 20 is formed on the substrate 10 and over the cavity 100, wherein the base layer 20 can completely cover the cavity 100; or the base layer 20 can form an etched window and partially cover the Above the cavity 100.
該熱電偶層30形成在該基底層20上,其包含有複數串接的熱電偶對300,各熱電偶對300具有相對兩端,一端形成一熱接點部321且位在對應於該空穴100上方,另端形成一冷接點部322且位在對應於該基板10上方,且該複數熱電偶對300略呈放射狀排列;各熱電偶對300包含有一第一熱電偶31與一第二熱電偶32,其中該第一、第二熱電偶31、32彼此為不同的熱電偶材料製成,該第一熱電偶31形成在該基底層20上,該第二熱電偶32形成在該第一熱電偶31上且連接另一相鄰熱電偶對300的第一熱電偶之上,因此使該複數熱電偶對300構成串接結構;其中有一熱電偶對300的第二熱電偶32未連接另一相鄰熱電偶對300的第一熱電偶31,因此使兩相鄰熱電偶對300彼此分隔,可將該兩熱電偶對定義為一始熱電偶對301與一末熱電偶對302。The thermocouple layer 30 is formed on the base layer 20, and includes a plurality of series of thermocouple pairs 300. Each of the thermocouple pairs 300 has opposite ends, and one end forms a hot junction portion 321 and is located corresponding to the space. Above the hole 100, a cold junction portion 322 is formed at the other end and is located above the substrate 10, and the plurality of thermocouple pairs 300 are arranged radially. Each thermocouple pair 300 includes a first thermocouple 31 and a a second thermocouple 32, wherein the first and second thermocouples 31, 32 are made of different thermocouple materials, the first thermocouple 31 is formed on the base layer 20, and the second thermocouple 32 is formed on The first thermocouple 31 is connected to the first thermocouple of another adjacent thermocouple pair 300, thus forming the plurality of thermocouple pairs 300 into a series structure; wherein the second thermocouple 32 of the thermocouple pair 300 The first thermocouple 31 of another adjacent thermocouple pair 300 is not connected, thus separating two adjacent thermocouple pairs 300 from each other. The two thermocouple pairs can be defined as a pair of thermocouples 301 and a pair of thermocouples. 302.
該紅外線吸收體40係設置在該熱電偶層30上,並與該複數熱電偶對300的熱接點部321構成熱接觸。The infrared absorber 40 is disposed on the thermocouple layer 30 and is in thermal contact with the hot junction portion 321 of the plurality of thermocouple pairs 300.
當紅外線吸收體40吸熱而產生溫度變化時,其熱係傳導至該熱電偶層30的熱接點部321,使熱接點部321的溫度相對冷接點部322的溫度升高而產生溫度差,進而從始熱電偶對301與末熱電偶對302輸出電壓訊號,藉由量測該電壓訊號的大小,即可推算溫度變化。When the infrared absorbing body 40 absorbs heat to cause a temperature change, the heat is conducted to the hot junction portion 321 of the thermocouple layer 30, and the temperature of the hot junction portion 321 rises relative to the temperature of the cold junction portion 322 to generate a temperature. The difference is further, and the voltage signal is output from the first thermocouple pair 301 and the last thermocouple pair 302. By measuring the magnitude of the voltage signal, the temperature change can be estimated.
請參考圖3所示,係揭示該紅外線吸收體40的結構,該紅外線吸收體40包含有一第一金屬層41、一介電質層42與一第二金屬層43,該介電質層42形成在該第一金屬層41上,且該第二金屬層43形成在該介電質層42上,使該第一金屬層41、介電質層42與第二金屬層43形成由下而上堆疊的結構,其中該第一金屬層41係作為反射層,而該第二金屬層43具有半透光之特性。Referring to FIG. 3, the structure of the infrared absorber 40 is disclosed. The infrared absorber 40 includes a first metal layer 41, a dielectric layer 42 and a second metal layer 43. The dielectric layer 42 Formed on the first metal layer 41, and the second metal layer 43 is formed on the dielectric layer 42 such that the first metal layer 41, the dielectric layer 42 and the second metal layer 43 are formed below. The upper stacked structure, wherein the first metal layer 41 serves as a reflective layer, and the second metal layer 43 has a semi-transmissive property.
本發明熱電堆感測元件的特點是可針對特定波長的紅外線波段設計出高吸收率的紅外線吸收體40。請參考圖4至圖7所示,係揭示紅外線吸收體40相對不同紅外線波長的熱吸收率波形圖,其中橫軸表示紅外線波長(μm),縱軸表示紅外線吸收體40對應紅外線波長的吸收率。舉例而言,因熱電堆感測元件通常操作在紅外線波段8~14(μm),假設欲找出紅外線吸收體40在紅外線波段約在8~14(μm)時,平均熱吸收率可達90%,以下做了四種模擬試驗。The thermopile sensing element of the present invention is characterized in that a high absorptivity infrared absorber 40 can be designed for an infrared band of a specific wavelength. Referring to FIG. 4 to FIG. 7, the heat absorption rate waveforms of the infrared absorbing body 40 with respect to different infrared wavelengths are disclosed, wherein the horizontal axis represents the infrared wavelength (μm), and the vertical axis represents the absorption rate of the infrared absorbing body 40 corresponding to the infrared wavelength. . For example, since the thermopile sensing element is usually operated in the infrared band of 8 to 14 (μm), it is assumed that the infrared absorption body 40 is about 8 to 14 (μm) in the infrared band, and the average heat absorption rate is up to 90. %, the following four simulation tests were done.
如圖4所示,係先將第一、第二金屬層41、43的片電阻值Rr、Rs與介電質層42的厚度d預設為一定值,本實施例中,係將第一金屬層41的片電阻值Rr設定為1.2(ohm/sq.),將該第二金屬層43的片電阻值Rs設定為377(ohm/sq.),將該介電質層42的厚度d設定為1250(nm),藉由調整介電質層42數種不同的折射率n,得知介電質層42在何種折射率時,可使紅外線吸收體40在紅外線波段於8~14(μm)時達最佳的吸收率。由圖4可以見及,當介電質層42的折射率設定為2時,該紅外線吸收體40於紅外線波段約8~14(μm)時的平均熱吸收率可達90%,一般作法係將介電質層42的折射率設定為1.4以上。As shown in FIG. 4, the sheet resistance values Rr and Rs of the first and second metal layers 41 and 43 and the thickness d of the dielectric layer 42 are preset to a certain value. In this embodiment, the first The sheet resistance value Rr of the metal layer 41 is set to 1.2 (ohm/sq.), the sheet resistance value Rs of the second metal layer 43 is set to 377 (ohm/sq.), and the thickness d of the dielectric layer 42 is set. When the refractive index n of the dielectric layer 42 is adjusted and the refractive index n of the dielectric layer 42 is adjusted, the infrared absorber 40 can be in the infrared band at 8 to 14 by adjusting the refractive index n of the dielectric layer 42. (μm) for the best absorption rate. As can be seen from FIG. 4, when the refractive index of the dielectric layer 42 is set to 2, the average heat absorption rate of the infrared absorber 40 in the infrared band of about 8 to 14 (μm) can reach 90%, and the general method is The refractive index of the dielectric layer 42 is set to 1.4 or more.
如圖5所示,係先將第一、第二金屬層41、43的片電阻值Rr、Rs與介電質層42的折射率n預設為一定值,本實施例中,係將第一金屬層41的片電阻值Rr設定為1.2(ohm/sq.),將該第二金屬層43的片電阻值Rs設定為377(ohm/sq.),將該介電質層42的折射率n設定為2,因此可藉由調整介電質層42數種不同的厚度d,得知介電質 層42在多少厚度d時,使紅外線吸收體40在紅外線波段於8~14(μm)時達最佳的吸收率。由圖5可以見及,當介電質層42的厚度d設定為1250(nm)時,該紅外線吸收體40於紅外線波段約8至14(μm)波段的平均熱吸收率可達90%,一般作法係將介電質層42的厚度d設定為500nm以上。As shown in FIG. 5, the sheet resistance values Rr and Rs of the first and second metal layers 41 and 43 and the refractive index n of the dielectric layer 42 are preset to a certain value. In this embodiment, The sheet resistance value Rr of a metal layer 41 is set to 1.2 (ohm/sq.), and the sheet resistance value Rs of the second metal layer 43 is set to 377 (ohm/sq.), and the dielectric layer 42 is refracted. The rate n is set to 2, so the dielectric can be known by adjusting several different thicknesses d of the dielectric layer 42. The thickness of the layer 42 is such that the infrared absorber 40 achieves an optimum absorption rate in the infrared band of 8 to 14 (μm). As can be seen from FIG. 5, when the thickness d of the dielectric layer 42 is set to 1250 (nm), the infrared absorber 40 has an average heat absorption rate of 90% in the infrared band of about 8 to 14 (μm). The general method is to set the thickness d of the dielectric layer 42 to 500 nm or more.
同樣地,如圖6所示,在本模擬試驗中,係將第一金屬層41的片電阻值Rr設定為1.2(ohm/sq.),將該介電質層42的折射率n設定為2,將該介電質層42的厚度d設定為1250(nm),由圖6可以見及,當第二金屬層43的片電阻值Rs設定為300或400(ohm/sq.)時,該紅外線吸收體40於紅外線波段約8至14(μm)波段的平均熱吸收率可達90%,一般作法係將第二金屬層43的片電阻值Rs設定為大於100(ohm/sq.)。Similarly, as shown in FIG. 6, in the present simulation test, the sheet resistance value Rr of the first metal layer 41 is set to 1.2 (ohm/sq.), and the refractive index n of the dielectric layer 42 is set to 2. The thickness d of the dielectric layer 42 is set to 1250 (nm). As can be seen from FIG. 6, when the sheet resistance value Rs of the second metal layer 43 is set to 300 or 400 (ohm/sq.), The infrared absorber 40 has an average heat absorption rate of about 90% in the infrared band of about 8 to 14 (μm). It is common practice to set the sheet resistance value Rs of the second metal layer 43 to be greater than 100 (ohm/sq.). .
如圖7所示,在本模擬試驗中,係將第二金屬層43的片電阻值Rs設定為377(ohm/sq.),將該介電質層42的折射率n設定為2,將該介電質層42的厚度d設定為1250(nm),由圖7可以見及,當第一金屬層41的片電阻值Rr設定為1或10(ohm/sq.)時,該紅外線吸收體40於紅外線波段約8至14(μm)波段的平均熱吸收率皆可達90%,一般作法係將第一金屬層43的片電阻值Rr設定為小於200(ohm/sq.),例如1到10(ohm/sq.)之間。As shown in FIG. 7, in the simulation test, the sheet resistance value Rs of the second metal layer 43 is set to 377 (ohm/sq.), and the refractive index n of the dielectric layer 42 is set to 2, The thickness d of the dielectric layer 42 is set to 1250 (nm), as can be seen from FIG. 7, when the sheet resistance value Rr of the first metal layer 41 is set to 1 or 10 (ohm/sq.), the infrared absorption The average heat absorption rate of the body 40 in the infrared band of about 8 to 14 (μm) can reach 90%. Generally, the sheet resistance value Rr of the first metal layer 43 is set to be less than 200 (ohm/sq.), for example. Between 1 and 10 (ohm/sq.).
綜合以上所述,該紅外線吸收體40係三層的堆疊結構,係可在已知的半導體製程中,以金屬沉積、介電質沉積及蝕刻手段完成,而金屬沉積、介電質沉積及蝕刻製程係目前半導體代工廠可輕易完成,因此可以低廉的成本生產;另一方面,從該熱感測元件的結構而言,且可依欲吸收紅外線波段的需求而對應調整該紅外線吸收體40中,各個組成構件的參數,例如第一、第二金屬層的片電阻值與介電值層的厚度與折射率等,使紅外線吸收體40在期望的紅外線波段內具有最佳的吸收率。In summary, the infrared absorber 40 is a three-layer stacked structure which can be completed by metal deposition, dielectric deposition and etching in a known semiconductor process, and metal deposition, dielectric deposition and etching. The process is currently easily completed by a semiconductor foundry, and thus can be produced at a low cost; on the other hand, from the structure of the thermal sensing element, the infrared absorber 40 can be adjusted correspondingly according to the demand of the infrared band to be absorbed. The parameters of the respective constituent members, for example, the sheet resistance values of the first and second metal layers and the thickness and refractive index of the dielectric layer, etc., allow the infrared absorbing body 40 to have an optimum absorption rate in a desired infrared ray band.
10...基板10. . . Substrate
100...空穴100. . . Hole
20...基底層20. . . Base layer
30...熱電偶層30. . . Thermocouple layer
300...熱電偶對300. . . Thermocouple pair
301...始熱電偶對301. . . Initial thermocouple pair
302...末熱電偶對302. . . Terminal thermocouple pair
31...第一熱電偶31. . . First thermocouple
32...第二熱電偶32. . . Second thermocouple
321...熱接點部321. . . Hot junction
322...冷接點部322. . . Cold junction
40...紅外線吸收體40. . . Infrared absorber
41...第一金屬層41. . . First metal layer
42...介電質層42. . . Dielectric layer
43...第二金屬層43. . . Second metal layer
50...基板50. . . Substrate
51...空穴51. . . Hole
52...膜片52. . . Diaphragm
53...熱電偶層53. . . Thermocouple layer
54...熱吸收層54. . . Heat absorbing layer
圖1:本發明熱電堆感測元件之平面示意圖。Figure 1 is a schematic plan view of a thermopile sensing element of the present invention.
圖2:本發明熱電堆感測元件之剖視示意圖。2 is a schematic cross-sectional view of a thermopile sensing element of the present invention.
圖3:紅外線吸收體之剖視圖。Fig. 3 is a cross-sectional view of the infrared absorber.
圖4~圖7:本發明熱電堆感測元件之數種較佳實施例紅外線波長相對吸收率的曲線圖。4 to 7 are graphs showing the relative absorption rates of infrared wavelengths of several preferred embodiments of the thermopile sensing elements of the present invention.
圖8:以知熱電堆感測元件示意圖。Figure 8: Schematic diagram of the sensing element of the thermopile.
10...基板10. . . Substrate
100...空穴100. . . Hole
20...基底層20. . . Base layer
30...熱電偶層30. . . Thermocouple layer
31...第一熱電偶31. . . First thermocouple
32...第二熱電偶32. . . Second thermocouple
40...紅外線吸收體40. . . Infrared absorber
41...第一金屬層41. . . First metal layer
42...介電質層42. . . Dielectric layer
43...第二金屬層43. . . Second metal layer
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100118101A TWI452272B (en) | 2011-05-24 | 2011-05-24 | Thermopile sensing element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100118101A TWI452272B (en) | 2011-05-24 | 2011-05-24 | Thermopile sensing element |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201248128A TW201248128A (en) | 2012-12-01 |
TWI452272B true TWI452272B (en) | 2014-09-11 |
Family
ID=48138646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100118101A TWI452272B (en) | 2011-05-24 | 2011-05-24 | Thermopile sensing element |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI452272B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106784277B (en) * | 2015-11-20 | 2019-06-04 | 原相科技股份有限公司 | The thermoelectric pile sensing structure of integration capacitance |
US10436646B2 (en) * | 2018-02-28 | 2019-10-08 | Ams Sensors Uk Limited | IR detector arrays |
CN110098311B (en) * | 2019-05-17 | 2022-06-14 | 中北大学 | Multilayer infrared stealth nanostructure for improving infrared absorption efficiency |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW406446B (en) * | 1999-04-12 | 2000-09-21 | Metrodyne Microsystem Corp | Thermopile infrared sensor and manufacture method thereof |
TW439181B (en) * | 1999-08-10 | 2001-06-07 | Opto Tech Corp | Method of forming thermal isolation for miniaturized thermopile device and structure formed by the same |
US6348650B1 (en) * | 1999-03-24 | 2002-02-19 | Ishizuka Electronics Corporation | Thermopile infrared sensor and process for producing the same |
TW488081B (en) * | 2000-03-30 | 2002-05-21 | Toshiba Corp | Infrared sensor and its manufacturing method |
TWI248513B (en) * | 2001-04-10 | 2006-02-01 | Hamamatsu Photonics Kk | Infrared sensor |
TW200620642A (en) * | 2004-10-13 | 2006-06-16 | Hamamatsu Photonics Kk | Infrad ray detection device and its manufacturing method |
TW201107724A (en) * | 2009-03-31 | 2011-03-01 | Panasonic Elec Works Co Ltd | Infrared array sensor |
-
2011
- 2011-05-24 TW TW100118101A patent/TWI452272B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6348650B1 (en) * | 1999-03-24 | 2002-02-19 | Ishizuka Electronics Corporation | Thermopile infrared sensor and process for producing the same |
TW406446B (en) * | 1999-04-12 | 2000-09-21 | Metrodyne Microsystem Corp | Thermopile infrared sensor and manufacture method thereof |
TW439181B (en) * | 1999-08-10 | 2001-06-07 | Opto Tech Corp | Method of forming thermal isolation for miniaturized thermopile device and structure formed by the same |
TW488081B (en) * | 2000-03-30 | 2002-05-21 | Toshiba Corp | Infrared sensor and its manufacturing method |
TWI248513B (en) * | 2001-04-10 | 2006-02-01 | Hamamatsu Photonics Kk | Infrared sensor |
TW200620642A (en) * | 2004-10-13 | 2006-06-16 | Hamamatsu Photonics Kk | Infrad ray detection device and its manufacturing method |
TW201107724A (en) * | 2009-03-31 | 2011-03-01 | Panasonic Elec Works Co Ltd | Infrared array sensor |
Also Published As
Publication number | Publication date |
---|---|
TW201248128A (en) | 2012-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2181463B1 (en) | A pixel structure having an umbrella type absorber with one or more recesses or channels sized to increase radiation absorption | |
CN101575083B (en) | Micromachined thermopile infrared detector | |
TWI596745B (en) | Multi-stack film bolometer | |
KR101234990B1 (en) | Multi-functional sensor for temperature and humidity detection and manufacturing method therefor | |
WO2016138840A1 (en) | Copper thermal resistance thin film temperature sensor chip, and preparation method therefor | |
WO2016095600A1 (en) | Three-dimensional temperature detector and manufacturing method thereof | |
TWI452272B (en) | Thermopile sensing element | |
TWI616647B (en) | Semiconductor device | |
JPH10274561A (en) | Thermal infrared detecting element | |
CN204271111U (en) | Thermopile IR detector | |
TWI725868B (en) | Thermistor and microbolometer based on the thermistor | |
JP2005203796A (en) | Radiation detector, sensor module equipped with radiation detector, and method of manufacturing radiation detector | |
US9412927B2 (en) | Formation of a thermopile sensor utilizing CMOS fabrication techniques | |
JP5759345B2 (en) | Method for manufacturing wafer level package focal plane array | |
CN204128692U (en) | The infrared imaging detector of a kind of pixel cell and formation thereof | |
JP2811709B2 (en) | Infrared sensor | |
CN103698021A (en) | Thermopile infrared detector based on TiN reflecting layer | |
CN203721728U (en) | Finished pixel unit structure and semi-finished pixel unit structure | |
CN112577612A (en) | Black silicon plasmon auxiliary absorption thermopile chip and manufacturing method thereof | |
KR101897068B1 (en) | Selectable wavelength infrared sensor and manufacturing method of thereof | |
JP6694304B2 (en) | Method of manufacturing infrared detection element | |
TWI816360B (en) | Uncooled infrared sensor | |
CN210040257U (en) | Thermopile sensor chip | |
CN102509729B (en) | Preparation method for adjustable thermo-optic band pass filter pixel array | |
TW201712312A (en) | Process method of thermal type pressure sensor has well heat insulation effect at the same time and does not require additional production steps in process |