TW201609809A - 活化蛋白c之最佳化人化單株抗體及其用途 - Google Patents

活化蛋白c之最佳化人化單株抗體及其用途 Download PDF

Info

Publication number
TW201609809A
TW201609809A TW104116378A TW104116378A TW201609809A TW 201609809 A TW201609809 A TW 201609809A TW 104116378 A TW104116378 A TW 104116378A TW 104116378 A TW104116378 A TW 104116378A TW 201609809 A TW201609809 A TW 201609809A
Authority
TW
Taiwan
Prior art keywords
antibody
light chain
seq
heavy chain
nucleic acid
Prior art date
Application number
TW104116378A
Other languages
English (en)
Inventor
曉燕 趙
拉斯 林登
安卓亞斯 威爾曼
克里斯托福 佛瑞柏格
卡林 瑞格斯托恩
Original Assignee
拜耳保健有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拜耳保健有限責任公司 filed Critical 拜耳保健有限責任公司
Publication of TW201609809A publication Critical patent/TW201609809A/zh

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本文提供選擇性結合至並抑制活化蛋白C而不結合至或抑制不活化蛋白C的最佳化人化抗體。本文描述採用此等抗體的治療方法。

Description

活化蛋白C之最佳化人化單株抗體及其用途
本文提供選擇性結合至並抑制活化蛋白C而不結合至或抑制不活化蛋白C的最佳化人化抗體。本文描述採用此等抗體的治療方法。
血液凝集是一個由各種血液要素或因子複雜交互作用所構成的過程,其最終導致血纖維蛋白塊。一般來說,參與凝血”級聯”的血液要素是酵素原(proenzymes)或酶原(zymogens),其為酵素學上不活化蛋白,藉由活化子的作用而被轉換成活化形式。調節血液凝集大部分在酵素學上是藉由透過活化蛋白C(aPC)達到促凝血因子Va與VIIIa的蛋白分解不活化而達成(Esmon,1989)。
蛋白C是aPC的前驅物,而aPC是一種強效的天然抗凝血劑。蛋白C受到與凝血調節素(TM)複合的凝血酶所活化,活化作用被內皮細胞蛋白C受體(EPCR)放大。TM與EPCR可以因為諸如腫瘤壞死因子的發炎調節因子而被下調,由Esmon(1999)所回顧。TM與EPCR亦已被發現在一些形式的敗血性休克中減少,尤其是腦膜炎雙球菌血症。由於EPCR與TM在內皮上被表現,不可能在未移除血管的情況下直接測定它們如何適當地發揮功能。
藉由蛋白分解切割並下調促凝血因子,aPC係以抗凝血劑作用。aPC也提供做為抗細胞凋亡劑、抗發炎分子與細胞保護劑的重要功能。 因為喪失關鍵因子(諸如在血友病中不存在因子VIII),或在受傷過程導致止血暫時喪失的創傷患者中止血功能不全的出血性病症,可以透過移除aPC而獲得治療。但是,此治療除了消除抗凝血活性以外,還可能造成消除aPC有益功能的不樂見有害結果。因此,需要有一種選擇性靶定aPC的抗凝血活性,同時保有分子的其他功能無損的治療劑。
因此,提供選擇性把定aPC之抗凝血活性的抗體。提供一種包含下列的人化IgG2抗體:(a)含有由(i)SEQ ID NO:2或16、(ii)SEQ ID NO:3、17或31與(iii)SEQ ID NO:4或46表示之重鏈CDR的重鏈;及(b)含有由(i)SEQ ID NO:6、(ii)SEQ ID NO:7與(iii)SEQ ID NO:8表示之輕鏈CDR的輕鏈。
本文提供抗體的重鏈可包含VH1C重鏈、VH3-72重鏈、VH3-7重鏈、VH3-72重鏈、VH3-7(del RL)重鏈或VH3-48重鏈的骨架。本文提供抗體的輕鏈可包含VK2_1輕鏈、VKD2A輕鏈、VK2D-29輕鏈、VK2D-29(insL)輕鏈、VK7-3輕鏈、VK4-1輕鏈、VK4-1(insLY)、VK-1(insL)、VK2-30-2輕鏈、VK2D-28輕鏈、VK2D-28(insL)輕鏈或VK2-24輕鏈的骨架。
本文提供抗體的重鏈與輕鏈可變區分別可由SEQ ID NO:1與5表示。本文提供抗體的重鏈與輕鏈可變區分別可由SEQ ID NO:15與19表示。本文提供抗體的重鏈與輕鏈可變區分別可由SEQ ID NO:29與33表示。本文提供抗體的重鏈與輕鏈可變區分別可由SEQ ID NO:43與47表示。
本文提供抗體的重鏈可為VH3-72重鏈、VH3-7重鏈或VH3-7(del RL)重鏈。本文提供抗體的輕鏈可為VK7-3輕鏈。
本文提供抗體的重鏈與輕鏈分別可由SEQ ID NO:11與12,或SEQ ID NO:25與26,或SEQ ID NO:39與40,或SEQ ID NO:53與54表示。
抗體可為單鏈抗體或抗體片段,諸如Fab'、Fab、F(ab')2、單結構域抗體、Fv或scFv。
亦提供一種細胞或細胞株,其包含編碼含有下列之人化IgG2抗體的核酸:(a)重鏈,包含由(i)SEQ ID NO:2或16、(ii)SEQ ID NO:3、17或31與(iii)SEQ ID NO:4或46表示的重鏈CDR;及(b)輕鏈,包含由(i)SEQ ID NO:6、(ii)SEQ ID NO:7與(iii)SEQ ID NO:8表示的輕鏈CDR。
核酸可編碼選自下列的重鏈骨架:VH1C重鏈、VH3-72重鏈、VH3-7重鏈、VH3-72重鏈、VH3-7(del RL)重鏈與VH3-48重鏈。核酸可編碼選自下列的輕鏈骨架:VK2_1輕鏈、VKD2A輕鏈、VK2D-29輕鏈、VK2D-29(insL)輕鏈、VK7-3輕鏈、VK4-1輕鏈、VK4-1(insLY)、VK-1(insL)、VK2-30-2輕鏈、VK2D-28輕鏈、VK2D-28(insL)輕鏈與VK2-24輕鏈。
核酸可分別編碼由SEQ ID NO:1與5表示的重鏈與輕鏈可變區。核酸可分別編碼由SEQ ID NO:15與19表示的重鏈與輕鏈可變區。核酸可分別編碼由SEQ ID NO:29與33表示的重鏈與輕鏈可變區。核酸可分別編碼由SEQ ID NO:43與47表示的重鏈與輕鏈可變區。
核酸所編碼的重鏈可為VH3-72重鏈、VH3-7重鏈或VH3-7(del RL)重鏈。核酸所編碼的輕鏈可為VK7-3。
核酸所編碼的重鏈與輕鏈可分別由SEQ ID NO:11與12,或SEQ ID NO:25與26,或SEQ ID NO:39與40,或SEQ ID NO:53與54表示。
核酸可編碼單鏈抗體或抗體片段,諸如Fab'、Fab、F(ab')2、單結構域抗體、Fv,或scFv。
亦提供一種醫藥組成物,其包含如上文說明的抗體分散於醫藥上可接受的載劑中。
亦提供一種在個體中抑制活化蛋白C抗凝血活性的方法,其 包含投與有效量之上文說明的抗體。
亦提供一種在個體中抑制活化蛋白C醯胺基水解活性的方法,包含投與有效量之上文說明的抗體。
亦提供一種治療有凝血需求之個體的方法,包含投與有效量之上文說明的抗體。
亦提供一種治療罹患敗血症之個體的方法,包含投與有效量之上文說明的抗體。該方法可進一步包含投與活化蛋白C。
亦提供一種治療罹患血友病之個體的方法,包含投與有效量之上文說明的抗體。
亦提供一種在個體中調節止血的方法,包含投與有效量之上文說明的抗體。該個體可為創傷患者。
亦提供一種在個體中調節血栓的方法,包含投與有效量之上文說明的抗體。
又另一個具體例包括一個包含上文說明之抗體的套組。該抗體可使用諸如螢光團、放射性標記、化學發光標記、染料、量子點、珠粒或發色團標記。該套組可進一步包含緩衝劑或稀釋劑,及/或關於使用該抗體的使用說明。該抗體可存在於水性懸浮液中,或可經凍乾。
預期本說明書中所論及的任一具體例可使用任一化合物、方法或組成物來實施,且反之亦然。
如說明書本文所用,”一(a或an)”可表示一或多。如申請專利範圍中所用,當與字詞”包含”組合使用時,字詞”一(a或an)”可表示一或多於一。
除非明確指出意指最適替代方案,或替代方案相互排除,否則在申請專利範圍中,使用術語”或”是要表示”及/或”,儘管揭示內容支持 意指最適替代方案與”及/或”的定義。如本文所用,”另一”可表示至少一個第二者或更多個。
在本申請案通篇中,術語”約”用來表明某個數值,包括裝置誤差的固有變異、用以測定數值的方法,或存在於研究個體中的變異。
本發明的其他主題、特徵與優點將從下列詳細說明而變得清楚。但是應理解的是,儘管指明本發明較佳具體例的詳細說明及特定實例僅以例示說明的方式提供,因為對於習於本技藝者來說,落入本發明精神與範疇內的各種變化與修飾將因為此詳細說明而變得清楚。
說明
本揭示內容是有關於發現到:選擇性結合至活化蛋白C而非不活化蛋白C,且特異地抑制活化蛋白C之抗凝血活性的單株抗體。
若適當的話,以單數形使用的術語也包括複數形且反之亦然。在下文所指任一定義與該字詞在任何其他文件(包括併入本文做為參考的任何文件)中的用法相左時,就解釋本說明書與其相關申請專利範圍之目的來說,除非清楚意欲為相反意思(例如在術語原先使用的文件中),否則下文所述定義永遠勝出。除非另有說明,否則使用”或”表示”及/或”。除非另有說明或使用”一或多”明確不適當,否則使用”一”在本文表示”一或多”。使用"包含(comprise、comprises、comprising、include、includes與including)”是可交替的且不具限制性。例如,術語”包括”應表示”包括,但不限於”。
術語”蛋白C”或”PC”如本文所用意指呈其酶原形式之蛋白C的任一種變異體、同型異構體,及/或物種同系物,其被細胞天然地表現並存在於細胞質中,且與蛋白C的不活化形式不同。
術語”活化蛋白C”或”aPC”如本文所用意指蛋白C的活化形式,其特徵在於因為凝血酶切割位點而移除且不存在於蛋白C中的12個胺基 酸活化肽。
如本文所用,”抗體”意指完整抗體及其任何抗原結合片段(亦即”抗原-結合部分”)或單鏈。該術語包括天然的或由正常免疫球蛋白基因片段重組製程所形成的全長免疫球蛋白分子(亦即IgG抗體),或是免疫球蛋白分子的免疫活性部分,諸如抗體片段,其保有特異結合活性。不論結構為何,抗體片段與全長抗體所辨識的相同抗原結合。舉例而言,抗-aPC單株抗體片段結合至aPC的抗原決定區。抗體的抗原-結合功能可以由全長抗體的片段來執行。術語抗體之”抗原-結合部分”所涵括的結合片段實例包括:(i)Fab片段,由VL、VH、CL,與CH1結構域組成的單價片段;(ii)F(ab’)2片段,一種包含兩個在樞紐區處由雙硫橋連結之Fab片段的二價片段;(iii)由VH與CH1結構域組成的Fd片段;(iv)由抗體單臂之VL與VH結構域組成的Fv片段;(v)dAb片段(Ward et al.,(1989)Nature 341:544-546),其由VH結構域組成;(vi)經分離的互補決定區(CDR);(vii)微抗體、雙鏈抗體、三鏈抗體、四鏈抗體及κ體(參見,例如Ill et al.,Protein Eng 1997;10:949-57);(viii)駱駝IgG;以及(ix)IgNAR。此外,儘管Fv片段的兩個結構域(VL與VH)是由個別基因所編碼,但它們可以使用重組方法、藉由合成連結子而被連結,使它們變成單一蛋白鏈,其中VL與VH區配成對以形成單價分子(已知為單鏈Fv(scFv);參見,例如Bird et al.(1988)Science 242:423-426;與Huston et al(1988)Proc.Natl.Acad.Sci.USA 85:5879-5883)。該等單鏈抗體亦意欲被含括在術語抗體之”抗原-結合部分”中。此等抗體片段是使用習於技藝者所熟知的習知技術獲得,且以與完整抗體相同的方式來分析該等片段的效用。
另外,預期抗原結合片段可含括在抗體擬似物中。術語”抗體擬似物”或”擬似物”如本文所用表示表現與抗體類似結合但卻是一個較小的替代性抗體或非抗體蛋白的蛋白質。抗體擬似物可包含於骨架中。術語” 骨架”意指一種用於將帶有訂製功能與特性之新產物工程化的多肽平台。
如本文所用,術語”抗-aPC抗體”意指特異地結合至aPC之抗原決定區的抗體。當在活體內結合至aPC的抗原決定區時,本文所揭示的抗-aPC抗體放大凝血級聯的一或多個方面。
如本文所用,術語”抑制結合”及”阻斷結合”(參見例如抑制/阻斷aPC受質結合至aPC)可交替使用並含括部分與完全抑制或阻斷蛋白質與其受質,諸如抑制或阻斷達至少約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%、約95%、約96%、約97%、約98%、約99%或約100%。如本文所用,”約”表示指定數值的+/-10%。
提到抑制及/或阻斷aPC受質結合至aPC時,術語抑制與阻斷也包括與抗-aPC抗體接觸時,aPC對生理受質的結合親和力當與aPC不與抗-aPC抗體接觸時相比有可測得的降低,例如阻斷aPC與其受質(包括因子Va或與因子VIIIa)交互作用達至少約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%、約95%、約96%、約97%、約98%、約99%,或約100%。
術語”單株抗體”或”單株抗體組成物”如本文所用意指單一分子組成物的抗體分子製劑。單株抗體組成物對特定抗原決定區展現單一結合特異性以及親和力。因此,術語”人類單株抗體”意指展現單一結合特異性的抗體,其具有衍生自人類生殖系免疫球蛋白序列的可變區與恆定區。人類抗體可包括不被人類生殖系免疫球蛋白序列所編碼的胺基酸殘基(例如因為在活體外隨機或定點突變而引入的突變或因為活體內體細胞突變)。
”經分離抗體”,如本文所用,欲意指基本上不含其他生物分子的抗體,包括具有不同抗原特異性的抗體(例如結合至aPC的經分離抗體基本上不含結合aPC以外之抗原的抗體)。在一些具體例中,經分離抗體依 據乾重為至少約75%、約80%、約90%、約95%、約97%、約99%、約99.9%或約100%純。在一些具體例中,純度可藉由諸如管柱層析、聚丙烯醯胺凝膠電泳,或HPLC分析的方法來測量。但是,結合至人類aPC之抗原決定區、同型異構體或變異體的經分離抗體可能對其他相關抗原(例如來自其他物種,例如aPC物種同系物)具有交叉反應性。此外,經分離抗體基本上可不含其他細胞物質及/或化學品。如本文所用,”特異性結合”意指結合至預定抗原的抗體。典型地,表現”特異性結合”的抗體以至少約105M-1的親和力結合至抗原且以比其對不相干抗原(例如BSA、酪蛋白)的結合親和力還高(例如)至少兩倍的親和力結合至該抗原。片語”辨識抗原的抗體”以及”對抗原具有特異性的抗體”在本文可與術語”特異地結合至抗原的抗體”交替使用。
如本文所用,術語”最低結合”意指不結合至指定抗原及/或對指定抗原表現低親和力的抗體。典型地,對抗原具有最低結合的抗體以低於約102M-1的親和力結合至那個抗原,且不以比其結合至不相干抗原還高的親和力結合至預定抗原。
如本文所用,術語”高親和力”對抗體(諸如IgG抗體)而言意指至少約107M-1的結合親和力,在至少一個具體例中至少約108M-1、在一些具體例中至少約109M-1、1010M-1、1011M-1或更高,例如至高1013M-1或更高。但是,”高親和力”結合對其他抗體同型來說可能會改變。舉例而言,對IgM同型的”高親和力”結合意指至少約107M-1的結合親和力。如本文所用,”同型”意指由重鏈恆定區基因所編碼的抗體類型(例如IgM或IgG2)。
”互補決定區”或”CDR”意指抗體分子之重鏈可變區或輕鏈可變區內三個超變區中的一者,其形成與被結合抗原的三維結構互補的N端抗原-結合面。從重鏈或輕鏈的N端開始,這些互補決定區分別被表示為”CDR1”、”CDR2”以及”CDR3”[Wu TT,Kabat EA,Bilofsky H,Proc Natl Acad Sci USA.1975 Dec;72(12):5107與Wu TT,Kabat EA,J Exp Med.1970 Aug 1;132(2):211]。CDR涉及抗原-抗體結合,且CDR3包含對抗原-抗體結合具有特異性的特有區域。因此,抗原-結合位點可包括六個CDR,其包含重鏈與輕鏈V區每一者之CDR區。
術語”抗原決定區”意指抗體特異地結合或交互作用的抗原的範圍或區域,其在一些具體例中指示抗原在物理上與抗體接觸之處。相反地,術語”抗原決定簇(paratope)”意指抗原特異地結合之抗體上的範圍或區域。抗原決定區的特徵在於若對應抗體結合同時是彼此排斥的話,亦即某個抗體的結合排除另一個抗體同時結合,競爭結合被認為是重疊的。若抗原能夠容納兩個對應抗體同時結合,則抗原決定區被認為是分散的(獨特)。
術語”競爭抗體”,如本文所用,意指結合至與對抗如本文所述aPC之抗體大概,實質上或基本上相同,或甚至相同抗原決定區的抗體。”競爭抗體”包括具有重疊抗原決定區特異性的抗體。因此,競爭抗體能夠有效與如本文所述抗體競爭結合至aPC。在一些具體例中,競爭抗體可結合至與如本文所述抗體相同的抗原決定區。換個角度來看,競爭抗體具有與如本文所述抗體相同的抗原決定區特異性。
如本文所用,”保守性置換”意指多肽修飾,其涉及將一或多個胺基酸置換成具有相似生化特性但不會造成多肽的生物或生化功能喪失的胺基酸。”保守性胺基酸置換”是將胺基酸殘基以具有相似側鏈的胺基酸殘基取代。具有相似側鏈的胺基酸殘基家族在本技藝中已經是明確的。此等家族包括下列:具有鹼性側鏈的胺基酸(例如離胺酸、精胺酸、組胺酸)、具有酸性側鏈的胺基酸(例如天冬胺酸、麩胺酸)、具有不帶電極性側鏈的胺基酸(例如甘胺酸、天冬醯胺酸、麩醯胺酸、絲胺酸、蘇胺酸、酪胺酸、半胱 胺酸)、具有非極性側鏈的胺基酸(例如丙胺酸、纈胺酸、白胺酸、異白胺酸、脯胺酸、苯丙胺酸、甲硫胺酸、色胺酸)、具有β分支側鏈的胺基酸(例如蘇胺酸、纈胺酸、異白胺酸),以及具有芳香族側鏈的胺基酸(例如酪胺酸、苯丙胺酸、色胺酸、組胺酸)。本揭示內容的抗體可具有一或多個仍維持抗原結合活性的保守性胺基酸置換。
關於核酸以及多肽,術語”實質同源性”表示兩個核酸或兩個多肽,或其指定序列當在有適當核苷酸或胺基酸插入或刪除的情況下經最佳排列並比對時是相同的,其中核苷酸或胺基酸插入或刪除佔至少約80%的核苷酸或胺基酸,通常至少約85%,在一些具體例中約90%、91%、92%、93%、94%或95%,在至少一個具體例中至少約96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%或99.5%的核苷酸或胺基酸。或者,當節段在選定雜交條件下會與該股的互補股雜交的話,則存在有核酸的實質同源性。具有與本文引用的特定核酸序列以及胺基酸序列具有實質同源性的核酸序列以及多肽序列也包括在內。
兩個序列之間的同一性百分比是該等序列所共有的相同位置之數目的函數(亦即,%同源性=相同位置數/位置總數 x 100),考量空位數,以及各個空位長度,其需要被引入以供兩個序列的最佳排列之用。序列比對以及兩個序列之間的同一性百分比測定可使用數學計算法來達致,在不受到限制的情況下諸如為VectorNTITM的AlignXTM模數(Invitrogen Corp.,Carlsbad,CA)。就AlignXTM而言,多重排列的預設參數為:空位開放罰分:10;空位延伸罰分:0.05;空位分離罰分範圍:8;排列延遲的同一性%:40(更多詳細內容見於invitrogen.com/site/us/en/home/LINNEA-Online-Guides/LINNEA-Communities/Vector-NTI-Community/Sequence-analysis-and-data-management-software-for-PCs/AlignX-Module-for-Vector-NTI-Advance. reg.us.html的全球網路)。
測定測試序列(本揭示內容的序列)以及目標序列之間的最佳整體匹配的另一個方法(亦意指全局序列排列(global sequence alignment))可使用CLUSTALW電腦程式(Thompson et al.,Nucleic Acids Research,1994,2(22):4673-4680)來測定,該電腦程式是以Higgins等人的計算法(Computer Applications in the Biosciences(CABIOS),1992,8(2):189-191)為基礎。在序列排列時,測試序列以及目標序列均為DNA序列。該全局序列排列的結果是以同一性百分比來表示。可用於DNA序列之CLUSTALW排列中經成對排列來計算同一性百分比的參數為:矩陣=IUB、k-元組=1、頂對角數目=5、空位罰分=3、空位開放罰分=10、空位延伸罰分=0.1。關於多重排列,可使用下列CLUSTALW參數:空位開放罰分=10、空位延伸參數=0.05;空位分離罰分範圍=8;排列延遲的同一性%=40。
核酸可存在於整個細胞中、在細胞溶解物中,或呈部分純化或實質上純的形式。當從在天然環境中與核酸相締合之其他細胞組分被純化出來時,核酸是”經分離”或”使之成為實質上純的”。為了要分離核酸,可使用諸如下列的標準技術:鹼/SDS處理、CsCl帶、管柱層析、瓊脂糖凝膠電泳以及技藝中熟知的其他技術。
I.活化蛋白C(aPC)及抗體 A.活化蛋白C
蛋白C被在內皮上與凝血調節素(TM)複合的凝血酶所活化。不同於活化凝血酶在活體內的數秒短暫有效期,人類aPC在其生成後於循環中具有約20分鐘半衰期(Berg,et al.,2003)。因此,吾人可以合理地在血漿中測量aPC位準來研究其在各種病理生理條件下的調控。
B.針對aPC的抗體
先前,發展出鼠類抗體HAPC1573,其增強內皮細胞上的FL-aPC結合。HAPC1573促使aPC透過aPC之Gla結構域和細胞上的EPCR交互作用而在內皮上內化,且這個內化作用可以被EPCR阻斷Ab或Gla結構域阻斷Ab(HPC1575)所阻斷。HAPC1573也戲劇性地改變aPC對其顯色受質(Spectrozyme PCa)的動力學參數。在HAPC1573存在下,aPC對小肽受質的這個深遠變化指出這個mAb辨識一個鄰近aPC活性部位的抗原決定區,且Ab與抗原的交互作用戲劇性地增加APC對小肽受質的親和力,但卻降低產物與aPC催化位點的解離速率。HAPC1573幾乎也完全縮減aPC在因子Xa起始之一階段血漿凝血分析中的延長效用,暗示著HAPC1573與aPC的交互作用會防止aPC切割因子Va。出乎意料的,HAPC1573不會抑制,而實際上是增強aPC切割組蛋白H3及H4。相同地,HAPC1573不會抑制但卻會略為增強aPC對內皮的細胞保護活性以對抗組蛋白H3及H4。最後,其結果顯示HAPC1573辨識aPC,而不是蛋白C。參見美國專利第8,153,766號。
近來的研究已顯示,aPC的抗凝血活性對於其細胞保護功能不是必要的,但是對PAR1的aPC切割活性就其抗細胞凋亡效用來說不可或缺(Mosnier et al.,2004)。但是,aPC的細胞保護效用已顯示不僅在表現EPCR的內皮細胞上,還有其他在其細胞表面不表現EPCR的細胞,諸如神經元與角質細胞(Guo et al.,2004;Berg et al.,2003)上,指出PAR1以外可能存在其他機制媒介aPC信號傳遞。
C.技術的應用
區別蛋白C與aPC的能力說明了抗體在習用ELISA方法中用來在活體內測量血漿中aPC位準的實用性。典型地,相較於使用酶捕捉分析的19小時或甚至數週(Gruber and Griffen,1992;Liaw et al.,2003),使用本發明花費少於4小時來測量含有1ng/ml APC的血漿樣品。
還有,如上所述,HAPC1573改變aPC對顯色肽受質的切割活性還有也在血漿凝血分析中阻斷aPC抗凝血活性,暗示這個mAb辨識一個鄰近aPC活性部位的抗原決定區,並在抗體-抗原結合之後改變其催化活性。同時,HAPC1573確實增強aPC切割細胞外組蛋白,並增強對內皮之APC細胞保護活性對抗組蛋白。這指明關於切割活化因子V與VIII之APC抗凝血活性對於其透過切割細胞外組蛋白的細胞保護活性來說不是必要的。切割細胞外組蛋白獨立於其抗凝血活性可能是aPC調控發炎與細胞保護的分子機制之一。
因此,此等對抗aPC的抗體可例如用於治療A型血友病患者。aPC切割因子VIIIa與因子Va兩者且因而對凝血有負面影響。在A型血友病患者中,因子VIII位準低且因子Va受aPC而不活化在這些患者體內可能是調節止血與血栓形成的一個主要路徑。最近的臨床報告證實,因子V Leiden突變型對aPC切割具有抗性,對於A型血友病患者的出血症狀有益(van’t Zant et al.,1997)。在活體內使用抗體阻斷aPC對因子Va的抗凝血活性對於A型血友病治療來說是一種替代性方法,尤其是對於那些具有高位準因子VIII抑制劑而使得因子VIII代用療法可能不是非常有效的患者來說。
在其他具體例中,對抗aPC之抗體的另一種可行臨床應用在於治療創傷患者,其中恆定被破壞,可能有過量出血,且延遲外科手術干預以恢復恆定。使用抗體治療可選擇性地回復促凝血狀態而不會消除APC的細胞保護或抗發炎活性。
對抗aPC之抗體的又另一個臨床應用是在敗血症治療時與aPC組合。其在患者體內的出血副作用是因為aPC抗凝血活性。因為HAPC1573阻斷aPC抗凝血活性,同時維持並甚至增強aPC細胞保護效用,就其出血副作用來說,mAb-aPC複合體可能是一個比單獨aPC還要更好的治 療劑。
II.抗體結構與最佳化
抗體包含一個帶有共有結構特徵的醣蛋白大家族。抗體是由四個形成三維結構的多肽組成。典型地,抗體是由兩種不同多肽(重鏈與輕鏈)所組成。抗體分子是由這些單元中的一或多者組成,每一單元包含兩個重鏈與兩個輕鏈。抗體分子典型由三個功能結構域構成:Fc、Fab與抗原-結合部位。
有五種不同類型的重鏈多肽,命名為α、δ、ε、γ與μ。有兩種不同類型的輕鏈多肽,命名為κ與λ。抗體典型地含有僅一種類型的重鏈以及僅一種類型的輕鏈,儘管輕鏈可與任一種重鏈締合。
各個重鏈多肽的羧基端已知為恆定(Fc)區。各重鏈與輕鏈多肽的胺基端已知為可變(V)區。在鏈的可變區中是已知為互補決定區(CDR)的超變區。一條重鏈與一條輕鏈的可變區締合形成抗原-結合部位。每一重鏈與每一輕鏈包括三個CDR。抗原-結合部位的六個CDR定義出形成抗原實際結合部位的胺基酸殘基。CDR可變異性是抗原辨識多樣化的原因。
針對aPC的抗體可藉由下表所列的序列來界定:
A.生殖系化(germlining)
”生殖系化”是骨架區胺基酸突變成對應於最為接近人類生殖系序列的過程。生殖系化涉及VH或VL結構域的胺基酸序列工程改變,以使其更為接近人類VH或VL結構域的序列,諸如最相似的人類生殖系骨架。對於篩選待改變胺基酸殘基還有篩選適當替換胺基酸殘基來說,測定任一VH或VL結構域與人類VH或VL結構域之間的同源性是關鍵步驟。習於技藝者可以選擇在生殖系化之前序列最為接近抗體骨架序列的生殖系段,並測試該等抗體的親和力或活性,以確認生殖系化在本文所述分析中不會明顯降低抗原結合或效力。人類生殖系基因段序列為彼等習於技藝者所熟知且可以例如由VBASE編寫(VBASE,MRC Centre of Protein Engineering,UK,1997)來評估。
這個方法的優點在於,由人類生殖系基因所編碼的序列(亦即由非淋巴樣細胞所編碼的免疫球蛋白序列,其未曾經歷會導致遺傳重組的突變過程)形成人類免疫自身的部分,且因此在人類治療使用期間充分耐 受。因為對生殖系序列所做的突變,該等抗體經歷親和力成熟,但這些突變可能具有免疫原性。
WO2004/006955描述用於人化抗體的方法,其是基於藉由比較非人類抗體之可變區CDR序列的標準CDR結構類型與人類抗體序列庫的對應CDR的標準CDR結構類型(例如生殖系抗體基因段),自人類抗體基因篩選可變區骨架序列。相對於非人類CDR,具有相似標準CDR結構類型的人類抗體可變區形成成員人類抗體序列子集,要自其篩選人類骨架序列。子集成員可進一步按照人類與非人類CDR序列的胺基酸相似性來排比。在WO2004/006955的方法中,篩選排在前面的人類序列以提供用來建構嵌合抗體的骨架序列,其在功能上使用選定子集成員人類骨架以非人類CDR序列來取代人類CDR序列,從而在不需要比對非人類與人類抗體之間之骨架序列的情況下提供具有高親和力與低免疫原性的人化抗體。
超變區(CDR)就其部分來說,十分暴露於Ab表面上,因而直接與抗原交互作用。因此,它們非常可能甚至比骨架區還會引起體液性免疫反應。但是,Ab與抗原的交互作用緊密取決超變區序列,且這些區中的任何突變非常可能會改變Ab對其抗原的親和力。但是,該等抗體的免疫原性可能因為使編碼重組抗體之超變區的體細胞基因突變而降低,讓它們更為接近編碼這些區的人類生殖系基因。事實上,當Ab的超變區突變而使得它們盡可能接近人類生殖系基因所編碼的序列時,就能避免或限制免疫原性的問題,因為突變的序列更為接近人類”免疫學自身”且出乎意料的是,此等突變是大大可行的,同時將Ab對其抗原的親和力維持在與初始Ab的親和力相當。用於生殖系化CDR序列的方法提供於美國專利公開案2013/018440中。
B.骨架洗牌
使用庫技術(諸如骨架洗牌(Damschroder et al.,Mol.Immunol.2007 April;44(11):3049-60)以及CDR修復(US 2006/0122377)),骨架與CDR中的胺基酸可以置換成其他適當胺基酸。抗體可以再工程化或再構型以降低其免疫原性,同時維持抗體對抗原的免疫特異性。例如,對抗原具有免疫特異性的抗體可以藉由合成包含供體抗體框架融合至骨架區庫之骨架區之互補決定區(CDR)的組合庫而生成。
III.對抗aPC的抗體 A.抗體片段
因此,在一個具體例中,此等分子將包含例如藉由蛋白分解切割mAb所生產的片段(諸如(F(ab')、F(ab')2)、或者是例如經由重組方法可生產的單鏈免疫球蛋白。此等抗體衍生物為單價。在一個具體例中,此等片段可與另一者結合,或與其他抗體片段或受體配體組合以形成”嵌合”結合分子。值得注意的,此等嵌合分子可含有能夠結合至相同分子的不同抗原決定區的取代基,或者它們能夠結合至活化蛋白C抗原決定區以及”非活化蛋白C”抗原決定區。
單鏈可變片段(scFv)是另一種形式的抗體片段。其包含免疫球蛋白之重鏈與輕鏈可變區的融合體,使用一個短(通常為絲胺酸、甘胺酸)連接子連接在一起。這個嵌合分子維持原有免疫球蛋白的特異性,不論是否已移除恆定區且引入一個連接子肽。這些分子是在歷史上被製出以促使噬菌體展示(phage display),其中表現抗原結合結構域為單一肽是非常方便的。或者,scFv可以直接從衍生自融合瘤之經次選殖的重鏈與輕鏈做出。單鏈可變片段缺乏在完整抗體分子中所發現到的恆定Fc區,且共有結合位點(例如蛋白A/G)因而被用來純化抗體。這些片段通常可以使用蛋白L純化/固定,因為蛋白L與κ輕鏈的可變區交互作用。
彈性連接子通常由促使螺旋與轉折的胺基酸殘基(諸如丙胺酸、絲胺酸及甘胺酸)組成。但是,其他殘基也同樣可以發揮作用。Tang et al.(1996)使用噬菌體展示作為針對單鏈抗體(scFv)從蛋白質連接子庫快速篩選訂製連接子的方法。構築一個隨機連接子庫,其中關於重鏈與輕鏈可變結構域的基因是藉由編碼可變組成之18個胺基酸多肽的節段所連結。scFv全套(大約5×106不同成員)被展示在絲狀噬菌體上並且歷經使用半抗原的親和力篩選。選定變異體之群體在結合活性上表現明顯增加,但維持相當的序列多樣性。隨後篩選1054個個別變異體得到催化活性scFv,其是以可溶形式被有效率地生成。序列分析揭示,於連接子中在VH C末端之後的兩個殘基處有一個保守的脯胺酸,且在其他位置處富含精胺酸與脯胺酸是選定繫鏈的唯一一個共同特徵。
對抗aPC的重組抗體亦可包含容許受體二聚化或多聚化的序列或部分。此等序列包括彼等衍生自IgA者,其容許與J鏈接合而形成多聚體。另一個多聚化結構域為Gal4二聚化結構域。在其他具體例中,該等鏈可以使用諸如生物素/抗生物素蛋白的試劑修飾,而容許兩個抗體合併。
在一個不同的具體例中,單鏈抗體可以藉由使用非肽連接子或化學單元連接受體輕鏈與重鏈而製出。一般而言,輕鏈與重鏈將在不同細胞中生產、純化並且隨後以適當方式連結在一起(亦即重鏈的N端經由適當化學橋附接至輕鏈的C端)。
交聯劑(例如穩定劑與聚集劑)可用於形成分子橋,其約束兩個不同分子的官能基。但是,預想可製出同類的二聚體或多聚體或含有不同類似物的異源複合體。為了以逐步的方式連結兩個不同化合物,可使用排除非所要均聚物形成的雜雙功能交聯劑。例示性雜雙功能交聯劑含有兩個反應基團:一者與一級胺基反應(例如N-羥基琥珀醯亞胺)而另一者與硫醇 基反應(例如吡啶二硫物、馬來醯亞胺、鹵素等)。透過一級胺反應基,交聯劑可與某個蛋白質(例如選定抗體或片段)的離胺酸殘基反應,而透過硫醇反應基,已繫住第一個蛋白質的交聯劑可與另一個蛋白質(例如選擇性試劑)的半胱胺酸殘基(游離硫氫基)反應。
可以採用在血液中具有適當穩定性的交聯劑。數種含有雙硫鍵的連接子為已知的,可順利地被用來接合目標與治療/預防劑。含有會在空間上阻礙之雙硫鍵的連接子證明會在活體內提供較高的穩定性,防止目標肽在到達作用位點之前鬆開。這些連接子因此是一群連接劑。
另一個交聯劑為SMPT,其為含有受到鄰接苯環與甲基”空間上阻礙”之雙硫鍵的雙功能交聯劑。咸信雙硫鍵的空間阻礙充作保護鍵免於受到存在於組織及血液中的硫醇基陰離子(諸如穀胱胺肽)攻擊的功能,且從而協助防止接合物在附接劑投遞至目標位點之前去偶合。SMPT交聯劑,與許多其他已知交聯劑一樣,提供交聯功能基團(諸如半胱胺酸的SH或一級胺(例如離胺酸的ε胺基))的能力。另一種可行類型的交聯劑包括雜雙功能光反應疊氮基苯,其含有可切割雙硫鍵,諸如磺基琥珀醯亞胺基-2-(p-疊氮柳基醯胺基)乙基-1,3’-二硫丙酸酯。N-羥基琥珀醯亞胺基與一級胺反應而疊氮基苯(在光分解之後)非選擇性地與任一胺基酸殘基反應。
除了阻礙型交聯劑以外,也可以據此採用非阻礙型交聯劑。在不考慮含有或生成受保護雙硫的情況下,其他可供使用的交聯劑包括SATA、SPDP以及2-亞胺基四氫噻吩(iminothiolane)(Wawrzynczak & Thorpe,1987)。使用此等交聯劑為技藝中充分理解的。另一種具體例涉及使用彈性連接子。美國專利第4,680,338號說明雙功能性連接子可用於製造配體與含胺聚合物及/或蛋白質的接合物,特別適用於與螯合劑、藥物、酵素、可偵測標記與類似物形成抗體接合物。美國專利第5,141,648號以及第5,563,250 號揭示含有可在各種溫和條件下被切割之易感鍵的可切割接合物。這個連接子尤其適用於感興趣試劑直接鍵結至連接子,其中切割會使得活性劑釋放。特定用途包括添加胺基或游離硫氫基至蛋白質(諸如抗體或藥物)。
美國專利第5,856,456號提供用於連接多肽組分而製造融合蛋白質(例如單鏈抗體)的肽連接子。連接子長度至多為約50個胺基酸,含有5個出現至少一次的帶電荷胺基酸(例如精胺酸或離胺酸),接著是脯胺酸,且特徵在於穩定性更高與聚集降低。美國專利第5,880,270號揭示含有胺基氧基的連接子可用於各種免疫診斷與分離技術。
B.抗體接合物
進一步提供抗體接合物。關於診斷與治療用途,吾人可將試劑連結或共價結合或複合至抗體。這樣的一種分子或部分可以是(但不限於)至少一種效應子或報導子分子。報導子分子定義為任一種可使用分析而被偵測的部分。已被接合至抗體之報導子分子的非限制性實例包括酵素、放射性標記、半抗原、螢光標記、磷光分子、化學發光分子、發色團、發光分子、光親和力分子、染色顆粒或配體(諸如生物素)。
抗體接合物的某些實例為其中抗體連接至可偵測標記的彼等接合物。”可偵測標記”為可以被偵測的化合物及/或成分,因為它們的特定功能特性,及/或化學特性,使用它們容許它們所附接的抗體被偵測到,及/或進一步量化(若需要的話)。另一個此種實例為形成包含抗體連結至細胞毒性或抗細胞劑的接合物,且可被命名為”免疫毒素”。
抗體接合物被使用為診斷劑。抗體診斷劑通常有兩類,彼等用於活體外診斷者(諸如在各種免疫分析中),及/或用於活體內診斷程序,通常已知為”抗體-指向顯影”。
在技藝中已知許多適當顯影劑,還有它們附接至抗體的方法 (參見例如美國專利第5,021,236號;第4,938,948號;以及第4,472,509號)。使用的顯影部分為順磁離子;放射性同位素;螢光染料;NMR-可偵測物質;X-射線顯影。
在順磁性離子的例子中,可能透過例示方式提到諸如下列的離子:鉻(III)、錳(II)、鐵(III)、鐵(II)、鈷(II)、鎳(II)、銅(II)、釹(III)、釤(III)、鐿(III)、釓(III)、釩(II)、鋱(III)、鏑(III)、鈥(III)及/或鉺(III)。可用於其他諸如X射線顯影的離子包括(但不限於)鑭(III)、金(III)、鉛(II)與尤其是鉍(III)。
在用於治療及/或診斷用途的放射性同位素中,可提到砈21114碳、51鉻、36氯、57鈷、58鈷、銅67152Eu、鎵673氫、碘123、碘125、碘131、銦11159鐵、32磷、錸186、錸18875硒、35硫、鍀99m及/或釔90125I一般常用於某些具體例中,而鍀99m及/或銦111因為其能量低還有長範圍偵測的適用性也經常被使用。經放射性標定的單株抗體可以依據技藝中的已知方法製造。例如,單株抗體可以藉由與碘化鈉及/或碘化鉀和化學氧化劑(諸如次氯酸鈉)或酵素氧化劑(諸如乳過氧化酶)接觸而被碘化。單株抗體可以藉由配體交換程序(例如藉由以錫溶液還原高鍀酸鹽、螯合經還原鍀至Sephadex管柱且對管柱施加抗體)被標記鍀99m。或者,可使用直接標記技術,例如藉由培育鍀酸鹽、諸如SNCl2的還原劑、諸如肽酸鈉鉀溶液的緩衝溶液,以及抗體。通常用來結合至抗體之以金屬離子存在的放射線同位素的中介官能基為二乙烯三胺五乙酸(DTPA)或乙二胺四乙酸(EDTA)。
在預想用作為接合物的螢光標記中包括Alexa 350、Alexa 430、AMCA、BODIPY 630/650、BODIPY 650/665、BODIPY-FL、BODIPY-R6G、BODIPY-TMR、BODIPY-TRX、Cascade Blue、Cy3、Cy5、6-FAM、異硫氰酸螢光素、HEX、6-JOE、Oregon Green 488、Oregon Green 500、Oregon Green 514、Pacific Blue、REG、若丹明綠、若丹明紅、腎造影 素、ROX、TAMRA、TET、四甲基若丹明,及/或Texas Red。
另一類抗體接合物預想為彼等主要欲用於活體外者,其中抗體連接至二級結合配體及/或酵素(酵素標記),其在與顯色受質接觸之後將會產生有色產物。適宜酵素的實例包括尿素酶、鹼性磷酸酶、(辣根)過氧化氫酶或葡萄糖氧化酶。二級結合配體為生物素及/或抗生物素蛋白以及卵白素化合物。使用此等標記對於習於技藝者為已知且描述於例如美國專利第3,817,837號;第3,850,752號;第3,939,350號;第3,996,345號:第4,277,437號;第4,275,149號及第4,366,241號。
將分子位點特異性附接至抗體的又另一個已知方法包含抗體與以半抗原為基礎的親和力標記反應。簡言之,以半抗原為基礎的親和力標記在抗原結合位點中與胺基酸反應,從而破壞這個位點並阻斷特異性抗原反應。但是,這可能不是有益的,因為其造成抗體接合物的抗原結合喪失。
含有疊氮基的分子也可以用於透過藉由低強度紫外光生成反應性氮烯中間物形成對蛋白質的共價鍵(Potter & Haley,1983)。具體而言,嘌呤核苷酸的2-與8-疊氮基類似物已被用作為定點光探針在粗細胞萃取物中拿來鑑定核苷酸結合蛋白(Owens & Haley,1987;Atherton et al.,1985)。2-與8-疊氮基核苷酸也被用來定位經純化蛋白質的核苷酸結合結構域(Khatoon et al.,1989;King et al.,1989;與Dholakia et al.,1989)且可用作為抗體結合劑。
在技藝中已知數種將抗體附接或接合至其接合部分的方法。一些附接方法包含使用金屬螯合複合體,採用例如有機螯合劑,諸如在美國專利第4,472,509號與第4,938,948號中所述)。單株抗體也可以在偶合劑(諸如戊二醛或過碘酸鹽)存在下與酵素反應。帶有螢光素標記的接合物可 以在這些偶合劑存在下或藉由與異氰酸鹽反應而製備。在美國專利第4,938,948號中,乳房腫瘤的顯影是使用單株抗體達致,而可偵測顯影部分是使用連接子(諸如甲基-p-羥基苯甲亞胺酸酯或N-琥珀醯亞胺基-3-(4-羥基苯基)丙酸酯被結合至抗體。
在其他具體例中,預期使用不會改變抗體結合位點的反應條件,藉由選擇性引入硫氫基至免疫球蛋白的Fc區中來衍生化免疫球蛋白。依據此方法學生產的抗體接合物被揭示為表現耐久性、特異性與靈敏性增進(美國專利第5,196,066號)。位點-特異性附接效應子或受體分子(其中該受體或效應子分子被接合至Fc區的醣類殘基上)亦已揭示於文獻中(O'Shannessy et al.,1987)。這個方法被報導為生產診斷與治療有效的抗體,其目前正在臨床評估中。
在另一個具體例中,吾人可選擇修飾免疫球蛋白以增進其活體內穩定性與半衰期。聚乙二醇化是一個這樣的方法,其包含將聚乙二醇(PEG)聚合物鏈共價附接至抗體。聚乙二醇化慣常地藉由將PEG的反應性衍生物與標的分子一起培育而達致。PEG的共價附接能夠”遮蔽”抗體免於宿主免疫系統(免疫原性與抗原性降低),並且增加藥劑的流體動力尺寸(溶液中的尺寸)(藉由降低腎廓清而延長其循環時間)。聚乙二醇化也提供水溶性。其他用來修飾抗體的聚合物包括聚乙烯亞胺與聚離胺酸,通常透過琥珀酸基團連結。
C.免疫偵測方法
在又其他具體例中,亦提供關於使用在免疫學上與生物組分反應之抗體來結合、純化、移除、量化及/或以其他方式大體上偵測生物組分的免疫偵測方法。一些免疫偵測方法包括酵素連結免疫吸附分析(ELISA)、放射免疫分析(RIA)、免疫放射測定、螢光免疫分析、化學發光分 析、生物發光分析,以及西方墨點,僅列舉數者。各種可用免疫偵測方法的步驟已描述於科學文獻中,諸如Doolittle and Ben-Zeev(1999);Gulbis and Galand(1993);De Jager et al.(1993);與Nakamura et al.(1987)。
一般而言,免疫結合方法包括獲得含有感興趣目標的樣品,並且使樣品與第一抗體接觸,該第一抗體在免疫學上與目標在有效容許免疫複合體形成的條件下反應。接著可使用各種不同形式來評估抗體對目標的結合。
在一種形式中,抗體可以連接至固體載體上,固體載體諸如呈管柱基質的形式,而懷疑含有目標的樣品被施加至固定抗體。非所要組分將會從管柱被洗掉,留下免疫複合至固定抗體之目標待溶離。
免疫結合方法亦包括偵測與量化樣品中之目標數量,以及偵測與量化任何在結合過程期間形成之免疫複合體的方法。在此,吾人將取得懷疑含有目標的樣品,且使樣品與針對目標的抗體接觸,然後偵測並量化在特定條件下免疫複合體的形成量。
關於抗原偵測,待分析的生物樣品可以是懷疑含有目標之任一種樣品,諸如(例如)體液,像是血液、血清、血漿、黏液、尿液、唾液、淚液與精液。或者,可使用組織。使選定生物樣品與抗體在有效條件下接觸並歷時足夠容許免疫複合體(一級免疫複合體)形成的時間通常是將抗體組成物簡單添加至樣品並培育混合物歷時一段對抗體來說長到足以形成免疫複合體的時間,亦即結合至與存在之抗體在免疫學上反應的目標。之後,樣品-抗體組成物(諸如組織切片、ELISA盤、點漬或西方墨點)一般將被洗滌而移除任何非特異性結合成分,僅容許那些特異性地結合於一級免疫複合體內的分子被偵測到。
一般而言,偵測免疫複合體形成為技藝中熟知且可以透過施 用數種方法而達致。這些方法通常是基於偵測標誌或標記,諸如那些放射性、螢光、生物或酵素標幟中的任一者。有關於使用此等標誌的美國專利案包括第3,817,837號;第3,850,752號;第3,939,350號;第3,996,345號;第4,277,437號;第4,275,149號及第4,366,241號。當然,吾人可以透過使用技藝中熟知的二級結合配體(諸如二級抗體及/或生物素/抗生物素蛋白配體結合排列)發現其他優點。
在偵測時採用的抗體可以是本身連結至可偵測標誌,其中將能夠簡單地偵測這個標誌,從而容許一級免疫複合體在組成物中的數量得以被測定。或者,變成結合於一級免疫複合體中的第一抗體可藉由對這個抗體具有結合親和力的第二結合配體而被偵測。在這些情況下,第二結合配體可以結合至可偵測標誌。第二結合配體本身通常是抗體,因此可被稱為”第二抗體”。一級免疫複合體與經標定第二結合配體或抗體在有效條件下接觸並歷時足以容許二級免疫複合體形成的時間。二級免疫複合體接著一般將被洗滌而移除任何非特異性結合的經標定第二抗體或配體,然後偵測殘留在二級免疫複合體內的標誌。
更多方法包括藉由兩步驟方法偵測一級免疫複合體。對抗體具有結合親和力的第二結合配體(諸如抗體)如上述被用來形成二級免疫複合體。在洗滌之後,二級免疫複合體與對第二抗體具有結合親和力的第三結合配體或抗體再次於有效條件下接觸並歷時足以容許免疫複合體(三級免疫複合體)形成的時間。第三配體或抗體結合至可偵測標誌,容許偵測由此形成的三級免疫複合體。若需要的話,這個系統提供訊號放大。
由Charles Cantor設計的一種免疫偵測方法使用兩種不同抗體。在第一步驟中,生物素化單株或多株抗體被用來偵測目標抗原(等),而第二步驟抗體接著被用來偵測附接於複合生物素的生物素。在那個方法 中,待測試樣品首先培育在含有第一步驟抗體的溶液中。若目標抗原存在的話,一些抗體結合至抗原而形成生物素化抗體/抗原複合體。抗體/抗原複合體接著藉由在過量卵白素(抗生物素蛋白)、生物素化DNA,及/或互補生物素化DNA的溶液中培育而被擴增,其中各個步驟添加額外的生物素位點至抗體/抗原複合體。重複擴增步驟達致適當的擴增程度,於此時樣品培育在含有針對生物素之第二步驟抗體的溶液中。此第二步驟抗體經標定,像是使用可用以藉由組織酵素學使用顯色受質偵測抗體/抗原複合體存在的酵素般。在適當擴增下,生成巨觀可見的接合物。
免疫偵測的另一種已知方法利用免疫-PCR(聚合酶鏈反應)方法學。直到與生物素化DNA培育為止,PCR方法類似於Cantor方法,但是取而代之使用多回合卵白素與生物素化DNA培育,在低pH或高鹽緩衝液下洗滌DNA/生物素/卵白素/抗體複合體而釋出抗體。所得洗滌溶液接著與適當引子在適當控制下實施PCR反應。至少在理論上,PCR的龐大擴增力與特異性可用來偵測單抗原分子。
另一種抗原被固定的ELISA包含在偵測時採用抗體競爭。在這種ELISA中,對抗抗原之經標定抗體被添加到孔中,容許結合,及/或藉由其標誌而被偵測到。未知樣品中的抗原量接而是藉由將樣品與經標誌抗體(針對抗原)混合在與經塗覆孔一起培育期間來進行測定。樣品中存在抗原會降低可用來結合至孔之對抗抗原的抗體量,並因而降低最終訊號。這對於在未知樣品中偵測對抗抗原的抗體也是恰當的,其中未標誌抗體結合至經抗原塗覆的孔且亦降低可結合經標誌抗體的抗原量。
如上詳述,免疫分析就其最為簡單及/或直接的意思為結合分析。某些免疫分析為數種技藝中熟知的酵素連結免疫吸附分析(ELISA)及/或放射免疫分析(RIA)。使用組織切片的免疫組織化學偵測也尤其實用。但 是,可以輕易理解到偵測不限於此等技術,及/或亦可使用西方墨點、點漬、FACS分析,及/或類似技術。不論所採用的形式為何,ELISA共同具有某些特點,諸如塗覆、培育及結合、洗滌以移除非特異性結合成分,以及偵測結合的免疫複合體。這些描述於下。
在以抗原或抗體塗覆盤時,通常將盤的孔與抗原或抗體的溶液一起培育,過夜或是歷時一段特定數小時時段。盤的孔接著被洗滌而移除不完全吸附的物質。然後孔的任何剩餘可用表面被”塗覆”非特定蛋白質,其對於測試抗血清來說是在抗原上中性的。此等包括牛血清白蛋白(BSA)、酪蛋白或奶粉溶液。塗覆容許阻斷固定表面上的非特異性吸附位點且因而降低抗血清非特異性結合至表面上所致的背景。
在ELISA中,可能更習慣使用二級或三級偵測方法而非直接程序。因此,在蛋白質或抗體結合至孔之後,塗覆以非反應性材料以降低背景,並且洗滌以移除未結合材料,固定表面在有效容許免疫複合體(抗原/抗體)形成的條件下與待測試生物樣品接觸。偵測免疫複合體還需要經標誌第二結合配體或抗體,以及第二結合配體或抗體與經標誌第三抗體或第三結合配體接合。
”在有效容許免疫複合體(抗原/抗體)形成的條件下”表示可包括使用溶液(諸如BSA、牛γ球蛋白(BGG)或磷酸鹽緩衝鹽水(PBS)/Tween)稀釋抗原及/或抗體的條件。這些被添加的試劑亦傾向於輔助降低非特異性背景。
”適當”條件亦表示培育是在足以容許有效結合的溫度或時間期間下。培育步驟通常從大約1至2至4小時,或在25℃至27℃等級的溫度下,或可以在大約4℃下過夜。
D.純化
在某些具體例中,對抗aPC的抗體可以是經純化的。術語”經純化”如本文所用,欲意指一種組成物,可從其他組分被分離出來,其中蛋白質相對於其天然可得狀態被純化成任何程度。因此,經純化蛋白質亦意指沒有參雜其天然存在之環境的蛋白質。若使用術語”實質上純化”,這個命名將意指一種組成物,其中蛋白質或肽形成組成物的主要組分,諸如佔組成物中蛋白質的約50%。約60%、約70%、約80%、約90%、約95%或更高。
蛋白質純化技術為習於技藝者所熟知。這些技術在一個層級上涉及細胞環境粗分離成多肽以及非多肽部分。在將多肽與其他蛋白質分離之後,進一步使用層析以及電泳技術來純化感興趣多肽以達到部分或完全純化(或純化至均質)。
尤其適用於製備純肽的分析方法為離子交換層析、篩除層析;聚丙烯醯胺凝膠電泳;等電點聚焦。用於蛋白質純化的其他方法包括使用硫酸銨、PEG、抗體及類似物或藉由熱變性的沉澱,接著是離心;凝膠過濾、逆相、羥基磷灰石與親和力層析;以及此等與其他技術的組合。
在純化對抗aPC的抗體時,於原核或真核表現系統中表現多肽並使用變性條件來萃取蛋白質是所要的。多肽可以從其他細胞組分使用親和力管柱被純化,其結合至多肽的經標定部分。如技藝中一般所熟知,咸信進行各種純化步驟的順序可以改變,或某些步驟可以省略,且仍然可以產生製備實質上純蛋白質或肽的適當方法。
通常,完整抗體是使用結合抗體之Fc部分的試劑(亦即蛋白質A)而被區分。或者,抗原可同時用於純化並篩選適當抗體。此等方法通常採用結合至載體(諸如管柱、過濾器或珠粒)上的篩選劑。抗體結合至載體、移除汙染物,並且藉由施加條件(鹽、熱及類似者)使得抗體釋出。
用於量化蛋白質或肽之純化程度的各種方法對於習於技藝者來說從本揭示內容來看是熟知的。這些包括,例如測定活性部分的比活性,或是藉由SDS/PAGE分析評估部分的多肽數量。另一種評估部分純度的方法是計算該部分的比活性,將其與起始萃取物的比活性相比,以及因而計算出純度。用於表示活性量的實際單位當然取決於在純化之後採用的特定分析技術以及所表現蛋白質或肽是否展現可偵測活性。
已知多肽的移動有時會明顯地隨著不同的SDS/PAGE條件而改變。因此,將了解到在不同電泳條件下,經純化或部分純化表現產物的表觀分子量可能有所改變。
IV.醫藥組成物與用途
A.組成物
醫藥組成物可包含有效量之一或多種抗體、治療劑或其他藥劑,溶解或分散於醫藥上可接受載劑中。水性組成物包含有效量的抗體,溶解或分散於醫藥上可接受載劑或水性介質中。片語”醫藥上或藥理學上可接受”意指當被投與給動物或人類(若適宜時)時,不會產生有害、過敏或其他不宜反應的分子實體以及組成物。
如本文所用,”醫藥上可接受載劑”包括任一種與所有溶劑、分散介質、包衣、界面活性劑、抗氧化劑、防腐劑(例如抗菌劑、抗真菌劑)、等張劑、吸收延遲劑、鹽、防腐劑、藥物、藥物穩定劑、凝膠、黏結劑、賦形劑、崩解劑、潤滑劑、甜味劑、調味劑、染料,此等類似材料與其組合,如同技藝中具有通常技術者所熟知(參見例如Remington's Pharmaceutical Sciences,18th Ed.Mack Printing Company,1990,pp.1289-1329)。就醫藥活性物質來說,使用此等介質與試劑為技藝中熟知的。除了與活性成分不相容的任何習知介質或試劑以外,可推想其使用於治療組成物中。補充性活性 成分也可以併入組成物中。就人類投與來說,製劑必須符合生物標準FDA機關的無菌、發熱性、一般安全性與純度標準。
生物材料應經過充分透析以移除非所要的小分子量分子及/或經凍乾以便更為容易調配至所要媒劑中(若需要的話)。活性化合物大體上被調配供非經腸投與,例如調配供經由靜脈內、肌肉內、皮下、鼻內或腹膜內路徑注射用。典型地,此等組成物可被製備成可注射(液體溶液或懸浮液);也可以製備適於在注射前添加液體之後用來製備溶液或懸浮液的固體形式;而且該等製劑可以被乳化。
適於可注射用途的醫藥形式包括無菌水溶液或分散液;包括芝麻油、花生油或水性丙二醇的調配物;以及用於無菌可注射溶液或分散液之即用製劑的無菌粉末。所有的情況下,該形式必須是無菌且必須是存在容易注射性的流體。其在製造與儲存條件下必須是穩定的且必須對抗微生物(諸如細菌與真菌)的汙染作用而被保存。
活性化合物(如游離鹼或藥理學上可接受鹽)的溶液可以在水中適當地與界面活性劑(諸如羥丙基纖維素)混合而製備。分散液也可以製備於甘油、液體聚乙二醇及其混合物中與在油中。在一般儲存與使用條件下,此等製劑含有防腐劑以防止微生物生長。
對抗aPC的抗體可以呈游離鹼、呈中性或鹽形式調配成組成物。醫藥上可接受鹽,包括酸加成鹽(與蛋白質游離胺基形成者)及與無機酸形成者,無機酸諸如為(例如)氫氯酸或磷酸,或與有機酸形成者,有機酸諸如為乙酸、草酸、酒石酸、杏仁酸及類似物。與游離羧基形成的鹽也可以衍生自無機鹼,諸如(例如)鈉、鉀、銨、鈣或氫氧化鐵;以及諸如有機鹼,如異丙胺、三甲胺、組胺酸、普魯卡因與類似物。
載劑也可以是溶劑或分散介質,其含有(例如)水、乙醇、多 元醇(例如甘油、丙二醇,以及液體聚乙二醇,與類似物)、其適當混合物,與植物油。可維持適當流動性,例如藉由使用包衣(諸如卵磷脂)、藉由維持所要粒徑(在分散液的情況下)以及藉由使用界面活性劑。防止微生物作用可以藉由各種抗菌劑和抗真菌劑而引起,抗菌劑和抗真菌劑為例如對羥基苯甲酸、氯丁醇、苯酚、山梨酸、硫柳汞與類似物。在數種情況下,可納入等張劑,例如糖或氯化鈉。延長可注射組成物吸收可以藉由在組成物中使用延遲吸收劑而引起,延遲吸收劑為例如單硬脂酸鋁及明膠。
依照需求,無菌可注射溶液可以藉由將活性化合物以所要數量與上列各種其他成分併入適當溶劑中,接著藉由過濾滅菌來製備。一般而言,分散液是藉由將各種無菌活性成分併入無菌媒劑中來製備,該無菌媒劑含有基礎分散介質與上述彼等的所需其他成分。在用以製備無菌可注射溶液之無菌粉末的情況下,製備方法可以是真空乾燥及冷凍乾燥技術,其產生活性成分加上任何其他所要成分的粉末,其來自其先前經過濾滅菌的溶液。也預期更為或高度濃縮溶液供直接注射用的製劑,其中使用DMSO做為溶劑想像會對小區域產生極快穿透、遞送高濃度活性劑。
在調配之後,溶液將以與劑量調配物相容的方式且以其在治療上有效的量被投與。調配物可以各種劑型輕易投與,諸如上述可注射溶液的類型,但亦可採用藥物釋放膠囊與類似者。
關於呈水溶液的非經腸投與,例如溶液若需要的話經適當緩衝且液體稀釋劑首先以充分鹽水或葡萄糖賦與等張性。這些具體水溶液尤其適於靜脈內、肌肉內、皮下、鼻內與腹膜內投與。就此,可被採用的無菌水性介質為習於技藝者依據本揭示內容為熟知的。例如,某個劑量可溶解於1ml等張NaCl溶液中且被添加至1000ml皮下灌注液或在建議輸注處被注射(參見例如“Remington’s Pharmaceutical Sciences”15th Edition,pages 1035-1038與1570-1580)。一些劑量變化將必須依據待治療個體的情況而發生。投與負責人在任何情況下決定用於個別個體的適當劑量。
除了調配用於非經腸投與(諸如靜脈內或肌肉內注射)的化合物以外,其他醫藥上可接受形式包括(例如)錠劑或其他用於經口投與的固體;脂質體調配物;時間釋放膠囊;以及任何其他目前使用的形式,包括甜烈酒。
在某些具體例中,預期使用脂質體及/或奈米粒子用以製備並投與抗體及/或其類似物。脂質體的形成與用途為習於技藝者所熟知,且亦描述於下。
奈米膠囊通常以穩定且可重複實施的方式捕獲化合物。為了避免因為細胞內聚合過載所致的副作用,此等超微粒子(尺寸為約0.1μm)應設計使用能夠在活體內分解的聚合物。預想符合這些要件的生物可分解聚烷基-氰基丙烯酸鹽奈米粒子可供使用,且此等粒子易於製造。
脂質體是由分散於水性介質中的磷脂形成並自發性地形成多層同心雙層囊泡(亦稱為多層囊泡(MLV))。MLV通常具有約25nm至4μm的直徑。音波處理MLV會形成小的單層囊泡(SUV),其直徑範圍在200-500Å,在核心中含有水溶液。
亦採用下列資訊來生成脂質體調配物。當分散於水中時,磷脂可形成脂質體以外的各種結構,取決於液體對水的莫耳比率。在比率低時,脂質體是最可能的結構。脂質體的物理特性取決於pH、離子強度與二價陽離子的存在。脂質體對離子與極性物質可顯示低通透性,但在溫度升高下歷經明顯改變其通透性的相轉移。相轉移涉及從緊密堆疊的有序結構(已知為凝膠狀態)改變成鬆散堆疊的較不有序結構(已知為液體狀態)。這發生在獨特相轉移溫度下且造成對離子、糖與藥物的通透性增加。
脂質體與細胞經由四種不同機制交互作用:藉由網狀內皮系統之巨噬細胞(諸如巨噬球與中性球)的內吞作用;藉由非特異性微弱疏水性或靜電力,或藉由細胞表面組分的特異性交互作用吸附至細胞表面;與漿細胞膜藉由插入脂質體的脂質雙層融合至細胞膜中,其中同時釋放脂質體內容物至細胞質中;以及藉由將脂質體脂質轉移至細胞或亞細胞膜,或反之亦然,而沒有與脂質體內容物相締合。改變脂質體調配物可改變運作機制,儘管在同時可能有超過一者以上運作著。
治療劑可包含不同類型的載劑,取決於其要呈固體、液體或氣溶膠形式被投與,及其是否需要為無菌以供作為注射路徑投與。對抗aPC的抗體可以靜脈內、皮內、動脈內、腹膜內、病灶內、顱內、關節內、前列腺內、胸膜內、氣管內、鼻內、玻璃體內、陰道內、直腸內、局部、肌肉內、腹膜內、皮下、結膜下、膀胱內、經黏膜、心包內、臍帶內、眼內、經口、局部、部分、藉由吸入(例如氣溶膠吸入)、藉由注射、藉由輸注、藉由連續輸注、局部灌流系統直接靶定細胞、經由導管、經由灌洗、以甜烈酒、以液體組成物(例如脂質體)、或藉由其他方法或前述的任一種組合,如習於技藝者所熟知的(參見例如Remington's Pharmaceutical Sciences,18th Ed.Mack Printing Company,1990)。
被投與給動物患者的組成物實際劑量可以由臨床醫師與諸如體重、疾病嚴重性、待治療疾病類型、先前或同時治療干涉、患者的自發症以及投與路徑的物理與生理因子來決定。負責投藥的臨床醫師在任何情況下決定組成物中的活性成分濃度與用於個別個體的適當劑量。
在某些具體例中,醫藥組成物可包含例如至少約0.1%活性化合物。在其他具體例中,活性化合物可包含例如介於約2%至約75%單位重量,或介於約25%至約60%,以及可衍生其中的任何範圍。在其他非限制 性實例中,劑量也可以包含每次投與約1微克/kg/體重、約5微克/kg/體重、約10微克/kg/體重、約50微克/kg/體重、約100微克/kg/體重、約200微克/kg/體重、約350微克/kg/體重、約500微克/kg/體重、約1毫克/kg/體重、約5毫克/kg/體重、約10毫克/kg/體重、約50毫克/kg/體重、約100毫克/kg/體重、約200毫克/kg/體重、約350毫克/kg/體重、約500毫克/kg/體重,至約1000mg/kg/體重或更高,以及可衍生其中的任何範圍。在本文所列數值的衍生範圍的非限制性實例中,可基於上述數目投與範圍約5mg/kg/體重至約100mg/kg/體重、約5微克/kg/體重至約500毫克/kg/體重等。
在任何情況下,組成物可包含各種抗氧化劑以延遲一或多種組分氧化。
在組成物呈液體形式的具體例中,載劑可以是包含但不限於下列的溶劑或分散介質:水、乙醇、多元醇(例如甘油、丙二醇、液體聚乙二醇等)、脂質(例如三甘油酯、植物油、脂質體)及其組合。可維持適當流動性,例如藉由使用包衣(諸如卵磷脂);藉由維持所要粒徑,透過分散於載劑(諸如例如液體多元醇或脂質)中;藉由使用界面活性劑,諸如例如羥丙基纖維素;或其組合。在許多情況下,等張劑可包括,諸如例如糖、氯化鈉或其組合。
在其他具體例中,可使用眼滴劑、鼻溶液或噴霧劑、氣溶膠或吸入劑。此等組成物通常被設計成與目標組織類型相容。在非限制性實例中,鼻溶液通常是被設計成呈滴劑或噴霧劑投與至鼻通道的水溶液。鼻溶液是以它們在許多方面與鼻分泌物相似的方式來製備,因而能維持正常纖毛活動。因此,在一些具體例中,水性鼻溶液通常為等張或略經緩衝以維持約5.5至約6.5的pH。此外,類似於彼等使用於眼製劑的抗微生物防腐劑、藥物或適當藥物穩定劑可納入調配物中(若需要的話)。舉例而言,已知 各種商用鼻製劑且包括諸如抗生素或抗組織胺的藥物。
在某些具體例中,抗體是被製備呈藉由如經口攝入的路徑投與。在這些具體例中,固體組成物可包含,例如溶液、懸浮液、乳液、錠劑、丸劑、膠囊(例如硬殼或軟殼明膠膠囊)、持續釋放調配物、頰內組成物、片劑、酏劑、懸浮劑、糖漿、薄片,或其組合。經口組成物可直接與飲食合併。用於經口投與的載劑包含惰性稀釋劑、可同化食用載劑或其組合。在其他具體例中,經口組成物可以製備為糖漿或酏劑。糖漿或酏劑可包含例如至少一種活性劑、甜味劑、防腐劑、調味料、染料、防腐劑或其組合。
在某些具體例中,經口組成物可包含一或多種黏結劑、賦形劑、崩解劑、潤滑劑、調味劑及其組合。在某些具體例中,組成物可包含下列一或多者:黏結劑,諸如例如黃蓍膠、阿拉伯膠、玉米澱粉、明膠或其組合;賦形劑,諸如例如磷酸二鈣、甘露醇、乳糖、澱粉、硬脂酸鎂、糖精鈉、纖維素、碳酸鎂或其組合;崩解劑,諸如例如玉米澱粉、馬鈴薯澱粉、褐藻酸或其組合;潤滑劑,諸如例如硬脂酸鎂;甜味劑,諸如例如蔗糖、乳糖、糖精或其組合;調味料,諸如例如薄荷、冬青油、櫻桃調味料、柳橙調味料等;或前述的組合。當劑量單位形式為膠囊時,其除了上述類型的材料以外還可含有諸如液體載劑的載劑。各種其他材料可如包衣般存在或以其他方式修飾劑量單位的物理形式。例如,錠劑、丸劑或膠囊可以蟲膠、糖或兩者塗覆。
適用於其他投與模式的其他調配物包括栓劑。栓劑為具有不同重量與外型的固體劑型,通常摻有藥物,用於插入直腸、陰道或尿道。在插入後,栓劑軟化、融化或溶解於腔道液體中。一般而言,就栓劑來說,習用載劑可包括例如聚烯烴基二醇、三甘油酯或其組合。在某些具體例中,栓劑可以由含有(例如)範圍約0.5%至約10%,及約1%至約2%活性成分的混 合物形成。
組成物必須在製造與儲存條件下為穩定的,且對抗微生物汙染作用而保存,微生物為諸如細菌與真菌。希望內毒素汙染應維持在最低安全程度,例如少於0.5ng/mg蛋白質。
在特定具體例中,可注射組成物延長吸收可以是藉由在組成物中使用延遲吸收劑(諸如例如單硬脂酸鎂、明膠或其組合)所致。
B.醫藥用途
單株抗體可用以治療先天及後天凝血缺乏症或缺陷供治療之用。例如,上述具體例中的單株抗體可用來阻斷aPC與其受質交互作用,受質包括因子Va或因子VIIIa。
單株抗體在治療諸如血小板減少症、血小板病症與出血病症(例如A型血友病、B型血友病與C型血友病)的止血病症具有治療用途。此等病症可以藉由對有需要之患者投與治療有效量的抗-aPC單株抗體而獲得治療。單株抗體在治療適應症之不受控出血(諸如創傷與出血性休克)也具有治療用途。因此,亦提供一種用以縮短出血時間的方法,包含向有需要的患者投與治療有效量的抗-aPC單株抗體。
在另一個具體例中,抗-aPC抗體可用作為經aPC治療患者的解毒劑,包括例如其中aPC用於治療敗血症或出血病症。
抗體可用作為單一療法或與其他療法組合以處理止血病症。例如,共投與一或多種抗體與凝血因子(諸如因子VIIa、因子VIII或因子IX)咸信可用於治療血友病。在一個具體例中,提供一種治療先天與後天凝血缺乏症或缺陷的方法,包含投與(a)第一量之結合至人類組織因子路徑抑制劑的單株抗體,以及(b)第二量之因子VIII或因子IX,其中該第一量與第二量一起有效治療該缺乏症或缺陷。在另一個具體例中,提供一種治療先 天及後天凝血缺乏症或缺陷的方法,包含投與(a)第一量之結合至人類組織因子路徑抑制劑的單株抗體,以及(b)第二量之因子VIII或因子IX,其中該第一量與第二量一起有效治療該缺乏症或缺陷,且進一步其中因子VII不被共投與。亦包括一種醫藥組成物,其包含治療有效量之單株抗體與因子VIII或因子IX組合,其中該組成物不含有因子VII。”因子VII”包括因子VII及因子VIIa。這些組合療法可能會降低凝血因子的所需輸注頻率。藉由共投與或組合療法,投與兩種治療性藥物表示個別分開調配或調配在一個組成物中,且當分開調配時,在大約相同時間或不同時間,或在相同治療時段內被投與。
在一些具體例中,本文所述一或多種抗體可組合使用以處理止血病症。例如,共投與兩種或更多種本文所述抗體咸信可用於治療血友病或其他止血病症。
醫藥組成物可非經腸被投與給罹患A型血友病或B型血友病的患者,以隨著出血事件嚴重性而改變的劑量與頻率,或在預防療法中可隨著患者凝血缺乏症的嚴重性而改變。
組成物可呈團注或連續輸注被投與給有需要之患者。例如,團注(bolus)投與呈Fab片段形式之本發明抗體可為0.0025至100mg/kg體重、0.025至0.25mg/kg、0.010至0.10mg/kg或0.10-0.50mg/kg的量。關於連續輸注,以0.001至100mg/kg體重/分、0.0125至1.25mg/kg/min、0.010至0.75mg/kg/min、0.010至1.0mg/kg/min或0.10-0.50mg/kg/min投與呈Fab片段存在之本發明抗體歷時1-24小時、1-12小時、2-12小時、6-12小時、2-8小時或1-2小時。關於投與呈全長抗體(具有完整恆定區)存在之本發明抗體,劑量之量可為約1-10mg/kg體重、2-8mg/kg或5-6mg/kg。此等全長抗體典型藉由輸注延長為三十分鐘至三小時的期間來投與。投與頻率取決於病況嚴重性。 頻率可為每週三次至每兩週至六個月一次。
此外,組成物可經由皮下注射被投與給患者。例如,劑量為10至100mg抗-aPC抗體可經由每週、每兩週或每個月皮下注射被投與給患者。
如本文所用,”治療有效量”表示抗-aPC單株抗體或此抗體與因子VIII或因子IX之組合的量(在活體內有效增加凝血時間所需或以其他方式對有需要之患者造成活體內可測得益處的量)。準確量將取決於數種因素,包括(但不限於)治療組成物的組分與物理性質、所要的患者群體、個別患者考量,以及類似因素,且可由習於技藝者容易決定。
V.套組
本文所述組成物的任一者可包含於套組中。該套組因而在適當容器中包含抗體及/或其他藥劑。其他組分可納入套組中。診斷及治療套組在適當容器中包含抗體之醫藥上可接受調配物於醫藥上可接受之調配物中。該套組可具有單一個容器,及/或其可針對個別化合物具有不同容器。
當套組的組分以一及/或多種液體溶液提供時,液體溶液為水溶液,其中無菌水溶液為特定具體例的一個實例。抗體也可以調配至可注射組成物中,其中容器本身可為注射器、抽吸管及/或其他類似裝置,調配物可自其施用至身體的感染區域、被注射至動物,及/或甚至施用及/或與套組的其他組分混合。
但是,套組的組分可如乾燥粉末提供。當試劑及/或組分以乾燥粉末提供時,粉末可藉由添加適當溶劑而被還原。預想溶劑也可以提供於另一個容器中。
容器通常將包括至少一個小管、試管、燒瓶、瓶、注射器及/或其他容器,抗體/抗體調配物經適當分配被放置其中。套組亦可含有第二 容器供無菌醫藥上可接受緩衝劑及/或其他稀釋劑容納。
套組亦可包括以密封包裝容納小瓶供商業販售,諸如(例如)注射及/或吹模塑膠容器,所要小瓶被保存其中。
不論容器的數量及/或類型為何,套組亦可包含輔助注射/投與及/或放置最終抗體於動物體內的使用說明及/或與其一起包裝。此使用說明可為注射器、抽吸管、鑷子及/或任何此等醫藥許可投遞媒劑。
下列圖式構成本說明書的一部份且被納入以進一步說明本發明的某些態樣。透過參照這些圖式中的一或多者組合本文呈現特定具體例的詳細說明,將能更充分地理解本發明。
圖1. 最佳化生殖系化抗-aPC IgG的aPC結合。抗-aPC IgG在aPC-ELISA中的效價。這些數據對應於表2中歸納的數據。
圖2. 最佳化生殖系化抗-aPC IgG的PC結合。抗-aPC IgG在PC-ELISA中的效價。這些數據對應於表2中歸納的數據。
圖3. 最佳化生殖系化抗-aPC IgG的aPC活性。抗-aPC IgG在aPC活性分析中。這些數據對應於表2中歸納的數據。
圖4A-C. 最佳化生殖系化抗-aPC IgG的熱穩定性。圖4A為TPP-3656;圖4B為TPP-3657;圖4C為TPP-3658。這些數據對應於表2中歸納的數據。
圖5. 依據Biacore,PPACK對APC結合至Mab 1573與C25K23的影響。數據擬合至朗繆1:1模型。對應於這些實驗的動力學及親和力數據提供於表3中。
圖6A-I.抗第II型APC抗體(1573)結合至100(下線)與200nM(上線)突變型hAPC蛋白相比於野生型hAPC蛋白的SPR感測圖。數據經雙參 考並擬合至1:1結合模型。圖6A為R67C/D84C;圖6B為野生型hAPC;圖6C為K26A;圖6D為K63A;圖6E為K78A;圖6F為K36P/K37Q/K38E;圖6G為R67A;圖6H為R74A;圖6I為R75A。對應於這些實驗的動力學及親和力數據提供於表4中。
圖7A-C. 突變型hAPC蛋白對第I型抗體顯示與野生型類似的結合親和力與解離速率。抗-第I型APC抗體(TPP-2312)結合至100(下線)與200nM(上線)突變型hAPC蛋白相比於野生型hAPC蛋白的SPR感測圖。數據經雙參考並擬合至1:1結合模型。圖7A為hAPC Xigris;圖7B為R67C/D84C;圖7C為R67A。對應於這些實驗的動力學及親和力數據提供於表5中。
VI.實例
納入下列實例以說明本發明較佳具體例。彼等習於技藝者應理解,下列實例中揭示的技術表示發明人發現在實施本發明時運作良好的技術,且因此可被認為就其實施而言為構成較佳模式。但是,彼等習於技藝者依據本揭示內容能預期在揭示的特定具體例中可做出許多變化且仍然獲得類似或相似結果,而未偏離本發明的精神與範疇。
實例1-材料與方法
HEK293細胞的瞬時轉染. 在轉染前大約24小時,以0.5×106細胞/ml繼代FreeStyleTM 293E細胞,並於37℃,8% CO2在120rpm/min下震盪。在轉染當天,細胞密度為約1.0-1.2×106細胞/ml。以生長培養基將細胞分成1×106細胞/ml。為確保最佳轉染,細胞存活率測定為>95%。以等同於轉染培養物十分之一的體積,在FreeStyleTM 293表現培養基(293E)中稀釋DNA。將PEI添加至DNA中;立刻渦旋混合物並於其添加至細胞之前在室溫 下培育歷時10分鐘。DNA對PEI的最終濃度比為1:2。
人化1573 IgG抗體的純化. 將調理培養基(轉染後第6天)加載至1ml蛋白A管柱,該管柱經10ml PBS,pH7.0預先平衡。在樣品加載以後,接著以平衡緩衝液洗滌管柱達到基線。洗滌後,以100mM Glycin-HCl,pH3.0溶離管柱,接著立刻添加1M Tris-HCl溶液以調整pH至8.0。最終產物對PBS溶液進行透析。藉由SDS-PAGE、SEC分析蛋白質純度,並藉由Bradford法測定其濃度。
經純化抗體的尺寸篩除層析分析. 以Superdex 200 5/150,GL管柱,使用HPLC系統(LC-20AD,Shimadzu)在環境溫度下實施SEC用以分析經純化抗體。使用流速0.3ml/min的PBS緩衝液,pH 7.0作為移動相。在280nm下施行蛋白質偵測。
抗-小鼠FC抗體至CM5晶片上的固定化. 藉由6-min注射(10μl/min)新鮮製備的1:150mM NHS:200mM EDC,在FC2與4中活化CM4或CM5感測晶片。接著,將10mM乙酸鈉緩衝液pH 5.0(1.4μl稀釋於90μl NaAc,pH 5.0中)中的配體捕獲抗體(30μg/ml抗-mIgG;GE Healthcare)以5μl/min(HBS-EP運行緩衝液:10mM HEPES,pH 7.4、150mM NaCl、3.4mM EDTA、0.005%界面活性劑P20)注射至經活化晶片上。藉由以5μl/min注射35μl的1M乙醇胺阻斷剩餘活化偶合位點。就親和力測量值,產生約2000-2500RU。FC1與FC3用作為空白品。
抗-人類FC抗體至CM5晶片上的固定化. 藉由7-min注射(10μl/min)新鮮製備的1:150mM NHS:200mM EDC,在FC2中活化CM5感測晶片。接著,將10mM乙酸鈉緩衝液pH 5.0(2.5μl稀釋於90μl NaAc,pH 5.0中)中的抗-人類FC抗體以5μl/min(HBS-EP運行緩衝液:10mM HEPES,pH 7.4、150mM NaCl、3.4mM EDTA、0.005%界面活性劑P20)注射至經活化 晶片上。藉由以10μl/min注射7-min的1M乙醇胺阻斷剩餘活化偶合位點。產生約6400RU。
人類aPC結合至最佳化抗體的Biacore分析. 首先,藉由以5μl/min的流速注射60sec,將測試抗體(10μg/ml抗-第II型APC抗體於HBS-P,pH 7.4中)捕獲於經抗-人類FC IgG塗覆的CM5晶片上,產生約230RU的捕獲程度。然後,測量分析物(於HBS-P,pH 7.4中呈兩種不同濃度100與200nM的野生型或突變型hAPC蛋白)的結合。循環條件如下:締合期30μl/min歷時90s以及解離期350-500s。表面經以5μl/min注射10mM甘胺酸,pH 1.7歷時30s而回復。HBS-EP運行緩衝液:10mM HEPES,pH 7.4、150mM NaCl、3.4mM EDTA、0.005%界面活性劑P20。使用BIAevaluation Software計算動力學。
經純化抗體的結合ELISA. 在4℃下以稀釋於DPBS(Gibco,cat#14040)中的100μl人類aPC(1μg/ml)或hPC(2μg/ml)塗覆盤(Nunc,cat#442404)過夜(o/n)。洗滌之後,在室溫下以200μl MPBST阻斷ELISA盤歷時1hr,並且在一疊紙巾上拍乾。向每孔添加100μl的待測試IgG,並且在RT下培育歷時1hr(用於EC50測定,自20nM起施行1:3稀釋)。以PBST洗滌盤5x。向每孔添加100μl以1:10,000稀釋於PBST中的抗-hIgG Fc-HRP(Sigma,cat#A0170)。洗滌盤並添加100μl/孔的TMB受質且在室溫下培育歷時5min。添加100μl/孔的1N HCl以終止反應。在450nm波長下以ELISA盤讀取儀(Biotek,Elx405)讀取盤。
實例2-人化1573的最佳化
經由融合瘤技術預先生成小鼠抗-人類aPC抗體1573(mIgG1/k)。抗體1573(mIgG1/k)的所有6個小鼠CDR被移接人類IgG1骨架(VH3-72與VK2D-29)上,產生人化1573 TPP-1940(hIgG1/k),其具有高電腦 免疫原性計分(830)且在哺乳動物細胞中的表現效價不佳(<20mg/L 653)。亦引入回復突變以保有aPC-結合親和力與特異性。
所有CDR與骨架的生殖系化會產生2個具有低免疫原性計分的生殖系化變異體(TPP-3356/3357)。它們是進一步利用額外突變藉由骨架洗牌而最佳化。最佳化抗體(TPP-3656/3657/3658/3639)顯示表現效價與熱穩定性有所增進,同時保有aPC-結合親和力與特異性。透過表面電漿共振,1573的抗原決定區定位揭示,aPC的胺基酸殘基Arg67對於抗體結合是一個關鍵性殘基,且對於aPC的結合部位來說不是必須的。
生殖系化. 為降低人化1573(TPP-1940)的免疫原性並增進其表現效價,所有CDR與骨架經生殖系化,同時保有aPC-結合親和力與特異性。創造出兩個生殖系化人化抗體(TPP-3356/3357)。基於安全性考量,TPP-3356/3357的同型被改成hIgG2以避免任何潛在的抗體效應子功能,諸如ADCC與CDC。其免疫原性計分降低至TPP-3356為722而TPP-3357為653。如藉由SPR測定,抗體維持aPC-結合親和力(表1)。此外,TPP-3356/3357保有對aPC的特異性,因為並沒有發現到結合至人類PC。但是,除了在HEK293或CHO細胞中的表現位準低以外,TPP-3356/3357顯示如低Tm所反映(62-63℃)的熱穩定性不佳,與非合作性熔融行為。
骨架洗牌. 藉由骨架洗牌利用額外突變將生殖系化1573(TPP-3356/3357)抗體進一步最佳化,以增進表現效價與熱穩定性。新變異體是衍生自重(H)鏈與輕(L)鏈骨架的不同組合,同時保有TPP-3356/3357的CDR。
創造出十八個TPP-3357變異體,其中H鏈是選自:在HCDR3中具有RL刪除的VH3-48;與有完整HCDR3的VH3-7;或TPP-3357的VH3-72(TPP-3357的原有VH序列);且其中L鏈是選自:具有經校正標準結構的KV2D-29(LCDR1中插入L);KV7-3;KV4-1;在LCDR1中具有LY插入的KV4-1;KV2-30-2;或在LCDR1中具有L插入的KV2-30-2。
創造出十五個TPP-3356變異體,其中H鏈是選自:具有完整HCDR3的VH3-72;在HCDR3中具有RL刪除的VH3-7;或VH3-48,TPP-3356的原有VH序列;且其中L鏈是選自:具有經校正標準結構的KV2D-29(LCDR1中插入L);KV7-3;KV2D-28;在LCDR1中具有L插入的KV2D-28;或KV2-24。
這些抗體表現載體在HEK293細胞中瞬時轉染實驗顯示,33個變異體中有4個(TPP-3656/3657/3658/3639)產生50-100mg/L IgG。這四個最佳化1573 TPP-3656/3657/3658/3639抗體含有與其LC骨架相同的VK7-3,但其HC骨架改變了(VH3-72/VH3-7delRL/VH3-7與VK3-7)。這四個抗體在HEK293細胞中具有良好的表現效價且具有增進的熱穩定性,同時保留aPC結合親和力/特異性並維持類似TPP-1940的aPC-抑制活性(表2)。此外,TPP-3656/3657/3658/3639的免疫原性計分分別為764/642/848/690。
表2-使用輕鏈骨架VK7-3增進最佳化生殖系化TPP-3639/3656/3657/3658的抗體表現效價及熱穩定性
實例3-1573抗原決定區定位
使用表面電漿共振(SPR)法來測定aPC活性部位的PPACK修飾對於抗體結合親和力及動力學的影響。抗-aPC IgG是經由生物晶片上之固定抗-人類或抗-小鼠IgG Fc捕獲抗體而被捕獲。以在HBS-P,pH 7.4中自200-0.312nM呈兩倍稀釋注射hAPC抗原(Xigris或Xigris-PPACK)二重複。在每次抗原注射後回復抗-IgG含量。在這個實驗中,依據X-射線結構(2.2Å)已知會結合至aPC活性部位的抗體C25K23用作為參考品。aPC活性部位的PPACK修飾阻斷抗體C25K23-aPC結合。相對地,aPC活性部位的PPACK修飾不會影響1573抗體結合至aPC(圖5與表3)。這些數據暗示,aPC的活性部位對於1573結合來說不是必需的。因此,1573 Ab不是aPC-活性部位結合劑。
依據SPR測試八個突變型aPC蛋白來測定突變對於aPC-1573結合的影響。突變位在aPC的三個表面環(環-37;環-60;環-70-80)中,已顯示因為aPC而在FVIII-不活化中是重要的(Manithody et al.,2003)。
相較於野生型hAPC,測試下列突變型蛋白對抗第II型APC抗體的結合:K63A;K78A;K62A;R75A;K36P/K37Q/K38E三重突變;R74A;2Cys(R67C/D84C)雙重突變;R67A。僅注射兩個濃度以確保hAPC蛋白的結合活性在這個長時間運行中是相當的。aPC的胺基酸殘基Arg67被發現對於抗體結合來說是關鍵殘基,因為含有單點突變R67A或雙重突變R67C/D84C的突變型aPC蛋白顯示抗體結合的結合親和力降低10倍(圖6A-I與表4)。
也測試兩個突變型hAPc蛋白R67A與R67CD84C對第I型抗體(TPP-2312)的結合,且相較於野生型hAPC蛋白(Xigris)未顯示在動力學或親和力數據方面有改變(圖7A-C與表5)。
表5-相較於野生型hAPC(Xigris),第I型抗體(TPP-2312)結合至突變型hAPC
依據此揭示內容,本文揭示且請求的所有方法可在無需過度實驗的情況下做出並執行。儘管已依據較佳具體例來說明本發明的組成物及方法,對於習於技藝者來說,在不偏離本發明概念、精神與範疇下變化可應用於本文所述方法及步驟或方法的步驟順序是清楚的。更具體而言,在化學上或生理上相關的某些試劑明顯可以替代本文所述的試劑,同時達到相同或相似結果。對於習於技藝者來說,所有此等相似替換及修飾被視為明顯落在如隨附申請專利範圍定義之發明精神、範疇與概念中。
參考文獻
下列參考文獻特別併入本文做為參考資料,達到它們提供補充本文所列彼等的例示性程序或其他詳細內容的程度。
美國專利第3,817,837號
美國專利第3,850,752號
美國專利第3,939,350號
美國專利第3,996,345號
美國專利第4,275,149號
美國專利第4,277,437號
美國專利第4,366,241號
美國專利第4,472,509號
美國專利第4,938,948號
美國專利第5,021,236號
美國專利第5,141,648號
美國專利第5,196,066號
美國專利第5,563,250號
美國專利第5,856,456號
美國專利第5,880,270號
美國專利第8,153,766號
美國專利公開案第2006/0122377號
美國專利公開案第2013/018440號
PCT公開案WO2004/006955
Atherton et al., Biol. Reprod., 32:155-171, 1985.
Berg et al., Proc. Natl. Acad. Sci. USA, 100:4423-4428, 2003.
Bird et al., Science, 242:423-426, 1998.
Damschroder et al., Mol. Immunol., 44:3049-3060, 2007.
De Jager et al., Semin. Nucl. Med., 23:165-179, 1993.
Dholakia et al., 1989 J. Biol. Chem., 264:20638-20642, 1989.
Doolittle and Ben-Zeev, Methods Mol. Biol., 109:215-237, 1999.
Esmon, J. Biol. Chem., 264:4743-4746, 1989.
Esmon, In: Handbook of Experimental Pharmacology, Uprichard and Gallagher (Eds.), Heidelberg: Springer-Verlag, vol. 132, pp. 447-476, 1999.
Gruber and Griffen, Blood, 79:2340-2348, 1992.
Gulbis and Galand, Hum. Pathol., 24:1271-1285, 1993.
Guo et al., Neuron, 41:563-572, 2004.
Higgins et al., Computer Applications in the Biosciences (CABIOS), 8:189-191, 1992.
Huston et al., Proc. Natl. Acad. Sci. USA, 85:5879-5883, 1988.
Ill et al., Protein Eng., 10:949-957, 1997.
Khatoon et al., Ann. of Neurology, 26:210-219, 1989.
King et al., J. Biol. Chem., 269:10210-10218, 1989.
Liaw et al., J. Thromb. Haemost., 1:662-670, 2003.
Manithody et al., Blood, 101:4802-4807, 2003.
Mosnier et al., Blood, 104:1740-1744, 2004.
Nakamura et al., In: Handbook of Experimental Immunology (4th Ed.), Weir et al. (Eds.), Blackwell Scientific Publ., Oxford, 1:27, 1987.
O'Shannessy et al., J. Immun. Meth., 99:153-161, 1987.
Owens & Haley, J. Biol. Chem., 259:14843-14848, 1987.
Potter & Haley, Methods Enzymol., 91:613-633, 1983.
Remington's Pharmaceutical Sciences, 18th Ed., Mack Printing Company, pp. 1289-1329, 1990.
Tang et al., J. Biol. Chem., 271:15682-15686, 1996.
Thompson et al., Nucleic Acids Res., 2:4673-4680, 1994.
van’t Zant et al., Blood, 90:3067-3072, 1997.
VBASE, MRC Centre of Protein Engineering, UK, 1997.
Ward et al., Nature, 341:544-546, 1989.
Wawrzynczak & Thorpe, In: Immunoconjugates: Antibody Conjugates in Radioimaging and Therapy of Cancer, Vogel (Ed.), New York: Oxford University Press, pp. 28-55, 1987.
Wu et al., Proc. Natl. Acad. Sci. USA., 72:5107, 1975.
Wu and Kabat, J. Exp. Med., 132:211, 1970.
<110> Bayer Healthcare,LLC
<120> 活化蛋白C之最佳化人化單株抗體及其用途
<130> BAYR.P0008US.P2
<140> 尚未分派
<141> 2014-05-26
<160> 84
<170> PatentIn第3.5版
<210> 1
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 1
<210> 2
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 2
<210> 3
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 3
<210> 4
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 4
<210> 5
<211> 111
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 5
<210> 6
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 6
<210> 7
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 7
<210> 8
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 8
<210> 9
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 9
<210> 10
<211> 333
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 10
<210> 11
<211> 443
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 11
<210> 12
<211> 218
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 12
<210> 13
<211> 1329
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 13
<210> 14
<211> 654
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 14
<210> 15
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 15
<210> 16
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 16
<210> 17
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 17
<210> 18
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 18
<210> 19
<211> 111
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 19
<210> 20
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 20
<210> 21
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 21
<210> 22
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 22
<210> 23
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 23
<210> 24
<211> 333
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 24
<210> 25
<211> 443
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 25
<210> 26
<211> 218
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 26
<210> 27
<211> 1329
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 27
<210> 28
<211> 654
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 28
<210> 29
<211> 116
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 29
<210> 30
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 30
<210> 31
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 31
<210> 32
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 32
<210> 33
<211> 111
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 33
<210> 34
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 34
<210> 35
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 35
<210> 36
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 36
<210> 37
<211> 348
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 37
<210> 38
<211> 333
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 38
<210> 39
<211> 441
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 39
<210> 40
<211> 218
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 40
<210> 41
<211> 1323
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 41
<210> 42
<211> 654
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 42
<210> 43
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 43
<210> 44
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 44
<210> 45
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 45
<210> 46
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 46
<210> 47
<211> 111
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 47
<210> 48
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 48
<210> 49
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 49
<210> 50
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 50
<210> 51
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 51
<210> 52
<211> 333
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 52
<210> 53
<211> 443
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 53
<210> 54
<211> 218
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 54
<210> 55
<211> 1329
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 55
<210> 56
<211> 654
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 56
<210> 57
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 57
<210> 58
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 58
<210> 59
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 59
<210> 60
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 60
<210> 61
<211> 111
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 61
<210> 62
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 62
<210> 63
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 63
<210> 64
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 64
<210> 65
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 65
<210> 66
<211> 333
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 66
<210> 67
<211> 443
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 67
<210> 68
<211> 218
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 68
<210> 69
<211> 1329
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 69
<210> 70
<211> 654
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 70
<210> 71
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 71
<210> 72
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 72
<210> 73
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 73
<210> 74
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 74
<210> 75
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 75
<210> 76
<211> 333
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 76
<210> 77
<211> 443
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 77
<210> 78
<211> 218
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 78
<210> 79
<211> 1329
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 79
<210> 80
<211> 654
<212> DNA
<213> 人工序列
<220>
<223> 合成核酸
<400> 80
<210> 81
<211> 111
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 81
<210> 82
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 82
<210> 83
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 83
<210> 84
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> 合成多肽
<400> 84

Claims (40)

  1. 一種人化IgG2抗體,其包含(a)含有由(i)SEQ ID NO:2或16、(ii)SEQ ID NO:3、17或31與(iii)SEQ ID NO:4或46表示之重鏈CDR的重鏈;及(b)含有由(i)SEQ ID NO:6、(ii)SEQ ID NO:7與(iii)SEQ ID NO:8表示之輕鏈CDR的輕鏈。
  2. 如申請專利範圍第1項之抗體,其中該重鏈包含VH1C重鏈、VH3-72重鏈、VH3-7重鏈、VH3-72重鏈、VH3-7(del RL)重鏈或VH3-48重鏈的骨架。
  3. 如申請專利範圍第1或2項之抗體,其中該輕鏈包含VK2_1輕鏈、VKD2A輕鏈、VK2D-29輕鏈、VK2D-29(insL)輕鏈、VK7-3輕鏈、VK4-1輕鏈、VK4-1(insLY)、VK-1(insL)、VK2-30-2輕鏈、VK2D-28輕鏈、VK2D-28(insL)輕鏈或VK2-24輕鏈的骨架。
  4. 如申請專利範圍第1項之抗體,其中該重鏈與輕鏈可變區分別由SEQ ID NO:1與5表示。
  5. 如申請專利範圍第1項之抗體,其中該重鏈與輕鏈可變區分別由SEQ ID NO:15與19表示。
  6. 如申請專利範圍第1項之抗體,其中該重鏈與輕鏈可變區分別由SEQ ID NO:29與33表示。
  7. 如申請專利範圍第1項之抗體,其中該重鏈與輕鏈可變區分別由SEQ ID NO:43與47表示。
  8. 如申請專利範圍第2或7項之抗體,其中該重鏈為VH3-72重鏈、VH3-7重鏈或VH3-7(del RL)重鏈。
  9. 如申請專利範圍第3項之抗體,其中該輕鏈為VK7-3輕鏈。
  10. 如申請專利範圍第1項之抗體,其中該重鏈與輕鏈分別由SEQ ID NO:11與12,或SEQ ID NO:25與26,或SEQ ID NO:39與40,或SEQ ID NO:53與54表示。
  11. 如申請專利範圍第1項之抗體,其中該抗體為單鏈抗體或抗體片段。
  12. 如申請專利範圍第11項之抗體,其中該抗體片段進一步定義為Fab'、Fab、F(ab')2、單結構域抗體、Fv或scFv。
  13. 一種細胞或細胞株,其包含編碼含有下列之人化IgG2抗體的核酸:(a)重鏈,包含由(i)SEQ ID NO:2或16、(ii)SEQ ID NO:3、17或31與(iii)SEQ ID NO:4或46表示的重鏈CDR;及(b)輕鏈,包含由(i)SEQ ID NO:6、(ii)SEQ ID NO:7與(iii)SEQ ID NO:8表示的輕鏈CDR。
  14. 如申請專利範圍第13項之核酸,其中該核酸編碼選自下列的重鏈骨架:VH1C重鏈、VH3-72重鏈、VH3-7重鏈、VH3-72重鏈、VH3-7(del RL)重鏈與VH3-48重鏈。
  15. 如申請專利範圍第13項之核酸,其中該核酸編碼選自下列的輕鏈骨架:VK2_1輕鏈、VKD2A輕鏈、VK2D-29輕鏈、VK2D-29(insL)輕鏈、VK7-3輕鏈、VK4-1輕鏈、VK4-1(insLY)、VK-1(insL)、VK2-30-2輕鏈、VK2D-28輕鏈、VK2D-28(insL)輕鏈與VK2-24輕鏈。
  16. 如申請專利範圍第13項之核酸,其中該核酸分別編碼由SEQ ID NO:1與5表示的重鏈與輕鏈可變區。
  17. 如申請專利範圍第13項之核酸,其中該核酸分別編碼由SEQ ID NO:15與19表示的重鏈與輕鏈可變區。
  18. 如申請專利範圍第13項之核酸,其中該核酸分別編碼由SEQ ID NO:29與33表示的重鏈與輕鏈可變區。
  19. 如申請專利範圍第13項之核酸,其中該核酸分別編碼由SEQ ID NO:43與47表示的重鏈與輕鏈可變區。
  20. 如申請專利範圍第14項之核酸,其中在所編碼的重鏈中為VH3-72重鏈、VH3-7重鏈或VH3-7(del RL)重鏈。
  21. 如申請專利範圍第15或20項之核酸,其中所編碼的輕鏈為VK7-3。
  22. 如申請專利範圍第13項之核酸,其中該核酸編碼分別由SEQ ID NO:11與12,或SEQ ID NO:25與26,或SEQ ID NO:39與40,或SEQ ID NO:53與54表示的重鏈與輕鏈。
  23. 如申請專利範圍第13項之核酸,其中該核酸編碼單鏈抗體或抗體片段。
  24. 如申請專利範圍第23項之核酸,其中該抗體片段進一步定義為Fab'、Fab、F(ab')2、單結構域抗體、Fv,或scFv。
  25. 一種醫藥組成物,其包含如申請專利範圍第1至12項中任一項的抗體,其分散於醫藥上可接受的載劑中。
  26. 一種在個體中抑制活化蛋白C抗凝血活性的方法,包含向該個體投與有效量之如申請專利範圍第1至12項中任一項的抗體。
  27. 一種在個體中抑制活化蛋白C醯胺基水解活性的方法,包含向該個體投與有效量之如申請專利範圍第1至12項中任一項的抗體。
  28. 一種治療有凝血需求之個體的方法,包含向該個體投與有效量之如申請專利範圍第1至12項中任一項的抗體。
  29. 一種治療罹患敗血症之個體的方法,包含投與有效量之如申請專利範圍第1至12項中任一項的抗體。
  30. 如申請專利範圍第29項之方法,進一步包含投與活化蛋白C。
  31. 一種治療罹患血友病之個體的方法,包含投與有效量之如申請專利範 圍第1至12項中任一項的抗體。
  32. 一種在個體中調節止血的方法,包含投與有效量之如申請專利範圍第1至12項中任一項的抗體。
  33. 如申請專利範圍第32項之方法,其中該個體為創傷患者。
  34. 一種在個體中調節血栓的方法,包含投與有效量之如申請專利範圍第1至12項中任一項的抗體。
  35. 一種包含如申請專利範圍第1至12項中任一項之抗體的套組。
  36. 如申請專利範圍第35項之套組,其中該抗體係經標記。
  37. 如申請專利範圍第36項之套組,其中該標記為螢光團、放射性標記、化學發光標記、染料、量子點、珠粒或發色團。
  38. 如申請專利範圍第36項之套組,進一步包含緩衝劑或稀釋劑。
  39. 如申請專利範圍第36項之套組,進一步包含使用該抗體的使用說明。
  40. 如申請專利範圍第36項之套組,其中該抗體存在於水性懸浮液中。
TW104116378A 2014-05-26 2015-05-22 活化蛋白c之最佳化人化單株抗體及其用途 TW201609809A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462003001P 2014-05-26 2014-05-26

Publications (1)

Publication Number Publication Date
TW201609809A true TW201609809A (zh) 2016-03-16

Family

ID=56085043

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104116378A TW201609809A (zh) 2014-05-26 2015-05-22 活化蛋白c之最佳化人化單株抗體及其用途

Country Status (2)

Country Link
AR (1) AR100550A1 (zh)
TW (1) TW201609809A (zh)

Also Published As

Publication number Publication date
AR100550A1 (es) 2016-10-12

Similar Documents

Publication Publication Date Title
US20240067750A1 (en) Factor xi antibodies and methods of use
EP2723377B1 (en) Anti-axl antibodies and uses thereof
AU2009279804C1 (en) Monoclonal antibodies against tissue factor pathway inhibitor (TFPI)
DK2373691T3 (en) ANTI-FXI ANTIBODIES AND PROCEDURES FOR USE
CN113271956A (zh) 基质金属蛋白酶可裂解的和丝氨酸或半胱氨酸蛋白酶可裂解的底物及其使用方法
JP7500662B2 (ja) 抗第XI/XIa因子抗体による処置法
JP2017200955A (ja) 改変した抗体組成物、それを作製および使用する方法
KR20200020662A (ko) 면역-종양학 제제와 함께 ps-표적화 항체를 사용하여 암을 치료하는 방법
CA2955947A1 (en) Anti-cd3 antibodies, activatable anti-cd3 antibodies, multispecific anti-cd3 antibodies, multispecific activatable anti-cd3 antibodies, and methods of using the same
KR20140104944A (ko) 항-axl 항체 및 그의 용도
JP2022023050A (ja) 併用療法
US9657111B2 (en) Humanized monoclonal antibodies against activated protein C and uses thereof
US11077187B2 (en) Epitope of optimized humanized monoclonal antibodies against activated protein C and uses thereof
WO2015179435A1 (en) Optimized humanized monoclonal antibodies against activated protein c and uses thereof
US20230181714A1 (en) Human monoclonal antibodies to venezuelan equine encephalitis virus and uses therefor
TW201609809A (zh) 活化蛋白c之最佳化人化單株抗體及其用途
TW201609808A (zh) 抗活化蛋白c之人類化單株抗體之抗原決定區基因定位及其用途
CN113880949A (zh) 凝血因子xi(fxi)结合蛋白
WO2022126416A1 (zh) 抗bcma抗体及其制备方法和应用
CN115448985A (zh) 新型抗栓抗体
AU2013202752B2 (en) Monoclonal antibodies against tissue factor pathway inhibitor (TFPI)
CN116529259A (zh) 针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的人单克隆抗体
NZ736142A (en) Anti-pdl1 antibodies, activatable anti-pdl1 antibodies, and methods of use thereof
NZ618740B2 (en) Anti-axl antibodies and uses thereof