TW201608683A - MCSP power semiconductor device and fabrication method - Google Patents

MCSP power semiconductor device and fabrication method Download PDF

Info

Publication number
TW201608683A
TW201608683A TW103129169A TW103129169A TW201608683A TW 201608683 A TW201608683 A TW 201608683A TW 103129169 A TW103129169 A TW 103129169A TW 103129169 A TW103129169 A TW 103129169A TW 201608683 A TW201608683 A TW 201608683A
Authority
TW
Taiwan
Prior art keywords
wafer
layer
metal foil
metal
foil layer
Prior art date
Application number
TW103129169A
Other languages
Chinese (zh)
Other versions
TWI560826B (en
Inventor
牛志強
軍 魯
哈姆紮 耶爾馬茲
高洪濤
Original Assignee
萬國半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 萬國半導體股份有限公司 filed Critical 萬國半導體股份有限公司
Priority to TW103129169A priority Critical patent/TWI560826B/en
Publication of TW201608683A publication Critical patent/TW201608683A/en
Application granted granted Critical
Publication of TWI560826B publication Critical patent/TWI560826B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

A power semiconductor device includes a MCSP package type fabricated at wafer level chip size packaging level. A conductive adhesive layer is disposed on backside of wafer. A metal foil-laminating layer is laminated on the backside of wafer wherein the conductive adhesive layer functions as adhesives material. Composite tape is attached to the metal foil-laminating layer. The stacked layer having molding layer, wafer, conductive adhesive layer and foil-laminating layer, composite tape is cut with a sawing process.

Description

MCSP功率半導體器件及製備方法 MCSP power semiconductor device and preparation method

本發明涉及功率半導體器件領域,尤其涉及在實現晶片級封裝方式前提下,提出了一種MCSP封裝形式的功率半導體器件及相應的製備方法。 The present invention relates to the field of power semiconductor devices, and more particularly to a power semiconductor device in the form of an MCSP package and a corresponding preparation method under the premise of implementing a wafer level packaging method.

共汲雙電晶體功率器件(Common drain dual MOSFET power device)主要用於筆記型電腦,平板或手機的電池充放電管理,由於近期的趨勢是充電時間越來越短,所以充放電電流相應加大,因此希望器件的導通電阻越來越小。並且平板,手機超薄化設計也需要器件的尺寸越來越小。 Common drain dual MOSFET power device is mainly used for battery charge and discharge management of notebook computers, tablets or mobile phones. Due to the recent trend, the charging time is getting shorter and shorter, so the charge and discharge current is correspondingly increased. Therefore, it is desirable that the on-resistance of the device becomes smaller and smaller. And the tablet, the ultra-thin design of the mobile phone also requires the size of the device to be smaller and smaller.

附圖1A~1C列舉了一種新型的功率電晶體封裝結構,在圖1A的俯視圖中利用了引線框架101,正面設置有數個焊球的晶片102粘貼在引線框架101上,固化後進行塑封,然後磨削器件正面使得焊球外露。引入的引線框架101除了成本不菲之外,也增加了器件的高度/厚度,這對減小器件尺寸不利因為要忍受模具的合模壓力一般還比較厚,否則容易在較大的合模壓力下變形損壞,這對減小器件尺寸不利。此外,在圖1A的封裝中,還至少需要一個單獨的塑封工序來塑封引線框架和晶片,而且在引線框架101上的晶片102是通過標准的貼片工藝來粘貼的,因此這種封裝並不是完整意義上的晶片級封裝,相應的成本負擔也會因為使用了更多的工序而顯著增加。 1A to 1C illustrate a novel power transistor package structure. In the top view of FIG. 1A, a lead frame 101 is utilized, and a wafer 102 having a plurality of solder balls disposed on the front surface is pasted on the lead frame 101, cured, and then plastically sealed. Grinding the front of the device exposes the solder balls. In addition to the high cost, the lead frame 101 introduced also increases the height/thickness of the device, which is disadvantageous for reducing the size of the device because the clamping pressure of the mold is generally too thick, otherwise it is easy to be at a large clamping pressure. The lower deformation is damaged, which is disadvantageous for reducing the size of the device. In addition, in the package of FIG. 1A, at least a separate molding process is required to mold the lead frame and the wafer, and the wafer 102 on the lead frame 101 is pasted by a standard mounting process, so the package is not In the complete sense of wafer-level packaging, the corresponding cost burden will also increase significantly due to the use of more processes.

圖1B~1C的剖面圖中摒棄了引線框架,而是直接在晶片122的背面沉積一層金屬層121,需要強調的是,類似在金屬層121這樣裸露的金屬上製作標簽比較困難也容易磨損消失,而且過於單薄的金屬層121(一 般只有幾個微米)不利於降低導通電阻或其他類型的寄生電阻。圖1C還在金屬層121上形成了一個塑封層123,雖然塑封層123上可以印製或刻蝕出標簽,但在很多時候,為了實現晶片級封裝,還常常需要研磨減薄塑封層123,但是隨之而來的問題是,塑封層123遭受研磨的一個平面從微觀上觀察,並不是十分完美的拋光面而是帶有凹坑的粗糙面,所以也會誘發製作標簽的不便。 In the cross-sectional views of FIGS. 1B to 1C, the lead frame is discarded, and a metal layer 121 is directly deposited on the back surface of the wafer 122. It is emphasized that it is difficult to wear a label on a bare metal such as the metal layer 121. And too thin metal layer 121 (one Generally only a few microns) is not conducive to reducing on-resistance or other types of parasitic resistance. 1C also forms a plastic encapsulation layer 123 on the metal layer 121. Although the label can be printed or etched on the plastic encapsulation layer 123, in many cases, in order to realize wafer level packaging, it is often necessary to grind the thinned plastic encapsulation layer 123. However, the problem that comes with it is that the plane in which the plastic seal layer 123 is subjected to grinding is microscopically observed, and is not a perfect polished surface but a rough surface with pits, so that the inconvenience of making a label is also induced.

因此,既要獲得完整意義上的晶片級封裝,使器件具有較低的導通電阻,又要器件能夠很順利的兼容所有的封裝工序(例如至少滿足能夠順暢地印製清晰可見的標簽),這就要求有一種新的封裝方法來兼顧這些棘手的難題。 Therefore, it is necessary to obtain a wafer-level package in a complete sense, so that the device has a low on-resistance, and the device can be smoothly compatible with all packaging processes (for example, at least for the smooth printing of clearly visible labels). A new packaging approach is required to balance these tough challenges.

在本發明的一種製備功率半導體器件的方法中,包括以下步驟:提供正面帶有一個塑封層的晶圓;在一種選擇方式中,在晶圓背面設置一個導電粘合層,或者在另一種選擇方式中,在預鍵合到晶圓背面的一個金屬箔層的一個面鍍上例如錫(Sn)等導電粘合層;層壓該金屬箔層至晶圓背面並利用所述導電粘合層進行壓合黏接;粘貼一個複合膠帶至所述金屬箔層上;切割相鄰晶片之間的疊層,所述疊層包括塑封層、晶圓、導電粘合層、金屬箔層和複合膠帶,形成多顆獨立的功率半導體器件。 In a method of fabricating a power semiconductor device of the present invention, the method comprises the steps of: providing a wafer with a plastic encapsulation layer on the front side; in one alternative, providing a conductive adhesive layer on the back side of the wafer, or alternatively In one embodiment, a surface of a metal foil layer pre-bonded to the back surface of the wafer is plated with a conductive adhesive layer such as tin (Sn); the metal foil layer is laminated to the back surface of the wafer and the conductive adhesive layer is utilized. Bonding and bonding; attaching a composite tape to the metal foil layer; cutting a laminate between adjacent wafers, the laminate including a plastic seal layer, a wafer, a conductive adhesive layer, a metal foil layer, and a composite tape Forming a plurality of independent power semiconductor devices.

上述方法,切割所述疊層之前,先在所述複合膠帶上印製形成標識符號。 In the above method, the identification mark is printed on the composite tape before the laminate is cut.

上述方法,在層壓金屬箔層的步驟中,同步對晶圓加熱並同時對金屬箔層施加以壓力,以便緊密壓合金屬箔層至晶圓背面;或者在複合膠帶的粘貼完成之後,再對晶圓加熱並同時對複合膠帶及金屬箔層施加以壓力,以便緊密壓合金屬箔層至晶圓背面。 In the above method, in the step of laminating the metal foil layer, the wafer is heated simultaneously and pressure is applied to the metal foil layer to closely press the metal foil layer to the back surface of the wafer; or after the bonding of the composite tape is completed, The wafer is heated while applying pressure to the composite tape and metal foil layer to closely press the metal foil layer to the back side of the wafer.

上述方法,層壓金屬箔層至晶圓背面之前,先在金屬箔層的一面鍍上金屬塗層,然後以其帶有金屬塗層的一面層壓至晶圓背面。 In the above method, before laminating the metal foil layer to the back side of the wafer, a metal coating is applied on one side of the metal foil layer, and then the metal coated side is laminated to the back side of the wafer.

在一個可選實施例中,上述方法包括:形成塑封層之前,先在每個晶片正面的襯墊上相應安置金屬凸塊;然後以一個塑封層塑封在晶圓正面並將每個金屬凸塊都包覆在內;再研磨減薄塑封層直至金屬凸塊的頂端被部分研磨而外露,籍此形成每個金屬凸塊平坦化的頂端面,並從塑封層的頂面中予以外露,該研磨步驟需要在晶圓背面設置該一層導電粘合層之前完成。 In an alternative embodiment, the method includes: firstly arranging metal bumps on the pads on the front side of each wafer before forming the plastic seal layer; then molding the front side of the wafer with a plastic seal layer and each metal bump Both are coated; the thinned plastic sealing layer is further polished until the top end of the metal bump is partially ground and exposed, thereby forming a top surface of each metal bump flattened and exposed from the top surface of the plastic sealing layer, The grinding step needs to be completed before the conductive bonding layer is disposed on the back side of the wafer.

在一個可選實施例中,上述方法包括,在晶圓背面設置導電粘合層之前,先將一個虛設晶圓與所述晶圓進行鍵合,且鍵合在塑封層的頂面,在完成複合膠帶的粘貼步驟之後、實施所述切割步驟之前再將虛設晶圓予以剝離。 In an optional embodiment, the method includes bonding a dummy wafer to the wafer and bonding the top surface of the plastic layer before completing the conductive adhesive layer on the back surface of the wafer. After the bonding step of the composite tape, the dummy wafer is peeled off before the cutting step is performed.

在一個可選實施例中,上述方法包括:形成塑封層之前,先在每個晶片正面的襯墊上相應安置金屬凸塊;然後以塑封層塑封在晶圓正面並將每個金屬凸塊都包覆在內;完成複合膠帶的粘貼步驟之後和在切割所述疊層之前,研磨減薄塑封層直至金屬凸塊的頂端被部分研磨而外露,籍此形成每個金屬凸塊平坦化的頂端面,並且這些金屬凸塊的頂端面從塑封層的頂面中予以外露。 In an alternative embodiment, the method includes: firstly placing metal bumps on the pads on the front side of each wafer before forming the plastic seal layer; then molding the front side of the wafer with a plastic seal layer and each metal bump Wrapped; after finishing the bonding step of the composite tape and before cutting the laminate, the thinned plastic sealing layer is ground until the top end of the metal bump is partially ground to be exposed, thereby forming the top of each metal bump flattened And the top end faces of these metal bumps are exposed from the top surface of the plastic seal layer.

在本發明的一種功率半導體器件中,包括;一個晶片;一個覆蓋在晶片正面的頂部塑封層,其中晶片正面的襯墊上設置有金屬凸塊,並且所述頂部塑封層圍繞在金屬凸塊側壁周圍,每個金屬凸塊平坦化的頂端面皆從頂部塑封層的頂面中外露;一個層壓在晶片背面的底部金屬箔層,並利用導電粘合層將底部金屬箔層壓合黏接在晶片背面;一個粘貼於所述底部金屬箔層上的底部複合膠帶層。 In a power semiconductor device of the present invention, comprising: a wafer; a top molding layer covering the front surface of the wafer, wherein the pad on the front surface of the wafer is provided with metal bumps, and the top plastic sealing layer surrounds the sidewall of the metal bump Around, the top surface of each metal bump is flattened from the top surface of the top molding layer; a bottom metal foil layer laminated on the back surface of the wafer, and the bottom metal foil is laminated and bonded by a conductive adhesive layer On the back side of the wafer; a bottom composite tape layer affixed to the bottom metal foil layer.

上述功率半導體器件,所述晶片集成有一對共汲極金屬氧化物半導體場效應電晶體,所述底部金屬箔層構成該一對共汲極金屬氧化物半導體場效電晶體的公共汲極電極,以及功率半導體器件具有分別接觸該一對共汲極金屬氧化物半導體場效電晶體各自的閘極襯墊、源極襯墊的 多個金屬凸塊。 In the above power semiconductor device, the wafer is integrated with a pair of conjugated metal oxide semiconductor field effect transistors, and the bottom metal foil layer constitutes a common drain electrode of the pair of conjugated metal oxide semiconductor field effect transistors. And the power semiconductor device has a gate pad and a source pad respectively contacting the pair of the common drain metal oxide semiconductor field effect transistors Multiple metal bumps.

上述功率半導體器件,底部金屬箔層壓合在晶片背面的一面鍍有貴金屬塗層。 In the above power semiconductor device, the bottom metal foil is laminated on the back side of the wafer with a precious metal coating.

201‧‧‧襯墊 201‧‧‧ cushion

205‧‧‧金屬凸塊 205‧‧‧Metal bumps

205G1‧‧‧金屬凸塊 205G1‧‧‧metal bumps

205G2‧‧‧金屬凸塊 205G2‧‧‧metal bumps

205S1‧‧‧金屬凸塊 205S1‧‧‧metal bumps

205S2‧‧‧金屬凸塊 205S2‧‧‧metal bumps

206‧‧‧塑封層 206‧‧‧plastic layer

206'‧‧‧頂部塑封層 206'‧‧‧Top plastic layer

300‧‧‧晶圓 300‧‧‧ wafer

300'‧‧‧晶片 300'‧‧‧ wafer

305‧‧‧金屬化層 305‧‧‧metallization

306‧‧‧導電粘合層 306‧‧‧ Conductive bonding layer

307‧‧‧金屬箔層 307‧‧‧metal foil layer

307'‧‧‧金屬箔層 307'‧‧‧metal foil layer

308‧‧‧複合膠帶 308‧‧‧Composite tape

308'‧‧‧複合膠帶層 308'‧‧‧Composite tape layer

325‧‧‧標識符號 325‧‧‧ID symbol

350‧‧‧晶圓 350‧‧‧ Wafer

500‧‧‧功率半導體器件 500‧‧‧Power semiconductor devices

M1、M2‧‧‧金屬氧化物半導體場效電晶體 M1, M2‧‧‧ metal oxide semiconductor field effect transistor

D1、D2‧‧‧汲極 D1, D2‧‧‧ bungee

G1、G2‧‧‧閘極 G1, G2‧‧‧ gate

S1、S2‧‧‧源極 S1, S2‧‧‧ source

圖1A~1C是背景技術的實施方案;圖2A~2E是在晶圓正面實施塑封和減薄晶圓的流程示意圖;圖3A~3G是本發明實現晶片級封裝的流程示意圖;圖4A~4B是基於圖3A~3G的步驟但是額外引入了一個虛設晶圓的示意圖;圖5A~5C是基於圖3A~3G的步驟但改變了晶圓正面的塑封層的減薄時機;圖6A~6B是本發明的應用在共汲雙金屬氧化物半導體場效電晶體器件的實施例;圖7A~7C是應用LC Tape的實施例;圖8A~8C是鍍錫作為粘著層的實施例。 1A to 1C are schematic views of the background art; FIGS. 2A to 2E are schematic diagrams showing the flow of molding and thinning the wafer on the front side of the wafer; FIGS. 3A to 3G are schematic views showing the flow of the wafer level packaging according to the present invention; FIGS. 4A to 4B It is based on the steps of FIGS. 3A to 3G but additionally introduces a schematic diagram of a dummy wafer; FIGS. 5A to 5C are steps based on the steps of FIGS. 3A to 3G but changing the thinning timing of the plastic sealing layer on the front side of the wafer; FIGS. 6A to 6B are Embodiments of the invention for use in a conjugated bimetal oxide semiconductor field effect transistor device; Figures 7A-7C are embodiments in which LC Tape is applied; and Figures 8A-8C are examples of tin plating as an adhesion layer.

在圖2A中,晶圓300包含了大量相互鑄造連接在一起的晶片,而且晶片以晶圓上預設的橫向或縱向的劃片道界定彼此之間的邊界。每個晶片正面皆設置有數個襯墊201作為電極端子,如圖2B所示,在晶圓的正面植金屬凸塊,例如將一個金屬凸塊205相應的安置或焊接到一個襯墊201上,金屬凸塊205有多種選擇,如典型的焊錫球、金凸塊(Gold bump)等。在圖2C中,執行一個塑封工序,利用諸如環氧樹脂類的塑封材料在晶圓300的正面形成一個塑封層206,可以要求塑封層206具有預設的厚度,以 便將所有金屬凸塊205都包覆密封在內。然後如圖2D所示,借用塑封層206帶來的機械強度的增加,可保障晶圓300不易碎裂或曲翹,於是可以從晶圓300的相對背面研磨減薄晶圓。雖然圖中未示意出,其實還可以選擇在晶圓的減薄背面一側進行濕法腐蝕,釋放經研磨在背面殘留的應力和修複晶格損傷,及其後再在晶圓300背面一側進行重摻雜的離子注入和在減薄背面濺射沉積一層金屬化層,如此一來,金屬化層便可與晶圓背面注入的重摻雜區形成歐姆接觸。隨後,如圖2E所示,研磨減薄塑封層206,直至金屬凸塊205的原本為凸起狀或為不規則平面的頂端被部分研磨掉,從而使得所有的金屬凸塊205都從減薄的塑封層206中外露,同時每個金屬凸塊205都具有籍由研磨獲得的平坦化的頂端面,這些頂端面都從減薄的塑封層206的頂面中予以外露。 In FIG. 2A, wafer 300 includes a plurality of wafers that are cast together to each other, and the wafers define boundaries between each other with pre-defined lateral or longitudinal scribe lanes on the wafer. A plurality of spacers 201 are disposed on the front surface of each wafer as electrode terminals. As shown in FIG. 2B, metal bumps are implanted on the front side of the wafer, for example, a metal bump 205 is correspondingly disposed or soldered to a spacer 201. Metal bumps 205 are available in a variety of options, such as typical solder balls, gold bumps, and the like. In FIG. 2C, a molding process is performed to form a molding layer 206 on the front surface of the wafer 300 using a molding material such as an epoxy resin. The molding layer 206 may be required to have a predetermined thickness to All metal bumps 205 are encapsulated and sealed. Then, as shown in FIG. 2D, by increasing the mechanical strength brought by the plastic sealing layer 206, the wafer 300 can be prevented from being easily chipped or warped, and the wafer can be polished from the opposite back surface of the wafer 300. Although not shown in the figure, it is also possible to perform wet etching on the thinned back side of the wafer, release the residual residual stress on the back surface and repair the lattice damage, and then on the back side of the wafer 300. The heavily doped ion implantation and the deposition of a metallization layer on the backside of the thinned surface allow the metallization layer to form an ohmic contact with the heavily doped regions implanted on the backside of the wafer. Subsequently, as shown in FIG. 2E, the thinned plastic encapsulation layer 206 is ground until the top end of the metal bump 205, which is originally convex or irregular, is partially ground away, so that all the metal bumps 205 are thinned. The plastic encapsulation layer 206 is exposed while each of the metal bumps 205 has a flattened top end surface obtained by grinding, which are exposed from the top surface of the thinned plastic encapsulation layer 206.

在圖3A中,設置一層導電粘合層306至晶圓300的減薄背面,如果晶圓300的減薄背面設有示意出的金屬化層305(譬如Ti/Ni/Ag即鈦/鎳/銀或Ti/Ni/Au即鈦/鎳/金等多種選擇方式),則導電粘合層306其實是粘貼設置在金屬化層305上。其中,在晶圓背面形成導電粘合層306的機製有多種選擇形式,如果導電粘合層306選擇是焊錫膏、導電銀漿等之類導電物質,可以以直接塗覆的方式實現,如果導電粘合層306選擇是帶有黏接功能的導電薄膜,則它可以直接被貼合到晶圓300背面。在一些實施例中,導電粘合層306的製備可以直接採用晶圓背面塗層技術(Wafer backside coating)實現。在圖3B中,將金屬箔層307層壓到晶圓300的背面,期間利用導電粘合層306進行壓合黏接,使得金屬箔層307緊密的被層壓貼合在晶圓300背面或金屬化層305上,使得晶圓背面有效金屬厚度在整個晶圓的背面均勻增加,使厚度均一化。注意金屬箔層307具有相當精確控製的厚度,以達到能夠提高背面金屬有效厚度利於降低導通電阻或其他類型的寄生電阻,同時要求能夠消弭背景技術中原本引線框架所帶來的無法有效減小器件厚度或尺寸的疑慮,例如金屬箔層307可以具有0.5~3mil的厚度,以保持金屬箔層 的柔軟性和韌性。為了便於理解和區分,這種金屬箔層307能夠以卷起成筒的方式儲存待用或運輸,而圖3B顯示了從卷起的金屬箔層307圓筒中抽取金屬箔層307並平鋪展開而層壓至晶圓300背面的動作,可以想象,引線框架更強的硬度及更厚的厚度,導致引線框架自身是無法被層壓到晶圓300背面上的,而只能是拾取的方式將從晶圓上分離下來單個晶片一一放置到引線框架上,這體現了本發明與現有技術構成區別的一個明顯特徵。金屬箔層307有多種選擇,典型而且節省成本的一種材料例如是銅箔。 In FIG. 3A, a layer of conductive adhesive layer 306 is disposed to the thinned back side of wafer 300, if the thinned back side of wafer 300 is provided with a patterned metallization layer 305 (eg, Ti/Ni/Ag, ie, titanium/nickel/ The silver or Ti/Ni/Au is a plurality of options such as titanium/nickel/gold, and the conductive adhesive layer 306 is actually pasted on the metallization layer 305. The mechanism for forming the conductive adhesive layer 306 on the back side of the wafer has various options. If the conductive adhesive layer 306 is selected to be a conductive material such as solder paste or conductive silver paste, it can be realized by direct coating if conductive. The adhesive layer 306 is selected to be a conductive film with a bonding function, and it can be directly attached to the back side of the wafer 300. In some embodiments, the preparation of conductive bonding layer 306 can be accomplished directly using Wafer backside coating. In FIG. 3B, a metal foil layer 307 is laminated to the back side of the wafer 300, during which the conductive bonding layer 306 is used for press bonding, so that the metal foil layer 307 is closely laminated to the back of the wafer 300 or On the metallization layer 305, the effective metal thickness on the back side of the wafer is uniformly increased over the entire back surface of the wafer to make the thickness uniform. Note that the metal foil layer 307 has a relatively precisely controlled thickness to increase the effective thickness of the back metal to facilitate the reduction of on-resistance or other types of parasitic resistance, while requiring the elimination of the original lead frame in the background art, which cannot effectively reduce the device. Thickness or size concerns, such as metal foil layer 307 may have a thickness of 0.5 to 3 mils to maintain the metal foil layer Softness and toughness. For ease of understanding and differentiation, the metal foil layer 307 can be stored in a roll-to-roll manner for use or transport, while FIG. 3B shows the metal foil layer 307 being drawn from the rolled metal foil layer 307 cylinder and laid flat. While laminating to the back side of the wafer 300, it is conceivable that the lead frame has a stronger hardness and a thicker thickness, so that the lead frame itself cannot be laminated on the back surface of the wafer 300, but only in the manner of picking up. The individual wafers are separated from the wafer and placed onto the lead frame one by one, which embodies a distinct feature of the present invention that distinguishes it from the prior art. There are many options for the metal foil layer 307, a typical and cost effective material such as copper foil.

在一些可選實施例中,可以在金屬箔層307的一個朝向晶圓背面的單面上鍍導電性能更強的金屬塗層,例如金、銀等貴金屬塗層,貴金屬塗層的作用是增強與導電粘合層306的連接,使得連接更可靠。鍍金屬塗層至金屬箔層307上可以利用各種方式實現,電鍍或化學鍍或其他濺射沉積等各種方式均適用。其中,金屬箔層307鍍有金屬塗層的一面用於接觸導電粘合層306,這一面被層壓到晶圓300背面。在一些可選實施例中,在金屬箔層307的層壓步驟中,需要額外對帶有塑封層206的晶圓300進行加熱,以便將熱量傳導至導電粘合層306,如果導電粘合層306是焊錫膏類的導電材料,它在受熱熔融態條件下,可以促進晶圓300背面與金屬箔層307的黏接效果,使金屬箔層307更牢靠和緊密的被層壓到晶圓300上,與此同時,還可以在整個貼合的金屬箔層307區域上均勻地施加壓力,使整個金屬箔層307的各個貼合區域都平衡受力,以便進一步緊密壓合金屬箔層307至晶圓背面。如果在此加熱階段,金屬凸塊205的平坦化頂端面從塑封層206中裸露出來,如圖3B,往往還必須要求金屬凸塊205的熔點略低於導電粘合層306的熔點,以避免金屬凸塊205熔化外溢損失掉。 In some alternative embodiments, a more conductive metal coating, such as a precious metal coating such as gold or silver, may be plated on one side of the metal foil layer 307 facing the back side of the wafer. The role of the precious metal coating is enhanced. The connection to the conductive adhesive layer 306 makes the connection more reliable. The metallization coating onto the metal foil layer 307 can be accomplished in a variety of ways, including electroplating or electroless plating or other sputter deposition. The metal foil layer 307 is coated with a metal coated side for contacting the conductive adhesive layer 306, which is laminated to the back side of the wafer 300. In some alternative embodiments, in the lamination step of the metal foil layer 307, it is necessary to additionally heat the wafer 300 with the encapsulation layer 206 to conduct heat to the conductive adhesion layer 306 if the conductive adhesive layer 306 is a conductive material of solder paste, which can promote the adhesion effect of the back surface of the wafer 300 and the metal foil layer 307 under the condition of being heated and melted, so that the metal foil layer 307 is more firmly and tightly laminated to the wafer 300. At the same time, it is also possible to uniformly apply pressure on the entire laminated metal foil layer 307 region, so that the respective bonding regions of the entire metal foil layer 307 are balanced and stressed, so as to further closely press the metal foil layer 307 to The back of the wafer. If the planarized top end face of the metal bump 205 is exposed from the plastic encapsulation layer 206 during this heating phase, as shown in FIG. 3B, the melting point of the metal bump 205 must also be required to be slightly lower than the melting point of the conductive adhesive layer 306 to avoid The metal bump 205 is melted and overflowed.

在圖3C中,再粘貼一層複合膠帶308至金屬箔層307上,這裏的粘貼動作除了單純的貼合之外,也可以同時對複合膠帶308施加外在壓力而採用層壓的方式來加固粘合度。複合膠帶308應當至少包含一個粘結劑層和一個保護貼膜層(較佳的是黑色),粘結劑層牢牢粘合在金屬箔層307 的背離晶圓的一個面上,而保護貼膜層除了物理保護晶圓或晶片之外,還需要用於後續的印製標簽,這在後續內容中會詳細介紹。複合膠帶308例如可以採用日本LC TAPE,或者採用普通的一個黏著劑層和一個聚醯亞胺(Polyamide-imide;PI)層(PI層作為保護貼膜層)的複合層。另外,作為可選擇方式而非限制條件,前述對晶圓300加熱的步驟還可以移到完成複合膠帶308的粘貼之後,也就是說,無需在層壓金屬箔層307至晶圓背面的階段實施加熱,而是完成複合膠帶308的粘貼之後,再對帶有塑封層和複合膠帶的晶圓整體實施加熱,如圖3D所示。因為部分選定類別的複合膠帶308帶有的粘結劑層實質上在受熱之後可以固化,其臨時性的粘性籍此轉變為永久性的粘接性,而此時導電粘合層306也剛好需要受熱熔化,從而帶來更佳的效果和更低的成本。在此加熱階段,還可以在整個複合膠帶308的粘合區域上均勻地施加壓力,這個壓力自然會傳遞給金屬箔層307,來促進和增強金屬箔層307和晶圓300間的緊密貼合程度。 In FIG. 3C, a layer of composite tape 308 is further adhered to the metal foil layer 307. In addition to the simple bonding, the bonding operation here can also apply external pressure to the composite tape 308 at the same time and use a lamination method to reinforce the adhesive. Cohesion. The composite tape 308 should comprise at least one adhesive layer and a protective film layer (preferably black), and the adhesive layer is firmly bonded to the metal foil layer 307. It faces away from one side of the wafer, and the protective film layer needs to be used for subsequent printed labels in addition to physically protecting the wafer or wafer, as will be described in detail later. The composite tape 308 can be, for example, a Japanese LC TAPE, or a composite layer of a common adhesive layer and a polyamide-imide (PI) layer (PI layer as a protective film layer). In addition, as an alternative, but not limited, the foregoing step of heating the wafer 300 may be moved to completion of the bonding of the composite tape 308, that is, without the stage of laminating the metal foil layer 307 to the back side of the wafer. After heating, the bonding of the composite tape 308 is completed, and then the entire wafer with the plastic sealing layer and the composite tape is heated, as shown in Fig. 3D. Because the adhesive layer of the partially selected type of composite tape 308 can be cured substantially after being heated, its temporary tack is thereby converted into permanent adhesion, while the conductive adhesive layer 306 is just needed. Melted by heat, resulting in better results and lower costs. During this heating phase, pressure can also be applied uniformly across the bond area of the composite tape 308, which is naturally transferred to the metal foil layer 307 to promote and enhance the close fit between the metal foil layer 307 and the wafer 300. degree.

很容易獲悉,採用複合膠帶308的方式相異於在晶圓背面形成塑封層的工序,如果打算在晶圓背面執行塑封工藝(譬如背景技術圖1C中試圖獲得晶片背面的塑封層123),則至少要利用到塑封設備,也會涉及到研磨減薄包覆在晶圓背面、厚度並不十分精確的塑封層,這就會遭遇到背景技術顯現出來的各種問題。顯而易見,晶圓背面無需採用任何塑封工序和製備塑封層,這是本發明與現有技術構成區別的又一個明顯特徵。 It is easy to understand that the manner of using the composite tape 308 is different from the process of forming a plastic seal on the back side of the wafer. If it is intended to perform a molding process on the back side of the wafer (for example, in FIG. 1C, an attempt is made to obtain the plastic-clad layer 123 on the back side of the wafer) At least the use of plastic packaging equipment, but also involves grinding and thinning the plastic coating layer on the back of the wafer, the thickness is not very accurate, which will encounter various problems revealed by the background art. It will be apparent that the wafer back side does not require any plastic sealing process and the preparation of the plastic sealing layer, which is another distinct feature of the present invention that distinguishes it from the prior art.

在圖3E中,實施標準的印製標簽的工序(Marking),雖然直接塗覆印刷可以實現,但為了保障標識能夠持續更長久的時間,更多的時候是利用雷射蝕刻來印字,從而在複合膠帶308裸露的一側的背面上印字形成標識符號325,實質印製在複合膠帶308的保護貼膜層上,該標識符號325通常包括產品的各種屬性信息,如製造商、型號、規格等資訊,複合膠帶308與每個晶片交疊的區域都會印製有一個標識符號325。複合膠帶308的厚度是預設的,前文內容已經闡明,複合膠帶308並非是塑封層,摒棄了一 個塑封工序,也不需要額外的減薄,所以背景技術提及的難以印字的棘手難題在此期間完全不複存在。在圖3F~3G中,沿著切割道以便執行標准的晶圓切割(wafer saw)步驟,從而晶圓300可以切割分離出多個單獨的晶片300'。主要是切割相鄰晶片300'之間的疊層,疊層包括了塑封層206、晶圓300、導電粘合層306、金屬箔層307和複合膠帶308,以及金屬化層305,從而形成多顆獨立的功率半導體器件500。在功率半導體器件500中,包括了覆蓋在晶片300'正面的籍由塑封層206切割而來的頂部塑封層206',而且晶片300'正面的襯墊201上設置有金屬凸塊205,頂部塑封層206'圍繞在金屬凸塊205側壁的周圍,使得每個金屬凸塊205平坦化的頂端面皆從頂部塑封層206'的頂面中外露。晶圓300背面帶有金屬化層305也被切割斷開形成設置於每個晶片300'背面的背部金屬化層,半導體器件500還包括層壓在晶片300'背面或背面金屬化層305上的籍由金屬箔層307切割而來的底部金屬箔層307',並利用導電粘合層306將底部金屬箔層307'牢固壓合黏接在晶片300'背面。半導體器件500還包括一個粘貼於底部金屬箔層307'上的籍由複合膠帶308切割而來的底部複合膠帶層308',之前印製在複合膠帶308上的印字或標識符號325隨之轉移到底部複合膠帶層308'上。功率半導體器件500相對於先前技術,雖然晶片300'正面包覆有頂部塑封層206',認為它仍然是塑封式晶片級封裝(Molded Chip Scale Package;MCSP),但晶片300'背面一側卻並未被任何塑封體包覆住,取而代之的起到密封作用的是底部複合膠帶層308'。 In Fig. 3E, the standard printing labeling process (Marking) can be realized, although direct coating printing can be realized, in order to ensure that the marking can last longer, more often using laser etching to print, thereby The back side of the exposed side of the composite tape 308 is printed on the back side to form an identification mark 325, which is substantially printed on the protective film layer of the composite tape 308. The identification mark 325 generally includes various attribute information of the product, such as manufacturer, model, specification, etc. The area where the composite tape 308 overlaps each wafer is printed with an identification mark 325. The thickness of the composite tape 308 is preset. As described above, the composite tape 308 is not a plastic seal layer, and has abandoned one. A plastic sealing process does not require additional thinning, so the difficult problem of difficult printing that is mentioned in the background art is completely lost during this period. In Figures 3F-3G, along the scribe line to perform a standard wafer saw step, wafer 300 can be diced to separate a plurality of individual wafers 300'. Mainly to cut the laminate between adjacent wafers 300', the laminate includes a plastic sealing layer 206, a wafer 300, a conductive adhesive layer 306, a metal foil layer 307 and a composite tape 308, and a metallization layer 305, thereby forming a plurality of A separate power semiconductor device 500. In the power semiconductor device 500, a top molding layer 206' is formed on the front surface of the wafer 300', which is cut by the plastic sealing layer 206, and the pad 201 on the front surface of the wafer 300' is provided with metal bumps 205, and the top molding is provided. The layer 206' surrounds the sidewall of the metal bump 205 such that the top surface of each of the metal bumps 205 is exposed from the top surface of the top molding layer 206'. A metallization layer 305 on the back side of the wafer 300 is also diced to form a back metallization layer disposed on the backside of each wafer 300'. The semiconductor device 500 further includes a laminate on the back or back metallization layer 305 of the wafer 300'. The bottom metal foil layer 307' is cut by the metal foil layer 307, and the bottom metal foil layer 307' is firmly bonded to the back surface of the wafer 300' by the conductive adhesive layer 306. The semiconductor device 500 further includes a bottom composite tape layer 308' cut from the composite tape 308 adhered to the bottom metal foil layer 307', and the printing or identification symbol 325 previously printed on the composite tape 308 is transferred to the end. On the composite tape layer 308'. The power semiconductor device 500 is opposite to the prior art. Although the wafer 300' is front coated with a top molding layer 206', it is still considered to be a Molded Chip Scale Package (MCSP), but the back side of the wafer 300' is The outer composite tape layer 308' is replaced by any plastic body and replaced by a sealant.

在一個可選但非構成限制的實施例中,如在圖4A~4B中,較之圖3A~3G的流程,僅有的區別是:鑒於較薄的晶圓300的運輸或在各個操作階段,晶圓300仍然有易碎的潛在危險,所以還額外引入了一個承載基板或虛設晶圓(dummy wafer)350,將虛設晶圓350鍵合在減薄後的晶圓300上,晶圓350的一個頂面或底面與被研磨後的塑封層206的減薄頂面粘貼結合在一起,然後再依照圖3A~3G的流程,依次形成晶圓300減薄背面的導電粘合層306、金屬箔層307、複合膠帶308。在圖4A~4B中,待形成了複合膠 帶308之後便可剝離掉虛設晶圓350,值得注意的是,剝離的時機可以是圖3C獲得複合膠帶308的步驟之後,也可以是圖3D實施加熱步驟之後,甚至是圖3E的印字步驟之後,但通常在圖3F的切割步驟之前。虛設晶圓350提供給晶圓300的機械強度,除了運輸和傳統操作步驟中,顯現出來的更佳優勢是,由於金屬箔層307和/或複合膠帶308被置之於需遭受層壓的步驟之中,期間須施加外力,這個外力直接傳遞施加給較薄的晶圓300會帶來一定的易碎風險,虛設晶圓350則可以一定程度的規避和消除這些風險。 In an optional but non-limiting embodiment, as in Figures 4A-4B, the only difference compared to the flow of Figures 3A-3G is that in view of the transport of thinner wafers 300 or at various stages of operation The wafer 300 still has the potential to be fragile, so an additional carrier wafer or dummy wafer 350 is additionally introduced, and the dummy wafer 350 is bonded to the thinned wafer 300, and the wafer 350 is A top surface or a bottom surface is bonded to the thinned top surface of the polished plastic sealing layer 206, and then the wafer 300 is thinned on the back side of the conductive bonding layer 306 and the metal according to the processes of FIGS. 3A to 3G. Foil layer 307, composite tape 308. In Figures 4A-4B, a composite glue is to be formed After the strip 308, the dummy wafer 350 can be peeled off. It is noted that the timing of the stripping may be after the step of obtaining the composite tape 308 in FIG. 3C, or after the heating step in FIG. 3D, or even after the printing step in FIG. 3E. , but usually before the cutting step of Figure 3F. The mechanical strength of the dummy wafer 350 to the wafer 300, in addition to shipping and conventional operational steps, is a further advantage that the metal foil layer 307 and/or the composite tape 308 are placed in a step that is subject to lamination. During this period, an external force must be applied. This external force directly transmits a thin wafer 300, which brings a certain risk of fragility. The dummy wafer 350 can avoid and eliminate these risks to a certain extent.

在另一個可選但非構成限制的實施例中,如在圖5A~5C中,較之圖3A~3G的流程,區別是:跳過了圖2E研磨塑封層206的步驟,直接在圖2D的步驟之後實施圖3A~3G的流程,也就是說,塑封層206的原始厚度被保留,至少在形成晶圓背面的複合膠帶308之前,塑封層206沒有被研磨減薄。如圖5A~5B,保留塑封層206的原始厚度,然後再依照圖3A~3G的流程,在晶圓300的減薄背面依次形成導電粘合層306、金屬箔層307、複合膠帶308。在圖5C中,待形成了複合膠帶308之後便可研磨減薄塑封層206,值得注意的是,研磨塑封層206的時機可以是圖3C獲得複合膠帶308的步驟之後,也可以是圖3D實施加熱步驟之後,甚至是圖3E的印字步驟之後,但通常在圖3F的切割步驟之前。在一些具有優勢的實施例中,如果在圖3B或3C的步驟中保留塑封層206的厚度而未減薄,則金屬凸塊205會被包覆在塑封層206內而未外露,此時金屬凸塊205與導電粘合層306之間的熔點高低要求便不再那麼苛刻,因為金屬凸塊205被包覆住而不會因為熔化外溢而損失掉。圖5A~5C的實施例中,塑封層206被研磨減薄之前,塑封層206提供給晶圓300的機械強度,同樣,層壓外力直接傳遞施加給較薄的晶圓300會帶來一定的易碎風險,而塑封層206則可以一定程度的規避和消除這些風險。 In another alternative, but non-limiting embodiment, as in Figures 5A-5C, the difference is that the step of polishing the plastic encapsulation layer 206 of Figure 2E is skipped, as in Figure 2D, as compared to the flow of Figures 3A-3G. The process of FIGS. 3A-3G is performed after the step, that is, the original thickness of the encapsulation layer 206 is retained, at least before the composite tape 308 forming the back side of the wafer, the encapsulation layer 206 is not ground and thinned. 5A-5B, the original thickness of the plastic encapsulation layer 206 is retained, and then the conductive adhesive layer 306, the metal foil layer 307, and the composite tape 308 are sequentially formed on the thinned back surface of the wafer 300 according to the flow of FIGS. 3A to 3G. In FIG. 5C, after the composite tape 308 is formed, the thinned plastic sealing layer 206 can be ground. It is noted that the timing of polishing the plastic sealing layer 206 may be after the step of obtaining the composite tape 308 in FIG. 3C, or may be implemented in FIG. 3D. After the heating step, even after the printing step of Figure 3E, but typically before the cutting step of Figure 3F. In some advantageous embodiments, if the thickness of the plastic encapsulation layer 206 is left unthinned in the step of FIG. 3B or 3C, the metal bumps 205 are coated in the plastic encapsulation layer 206 without being exposed, at this time, the metal The melting point requirement between the bumps 205 and the conductive adhesive layer 306 is less severe, because the metal bumps 205 are covered without being lost by the melt overflow. In the embodiment of FIGS. 5A to 5C, before the plastic sealing layer 206 is ground and thinned, the plastic sealing layer 206 provides the mechanical strength to the wafer 300. Similarly, the direct transfer of the laminated external force to the thinner wafer 300 brings a certain degree. The risk of brittleness, while the plastic layer 206 can circumvent and eliminate these risks to a certain extent.

圖6B是翻轉圖3G的器件至標識符號325朝下的MCSP功率半導體器件500的立體示意圖,基於詳細展示晶片背面各層的結構並用於解釋說明,背面各層的厚度並未完全按照真實產品中與晶片的厚度比例關係 進行繪製。在一個可選的實施例中,例如本發明的封裝形式可以被應用到廣泛使用的電池充放電電路的共汲極雙金屬氧化物半導體場效電晶體(Common drain dual MOSFET)的晶片中。圖6B的晶片300'集成(integrate)有圖6A所示的功率金屬氧化物半導體場效應電晶體M1、M2,其中金屬氧化物半導體場效電晶體M1之汲極D1與金屬氧化物半導體場效電晶體M2之汲極D2連接在一起,金屬氧化物半導體場效電晶體M1之閘極G1與金屬氧化物半導體場效電晶體M2之閘極G2的開啟或閉合受電源管理電路的控製,基於降低串聯連接的金屬氧化物半導體場效電晶體M1、M2的電阻或Rss(源極S1到源極S2的電阻),考慮到晶片背面原始的金屬化層305較薄而無法有效的實現這個目的,本發明圖6B所示的額外層壓至晶片300'背面的底部金屬箔層307'構成晶片300'中所集成的金屬氧化物半導體場效電晶體M1、M2的公共汲極電極。在半導體器件500中,具有平坦化頂端面的金屬凸塊205S1接觸和焊接於該共汲極金屬氧化物半導體場效電晶體M1的一個體現為金屬氧化物半導體場效電晶體M1源極襯墊的襯墊201,具有平坦化頂端面的金屬凸塊205G1接觸和焊接於該共汲極金屬氧化物半導體場效電晶體M1的一個體現為金屬氧化物半導體場效電晶體M1閘極襯墊的襯墊201。具有平坦化頂端面的金屬凸塊205S2接觸和焊接於該共汲極金屬氧化物半導體場效電晶體M2的一個體現為金屬氧化物半導體場效電晶體M2源極襯墊的襯墊201,具有平坦化頂端面的金屬凸塊205G2接觸和焊接於該共汲極金屬氧化物半導體場效電晶體M2的一個體現為金屬氧化物半導體場效電晶體M2閘極襯墊的襯墊201。頂部塑封層206'覆蓋於晶片300'正面,頂部塑封層206'圍繞在金屬凸塊205S1、205S2、205G1、205G2各自側壁的周圍,每個金屬凸塊平坦化的頂端面皆從頂部塑封層206'的頂面中外露出來。利用導電粘合層306將底部金屬箔層307'壓合黏接在晶片300'背面,而底部複合膠帶層308'則粘合於或層壓於底部金屬箔層307'上,除此之外,還可以選擇在底部金屬箔層307'壓合在晶片300'背面的一個單面上鍍上貴金屬塗層。 6B is a perspective view of the MCSP power semiconductor device 500 flipping the device of FIG. 3G to the underside of the identification symbol 325. Based on the detailed description of the structure of the layers on the back side of the wafer and for explanation, the thickness of the back layers is not completely in accordance with the actual product and the wafer. Thickness ratio relationship Draw. In an alternative embodiment, for example, the package form of the present invention can be applied to a wafer of a common drain dual MOSFET of a widely used battery charge and discharge circuit. The wafer 300' of FIG. 6B integrates the power metal oxide semiconductor field effect transistors M1 and M2 shown in FIG. 6A, wherein the gate oxide D1 of the metal oxide semiconductor field effect transistor M1 and the metal oxide semiconductor field effect The drain D2 of the transistor M2 is connected together, and the opening or closing of the gate G1 of the metal oxide semiconductor field effect transistor M1 and the gate G2 of the metal oxide semiconductor field effect transistor M2 is controlled by the power management circuit, based on Reducing the resistance or Rss (resistance of the source S1 to the source S2) of the metal oxide semiconductor field effect transistors M1, M2 connected in series, considering that the original metallization layer 305 on the back side of the wafer is thin, cannot effectively achieve this purpose The bottom metal foil layer 307' additionally laminated to the back side of the wafer 300' shown in FIG. 6B of the present invention constitutes a common drain electrode of the metal oxide semiconductor field effect transistors M1, M2 integrated in the wafer 300'. In the semiconductor device 500, one of the metal bumps 205S1 having a flattened tip end surface is contacted and soldered to the conjugated metal oxide semiconductor field effect transistor M1 as a metal oxide semiconductor field effect transistor M1 source pad. The pad 201, the metal bump 205G1 having the flattened top end surface is in contact with and soldered to the ytterbium metal oxide semiconductor field effect transistor M1, and is embodied as a metal oxide semiconductor field effect transistor M1 gate pad. Pad 201. A metal bump 205S2 having a flattened top end surface is in contact with and soldered to the spacer 201 of the metal oxide semiconductor field effect transistor M2 source pad, which is contacted and soldered to the common gate metal oxide semiconductor field effect transistor M2, A metal bump 205G2 of the flattened top surface contacts and is soldered to the liner 201 of the MOSFET etched metal gate M2 gate pad. The top plastic encapsulation layer 206' covers the front side of the wafer 300', and the top plastic encapsulation layer 206' surrounds the respective sidewalls of the metal bumps 205S1, 205S2, 205G1, 205G2, and the top end surface of each of the metal bumps is flattened from the top molding layer 206. 'The top surface of the top is exposed. The bottom metal foil layer 307' is press-bonded to the back side of the wafer 300' by the conductive adhesive layer 306, and the bottom composite tape layer 308' is bonded or laminated to the bottom metal foil layer 307'. Alternatively, a single metal foil layer 307' may be bonded to a single side of the back side of the wafer 300' with a precious metal coating.

在圖7A~7C的備選實施例中,尤其是圖7B~7C中展示了複合膠帶308採用特定背面塗層膠帶(Backside Coating TAPE,例如採用LC TAPE)的層壓步驟。圖7A是籍由圖2A~2E的步驟得到,經由塑封、晶圓減薄及濺射背部金屬化層等工序,這在前文中已經有詳細介紹,所以本實施例不再一一贅述。先行塗刷導電粘合層306到金屬化層305上,並利用導電粘合層306將該金屬箔層307壓合到晶圓300背面的金屬化層305上,重點之處在於:在圖7B中,示範性的給出了在晶圓300背面的金屬箔層307上層壓LC TAPE的步驟,而圖7C則對應於圖7B,截取了晶圓300和塑封層206及背部各層的具體結構的一部分片段作為示範。圖7C之後的其他後續步驟與圖3C~3G基本相同。在該實施例中,省略了前文已經完整闡明的一些必要或非必要步驟,以及其他的例如需要在LC TAPE上雷射打印標簽、實施切割、進行測試包裝等封裝業界的標准流程在這裏也不再一一贅述。 In an alternative embodiment of Figures 7A-7C, in particular Figures 7B-7C, a lamination step of the composite tape 308 using a specific backside coating TAPE (e.g., using LC TAPE) is illustrated. FIG. 7A is a process obtained by the steps of FIGS. 2A to 2E, through plastic sealing, wafer thinning, and sputtering of the back metallization layer, which have been described in detail in the foregoing, and thus will not be further described in this embodiment. The conductive adhesive layer 306 is applied to the metallization layer 305 first, and the metal foil layer 307 is pressed onto the metallization layer 305 on the back side of the wafer 300 by using the conductive adhesive layer 306. The key point is: FIG. 7B The step of laminating LC TAPE on the metal foil layer 307 on the back side of the wafer 300 is exemplarily shown, and FIG. 7C corresponds to FIG. 7B, and the specific structure of the wafer 300 and the plastic seal layer 206 and the back layers are taken. A part of the fragment is used as an example. The other subsequent steps after FIG. 7C are substantially the same as FIGS. 3C to 3G. In this embodiment, some necessary or non-essential steps that have been fully explained above have been omitted, and other standard processes such as laser printing labels, implementation of cutting, test packaging, etc. on LC TAPE are not here. Repeat them one by one.

LC TAPE可以包括熱固性成分、粘合劑聚合物成分、能量可固化成分等等。為避免LC TAPE可能會被認為“並非常規術語”的疑慮,特引用日本Lintec Corporation公司披露的若干成分:熱固性成分包括環氧樹脂、酚樹脂、蜜胺樹脂、尿素樹脂、聚酯樹脂、聚氨酯樹脂、丙烯酸類樹脂、聚醯亞氨酯樹脂、苯並噁嗪樹脂、以及它們的混合物。此外,給複合膠帶提供合適的粘性和改善可加工性,需要使用粘合劑聚合物成分,有用的粘合劑聚合物例如有丙烯酸類聚合物、聚酯樹脂、聚氨酯樹脂、有機矽樹脂和橡膠聚合物,較佳的是丙烯酸類聚合物。能量射線可固化的成分,包括一種能通過輻射能量射線,如紫外線和電子束進行聚合或固化的化合物。另外,複合膠帶可以著色,通過在其中加入顏料或染料對複合膠帶形成層進行著色,著色後的複合膠帶如黑色可改善最終晶片的外觀。 The LC TAPE may include a thermosetting component, a binder polymer component, an energy curable component, and the like. In order to avoid the doubt that LC TAPE may be considered “not a regular term”, several ingredients disclosed by Lintec Corporation of Japan are cited: thermosetting components include epoxy resin, phenol resin, melamine resin, urea resin, polyester resin, polyurethane resin. , an acrylic resin, a polyimide resin, a benzoxazine resin, and a mixture thereof. In addition, to provide suitable adhesive tape and improve processability, it is necessary to use a binder polymer component such as an acrylic polymer, a polyester resin, a polyurethane resin, an organic resin and a rubber. The polymer is preferably an acrylic polymer. Energy ray curable components, including a compound that can be polymerized or cured by radiant energy rays such as ultraviolet light and electron beams. In addition, the composite tape can be colored, and the composite tape forming layer is colored by adding a pigment or a dye thereto, and the colored composite tape such as black can improve the appearance of the final wafer.

在8A~8C的可選實施例中,導電粘合層306的材質及對應的層壓方式相對前文的實施例可略作更改。如圖8B所示,當試圖將金屬箔層307層壓結合在圖8A的金屬化層305上之前,還需要先行在金屬箔層307的一 個用於與晶圓300背面進行層壓鍵合的接合面上鍍錫,該鍍錫層便充當與導電銀漿不一樣的導電粘合層306。如果該接合面之前還額外鍍有銀或金等一些貴金屬化塗層,則鍍錫層應當鍍在貴金屬化塗層之上。其後,為了讓該鍍錫層在層壓步驟中起到較佳的黏接之功效,作為可選項,可以對金屬箔層307施加大約100~2500克力(gf)的層壓力度,以及選擇在大約攝氏200~400度的環境溫度條件下實施該步驟,從而將帶有鍍錫層的金屬箔層307層壓到晶圓300背面的金屬化層305上。除此之外,圖8C的實施方式不是在金屬箔層307的一個面上鍍錫,而是直接將錫鍍在晶圓300背面,如鍍在圖8A的金屬化層305上,然後再層壓金屬箔層307至晶圓300背面,並利用錫層作為導電粘合層306進行壓合黏接,從而將金屬箔層307層壓到晶圓300背面的帶有的鍍錫層的金屬化層305上。 In an alternative embodiment of 8A-8C, the material of the conductive adhesive layer 306 and the corresponding lamination mode may be modified slightly from the previous embodiments. As shown in FIG. 8B, before attempting to laminate the metal foil layer 307 on the metallization layer 305 of FIG. 8A, it is also necessary to first advance the metal foil layer 307. Tin is applied to the bonding surface for lamination bonding to the back side of the wafer 300, and the tin plating layer serves as a conductive bonding layer 306 different from the conductive silver paste. If the joint is additionally plated with some precious metallization coating such as silver or gold, the tin plating layer should be plated on the precious metallization coating. Thereafter, in order to make the tin plating layer have a better bonding effect in the laminating step, as an option, a lamination force of about 100 to 2500 gram force (gf) may be applied to the metal foil layer 307, and This step is selected to be carried out at ambient temperature conditions of about 200 to 400 degrees Celsius to laminate a metal foil layer 307 with a tin plating layer onto the metallization layer 305 on the back side of the wafer 300. In addition, the embodiment of FIG. 8C does not plate tin on one side of the metal foil layer 307, but directly deposits tin on the back side of the wafer 300, such as on the metallization layer 305 of FIG. 8A, and then layers. The metal foil layer 307 is pressed to the back side of the wafer 300, and the tin layer is used as the conductive adhesive layer 306 for press bonding, thereby laminating the metal foil layer 307 to the metallization of the tinned layer on the back side of the wafer 300. On layer 305.

以上,通過說明和附圖,給出了具體實施方式的特定結構的典型實施例,上述發明提出了現有的較佳實施例,但這些內容並不作為局限。對於本領域的技術人員而言,閱讀上述說明後,各種變化和修正無疑將顯而易見。因此,所附的權利要求書應看作是涵蓋本發明的真實意圖和範圍的全部變化和修正。在權利要求書範圍內任何和所有等價的範圍與內容,都應認為仍屬本發明的意圖和範圍內。 The exemplary embodiments of the specific structures of the specific embodiments have been described above by way of illustration and the accompanying drawings. Various changes and modifications will no doubt become apparent to those skilled in the <RTIgt; Accordingly, the appended claims are to cover all such modifications and modifications The scope and content of any and all equivalents are intended to be within the scope and spirit of the invention.

205G1‧‧‧金屬凸塊 205G1‧‧‧metal bumps

205G2‧‧‧金屬凸塊 205G2‧‧‧metal bumps

205S1‧‧‧金屬凸塊 205S1‧‧‧metal bumps

205S2‧‧‧金屬凸塊 205S2‧‧‧metal bumps

206'‧‧‧頂部塑封層 206'‧‧‧Top plastic layer

300'‧‧‧晶片 300'‧‧‧ wafer

305‧‧‧金屬化層 305‧‧‧metallization

306‧‧‧導電粘合層 306‧‧‧ Conductive bonding layer

307'‧‧‧金屬箔層 307'‧‧‧metal foil layer

308'‧‧‧底部複合膠帶層 308'‧‧‧Bottom composite tape layer

500‧‧‧功率半導體器件 500‧‧‧Power semiconductor devices

Claims (10)

一種製備功率半導體器件的方法,包括以下步驟:提供正面帶有一塑封層的含數個晶片的一晶圓;在該晶圓背面或者一金屬箔層的一面設置一導電粘合層;層壓該金屬箔層至該晶圓背面並利用該導電粘合層進行壓合黏接;粘貼一複合膠帶至該金屬箔層上;切割相鄰該些晶片之間的一疊層,該疊層包括該塑封層、該晶圓、該導電粘合層、該金屬箔層和該複合膠帶,形成數顆獨立的功率半導體器件。 A method for preparing a power semiconductor device, comprising the steps of: providing a wafer having a plurality of wafers with a plastic layer on the front side; providing a conductive adhesive layer on one side of the wafer or a metal foil layer; a metal foil layer is applied to the back surface of the wafer and pressed and bonded by the conductive adhesive layer; a composite tape is pasted onto the metal foil layer; and a laminate between adjacent wafers is cut, the laminate includes the laminate The plastic seal layer, the wafer, the conductive adhesive layer, the metal foil layer and the composite tape form a plurality of independent power semiconductor devices. 根據申請專利範圍第1項所述的方法,其中,切割該疊層之前,先在該複合膠帶上印製形成標識符號。 The method of claim 1, wherein the composite tape is printed on the composite tape to form an identification symbol prior to cutting the laminate. 根據申請專利範圍第1項所述的方法,其中,在層壓該金屬箔層的步驟中,同步對該晶圓加熱並同時對該金屬箔層施加以壓力;或者在完成該複合膠帶的粘貼步驟之後,對該晶圓加熱並同時對該複合膠帶及該金屬箔層施加以壓力,以便緊密壓合該金屬箔層至該晶圓背面。 The method of claim 1, wherein in the step of laminating the metal foil layer, the wafer is heated simultaneously and pressure is applied to the metal foil layer; or the bonding of the composite tape is completed. After the step, the wafer is heated and pressure is applied to the composite tape and the metal foil layer to tightly press the metal foil layer to the back side of the wafer. 根據申請專利範圍第1項所述的方法,其中,層壓該金屬箔層之前,先在該金屬箔層的一面鍍一上貴金屬塗層,然後以該金屬箔層帶有該貴金屬塗層的一面層壓至該晶圓背面。 The method of claim 1, wherein before laminating the metal foil layer, a precious metal coating is plated on one side of the metal foil layer, and then the metal foil layer is coated with the noble metal coating. One side is laminated to the back side of the wafer. 根據申請專利範圍第1項所述的方法,其中,包括:形成該塑封層之前,先在每一該些晶片正面的數個襯墊上相應安置數個金屬凸塊;然後以該塑封層塑封該晶圓正面並將每一該些金屬凸塊都包覆在內;再研磨減薄該塑封層直至該些金屬凸塊的頂端被部分研磨而外露,籍此形成每一該些金屬凸塊平坦化的頂端面,並從該塑封層的頂面中予以外露。 The method of claim 1, wherein: before forming the plastic sealing layer, a plurality of metal bumps are respectively disposed on a plurality of pads on the front surface of each of the wafers; and then the plastic sealing layer is molded Forming the front surface of the wafer and covering each of the metal bumps; grinding and thinning the plastic sealing layer until the top ends of the metal bumps are partially ground and exposed, thereby forming each of the metal bumps The flattened top surface is exposed from the top surface of the molding layer. 根據申請專利範圍第1項所述的方法,其中,在該晶圓背面設置該導電粘合層之前,先將一虛設晶圓與該晶圓進行鍵合,且鍵合在該塑封層的 頂面,在完成該複合膠帶的粘貼步驟之後再將該虛設晶圓予以剝離。 The method of claim 1, wherein before the conductive adhesive layer is disposed on the back surface of the wafer, a dummy wafer is bonded to the wafer and bonded to the plastic seal layer. On the top surface, the dummy wafer is peeled off after the bonding step of the composite tape is completed. 根據申請專利範圍第1項所述的方法,其中,包括:形成該塑封層之前,先在每一該些晶片正面的數個襯墊上相應安置數個金屬凸塊;然後以該塑封層塑封該晶圓正面並將每一該些金屬凸塊都包覆在內;完成該複合膠帶的粘貼步驟之後但在切割之前,研磨減薄該塑封層直至每一該些金屬凸塊的頂端被部分研磨而外露,籍此形成每一該些金屬凸塊平坦化的頂端面,並從該塑封層的頂面中予以外露。 The method of claim 1, wherein: before forming the plastic sealing layer, a plurality of metal bumps are respectively disposed on a plurality of pads on the front surface of each of the wafers; and then the plastic sealing layer is molded Forming the front side of the wafer and covering each of the metal bumps; after completing the bonding step of the composite tape but before cutting, grinding and thinning the plastic sealing layer until the top end of each of the metal bumps is partially Grinding and exposing, thereby forming a top end surface of each of the metal bumps flattened, and being exposed from the top surface of the plastic sealing layer. 一種功率半導體器件,包括;一晶片;一覆蓋在該晶片正面的頂部塑封層,其中該晶片正面的數個襯墊上相應設置有數個金屬凸塊,並且該頂部塑封層圍繞在該些金屬凸塊側壁周圍,每一該些金屬凸塊平坦化的頂端面皆從該頂部塑封層的頂面中外露;一層壓在該晶片背面的底部金屬箔層,並利用導一電粘合層將該底部金屬箔層壓合黏接在該晶片背面;一粘貼於該底部金屬箔層上的底部複合膠帶層。 A power semiconductor device comprising: a wafer; a top molding layer covering the front surface of the wafer, wherein a plurality of metal bumps are respectively disposed on the plurality of pads on the front surface of the wafer, and the top plastic sealing layer surrounds the metal bumps Around the sidewall of the block, a top surface of each of the metal bumps is exposed from the top surface of the top molding layer; a bottom metal foil layer laminated on the back surface of the wafer, and the electrically conductive layer is used to conduct the The bottom metal foil is laminated and bonded on the back side of the wafer; a bottom composite tape layer adhered to the bottom metal foil layer. 根據申請專利範圍第8項所述的功率半導體器件,其中,該晶片集成有一對共汲極金屬氧化物半導體場效電晶體,該底部金屬箔層構成該對共汲極金屬氧化物半導體場效電晶體的一公共汲極電極,以及該功率半導體器件具有分別接觸該對共汲極金屬氧化物半導體場效電晶體各自的閘極襯墊、源極襯墊的多個金屬凸塊。 The power semiconductor device according to claim 8, wherein the wafer is integrated with a pair of conjugated metal oxide semiconductor field effect transistors, and the bottom metal foil layer constitutes the field effect of the pair of conjugated metal oxide semiconductors. A common drain electrode of the transistor, and the power semiconductor device has a plurality of metal bumps respectively contacting the gate pad and the source pad of the pair of conjugated MOSFETs. 根據申請專利範圍第8項所述的功率半導體器件,其中,該底部金屬箔層壓合在該晶片背面的一面鍍有貴金屬塗層。 The power semiconductor device according to claim 8, wherein the bottom metal foil is laminated on a side of the back surface of the wafer with a precious metal coating.
TW103129169A 2014-08-25 2014-08-25 Mcsp power semiconductor device and fabrication method TWI560826B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103129169A TWI560826B (en) 2014-08-25 2014-08-25 Mcsp power semiconductor device and fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103129169A TWI560826B (en) 2014-08-25 2014-08-25 Mcsp power semiconductor device and fabrication method

Publications (2)

Publication Number Publication Date
TW201608683A true TW201608683A (en) 2016-03-01
TWI560826B TWI560826B (en) 2016-12-01

Family

ID=56084835

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103129169A TWI560826B (en) 2014-08-25 2014-08-25 Mcsp power semiconductor device and fabrication method

Country Status (1)

Country Link
TW (1) TWI560826B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114473822A (en) * 2022-04-15 2022-05-13 四川明泰微电子科技股份有限公司 Wafer thinning and polishing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337122B1 (en) * 2000-01-11 2002-01-08 Micron Technology, Inc. Stereolithographically marked semiconductors devices and methods
TWI352412B (en) * 2008-03-03 2011-11-11 Advanced Semiconductor Eng Multi-chip package structure and method of fabrica

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114473822A (en) * 2022-04-15 2022-05-13 四川明泰微电子科技股份有限公司 Wafer thinning and polishing device

Also Published As

Publication number Publication date
TWI560826B (en) 2016-12-01

Similar Documents

Publication Publication Date Title
US9318424B2 (en) MCSP power semiconductor devices and preparation methods thereof
TWI305036B (en) Sensor-type package structure and fabrication method thereof
TWI594391B (en) Method of manufacturing semiconductor device
US20100159643A1 (en) Bonding ic die to tsv wafers
JP2003347441A (en) Semiconductor element, semiconductor device, and method for producing semiconductor element
TW201145484A (en) Etch-back type semiconductor package, substrate and manufacturing method thereof
CN105742198B (en) Die bonder and its application method
TW200939428A (en) Multi-chip package structure and method of fabricating the same
US7528054B2 (en) Semiconductor component with a thin semiconductor chip and a stiff wiring substrate, and methods for producing and further processing of thin semiconductor chips
TW201201288A (en) Chip-sized package and fabrication method thereof
TW202021076A (en) Packaging method, panel module, wafer package and chip package
US7400037B2 (en) Packaging structure with coplanar filling paste and dice and with patterned glue for WL-CSP
WO2018196630A1 (en) Sensor package structure manufacturing method and sensor package structure
TW201203404A (en) Chip-sized package and fabrication method thereof
JP2012182238A (en) Semiconductor device
US8455303B2 (en) Semiconductor package with adhesive material pre-printed on the lead frame and chip, and its manufacturing method
TW201608683A (en) MCSP power semiconductor device and fabrication method
JP3719921B2 (en) Semiconductor device and manufacturing method thereof
JP4515129B2 (en) Manufacturing method of semiconductor device
JP3892359B2 (en) Mounting method of semiconductor chip
JP2012182239A (en) Method of manufacturing semiconductor device
US10438832B2 (en) Semiconductor device, semiconductor wafer and semiconductor device manufacturing method
CN105374773A (en) MCSP power semiconductor device and manufacturing method
CN111668108B (en) Semiconductor packaging method
TWI536507B (en) A ultrathin semiconductor device