TW201607070A - Solar cell and method for fabricating the same - Google Patents

Solar cell and method for fabricating the same Download PDF

Info

Publication number
TW201607070A
TW201607070A TW103127669A TW103127669A TW201607070A TW 201607070 A TW201607070 A TW 201607070A TW 103127669 A TW103127669 A TW 103127669A TW 103127669 A TW103127669 A TW 103127669A TW 201607070 A TW201607070 A TW 201607070A
Authority
TW
Taiwan
Prior art keywords
transparent conductive
conductive layer
layer
solar cell
refractive index
Prior art date
Application number
TW103127669A
Other languages
Chinese (zh)
Other versions
TWI531079B (en
Inventor
張傑
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW103127669A priority Critical patent/TWI531079B/en
Priority to CN201410541221.XA priority patent/CN104241408B/en
Publication of TW201607070A publication Critical patent/TW201607070A/en
Application granted granted Critical
Publication of TWI531079B publication Critical patent/TWI531079B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method for fabricating solar cell includes the following steps. An opto-electronic conversion structure is provided. An inorganic transparent conductive layer is formed on a surface of the opto-electronic conversion structure. An organic transparent conductive layer is formed on the inorganic transparent conductive layer. A patterned transparent passivation layer is formed on a surface of the organic transparent conductive layer, where the patterned transparent passivation layer has an opening partially exposing the surface of the organic transparent conductive layer. The organic transparent conductive layer is used as a seed layer to perform an electroplating process to form an electrode in the opening of the patterned transparent passivation layer, where the electrode is in contact with and electrically connected to the organic transparent conductive layer.

Description

太陽能電池及其製作方法 Solar cell and manufacturing method thereof

本發明係提供一種太陽能電池及其製作方法,尤指一種具有高光電轉換效率之太陽能電池及其製作方法。 The invention provides a solar cell and a manufacturing method thereof, in particular to a solar cell with high photoelectric conversion efficiency and a manufacturing method thereof.

現今人類使用的能源主要來自於石油資源、煤礦、天然氣以及核能等,其中石油資源的蘊藏量經長年不斷的開採已逐漸消耗殆盡,煤礦與天然氣因為高二氧化碳排放量而會產生空氣污染與溫室效應等問題,而核能的高風險也令人擔憂,因此尋求替代性能源的呼聲在近年來不斷升高。在包括風力、潮汐以及太陽能等替代性能源中,以太陽能的發展最具有潛力,而目前許多國家皆已投入太陽能發電技術的研發工作。 The energy used by human beings today mainly comes from petroleum resources, coal mines, natural gas and nuclear energy. The reserves of petroleum resources have been gradually depleted after years of continuous mining. Coal mines and natural gas will generate air pollution and greenhouses due to high carbon dioxide emissions. Problems such as effects, and the high risk of nuclear energy are also worrying, so the call for alternative energy sources has been rising in recent years. Among the alternative energy sources including wind power, tides and solar energy, the development of solar energy has the most potential, and many countries have invested in the research and development of solar power technology.

太陽能發電的原理是利用光伏效應(photovoltaic effect,PV effect)將太陽光照射在光電轉換材料上而轉換成可直接使用的電能。目前,由於光電轉換效率偏低以及製作成本過高,使得太陽能電池仍然無法有效取代傳統能源,成為太陽能電池的發展上的瓶頸。 The principle of solar power generation is to use photovoltaic effect (PV effect) to convert sunlight into photoelectric conversion material and convert it into direct-use electric energy. At present, due to the low photoelectric conversion efficiency and high production cost, solar cells are still unable to effectively replace traditional energy sources and become a bottleneck in the development of solar cells.

本發明之目的之一在於提供一種具有高光電轉換效率之太陽能電池及其製作方法。 One of the objects of the present invention is to provide a solar cell having high photoelectric conversion efficiency and a method of fabricating the same.

本發明之一實施例提供一種製作太陽能電池之方法,包括下列步驟。提供一光電轉換結構。於光電轉換結構之一表面上形成一無機透明導電 層。於無機透明導電層之一表面上形成一有機透明導電層。於有機透明導電層之一表面上形成一圖案化透明保護層,其中圖案化透明保護層具有一開口,部分暴露出有機透明導電層之表面。利用有機透明導電層作為一晶種層進行一電鍍製程,於圖案化透明保護層之開口內形成一電極,其中電極與有機透明導電層接觸並電性連接。 One embodiment of the present invention provides a method of fabricating a solar cell comprising the following steps. A photoelectric conversion structure is provided. Forming an inorganic transparent conductive on one surface of the photoelectric conversion structure Floor. An organic transparent conductive layer is formed on one surface of the inorganic transparent conductive layer. Forming a patterned transparent protective layer on one surface of the organic transparent conductive layer, wherein the patterned transparent protective layer has an opening partially exposing the surface of the organic transparent conductive layer. An electroplating process is performed by using the organic transparent conductive layer as a seed layer, and an electrode is formed in the opening of the patterned transparent protective layer, wherein the electrode is in contact with and electrically connected to the organic transparent conductive layer.

本發明之另一實施例提供一種太陽能電池,包括一光電轉換結構、一無機透明導電層、一有機透明導電層、一圖案化透明保護層以及一電極。無機透明導電層設置於光電轉換結構之一表面上。有機透明導電層設置於無機透明導電層之一表面上。圖案化透明保護層設置於有機透明導電層之一表面上,其中圖案化透明保護層具有一開口,部分暴露出有機透明導電層之表面。電極設置於圖案化透明保護層之開口內,其中電極與有機透明導電層接觸並電性連接。 Another embodiment of the present invention provides a solar cell including a photoelectric conversion structure, an inorganic transparent conductive layer, an organic transparent conductive layer, a patterned transparent protective layer, and an electrode. The inorganic transparent conductive layer is disposed on one surface of the photoelectric conversion structure. The organic transparent conductive layer is disposed on one surface of the inorganic transparent conductive layer. The patterned transparent protective layer is disposed on a surface of the organic transparent conductive layer, wherein the patterned transparent protective layer has an opening partially exposing the surface of the organic transparent conductive layer. The electrode is disposed in the opening of the patterned transparent protective layer, wherein the electrode is in contact with and electrically connected to the organic transparent conductive layer.

本發明之製作太陽能電池之方法係利用圖案化透明保護層作為定義電極之位置的阻擋層,且於製作出電極之後,圖案化透明保護層係保留於有機透明導電層之表面上而不必加以移除,因此可以減少製程時間與成本。再者,圖案化透明保護層、有機透明導電層與無機透明導電層均具有高穿透率特性,且三者的折射率係以遞增方式搭配,因此入射光係由折射率較小的膜層進入折射率較大的膜層,故可以減少反射並有效增加入光量,並可以增加短路電流密度,進而提升太陽能電池的光電轉換效率。另外,電極與無機透明導電層係分別與有機透明導電層接觸並經由有機透明導電層電性連接,因此接觸電阻較低,故可提升填充因子,進而提升太陽能電池的光電轉換效率。 The method for fabricating a solar cell of the present invention utilizes a patterned transparent protective layer as a barrier layer defining the position of the electrode, and after the electrode is formed, the patterned transparent protective layer remains on the surface of the organic transparent conductive layer without being removed. In addition, it can reduce process time and cost. Furthermore, the patterned transparent protective layer, the organic transparent conductive layer and the inorganic transparent conductive layer all have high transmittance characteristics, and the refractive indices of the three are matched in an incremental manner, so that the incident light is made of a film having a smaller refractive index. Entering the film with a large refractive index, the reflection can be reduced and the amount of light entering can be effectively increased, and the short-circuit current density can be increased, thereby improving the photoelectric conversion efficiency of the solar cell. In addition, the electrode and the inorganic transparent conductive layer are respectively in contact with the organic transparent conductive layer and electrically connected via the organic transparent conductive layer, so that the contact resistance is low, so that the filling factor can be improved, thereby improving the photoelectric conversion efficiency of the solar cell.

10‧‧‧半導體基底 10‧‧‧Semiconductor substrate

101‧‧‧第一表面 101‧‧‧ first surface

102‧‧‧第二表面 102‧‧‧ second surface

12‧‧‧第一本徵半導體層 12‧‧‧First intrinsic semiconductor layer

14‧‧‧第二本徵半導體層 14‧‧‧Second intrinsic semiconductor layer

16‧‧‧第一非本徵半導體層 16‧‧‧First extrinsic semiconductor layer

18‧‧‧第二非本徵半導體層 18‧‧‧Second extrinsic semiconductor layer

20‧‧‧光電轉換結構 20‧‧‧ photoelectric conversion structure

201‧‧‧表面 201‧‧‧ surface

202‧‧‧表面 202‧‧‧ surface

22‧‧‧第一無機透明導電層 22‧‧‧First inorganic transparent conductive layer

24‧‧‧第二無機透明導電層 24‧‧‧Second inorganic transparent conductive layer

221‧‧‧表面 221‧‧‧ surface

241‧‧‧表面 241‧‧‧ surface

26‧‧‧第一有機透明導電層 26‧‧‧First organic transparent conductive layer

28‧‧‧第二有機透明導電層 28‧‧‧Second organic transparent conductive layer

261‧‧‧表面 261‧‧‧ surface

281‧‧‧表面 281‧‧‧ surface

30‧‧‧第一圖案化透明保護層 30‧‧‧First patterned transparent protective layer

30A‧‧‧開口 30A‧‧‧ openings

32‧‧‧第二圖案化透明保護層 32‧‧‧Second patterned transparent protective layer

32A‧‧‧開口 32A‧‧‧ openings

34‧‧‧第一電極 34‧‧‧First electrode

341‧‧‧第一導電結構 341‧‧‧First conductive structure

342‧‧‧第二導電結構 342‧‧‧Second conductive structure

36‧‧‧第二電極 36‧‧‧second electrode

361‧‧‧第一導電結構 361‧‧‧First conductive structure

362‧‧‧二導電結構 362‧‧‧Two conductive structures

40‧‧‧太陽能電池 40‧‧‧ solar cells

50‧‧‧太陽能電池 50‧‧‧ solar cells

第1圖至第7圖繪示了本發明之第一實施例之製作太陽能電池之方法示意圖。 1 to 7 are schematic views showing a method of fabricating a solar cell according to a first embodiment of the present invention.

第8圖繪示了本發明之第二實施例之製作太陽能電池之方法示意圖。 FIG. 8 is a schematic view showing a method of fabricating a solar cell according to a second embodiment of the present invention.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .

請參考第1圖至第7圖。第1圖至第7圖繪示了本發明之第一實施例之製作太陽能電池之方法示意圖,其中第1圖至第6圖係以剖面型式繪示,而第7圖係以立體型式繪示。如第1圖所示,首先提供一半導體基底10,其中半導體基底10具有彼此相對之一第一表面101與一第二表面102。半導體基底10可包括一矽基底,其可為單晶矽基底、非晶矽基底、多晶矽基底、微晶矽基底或其它具有不同晶格排列之矽基底或半導體基底。在本實施例中,半導體基底10係選用單晶矽基底,但不以此為限。接著,可選擇性地對半導體基底10進行一粗糙化(texture)製程,以使得第一表面101與第二表面102形成粗糙化表面(textured surface),其中粗糙化表面可以降低入射光的反射,藉此增加入光量,進而提升光電轉換效率。粗糙化製程可包括一蝕刻製程,例如一溼式蝕刻制程或一乾式溼刻製程,但不以此為限。在本實施例中,半導體基底10具有一第一摻雜類型,例如n型,但不以此為限。隨後,可選擇性地在半導體基底10之第一表面101與第二表面102上分別形成一第一本徵(intrinsic)半導體層12與一第二本徵半導體層14。第一本徵半導體層12與第二本徵半導體層14係為未摻雜之半導體層,其材料可包括例如單晶矽、非晶矽、多晶矽、微晶矽或其它具有不同晶格排列之矽或半導體材料。在本實施例中,第一本徵半導體層12與第二本徵半導體層14係分別為一非晶矽層。 Please refer to Figures 1 to 7. 1 to 7 are schematic views showing a method of fabricating a solar cell according to a first embodiment of the present invention, wherein the first to sixth figures are shown in a sectional form, and the seventh figure is shown in a three-dimensional form. . As shown in FIG. 1, a semiconductor substrate 10 is first provided, wherein the semiconductor substrate 10 has a first surface 101 and a second surface 102 opposite to each other. The semiconductor substrate 10 can include a germanium substrate, which can be a single crystal germanium substrate, an amorphous germanium substrate, a polycrystalline germanium substrate, a microcrystalline germanium substrate, or other germanium or semiconductor substrates having different lattice arrangements. In the present embodiment, the semiconductor substrate 10 is a single crystal germanium substrate, but is not limited thereto. Next, a semiconductor process can be selectively performed on the semiconductor substrate 10 such that the first surface 101 and the second surface 102 form a textured surface, wherein the roughened surface can reduce the reflection of incident light. Thereby increasing the amount of light incident, thereby increasing the photoelectric conversion efficiency. The roughening process may include an etching process, such as a wet etching process or a dry wet etching process, but is not limited thereto. In this embodiment, the semiconductor substrate 10 has a first doping type, such as an n-type, but is not limited thereto. Subsequently, a first intrinsic semiconductor layer 12 and a second intrinsic semiconductor layer 14 are selectively formed on the first surface 101 and the second surface 102 of the semiconductor substrate 10, respectively. The first intrinsic semiconductor layer 12 and the second intrinsic semiconductor layer 14 are undoped semiconductor layers, and the material thereof may include, for example, single crystal germanium, amorphous germanium, polycrystalline germanium, microcrystalline germanium or the like having different lattice arrangements.矽 or semiconductor materials. In this embodiment, the first intrinsic semiconductor layer 12 and the second intrinsic semiconductor layer 14 are respectively an amorphous germanium layer.

如第2圖所示,接著於第一本徵半導體層12上形成一第一非本徵 (extrinsic)半導體層16,其中第一非本徵半導體層16具有一第二摻雜型式,例如p型。非第一本徵半導體層16之材料可包括例如單晶矽、非晶矽、多晶矽、微晶矽或其它具有不同晶格排列之矽或半導體材料。在本實施例中,第一非本徵半導體層16之材料係選用非晶矽。此外,可選擇性地於第二本徵半導體層14上形成一第二非本徵半導體層18,其中第二非本徵半導體層18具有第一摻雜型式,例如n型。第二非本徵半導體層18之材料可包括例如單晶矽、非晶矽、多晶矽、微晶矽或其它具有不同晶格排列之矽或半導體材料。在本實施例中,第二非本徵半導體層18之材料係選用非晶矽。至此,半導體基底10、第一本徵半導體層、第二本徵半導體層14、第一非本徵半導體層16以及第二非本徵半導體層18構成本實施例之光電轉換結構20。在本實施例中,光電轉換結構20係為非晶矽/微晶矽結構異質接面(Heterojunction with Intrinsic Thin-layer,HIT)光電轉換結構,其具有高光電轉換效率、在高溫下的操作效率損失較小與高開路電壓等優點。在其它變化實施例中,電轉換結構也可選用同質接面光電轉換結構、銅銦鎵硒(CIGS)光電轉換結構、有機染料(dye-sensitized)光電轉換結構或其它型式之矽基型或薄膜型光電轉換結構。 As shown in FIG. 2, a first extinction is then formed on the first intrinsic semiconductor layer 12. (extrinsic) semiconductor layer 16, wherein first extrinsic semiconductor layer 16 has a second doped version, such as p-type. The material of the non-first intrinsic semiconductor layer 16 may include, for example, single crystal germanium, amorphous germanium, polycrystalline germanium, microcrystalline germanium or other germanium or semiconductor materials having different lattice arrangements. In the present embodiment, the material of the first extrinsic semiconductor layer 16 is made of amorphous germanium. Additionally, a second extrinsic semiconductor layer 18 can be selectively formed over the second intrinsic semiconductor layer 14, wherein the second extrinsic semiconductor layer 18 has a first doped pattern, such as an n-type. The material of the second extrinsic semiconductor layer 18 may include, for example, single crystal germanium, amorphous germanium, polycrystalline germanium, microcrystalline germanium or other germanium or semiconductor materials having different lattice arrangements. In the present embodiment, the material of the second extrinsic semiconductor layer 18 is made of amorphous germanium. Thus far, the semiconductor substrate 10, the first intrinsic semiconductor layer, the second intrinsic semiconductor layer 14, the first extrinsic semiconductor layer 16, and the second extrinsic semiconductor layer 18 constitute the photoelectric conversion structure 20 of the present embodiment. In this embodiment, the photoelectric conversion structure 20 is an amorphous/microcrystalline junction-inductive thin-layer (HIT) photoelectric conversion structure, which has high photoelectric conversion efficiency and operating efficiency at high temperatures. The advantages of less loss and high open circuit voltage. In other variant embodiments, the electrical conversion structure may also be selected from a homojunction photoelectric conversion structure, a copper indium gallium selenide (CIGS) photoelectric conversion structure, an organic dye (dye-sensitized) photoelectric conversion structure or other types of ruthenium-based or thin films. Type photoelectric conversion structure.

如第3圖所示,隨後於光電轉換結構20之一表面201與另一表面202上分別形成一第一無機透明導電層22與一第二無機透明導電層24。第一無機透明導電層22與第二無機透明導電層24之材料可包括氧化銦錫(indium tin oxide,ITO)、氧化鎵銦錫(gallium indium tin oxide,GITO)、氧化鋅銦錫(zincindium tin oxide,ZITO)、氧化錫摻氟(fluorine-doped tin oxide,FTO)、氧化鋅(ZnO)、氧化鋁鋅[AZO(Al:ZnO)]與氧化銦鋅(IZO)之其中至少一者,或其它適合之無機透明導電材料。此外,第二無機透明導電層24與第一無機透明導電層22可選用相同或不同之無機透明導電材料。 As shown in FIG. 3, a first inorganic transparent conductive layer 22 and a second inorganic transparent conductive layer 24 are formed on the surface 201 and the other surface 202 of the photoelectric conversion structure 20, respectively. The material of the first inorganic transparent conductive layer 22 and the second inorganic transparent conductive layer 24 may include indium tin oxide (ITO), gallium indium tin oxide (GITO), zinc indium tin oxide (zincindium tin) Oxide, ZITO), at least one of fluorine-doped tin oxide (FTO), zinc oxide (ZnO), aluminum zinc oxide [AZO (Al: ZnO)], and indium zinc oxide (IZO), or Other suitable inorganic transparent conductive materials. In addition, the second inorganic transparent conductive layer 24 and the first inorganic transparent conductive layer 22 may be the same or different inorganic transparent conductive materials.

如第4圖所示,接著於第一無機透明導電層22之表面221上形成 一第一有機透明導電層26。第一有機透明導電層26具有導電及高透光的特性,其透光率係大於95%且小於100%。舉例而言,第一有機透明導電層26之材料可包括(3,4-二氧乙基噻吩)/聚(對苯乙烯磺酸)(PEDOT:PSS)、銅-青素(copper phthalocyanine,CuPc)與4,4',4"-三偶-氮-萘-氮-苯胺-三苯胺(4,4',4"-tris-N-naphthyl-N-phenylamino-triphenylamine,TNATA)之其中至少一者,但不以此為限。本實施例係以製作穿透式太陽能電池之方法為範例,因此可於第二無機透明導電層24之表面241上形成一第二有機透明導電層28,其中第二有機透明導電層28與第一有機透明導電層26可選用相同或不同之有機透明導電材料。 Formed on the surface 221 of the first inorganic transparent conductive layer 22 as shown in FIG. A first organic transparent conductive layer 26. The first organic transparent conductive layer 26 has electrical conductivity and high light transmission characteristics, and its light transmittance is greater than 95% and less than 100%. For example, the material of the first organic transparent conductive layer 26 may include (3,4-dioxyethylthiophene)/poly(p-styrenesulfonic acid) (PEDOT:PSS), copper-phthalocyanine (CuPc). And at least one of 4,4',4"-tris-N-naphthyl-N-phenylamino-triphenylamine (TNATA), 4,4',4"-tris-N-naphthyl-N-phenylamino-triphenylamine (TNATA) But not limited to this. In this embodiment, a method for fabricating a transmissive solar cell is taken as an example. Therefore, a second organic transparent conductive layer 28 can be formed on the surface 241 of the second inorganic transparent conductive layer 24, wherein the second organic transparent conductive layer 28 and the first An organic transparent conductive layer 26 may be selected from the same or different organic transparent conductive materials.

如第5圖所示,隨後於第一有機透明導電層26之一表面261上形成一第一圖案化透明保護層30。第一圖案化透明保護層30具有至少一開口30A,部分暴露出第一有機透明導電層26之表面261。第一圖案化透明保護層30具有高透光特性,其透光率係大於95%且小於100%。舉例而言,第一圖案化透明保護層30之材料可包括矽膠(silicone),但不以此為限。第一圖案化透明保護層30的製作可先於第一有機透明導電層26上形成一透明保護層,再利用一微影蝕刻製程定義出開口30A。在一變化實施例中,第一圖案化透明保護層30亦可利用一印刷製程或一噴墨製程直接形成於第一有機透明導電層26上。或者在另一變化實施例中,若第一圖案化透明保護層30係選用感光材料例如光阻材料,則可先於第一有機透明導電層26上形成一透明保護層,再利用一曝光顯影製程定義出開口30A。在本實施例中,第一圖案化透明保護層30可具有平坦化之表面,但不以此為限。另外,可選擇性地於第二有機透明導電層28之一表面281上形成一第二圖案化透明保護層32,其中第二圖案化透明保護層32具有至少一開口32A,部分暴露出第二有機透明導電層28之表面281。第二圖案化透明保護層32與第一圖案化透明保護層30可選用相同或不同之透明絕緣材料,且可使用相同的製程形成。 As shown in FIG. 5, a first patterned transparent protective layer 30 is then formed on one surface 261 of the first organic transparent conductive layer 26. The first patterned transparent protective layer 30 has at least one opening 30A partially exposing the surface 261 of the first organic transparent conductive layer 26. The first patterned transparent protective layer 30 has a high light transmission property, and its light transmittance is more than 95% and less than 100%. For example, the material of the first patterned transparent protective layer 30 may include silicone, but is not limited thereto. The first patterned transparent protective layer 30 can be formed on the first organic transparent conductive layer 26 to form a transparent protective layer, and the opening 30A is defined by a photolithography etching process. In a variant embodiment, the first patterned transparent protective layer 30 can also be formed directly on the first organic transparent conductive layer 26 by a printing process or an inkjet process. Or in another modified embodiment, if the first patterned transparent protective layer 30 is made of a photosensitive material such as a photoresist material, a transparent protective layer may be formed on the first organic transparent conductive layer 26, and then exposed and developed. The process defines an opening 30A. In this embodiment, the first patterned transparent protective layer 30 may have a planarized surface, but is not limited thereto. In addition, a second patterned transparent protective layer 32 may be selectively formed on one surface 281 of the second organic transparent conductive layer 28, wherein the second patterned transparent protective layer 32 has at least one opening 32A, and a second portion is partially exposed. The surface 281 of the organic transparent conductive layer 28. The second patterned transparent protective layer 32 and the first patterned transparent protective layer 30 may be selected from the same or different transparent insulating materials, and may be formed using the same process.

如第6圖與第7圖所示,隨後利用第一有機透明導電層26與第二有機透明導電層28作為晶種層進行電鍍製程,於第一圖案化透明保護層30之開口30A內形成一第一電極34,以及於第二圖案化透明保護層32之開口32A內形成一第二電極36。第一電極34與第一有機透明導電層26接觸並電性連接,而第二電極36則與第二有機透明導電層28接觸並電性連接。在本實施例中,第一電極34包括一第一導電結構341與一第二導電結構342,其中第一導電結構341係與第一有機透明導電層26接觸,且第二導電結構342係堆疊於第一導電結構341上並與第一導電結構341接觸。第一導電結構341之材料可選用具有良好導電性之金屬或合金,例如銅。第二導電結構342可用來保護第一導電結構341並避免第一導電結構341氧化,且較佳可具有低熔點而有利於多個太陽能電池40之間的串銲(string)。舉例而言,第二導電結構342之材料可為金屬或合金,在本實施例中,第二導電結構342之材料係選用錫,但不以此為限。另外,第二電極36也可包括一第一導電結構361與一第二導電結構362,其中第一導電結構361與第二導電結構362之材料可分別與第一導電結構341與第二導電結構342相同,但不以此為限。 As shown in FIG. 6 and FIG. 7 , the first organic transparent conductive layer 26 and the second organic transparent conductive layer 28 are used as a seed layer to perform an electroplating process, and are formed in the opening 30A of the first patterned transparent protective layer 30 . A first electrode 34 and a second electrode 36 are formed in the opening 32A of the second patterned transparent protective layer 32. The first electrode 34 is in contact with and electrically connected to the first organic transparent conductive layer 26, and the second electrode 36 is in contact with and electrically connected to the second organic transparent conductive layer 28. In this embodiment, the first electrode 34 includes a first conductive structure 341 and a second conductive structure 342, wherein the first conductive structure 341 is in contact with the first organic transparent conductive layer 26, and the second conductive structure 342 is stacked. On the first conductive structure 341 and in contact with the first conductive structure 341. The material of the first conductive structure 341 may be selected from a metal or alloy having good conductivity, such as copper. The second conductive structure 342 can be used to protect the first conductive structure 341 and avoid oxidation of the first conductive structure 341, and preferably has a low melting point to facilitate stringing between the plurality of solar cells 40. For example, the material of the second conductive structure 342 may be a metal or an alloy. In the embodiment, the material of the second conductive structure 342 is tin, but not limited thereto. In addition, the second electrode 36 may also include a first conductive structure 361 and a second conductive structure 362, wherein the materials of the first conductive structure 361 and the second conductive structure 362 may be respectively associated with the first conductive structure 341 and the second conductive structure 342 is the same, but not limited to this.

如第6圖與第7圖所示,藉由上述方法可製作出本實施例之太陽能電池40。本實施例之太陽能電池40包括光電轉換結構20、無機透明導電層(可包括第一無機透明導電層22與第二無機透明導電層24)、有機透明導電層(可包括第一有機透明導電層26與第二有機透明導電層28)、圖案化透明保護層(可包括第一圖案化透明保護層30與第二圖案化透明保護層32)以及電極(可包括第一電極34與第二電極36)。在本實施例中,光電轉換結構之表面201與表面202均分別設置有無機透明導電層、有機透明導電層、圖案化透明保護層與電極,也就是說,光電轉換結構20之表面201上依序設置有第一無機透明導電層22、第一有機透明導電層26、第一圖案化透明保護層30與第一 電極34,且光電轉換結構之表面202上依序設置有第二無機透明導電層24、第二有機透明導電層28、第二圖案化透明保護層32與第二電極36。本實施例之太陽能電池40及其製作方法並不以此為限。舉例而言,在一變化實施例中,可僅於光電轉換結構20之其中一個表面形成無機透明導電層、有機透明導電層、圖案化透明保護層與電極。另外,無機透明導電層、有機透明導電層、圖案化透明保護層與電極等膜層與元件的材料與相關特性如前文所述,在此不再贅述。 As shown in Figs. 6 and 7, the solar cell 40 of the present embodiment can be fabricated by the above method. The solar cell 40 of the present embodiment includes a photoelectric conversion structure 20, an inorganic transparent conductive layer (which may include a first inorganic transparent conductive layer 22 and a second inorganic transparent conductive layer 24), and an organic transparent conductive layer (which may include a first organic transparent conductive layer) 26 and a second organic transparent conductive layer 28), a patterned transparent protective layer (which may include a first patterned transparent protective layer 30 and a second patterned transparent protective layer 32), and an electrode (which may include a first electrode 34 and a second electrode) 36). In this embodiment, the surface 201 and the surface 202 of the photoelectric conversion structure are respectively provided with an inorganic transparent conductive layer, an organic transparent conductive layer, a patterned transparent protective layer and an electrode, that is, the surface 201 of the photoelectric conversion structure 20 is The first inorganic transparent conductive layer 22, the first organic transparent conductive layer 26, the first patterned transparent protective layer 30 and the first The electrode 34 and the surface 202 of the photoelectric conversion structure are sequentially provided with a second inorganic transparent conductive layer 24, a second organic transparent conductive layer 28, a second patterned transparent protective layer 32 and a second electrode 36. The solar cell 40 of the present embodiment and the manufacturing method thereof are not limited thereto. For example, in a variant embodiment, the inorganic transparent conductive layer, the organic transparent conductive layer, the patterned transparent protective layer and the electrode may be formed only on one surface of the photoelectric conversion structure 20. In addition, the materials and related characteristics of the inorganic transparent conductive layer, the organic transparent conductive layer, the patterned transparent protective layer and the electrode layer and the like are as described above, and are not described herein again.

在本實施例中,第一圖案化透明保護層30具有定義第一電極34之位置的作用,且於製作出第一電極34之後,第一圖案化透明保護層30係保留於第一有機透明導電層26之表面261上而不必加以移除,因此可以減少製程時間與成本。再者,第一電極34的剖面大體上會接近矩形,其具有接近垂直的側壁,而不是常見的蘑菇形(傘形),因此其面積較小而可以減少光反射量。第一電極34會被第一圖案化透明保護層30所環繞,故可以避免第一電極34產生脫落。此外,第一無機透明導電層22具有一第一折射率,第一有機透明導電層26具有一第二折射率,且第一圖案化透明保護層30具有一第三折射率,其中第一折射率大於第二折射率,且第二折射率大於第三折射率。舉例而言,第一折射率可約為2,第二折射率可約為1.6,且第三折射率可約為1.4。在本實施例中,光電轉換結構20之表面201是入光面,藉由上述折射率的搭配,入射光係由折射率較小的膜層進入折射率較大的膜層,可以減少反射並有效增加入光量,因此可以增加短路電流密度(Jsc),進而提升太陽能電池40的光電轉換效率。再者,第一電極34與第一無機透明導電層22不是直接接觸,而是分別與第一有機透明導電層26接觸並經由第一有機透明導電層26電性連接,因此接觸電阻較低,故可提升填充因子(fill factor,FF),進而提升太陽能電池40的光電轉換效率。 In this embodiment, the first patterned transparent protective layer 30 has the function of defining the position of the first electrode 34, and after the first electrode 34 is formed, the first patterned transparent protective layer 30 remains in the first organic transparent The surface 261 of the conductive layer 26 does not have to be removed, so that process time and cost can be reduced. Further, the cross section of the first electrode 34 is substantially close to a rectangle having a nearly vertical side wall instead of a common mushroom shape (umbrella shape), so that the area thereof is small to reduce the amount of light reflection. The first electrode 34 is surrounded by the first patterned transparent protective layer 30, so that the first electrode 34 can be prevented from falling off. In addition, the first inorganic transparent conductive layer 22 has a first refractive index, the first organic transparent conductive layer 26 has a second refractive index, and the first patterned transparent protective layer 30 has a third refractive index, wherein the first refractive index The rate is greater than the second index of refraction and the second index of refraction is greater than the third index of refraction For example, the first index of refraction can be about 2, the second index of refraction can be about 1.6, and the third index of refraction can be about 1.4. In this embodiment, the surface 201 of the photoelectric conversion structure 20 is a light incident surface. By the combination of the above refractive indexes, the incident light is entered into the film layer having a larger refractive index from the film layer having a smaller refractive index, thereby reducing reflection and The amount of incident light is effectively increased, so that the short-circuit current density (Jsc) can be increased, thereby improving the photoelectric conversion efficiency of the solar cell 40. Furthermore, the first electrode 34 is not in direct contact with the first inorganic transparent conductive layer 22, but is in contact with the first organic transparent conductive layer 26 and electrically connected via the first organic transparent conductive layer 26, so that the contact resistance is low. Therefore, the fill factor (FF) can be increased, thereby improving the photoelectric conversion efficiency of the solar cell 40.

請參考第8圖。第8圖繪示了本發明之第二實施例之製作太陽能電池之方法示意圖。如第8圖所示,本實例係揭示製作反射式太陽能電池之方法,因此不同於第一實施例於光電轉換結構20表面202上依序形成第二有機透明導電層28、第二圖案化透明保護層32以及第二電極36的作法,本實施例之製作太陽能電池之方法係於光電轉換結構20之表面202上分別形成第二無機透明導電層24之後,再於第二無機透明導電層24之表面241形成整面之第二電極36,以形成本實施例之太陽能電池50。在本實施例之太陽能電池50中,光電轉換結構20之表面201上依序設置有第一無機透明導電層22、第一有機透明導電層26、第一圖案化透明保護層30與第一電極34,而光電轉換結構20之表面202上依序設置有第二無機透明導電層24與第二有機透明導電層28,與前述實施例相同。不同於前述實施例之處在於,光電轉換結構20之表面202上可不設置圖案化透明保護層32,且第二電極36為整面電極,其可作為反射層之用,以增加光利用率。 Please refer to Figure 8. FIG. 8 is a schematic view showing a method of fabricating a solar cell according to a second embodiment of the present invention. As shown in FIG. 8, the present example discloses a method of fabricating a reflective solar cell. Therefore, the second organic transparent conductive layer 28 and the second patterned transparent layer are sequentially formed on the surface 202 of the photoelectric conversion structure 20 differently from the first embodiment. The method of fabricating the solar cell is to form the second inorganic transparent conductive layer 24 on the surface 202 of the photoelectric conversion structure 20, and then to the second inorganic transparent conductive layer 24. The surface 241 forms the entire surface of the second electrode 36 to form the solar cell 50 of the present embodiment. In the solar cell 50 of the present embodiment, the first inorganic transparent conductive layer 22, the first organic transparent conductive layer 26, the first patterned transparent protective layer 30 and the first electrode are sequentially disposed on the surface 201 of the photoelectric conversion structure 20. 34. The second inorganic transparent conductive layer 24 and the second organic transparent conductive layer 28 are sequentially disposed on the surface 202 of the photoelectric conversion structure 20, which are the same as the foregoing embodiment. Different from the foregoing embodiment, the patterned transparent protective layer 32 may not be disposed on the surface 202 of the photoelectric conversion structure 20, and the second electrode 36 is a full-surface electrode, which may be used as a reflective layer to increase light utilization efficiency.

綜上所述,本發明之製作太陽能電池之方法係利用圖案化透明保護層作為定義電極之位置的阻擋層,且於製作出電極之後,圖案化透明保護層係保留於有機透明導電層之表面上而不必加以移除,因此可以減少製程時間與成本。此外,電極會被圖案化透明保護層所環繞,故可以避免電極產生脫落。再者,圖案化透明保護層、有機透明導電層與無機透明導電層均具有高穿透率特性,且三者的折射率係以遞增方式搭配,因此入射光係由折射率較小的膜層進入折射率較大的膜層,故可以減少反射並有效增加入光量,並可以增加短路電流密度,進而提升太陽能電池的光電轉換效率。另外,電極與無機透明導電層係分別與有機透明導電層接觸並經由有機透明導電層電性連接,因此接觸電阻較低,故可提升填充因子,進而提升太陽能電池的光電轉換效率。 In summary, the method for fabricating a solar cell of the present invention utilizes a patterned transparent protective layer as a barrier layer defining the position of the electrode, and after the electrode is formed, the patterned transparent protective layer remains on the surface of the organic transparent conductive layer. It does not have to be removed, so process time and cost can be reduced. In addition, the electrode is surrounded by the patterned transparent protective layer, so that the electrode can be prevented from falling off. Furthermore, the patterned transparent protective layer, the organic transparent conductive layer and the inorganic transparent conductive layer all have high transmittance characteristics, and the refractive indices of the three are matched in an incremental manner, so that the incident light is made of a film having a smaller refractive index. Entering the film with a large refractive index, the reflection can be reduced and the amount of light entering can be effectively increased, and the short-circuit current density can be increased, thereby improving the photoelectric conversion efficiency of the solar cell. In addition, the electrode and the inorganic transparent conductive layer are respectively in contact with the organic transparent conductive layer and electrically connected via the organic transparent conductive layer, so that the contact resistance is low, so that the filling factor can be improved, thereby improving the photoelectric conversion efficiency of the solar cell.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所 做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above description is only a preferred embodiment of the present invention, and the scope of the patent application according to the present invention is Equal variations and modifications are intended to be within the scope of the present invention.

10‧‧‧半導體基底 10‧‧‧Semiconductor substrate

101‧‧‧第一表面 101‧‧‧ first surface

102‧‧‧第二表面 102‧‧‧ second surface

12‧‧‧第一本徵半導體層 12‧‧‧First intrinsic semiconductor layer

14‧‧‧第二本徵半導體層 14‧‧‧Second intrinsic semiconductor layer

16‧‧‧第一非本徵半導體層 16‧‧‧First extrinsic semiconductor layer

18‧‧‧第二非本徵半導體層 18‧‧‧Second extrinsic semiconductor layer

20‧‧‧光電轉換結構 20‧‧‧ photoelectric conversion structure

201‧‧‧表面 201‧‧‧ surface

202‧‧‧表面 202‧‧‧ surface

22‧‧‧第一無機透明導電層 22‧‧‧First inorganic transparent conductive layer

24‧‧‧第二無機透明導電層 24‧‧‧Second inorganic transparent conductive layer

221‧‧‧表面 221‧‧‧ surface

241‧‧‧表面 241‧‧‧ surface

26‧‧‧第一有機透明導電層 26‧‧‧First organic transparent conductive layer

28‧‧‧第二有機透明導電層 28‧‧‧Second organic transparent conductive layer

261‧‧‧表面 261‧‧‧ surface

281‧‧‧表面 281‧‧‧ surface

30‧‧‧第一圖案化透明保護層 30‧‧‧First patterned transparent protective layer

30A‧‧‧開口 30A‧‧‧ openings

32‧‧‧第二圖案化透明保護層 32‧‧‧Second patterned transparent protective layer

32A‧‧‧開口 32A‧‧‧ openings

34‧‧‧第一電極 34‧‧‧First electrode

341‧‧‧第一導電結構 341‧‧‧First conductive structure

342‧‧‧第二導電結構 342‧‧‧Second conductive structure

36‧‧‧第二電極 36‧‧‧second electrode

361‧‧‧第一導電結構 361‧‧‧First conductive structure

362‧‧‧二導電結構 362‧‧‧Two conductive structures

40‧‧‧太陽能電池 40‧‧‧ solar cells

Claims (18)

一種製作太陽能電池之方法,包括:提供一光電轉換結構;於該光電轉換結構之一表面上形成一無機透明導電層;於該無機透明導電層之一表面上形成一有機透明導電層;於該有機透明導電層之一表面上形成一圖案化透明保護層,其中該圖案化透明保護層具有一開口,部分暴露出該有機透明導電層之該表面;以及利用該有機透明導電層作為一晶種層進行一電鍍製程,於該圖案化透明保護層之該開口內形成一電極,其中該電極與該有機透明導電層接觸並電性連接。 A method for fabricating a solar cell, comprising: providing a photoelectric conversion structure; forming an inorganic transparent conductive layer on one surface of the photoelectric conversion structure; forming an organic transparent conductive layer on a surface of the inorganic transparent conductive layer; Forming a patterned transparent protective layer on one surface of the organic transparent conductive layer, wherein the patterned transparent protective layer has an opening partially exposing the surface of the organic transparent conductive layer; and using the organic transparent conductive layer as a seed crystal The layer is subjected to an electroplating process, and an electrode is formed in the opening of the patterned transparent protective layer, wherein the electrode is in contact with the organic transparent conductive layer and is electrically connected. 如請求項1所述之製作太陽能電池之方法,其中該無機透明導電層具有一第一折射率,該有機透明導電層具有一第二折射率,該圖案化透明保護層具有一第三折射率,該第一折射率大於該第二折射率,且該第二折射率大於該第三折射率。 The method of producing a solar cell according to claim 1, wherein the inorganic transparent conductive layer has a first refractive index, the organic transparent conductive layer has a second refractive index, and the patterned transparent protective layer has a third refractive index. The first refractive index is greater than the second refractive index, and the second refractive index is greater than the third refractive index. 如請求項1所述之製作太陽能電池之方法,其中該無機透明導電層之材料包括氧化銦錫(indium tin oxide,ITO)、氧化鎵銦錫(gallium indium tin oxide,GITO)、氧化鋅銦錫(zinc indium tin oxide,ZITO)、氧化錫摻氟(fluorine-doped tin oxide,FTO)、氧化鋅(ZnO)、氧化鋁鋅[AZO(Al:ZnO)]與氧化銦鋅(IZO)之其中至少一者。 The method for fabricating a solar cell according to claim 1, wherein the material of the inorganic transparent conductive layer comprises indium tin oxide (ITO), gallium indium tin oxide (GITO), zinc indium tin oxide. (zinc indium tin oxide, ZITO), fluorine-doped tin oxide (FTO), zinc oxide (ZnO), aluminum zinc oxide [AZO (Al: ZnO)] and at least zinc indium oxide (IZO) One. 如請求項1所述之製作太陽能電池之方法,其中該有機透明導電層之材料包括(3,4-二氧乙基噻吩)/聚(對苯乙烯磺酸)(PEDOT:PSS)、銅-青素(copper phthalocyanine,CuPc)、4,4',4"-三偶-氮-萘-氮-苯胺-三苯胺 (4,4',4"-tris-N-naphthyl-N-phenylamino-triphenylamine,TNATA)。 The method for producing a solar cell according to claim 1, wherein the material of the organic transparent conductive layer comprises (3,4-dioxyethylthiophene)/poly(p-styrenesulfonic acid) (PEDOT:PSS), copper- Copper phthalocyanine (CuPc), 4,4',4"-tris-nitro-naphthyl-nitro-aniline-triphenylamine (4,4',4"-tris-N-naphthyl-N-phenylamino-triphenylamine, TNATA). 如請求項1所述之製作太陽能電池之方法,其中該有機透明導電層之透光率係大於95%且小於100%。 The method of producing a solar cell according to claim 1, wherein the organic transparent conductive layer has a light transmittance of more than 95% and less than 100%. 如請求項1所述之製作太陽能電池之方法,其中該圖案化透明保護層之材料包括矽膠(silicone)。 The method of fabricating a solar cell according to claim 1, wherein the material of the patterned transparent protective layer comprises silicone. 如請求項1所述之製作太陽能電池之方法,其中該圖案化透明保護層之透光率係大於95%且小於100%。 The method of fabricating a solar cell according to claim 1, wherein the patterned transparent protective layer has a light transmittance of greater than 95% and less than 100%. 如請求項1所述之製作太陽能電池之方法,其中於形成該電極之後,該圖案化透明保護層係保留於該有機透明導電層之該表面上。 The method of fabricating a solar cell according to claim 1, wherein the patterned transparent protective layer remains on the surface of the organic transparent conductive layer after the electrode is formed. 如請求項1所述之製作太陽能電池之方法,其中該圖案化透明保護層係利用一微影蝕刻製程、一曝光顯影製程或一印刷製程形成於該有機透明導電層之該表面上。 The method of fabricating a solar cell according to claim 1, wherein the patterned transparent protective layer is formed on the surface of the organic transparent conductive layer by a photolithography etching process, an exposure developing process, or a printing process. 如請求項1所述之製作太陽能電池之方法,其中該電極包括一第一導電結構與一第二導電結構,該第一導電結構係與該有機透明導電層接觸,且該第二導電結構係堆疊於該第一導電結構上並與該第一導電結構接觸。 The method of fabricating a solar cell according to claim 1, wherein the electrode comprises a first conductive structure and a second conductive structure, the first conductive structure is in contact with the organic transparent conductive layer, and the second conductive structure is Stacked on the first conductive structure and in contact with the first conductive structure. 如請求項10所述之製作太陽能電池之方法,其中該第一導電結構之材料包括銅,且該第二導電結構之材料包括錫。 The method of fabricating a solar cell according to claim 10, wherein the material of the first conductive structure comprises copper, and the material of the second conductive structure comprises tin. 如請求項1所述之製作太陽能電池之方法,其中該光電轉換結構包括一半導體基底以及一非本徵半導體層,且該半導體基底與該非本徵半導體層 具有不同的摻雜類型。 The method of fabricating a solar cell according to claim 1, wherein the photoelectric conversion structure comprises a semiconductor substrate and an extrinsic semiconductor layer, and the semiconductor substrate and the extrinsic semiconductor layer Have different doping types. 一種太陽能電池,包括:一光電轉換結構;一無機透明導電層,設置於該光電轉換結構之一表面上;一有機透明導電層,設置於該無機透明導電層之一表面上;一圖案化透明保護層,設置於該有機透明導電層之一表面上,其中該圖案化透明保護層具有一開口,部分暴露出該有機透明導電層之該表面;以及一電極,設置於該圖案化透明保護層之該開口內,其中該電極與該有機透明導電層接觸並電性連接。 A solar cell comprising: a photoelectric conversion structure; an inorganic transparent conductive layer disposed on a surface of the photoelectric conversion structure; an organic transparent conductive layer disposed on a surface of the inorganic transparent conductive layer; a patterned transparent a protective layer disposed on a surface of the organic transparent conductive layer, wherein the patterned transparent protective layer has an opening partially exposing the surface of the organic transparent conductive layer; and an electrode disposed on the patterned transparent protective layer In the opening, the electrode is in contact with and electrically connected to the organic transparent conductive layer. 如請求項13所述之太陽能電池,其中該無機透明導電層具有一第一折射率,該有機透明導電層具有一第二折射率,該圖案化透明保護層具有一第三折射率,該第一折射率大於該第二折射率,且該第二折射率大於該第三折射率。 The solar cell of claim 13, wherein the inorganic transparent conductive layer has a first refractive index, the organic transparent conductive layer has a second refractive index, and the patterned transparent protective layer has a third refractive index, the first A refractive index is greater than the second refractive index, and the second refractive index is greater than the third refractive index. 如請求項13所述之太陽能電池,其中該圖案化透明保護層之材料包括矽膠(silicone)。 The solar cell of claim 13, wherein the material of the patterned transparent protective layer comprises silicone. 如請求項13所述之太陽能電池,其中該電極包括一第一導電結構與一第二導電結構,該第一導電結構係與該有機透明導電層接觸,且該第二導電結構係堆疊於該第一導電結構上並與該第一導電結構接觸。 The solar cell of claim 13, wherein the electrode comprises a first conductive structure and a second conductive structure, the first conductive structure is in contact with the organic transparent conductive layer, and the second conductive structure is stacked on the The first conductive structure is in contact with the first conductive structure. 如請求項16所述之太陽能電池,其中該第一導電結構之材料包括銅,且該第二導電結構之材料包括錫。 The solar cell of claim 16, wherein the material of the first conductive structure comprises copper and the material of the second conductive structure comprises tin. 如請求項13所述之太陽能電池,其中該光電轉換結構包括一半導體基底以及一非本徵半導體層,且該半導體基底與該非本徵半導體層具有不同的摻雜類型。 The solar cell of claim 13, wherein the photoelectric conversion structure comprises a semiconductor substrate and an extrinsic semiconductor layer, and the semiconductor substrate and the extrinsic semiconductor layer have different doping types.
TW103127669A 2014-08-12 2014-08-12 Solar cell and method for fabricating the same TWI531079B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103127669A TWI531079B (en) 2014-08-12 2014-08-12 Solar cell and method for fabricating the same
CN201410541221.XA CN104241408B (en) 2014-08-12 2014-10-14 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103127669A TWI531079B (en) 2014-08-12 2014-08-12 Solar cell and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201607070A true TW201607070A (en) 2016-02-16
TWI531079B TWI531079B (en) 2016-04-21

Family

ID=52229155

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103127669A TWI531079B (en) 2014-08-12 2014-08-12 Solar cell and method for fabricating the same

Country Status (2)

Country Link
CN (1) CN104241408B (en)
TW (1) TWI531079B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140312B (en) * 2015-08-28 2017-04-12 中国电子科技集团公司第四十八研究所 Composite TCO film and preparation method thereof
CN107195720A (en) * 2016-03-10 2017-09-22 盐城金合盛光电科技有限公司 Silicon substrate heterojunction solar cell
CN106251945B (en) * 2016-08-01 2019-01-25 业成科技(成都)有限公司 Electrically conducting transparent film manufacturing method and its structure
CN111446373A (en) * 2020-03-20 2020-07-24 杭州电子科技大学 Zigzag ITO transparent electrode and organic solar cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160010646A (en) * 2007-12-20 2016-01-27 시마 나노 테크 이스라엘 리미티드 Transparent conductive coating with filler material
KR101036213B1 (en) * 2010-01-26 2011-05-20 광주과학기술원 Electronic device with a dual function of light emitting device and solar cell
TW201225311A (en) * 2010-12-15 2012-06-16 Au Optronics Corp Solar cell structure
US9198298B2 (en) * 2011-04-26 2015-11-24 Nippon Mektron, Ltd. Method for manufacturing transparent printed circuit and method for manufacturing transparent touch panel
KR20140066748A (en) * 2011-09-26 2014-06-02 후지필름 가부시키가이샤 Barrier laminate and new polymerizable compound
CN103413859B (en) * 2013-06-27 2016-03-16 友达光电股份有限公司 Solar cell and its manufacture method

Also Published As

Publication number Publication date
TWI531079B (en) 2016-04-21
CN104241408A (en) 2014-12-24
CN104241408B (en) 2017-06-30

Similar Documents

Publication Publication Date Title
Hossain et al. Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management
KR102229748B1 (en) Tandem Solar Cell Device
Lal et al. Optics and light trapping for tandem solar cells on silicon
Hu et al. Two‐terminal perovskites tandem solar cells: recent advances and perspectives
Zhao et al. Theoretical analysis of two‐terminal and four‐terminal perovskite/copper indium gallium selenide tandem solar cells
CN108140735A (en) More maqting type photoelectric conversion devices and photoelectric conversion module
KR20080021428A (en) Thin-film type solar cell including by-pass diode and manufacturing method thereof
KR101901068B1 (en) Tandem Solar Cell Device
KR102322176B1 (en) Tandem Solar Cell Device
TWI531079B (en) Solar cell and method for fabricating the same
WO2012037379A2 (en) Single and multi-junction light and carrier collection management cells
US11309445B2 (en) Thin-film photovoltaic cell series structure and preparation process of thin-film photovoltaic cell series structure
Solhtalab et al. Efficiency improvement of half-tandem CIGS/perovskite solar cell by designing nano-prism nanostructure as the controllable light trapping
WO2009104737A1 (en) Solar cell module
Cherif et al. High irradiance performance of cesium-formamidinium-based mixed-halide perovskite for concentrator photovoltaics under various operating conditions
US20140216520A1 (en) Solar cell module and fabricating method thereof
TW201521214A (en) Solar cell contacts and method of fabricating the same
US20140083486A1 (en) Solar cell and method for manufacturing same
TW201508935A (en) Photovoltaic device and method of forming a photovoltaic device
Pandey et al. Photophysics of solution-processed transparent solar cells under top and bottom illumination
TW201526263A (en) Solar cell
KR101186242B1 (en) Optoelectronic component having three-dimentional pattern and fablication method thereof
US20190341516A1 (en) MICROSTRUCTURED ZnO COATINGS FOR IMPROVED PERFORMANCE IN Cu(In, Ga)Se2 PHOTOVOLTAIC DEVICES
CN105070837A (en) Iridium-complex-doped three-element solar cell
CN105006523A (en) Iridium complex doped triplet solar cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees