TW201601315A - Semiconductor device having metal layer over drift region - Google Patents
Semiconductor device having metal layer over drift region Download PDFInfo
- Publication number
- TW201601315A TW201601315A TW103120987A TW103120987A TW201601315A TW 201601315 A TW201601315 A TW 201601315A TW 103120987 A TW103120987 A TW 103120987A TW 103120987 A TW103120987 A TW 103120987A TW 201601315 A TW201601315 A TW 201601315A
- Authority
- TW
- Taiwan
- Prior art keywords
- edge
- metal
- insulating layer
- layer
- metal portion
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
本揭露內容係有關於一種半導體元件,且更特別是有關於一種具有金屬層於漂移區之上的半導體元件。The present disclosure relates to a semiconductor component, and more particularly to a semiconductor component having a metal layer over a drift region.
超高壓半導體元件(Ultra-high voltage semiconductor device)係廣泛地使用於顯示元件、可攜式元件、與許多其他應用中。超高壓半導體元件的設計目標是在室溫與高溫環境中皆包括高的崩潰電壓(breakdown voltage)、低的特定導通電阻(specific on-resistance)、與高的可靠度。然而,由於超高壓半導體元件的尺寸縮減,欲達成這些設計目標變得極具挑戰性。Ultra-high voltage semiconductor devices are widely used in display elements, portable elements, and many other applications. Ultra high voltage semiconductor components are designed to include high breakdown voltages, low specific on-resistance, and high reliability in both room temperature and high temperature environments. However, as the size of ultra-high voltage semiconductor components is reduced, it is extremely challenging to achieve these design goals.
根據本發明之一實施例,一種半導體元件,包括一基板、一漂移區(drift region)、一絕緣層、一閘極層(gate layer)以及一金屬層。漂移區配置於基板中。絕緣層配置於基板之上且覆蓋漂移區,絕緣層包括一第一邊緣與一第二邊緣,第二邊緣相對於第一邊緣。閘極層配置於基板之上且覆蓋絕緣層的第一邊緣。金屬層配置於基板與絕緣層之上,金屬層包括一金屬部分,金屬部分連接於閘極層且重疊於絕緣層的第一邊緣。金屬部分包括一第一邊緣,金屬部分的第一邊緣位在比金屬部分之相對的一第二邊緣更接近於絕緣層的一中央部分之處。沿一通道長度方向由金屬部分的第一邊緣至絕緣層的第一邊緣的一距離係a。由絕緣層的第一邊緣至絕緣層的第二邊緣的一距離係L。a/L比值係等於或高於0.46。According to an embodiment of the invention, a semiconductor device includes a substrate, a drift region, an insulating layer, a gate layer, and a metal layer. The drift region is disposed in the substrate. The insulating layer is disposed on the substrate and covers the drift region. The insulating layer includes a first edge and a second edge, and the second edge is opposite to the first edge. The gate layer is disposed over the substrate and covers the first edge of the insulating layer. The metal layer is disposed on the substrate and the insulating layer. The metal layer includes a metal portion connected to the gate layer and overlapping the first edge of the insulating layer. The metal portion includes a first edge, the first edge of the metal portion being located closer to a central portion of the insulating layer than a second edge opposite the metal portion. A distance a from the first edge of the metal portion to the first edge of the insulating layer along a length direction of the channel. A distance L from the first edge of the insulating layer to the second edge of the insulating layer. The a/L ratio is equal to or higher than 0.46.
根據本發明之另一實施例,一種半導體元件包括一基板、一漂移區、一絕緣層、一閘極層以及一金屬層。漂移區配置於基板中。絕緣層配置於基板之上且覆蓋漂移區,絕緣層包括一第一邊緣與一第二邊緣,第二邊緣相對於第一邊緣。閘極層配置於基板之上且覆蓋絕緣層的第一邊緣。金屬層配置於基板與絕緣層之上,金屬層包括一金屬部分,金屬部分係可連接以接收一開機電壓且重疊於絕緣層。金屬部分包括一第一邊緣,該第一邊緣位在比該金屬部分之相對的一第二邊緣更接近於絕緣層的一中央部分之處。沿一通道長度方向由金屬部分的第一邊緣至絕緣層的第二邊緣的一距離係a。由絕緣層的第一邊緣至絕緣層的第二邊緣的一距離係L。b/L比值係等於或低於0.3。In accordance with another embodiment of the present invention, a semiconductor device includes a substrate, a drift region, an insulating layer, a gate layer, and a metal layer. The drift region is disposed in the substrate. The insulating layer is disposed on the substrate and covers the drift region. The insulating layer includes a first edge and a second edge, and the second edge is opposite to the first edge. The gate layer is disposed over the substrate and covers the first edge of the insulating layer. The metal layer is disposed on the substrate and the insulating layer. The metal layer includes a metal portion connectable to receive a turn-on voltage and overlap the insulating layer. The metal portion includes a first edge that is closer to a central portion of the insulating layer than a second edge opposite the metal portion. A distance a from the first edge of the metal portion to the second edge of the insulating layer along the length of one channel. A distance L from the first edge of the insulating layer to the second edge of the insulating layer. The b/L ratio is equal to or lower than 0.3.
根據本發明之又一實施例,一種積體電路包括一基板、一漂移區、一絕緣層、一閘極層以及一金屬層。基板包括一高側操作區、一低側操作區與一超高壓金屬氧化物半導體區,超高壓金屬氧化物半導體區係配置於高側操作區與低側操作區之間。漂移區配置於基板的超高壓金屬氧化物半導體區中。絕緣層配置於基板之上且覆蓋漂移區,絕緣層包括一第一邊緣與一第二邊緣,第二邊緣相對於第一邊緣。閘極層配置於基板之上且覆蓋絕緣層的第一邊緣。金屬層配置於基板與絕緣層之上,金屬層包括一金屬部分,金屬部分係連接於閘極層且重疊於絕緣層的第一邊緣。金屬部分包括一第一邊緣,第一邊緣位在比金屬部分之相對的一第二邊緣更接近於絕緣層的一中央部分之處。沿一通道長度方向由金屬部分的第一邊緣至絕緣層的第一邊緣的一距離係a。由絕緣層的第一邊緣至絕緣層的第二邊緣的一距離係L。a/L比值係等於或高於0.46。According to still another embodiment of the present invention, an integrated circuit includes a substrate, a drift region, an insulating layer, a gate layer, and a metal layer. The substrate includes a high side operation region, a low side operation region and an ultrahigh voltage metal oxide semiconductor region, and the ultrahigh voltage metal oxide semiconductor region is disposed between the high side operation region and the low side operation region. The drift region is disposed in the ultrahigh voltage metal oxide semiconductor region of the substrate. The insulating layer is disposed on the substrate and covers the drift region. The insulating layer includes a first edge and a second edge, and the second edge is opposite to the first edge. The gate layer is disposed over the substrate and covers the first edge of the insulating layer. The metal layer is disposed on the substrate and the insulating layer. The metal layer includes a metal portion connected to the gate layer and overlapping the first edge of the insulating layer. The metal portion includes a first edge positioned closer to a central portion of the insulating layer than a second edge opposite the metal portion. A distance a from the first edge of the metal portion to the first edge of the insulating layer along a length direction of the channel. A distance L from the first edge of the insulating layer to the second edge of the insulating layer. The a/L ratio is equal to or higher than 0.46.
100‧‧‧積體電路
100a、100b‧‧‧井
110‧‧‧高壓側操作區
120‧‧‧低壓側操作區
130、140‧‧‧超高壓金屬氧化物半導體元件
150‧‧‧金屬層
160‧‧‧超高壓金屬氧化物半導體區
170‧‧‧自屏蔽區
180‧‧‧高壓內連區
200‧‧‧基板
211、212、213‧‧‧N型埋入層
221、222‧‧‧高壓N型井
231、232、233‧‧‧P型井
240‧‧‧漂移區
240a‧‧‧第一部分
240b‧‧‧第二部分
242‧‧‧P型頂層
244‧‧‧N型階層
250‧‧‧絕緣層
251、252、253、254‧‧‧場氧化部分
252a、252b、343a、343b、344a、344b‧‧‧邊緣
260‧‧‧閘極氧化層
270‧‧‧閘極層
280‧‧‧間隔物
291、292、293‧‧‧N+區
300‧‧‧P+區
310‧‧‧層間介電層
320‧‧‧第一金屬層
321、322、323、324、325、326‧‧‧第一金屬層部分
330‧‧‧金屬間介電層
340‧‧‧第二金屬層
341、342、343、344、345‧‧‧第二金屬層部分
C‧‧‧中央部分
a、b、L‧‧‧距離
A-A’‧‧‧剖面線
Vbulk‧‧‧本體電壓
VB‧‧‧開機電壓
VD‧‧‧汲極電壓
VG‧‧‧閘極電壓
VS‧‧‧源極電壓
OD‧‧‧氧化定義區域
B‧‧‧基極端
D‧‧‧汲極端
G‧‧‧閘極端
S‧‧‧源極端100‧‧‧ integrated circuit
100a, 100b‧‧‧ well
110‧‧‧High-voltage side operating area
120‧‧‧Low-side operating area
130, 140‧‧‧UHV metal oxide semiconductor components
150‧‧‧metal layer
160‧‧‧Ultra-high voltage metal oxide semiconductor region
170‧‧‧Self-shielded area
180‧‧‧High pressure interconnected area
200‧‧‧Substrate
211, 212, 213‧‧‧N type buried layer
221, 222‧‧‧High pressure N-type well
231, 232, 233‧‧‧P type well
240‧‧‧ drift zone
240a‧‧‧Part 1
240b‧‧‧Part II
242‧‧‧P type top
244‧‧‧N-class
250‧‧‧Insulation
251, 252, 253, 254‧‧ ‧ field oxidation
Edge of 252a, 252b, 343a, 343b, 344a, 344b‧‧
260‧‧‧ gate oxide layer
270‧‧ ‧ gate layer
280‧‧‧ spacers
291, 292, 293‧‧‧N +
300‧‧‧P + District
310‧‧‧Interlayer dielectric layer
320‧‧‧First metal layer
321 , 322 , 323 , 324 , 325 , 326‧‧‧ the first metal layer
330‧‧‧Metal dielectric layer
340‧‧‧Second metal layer
341, 342, 343, 344, 345‧‧‧ second metal layer
C‧‧‧Central Part
a, b, L‧‧‧ distance
A-A'‧‧‧ hatching
Body voltage V bulk ‧‧‧
V B ‧‧‧Starting voltage
V D ‧‧‧汲polar voltage
V G ‧‧‧ gate voltage
V S ‧‧‧ source voltage
OD‧‧‧Oxidation defined area
B‧‧‧ base extreme
D‧‧‧汲 Extreme
G‧‧‧ gate extreme
S‧‧‧ source extreme
第1圖繪示根據本發明之一實施例之具有超高壓金屬氧化物半導體元件(Ultra-High Voltage Metal-Oxide-Semiconductor device, UHV MOS device)的積體電路的上視圖。
第2A圖繪示根據本發明之一實施例之超高壓金屬氧化物半導體元件的上視圖。
第2B圖繪示僅繪示金屬層及沒有絕緣層形成的氧化定義區域(Oxide Defined area, OD area)的第2A圖的超高壓金屬氧化物半導體元件的另一個上視圖。
第2C圖繪示沿著第2A圖的A-A’剖面線的超高壓金屬氧化物半導體元件的剖面圖。
第3圖繪示不同的樣品1至樣品6的崩潰電壓(breakdown voltage, BVD)試驗結果的示意圖。
1 is a top view of an integrated circuit having an Ultra-High Voltage Metal-Oxide-Semiconductor device (UHV MOS device) according to an embodiment of the present invention.
2A is a top view of an ultrahigh voltage metal oxide semiconductor device in accordance with an embodiment of the present invention.
FIG. 2B is another top view of the ultrahigh voltage metal oxide semiconductor device of FIG. 2A showing only the metal layer and the Oxide Defined area (OD area) formed without the insulating layer.
Fig. 2C is a cross-sectional view showing the ultrahigh voltage metal oxide semiconductor device taken along line AA' of Fig. 2A.
FIG. 3 is a schematic diagram showing the results of the breakdown voltage (BVD) test of different samples 1 to 6.
下文中將參照所附圖式對本發明之實施例進行詳細地解說。所有圖式當中將盡可能地使用相同的元件符號來表示相同的或類似的部件。Embodiments of the present invention will be explained in detail below with reference to the accompanying drawings. Wherever possible, the same reference numerals will be used to refer to the same or.
第1圖繪示根據本發明之一實施例之具有超高壓金屬氧化物半導體元件(Ultra-High Voltage Metal-Oxide-Semiconductor device, UHV MOS device)的積體電路(IC)100的上視圖。如第1圖所示,積體電路100係形成於具有2個井100a與100b的基板上。基板包括一高壓側操作區(High voltage Side Operating Region, HSOR)110以及一低壓側操作區(Low voltage Side Operating Region, LSOR)120。高壓側操作區110係位於藉由2個井100a與100b所圍繞的區域之內。低壓側操作區120係位於藉由2個井100a與100b所圍繞的區域的左側以及下側。積體電路100包括位於高壓側操作區110與低壓側操作區120之間的2個超高壓金屬氧化物半導體元件130與140。超高壓金屬氧化物半導體元件130與140為相似的結構,但可具有不同的操作電壓,例如是閘極電壓(gate voltage)、源極電壓(source voltage)、汲極電壓(drain voltage)、與體電壓(bulk voltage)。超高壓金屬氧化物半導體元件130與140皆具有高於500伏特(V)之相對高的崩潰電壓。雖然第1圖僅繪示2個超高壓金屬氧化物半導體元件130與140,仍可形成另外的半導體元件(例如是低電壓金屬氧化物半導體元件(Low-Voltage Metal-Oxide-Semiconductor device, LVMOS device)、雙極接面電晶體(Bipolar Junction Transistors, BJTs)、電容、電阻等等)於高壓側操作區110中。形成於高壓側操作區110中的半導體元件係連接於高於500伏特的接地電壓(ground voltage)。相似地,另外的半導體元件(例如是低電壓金屬氧化物半導體元件、雙極接面電晶體、電容、電阻等等)可形成於低壓側操作區120中。形成於低壓側操作區120中的半導體元件係連接於約0伏特的接地電壓。本文所述的接地電壓係指一參考電壓。積體電路100亦包括圍繞高壓側操作區110的一金屬層150。在操作積體電路100的期間,係施加一開機電壓(boot voltage, VB )於金屬層150。1 is a top view of an integrated circuit (IC) 100 having an Ultra-High Voltage Metal-Oxide-Semiconductor device (UHV MOS device) according to an embodiment of the present invention. As shown in Fig. 1, the integrated circuit 100 is formed on a substrate having two wells 100a and 100b. The substrate includes a High Voltage Side Operating Region (HSOR) 110 and a Low Voltage Side Operating Region (LSOR) 120. The high side operating zone 110 is located within the area surrounded by the two wells 100a and 100b. The low pressure side operating zone 120 is located on the left and lower sides of the area surrounded by the two wells 100a and 100b. The integrated circuit 100 includes two ultrahigh voltage metal oxide semiconductor elements 130 and 140 between the high side operating region 110 and the low side operating region 120. The ultrahigh voltage metal oxide semiconductor devices 130 and 140 have a similar structure, but may have different operating voltages, such as gate voltage, source voltage, drain voltage, and Bulk voltage. Both of the ultrahigh voltage metal oxide semiconductor devices 130 and 140 have a relatively high breakdown voltage of more than 500 volts (V). Although FIG. 1 shows only two ultrahigh voltage metal oxide semiconductor devices 130 and 140, another semiconductor device (for example, a low voltage metal oxide semiconductor device (Low-Voltage Metal-Oxide-Semiconductor device, LVMOS device) can be formed. ), Bipolar Junction Transistors (BJTs), capacitors, resistors, etc., in the high side operating region 110. The semiconductor element formed in the high side operation region 110 is connected to a ground voltage of more than 500 volts. Similarly, additional semiconductor components (eg, low voltage metal oxide semiconductor components, bipolar junction transistors, capacitors, resistors, etc.) may be formed in the low side operating region 120. The semiconductor element formed in the low side operation region 120 is connected to a ground voltage of about 0 volts. The ground voltage described herein refers to a reference voltage. The integrated circuit 100 also includes a metal layer 150 surrounding the high side operating region 110. During the operation of the integrated circuit 100, a boot voltage (V B ) is applied to the metal layer 150.
第2A圖係根據一實施例之超高壓金屬氧化物半導體元件130的放大上視圖。第2B圖係第2A圖的超高壓金屬氧化物半導體元件130的另一個放大上視圖,僅繪示金屬層及沒有絕緣層形成的氧化定義(Oxide Defined, OD)區域。第2C圖係沿著第2A圖的A-A’連線的超高壓金屬氧化物半導體元件130的剖面圖。由於超高壓金屬氧化物半導體元件140的結構係相似於超高壓金屬氧化物半導體元件130的結構,故不提供超高壓金屬氧化物半導體元件140的另外描述。2A is an enlarged top view of the ultrahigh voltage metal oxide semiconductor device 130 according to an embodiment. 2B is another enlarged top view of the ultrahigh voltage metal oxide semiconductor device 130 of FIG. 2A, showing only the metal layer and the Oxide Defined (OD) region formed without the insulating layer. Fig. 2C is a cross-sectional view of the ultrahigh voltage metal oxide semiconductor device 130 connected along the line A-A' of Fig. 2A. Since the structure of the ultrahigh voltage metal oxide semiconductor device 140 is similar to that of the ultrahigh voltage metal oxide semiconductor device 130, an additional description of the ultrahigh voltage metal oxide semiconductor device 140 is not provided.
超高壓金屬氧化物半導體元件130係提供於一P型基板(P-type substrate)200上。請參閱第2A至2C圖,高壓側操作區110係配置於基板200的右側部分上,低壓側操作區120係配置於基板200的左側部分上。超高壓金屬氧化物半導體區160及自屏蔽區(self-shielding region)170係配置於高壓側操作區110與低壓側操作區120之間。一高壓內連區(high voltage interconnection region)180係配置於自屏蔽區170之上,且與超高壓金屬氧化物半導體區160的右側邊緣以及高壓側操作區110的左側邊緣重疊。高壓側操作區110係藉由自屏蔽區170及高壓內連區180來與超高壓金屬氧化物半導體區160分開。The ultrahigh voltage metal oxide semiconductor device 130 is provided on a P-type substrate 200. Referring to FIGS. 2A to 2C , the high-voltage side operation region 110 is disposed on the right side portion of the substrate 200 , and the low-voltage side operation region 120 is disposed on the left side portion of the substrate 200 . The ultrahigh voltage metal oxide semiconductor region 160 and the self-shielding region 170 are disposed between the high side operation region 110 and the low voltage side operation region 120. A high voltage interconnection region 180 is disposed over the self-shielding region 170 and overlaps the right edge of the ultrahigh voltage MOS region 160 and the left edge of the high side operation region 110. The high side operation region 110 is separated from the ultrahigh voltage metal oxide semiconductor region 160 by the self-shielding region 170 and the high voltage interconnect region 180.
基板200包括第一N型埋入層(N-type Buried Layer, NBL)211、第二N型埋入層212、與第三N型埋入層213。第一N型埋入層211配置於超高壓金屬氧化物半導體區160中。第二N型埋入層212配置於超高壓金屬氧化物半導體區160中。第三N型埋入層213配置於高壓側操作區110中。第一N型埋入層至第三N型埋入層211至213中的各個係藉由一N型摻雜質(例如砷(arsenic)或銻(antimony))在約1013 至1016 原子/平方公分(atoms/cm2 )的濃度下進行摻雜。一第一高壓N型井(High-Voltage N-Well, HVNW)221係配置於基板200的超高壓金屬氧化物半導體區160中。一第二高壓N型井222係配置於基板200的高壓側操作區110。第一高壓N型井221與第二高壓N型井222係隔開並電性隔離。第一高壓N型井221與第二高壓N型井222係藉由N型摻雜質(例如是磷(phosphorus)或砷)在約1011 至1013 原子/平方公分(atoms/cm2 )的濃度下進行摻雜。第一N型埋入層211係連接於第一高壓N型井221的底部的左側。第二N型埋入層212係連接於第一高壓N型井221的底部的右側。第三N型埋入層213係連接於第二高壓N型井222的底部。The substrate 200 includes a first N-type Buried Layer (NBL) 211, a second N-type buried layer 212, and a third N-type buried layer 213. The first N-type buried layer 211 is disposed in the ultrahigh voltage metal oxide semiconductor region 160. The second N-type buried layer 212 is disposed in the ultrahigh voltage metal oxide semiconductor region 160. The third N-type buried layer 213 is disposed in the high-voltage side operation region 110. Each of the first N-type buried layer to the third N-type buried layer 211 to 213 is formed by an N-type dopant (for example, arsenic or antimony) at about 10 13 to 10 16 atoms. Doping is carried out at a concentration of / square centimeter (atoms/cm 2 ). A first high-voltage N-Well (HVNW) 221 is disposed in the ultra-high voltage metal oxide semiconductor region 160 of the substrate 200. A second high voltage N-type well 222 is disposed in the high side operating region 110 of the substrate 200. The first high pressure N-type well 221 is spaced apart from and electrically isolated from the second high pressure N-type well 222. The first high-pressure N-well 221 and the second high-pressure N-well 222 are at about 10 11 to 10 13 atoms/cm 2 by an N-type dopant (for example, phosphorus or arsenic). Doping is carried out at a concentration. The first N-type buried layer 211 is connected to the left side of the bottom of the first high-pressure N-type well 221. The second N-type buried layer 212 is connected to the right side of the bottom of the first high-pressure N-type well 221. The third N-type buried layer 213 is connected to the bottom of the second high pressure N-type well 222.
一第一P型井(P-well, PW)231係配置於第一高壓N型井221中,且第一P型井231係延伸以在第一高壓N型井221的底部連接於第一N型埋入層211。第二P型井232與第三P型井233係配置於基板200的自屏蔽區170中,位於第一高壓N型井221與第二高壓N型井222之間。第一P型井至第三P型井231至233係藉由P型摻雜質(例如硼(boron))在約1011 至1014 原子/平方公分的濃度下進行摻雜。第二P型井232係鄰近於第一高壓N型井221的右側,且第三P型井233係鄰近於第二高壓N型井222的左側。第二P型井232與第三P型井233係彼此分開,以電性隔離高壓側操作區110與低壓側操作區120。雖然繪示於第2A至2C圖的超高壓金屬氧化物半導體元件130僅包括第二P型井232與第三P型井233,以電性隔離第一高壓N型井221與第二高壓N型井222,超高壓金屬氧化物半導體元件130可包括大於2個P型井,這些P型井配置於第一高壓N型井221與第二高壓N型井222之間,以電性隔離第一高壓N型井221與第二高壓N型井222。此外,第二高壓P型井232與第三高壓P型井233促使一降低表面電場(reduced surface field, RESURF)效應,使得一漂移區(drift region)(將詳細描述於下文中)可以完全地空乏。A first P-well (PW) 231 is disposed in the first high-pressure N-well 221, and the first P-well 231 extends to connect to the first at the bottom of the first high-pressure N-well 221 N-type buried layer 211. The second P-well 232 and the third P-well 233 are disposed in the self-shielding region 170 of the substrate 200 between the first high-pressure N-well 221 and the second high-pressure N-well 222. The first P-type well to the third P-type wells 231 to 233 are doped by a P-type dopant (for example, boron) at a concentration of about 10 11 to 10 14 atoms/cm 2 . The second P-well 232 is adjacent to the right side of the first high pressure N-type well 221, and the third P-type well 233 is adjacent to the left side of the second high pressure N-type well 222. The second P-well 232 and the third P-well 233 are separated from each other to electrically isolate the high-pressure side operating zone 110 from the low-pressure side operating zone 120. Although the ultrahigh voltage metal oxide semiconductor device 130 illustrated in FIGS. 2A to 2C includes only the second P-well 232 and the third P-well 233 to electrically isolate the first high-voltage N-well 221 from the second high-voltage N The well 222, the ultra-high voltage metal oxide semiconductor device 130 may include more than two P-type wells, and the P-type wells are disposed between the first high-pressure N-type well 221 and the second high-pressure N-type well 222 to electrically isolate A high pressure N-type well 221 and a second high pressure N-type well 222. In addition, the second high pressure P-well 232 and the third high pressure P-well 233 promote a reduced surface field (RESURF) effect such that a drift region (described in detail below) can be completely Lack of space.
一漂移區240係配置於第一高壓N型井221中,且與第一P型井231分開。漂移區240包括複數個第一部分240a與第二部分240b,第一部分240a與第二部分240b係交替地沿超高壓金屬氧化物半導體元件130的通道的寬度方向(即第2A至2C圖中所示的Y方向)配置。第一部分240a中的各個包括一P型頂層(P-top layer)242以及形成於P型頂層242上的N型階層 (N-grade layer)244。第二部分240b中的各個並不包括任何的P型頂層或N型階層。P型頂層242係藉由P型摻雜質(例如硼(boron))在約1011 至1014 原子/平方公分的濃度下進行摻雜。N型階層244係藉由N型摻雜質(例如磷(phosphorus)或砷(arsenic))在約1011 至1014 原子/平方公分的濃度下進行摻雜。雖然第2C圖僅繪示其中一個第一部分240a的剖面圖,第二部分240b的剖面圖係相似於第一部分240a的剖面圖,除了在第二部分240b的剖面圖中,第一高壓N型井221形成漂移區240的整體。漂移區240的功用係將操作電壓(operating voltage)降低,由在高壓側操作區110中高於500伏特的相對高壓降低至在低壓側操作區120中0伏特的電壓。因此,形成於高壓側操作區110中的元件的操作電壓係高於500伏特,且形成於低壓側操作區120中的元件的操作電壓係約0伏特。A drift region 240 is disposed in the first high pressure N-well 221 and is separated from the first P-well 231. The drift region 240 includes a plurality of first portions 240a and second portions 240b alternately along the width direction of the channel of the ultrahigh voltage metal oxide semiconductor device 130 (ie, as shown in FIGS. 2A to 2C) Y direction) configuration. Each of the first portions 240a includes a P-top layer 242 and an N-grade layer 244 formed on the P-type top layer 242. Each of the second portions 240b does not include any P-type top or N-type levels. The P-type top layer 242 is doped by a P-type dopant (e.g., boron) at a concentration of about 10 11 to 10 14 atoms/cm 2 . The N-type layer 244 is doped by an N-type dopant such as phosphorus or arsenic at a concentration of about 10 11 to 10 14 atoms/cm 2 . Although FIG. 2C only shows a cross-sectional view of one of the first portions 240a, the cross-sectional view of the second portion 240b is similar to the cross-sectional view of the first portion 240a, except for the first high-pressure N-well in the cross-sectional view of the second portion 240b. 221 forms the entirety of the drift region 240. The function of the drift region 240 is to reduce the operating voltage from a relatively high voltage of more than 500 volts in the high side operating region 110 to a voltage of 0 volts in the low side operating region 120. Therefore, the operating voltage of the element formed in the high-voltage side operating region 110 is higher than 500 volts, and the operating voltage of the element formed in the low-voltage side operating region 120 is about 0 volt.
一絕緣層250係配置於基板200之上。絕緣層250可形成場氧化物(field oxide, FOX)。下文中,絕緣層250係意指為場氧化層(FOX layer)250。場氧化層250包括一第一場氧化部分251、一第二場氧化部分252、一第三場氧化部分253、與一第四場氧化部分254。第一場氧化部分251覆蓋第一高壓N型井221的左側邊緣部分以及第一P型井231的左側邊緣部分。第二場氧化部分252覆蓋漂移區240。第三場氧化部分253覆蓋第一高壓N型井221的右側邊緣部分、第二P型井232、第三P型井233、第二P型井232與第三P型井233之間的空間、以及第二高壓N型井222的左側邊緣部分。第四場氧化部分254覆蓋第二高壓N型井222的右側邊緣部分。An insulating layer 250 is disposed on the substrate 200. The insulating layer 250 may form a field oxide (FOX). Hereinafter, the insulating layer 250 is meant to be a field oxide layer (FOX layer) 250. The field oxide layer 250 includes a first field oxide portion 251, a second field oxide portion 252, a third field oxide portion 253, and a fourth field oxide portion 254. The first field oxidation portion 251 covers the left side edge portion of the first high pressure N-type well 221 and the left side edge portion of the first P-type well 231. The second field oxidation portion 252 covers the drift region 240. The third field oxidation portion 253 covers the space between the right edge portion of the first high pressure N-type well 221, the second P-type well 232, the third P-type well 233, the second P-type well 232, and the third P-type well 233. And a left side edge portion of the second high pressure N-type well 222. The fourth field oxidation portion 254 covers the right edge portion of the second high pressure N-type well 222.
一閘極氧化層(gate oxide layer)260係配置於基板200之上,閘極氧化層260覆蓋第一P型井231的右側部分、及第一P型井231與第二場氧化部分252之間的空間。一閘極層270係配置於基板200之上,閘極層270覆蓋閘極氧化層260及第二場氧化部分252的左側部分。間隔物(spacer)280係配置於閘極層270的側壁上。一第一N+ 區291(在下文中意指為源極區291)係配置於第一P型井231的右側部分中,鄰近於閘極氧化層260的左側部分。一第二N+ 區292(下文中係意指汲極區292)係配置於第一高壓N型井區221,位於第二場氧化部分252與第三場氧化部分253之間。第三N+ 區293係配置於第二高壓N型井222中,位於第三場氧化部分253與第四場氧化部分254之間。第一N+ 區至第三N+ 區291至293係藉由N型摻雜質(例如磷或砷)在約1015 至 1016 原子/平方公分的濃度下進行摻雜。一P+ 區300(下文中意指本體區(bulk region)300)係配置於第一P型井231的左側部分中,鄰近於第一場氧化部分251的右側邊緣部分。P+ 區300係藉由P型摻雜質(例如硼)在約1015 至 1016 原子/平方公分的濃度下進行摻雜。因此,閘極層270覆蓋源極區291與第二場氧化部分252之間的區域,且延伸以覆蓋第二場氧化部分252的左側部分。A gate oxide layer 260 is disposed on the substrate 200, and the gate oxide layer 260 covers the right portion of the first P-well 231 and the first P-well 231 and the second field oxide portion 252. Space between. A gate layer 270 is disposed over the substrate 200, and the gate layer 270 covers the left side portion of the gate oxide layer 260 and the second field oxide portion 252. A spacer 280 is disposed on the sidewall of the gate layer 270. A first N + region 291 (hereinafter referred to as source region 291) is disposed in the right portion of the first P-well 231 adjacent to the left portion of the gate oxide layer 260. A second N + region 292 (hereinafter referred to as the drain region 292) is disposed in the first high voltage N-well region 221 between the second field oxide portion 252 and the third field oxide portion 253. The third N + region 293 is disposed in the second high voltage N-well 222 between the third field oxide portion 253 and the fourth field oxide portion 254. The first N + region to the third N + regions 291 to 293 are doped by an N-type dopant such as phosphorus or arsenic at a concentration of about 10 15 to 10 16 atoms/cm 2 . A P + region 300 (hereinafter referred to as a bulk region 300) is disposed in a left side portion of the first P-well 231 adjacent to a right edge portion of the first field oxide portion 251. The P + region 300 is doped by a P-type dopant such as boron at a concentration of about 10 15 to 10 16 atoms/cm 2 . Therefore, the gate layer 270 covers the region between the source region 291 and the second field oxide portion 252 and extends to cover the left portion of the second field oxide portion 252.
一層間介電層(interlayer dielectric layer, ILD layer)310係配置於基板200之上,且具有通孔洞(through hole)分別地對應於本體區300、源極區291、閘極層270、汲極區292、與第三N+ 區293。第一金屬層(first metal layer, M1 layer)320係配置於層間介電層310之上,且第一金屬層320包括彼此電性隔離的第一個第一金屬層部分至第六個第一金屬層部分321至326。第一個第一金屬層部分321重疊於本體區300,且第一個第一金屬層部分321經由層間介電層310中對應的通孔洞連接於本體區300。第二個第一金屬層部分322重疊於源極區291,且第二個第一金屬層部分322經由層間介電層310中對應的通孔洞連接於源極區291。第三個第一金屬層部分323重疊於閘極層270與第二場氧化部分252,且第三個第一金屬層部分323經由層間介電層310中對應的通孔洞連接於閘極層270。第四個第一金屬層部分324重疊於第二場氧化部分252,且第四個第一金屬層部分324可連接以接收一開機電壓(boot voltage, Vboot )。第五個第一金屬層部分325重疊於汲極區292,且第五個第一金屬層部分325經由層間介電層310中對應的通孔洞連接於汲極區292。第六個第一金屬層部分326重疊於第三N+ 區293,且第六個第一金屬層部分326經由層間介電層310中對應的通孔洞連接於第三N+ 區293。雖然於第2A至2C圖中未顯示第四個第一金屬層部分324可連接於形成於基板200上的一電阻或一齊納二極體(zener diode),以將開機電壓(Vboot )降壓至較低的電壓,因而提供一電壓差以施加於形成於高壓側操作區110中的元件(未顯示),且具有等同於該電壓差的一操作電壓。例如,若開機電壓係500伏特,第四個第一金屬層部分324可連接於電阻或齊納二極體,以將500伏特的開機電壓降壓至約485伏特,因此提供一15伏特的電壓差給形成於高壓側操作區110中的元件,且具有約15伏特的一操作電壓。An interlayer dielectric layer (ILD layer) 310 is disposed on the substrate 200 and has a through hole corresponding to the body region 300, the source region 291, the gate layer 270, and the drain A region 292 and a third N + region 293. A first metal layer (M1 layer) 320 is disposed on the interlayer dielectric layer 310, and the first metal layer 320 includes a first first metal layer portion to a sixth first electrically isolated from each other. Metal layer portions 321 to 326. The first first metal layer portion 321 is overlapped with the body region 300, and the first first metal layer portion 321 is connected to the body region 300 via a corresponding via hole in the interlayer dielectric layer 310. The second first metal layer portion 322 is overlapped with the source region 291, and the second first metal layer portion 322 is connected to the source region 291 via a corresponding via hole in the interlayer dielectric layer 310. The third first metal layer portion 323 is overlapped with the gate layer 270 and the second field oxide portion 252, and the third first metal layer portion 323 is connected to the gate layer 270 via a corresponding via hole in the interlayer dielectric layer 310. . The fourth part of the first metal layer 324 overlaps the field oxide portion 252 to the second, the fourth and the first metal layer portion 324 may be connected to receive a power voltage (boot voltage, V boot). The fifth first metal layer portion 325 is overlapped with the drain region 292, and the fifth first metal layer portion 325 is connected to the drain region 292 via a corresponding via hole in the interlayer dielectric layer 310. The sixth first metal layer portion 326 overlaps the third N + region 293, and the sixth first metal layer portion 326 is connected to the third N + region 293 via a corresponding via hole in the interlayer dielectric layer 310. Although it is not shown in FIGS. 2A to 2C, the fourth first metal layer portion 324 may be connected to a resistor or a Zener diode formed on the substrate 200 to lower the boot voltage (V boot ). The voltage is applied to a lower voltage, thereby providing a voltage difference to be applied to an element (not shown) formed in the high side operation region 110, and having an operating voltage equivalent to the voltage difference. For example, if the turn-on voltage is 500 volts, the fourth first metal layer portion 324 can be connected to a resistor or Zener diode to step down the 500 volt startup voltage to about 485 volts, thus providing a voltage of 15 volts. The difference is given to the element formed in the high side operating region 110 and has an operating voltage of about 15 volts.
一金屬間介電層(inter-metal dielectric layer, IMD layer)330係配置於第一金屬層320之上,且金屬間介電層330具有分別地對應於第一個第一金屬層部分至第六個第一金屬層部分321至326的通孔洞(所謂的通孔(via))。一第二金屬層(second metal layer, M2 layer)340係配置於金屬間介電層330之上,且包括第一個第二金屬層部分至第五個第二金屬層部分341至345。第一個第二金屬層部分341重疊於本體區300,且第一個第二金屬層部分341經由第一個第一金屬層部分321以及在層間介電層310與金屬間介電層330中的對應的通孔洞連接於本體區300。第二個第二金屬層部分342重疊於源極區291,且第二個第二金屬層部分342經由第二個第一金屬層部分322以及在層間介電層310與金屬間介電層330中的對應的通孔洞連接於源極區291。第三個第二金屬層部分343重疊於閘極層270與第二場氧化部分252,且第三個第二金屬層部分343經由第三個第一金屬層部分323以及在層間介電層310與金屬間介電層330中的對應的通孔洞連接於閘極層270。第四個第二金屬層部分344重疊於第二場氧化部分252,且第四個第二金屬層部分344經由通孔洞(未顯示於第2C圖中)與開機電壓(VB )連接於第四個第一金屬層部分324。第五個第二金屬層部分345重疊於汲極區292與第三N+ 型區293,且第五個第二金屬層部分345分別地經由第五個第一金屬層部分325與第六個第一金屬層部分326、及在層間介電層310與金屬間介電層330中的對應的通孔洞連接於汲極區292與第三N+ 型區293。第五個第二金屬層部分345係形成於高壓內連區(high voltage interconnection region)180,且功用為提供超高壓金屬氧化物半導體元件130與形成於高壓側操作區110中的元件之間的一內連結。An inter-metal dielectric layer (IMD layer) 330 is disposed on the first metal layer 320, and the inter-metal dielectric layer 330 has a portion corresponding to the first first metal layer, respectively. Through holes (so-called vias) of the six first metal layer portions 321 to 326. A second metal layer (M2 layer) 340 is disposed over the intermetal dielectric layer 330 and includes a first second metal layer portion to a fifth second metal layer portion 341 to 345. The first second metal layer portion 341 is overlapped with the body region 300, and the first second metal layer portion 341 is via the first first metal layer portion 321 and between the interlayer dielectric layer 310 and the intermetal dielectric layer 330. Corresponding via holes are connected to the body region 300. The second second metal layer portion 342 is overlapped with the source region 291, and the second second metal layer portion 342 is via the second first metal layer portion 322 and the interlayer dielectric layer 310 and the intermetal dielectric layer 330. Corresponding via holes in the middle are connected to the source region 291. The third second metal layer portion 343 is overlapped with the gate layer 270 and the second field oxide portion 252, and the third second metal layer portion 343 is via the third first metal layer portion 323 and the interlayer dielectric layer 310. A corresponding via hole in the inter-metal dielectric layer 330 is connected to the gate layer 270. The fourth second metal layer portion 344 is overlapped with the second field oxide portion 252, and the fourth second metal layer portion 344 is connected to the power-on voltage (V B ) via a via hole (not shown in FIG. 2C). Four first metal layer portions 324. The fifth portion 345 of the second metal layer to the drain region 292 overlaps with the third N + type region 293, a second metal layer and the fifth portion 345 of the first metal layers are respectively the fifth portion 325 via a sixth The first metal layer portion 326 and the corresponding via holes in the interlayer dielectric layer 310 and the inter-metal dielectric layer 330 are connected to the drain region 292 and the third N + -type region 293. The fifth second metal layer portion 345 is formed in the high voltage interconnection region 180 and functions to provide the ultrahigh voltage metal oxide semiconductor device 130 and the element formed in the high side operation region 110. An internal link.
在操作當中,約0伏特的本體電壓(bulk voltage, Vbulk )係施加於第一個第二金屬層部分341,約0伏特的源極電壓(source voltage, VS )係施加於第二個第二金屬層部分342,一閘極電壓(gate voltage, VG )係施加於第三個第二金屬層部分343,一開機電壓(VB )係施加於第四個第二金屬層部分344,且一汲極電壓(drain voltage, VD )係施加於第五個第二金屬層部分345。開機電壓(VB )係高於500伏特,且高於或等於汲極電壓(VD )。開機電壓(VB )亦高於源極電壓(VS )、閘極電壓(VG )與本體電壓(Vbulk )。In operation, a bulk voltage (V bulk ) of about 0 volts is applied to the first second metal layer portion 341, and a source voltage (V S ) of about 0 volts is applied to the second The second metal layer portion 342, a gate voltage (V G ) is applied to the third second metal layer portion 343, and a turn-on voltage (V B ) is applied to the fourth second metal layer portion 344. And a drain voltage (V D ) is applied to the fifth second metal layer portion 345. The turn-on voltage (V B ) is above 500 volts and is higher than or equal to the drain voltage (V D ). Power voltage (V B) is also higher than the source voltage (V S), the gate voltage (V G) of the body voltage (V bulk).
如第2B與2C圖中所示,第二場氧化部分252包括接近於源極區291的左側邊緣252a以及接近於汲極區292的右側邊緣252b。第三個第二金屬層部分343包括一邊緣343a,邊緣343a位於相較於第三個第二金屬層部分343的相對邊緣343b更接近第二場氧化部分252的中央部分C。第四個第二金屬層部分344包括一邊緣344a,邊緣344a位於相較於一相對的邊緣344b更接近於第二場氧化部分252的中央部分C。沿著超高壓金屬氧化物半導體元件130的通道長度方向(即載子(carrier)流動的方向(第2A至2C圖中所繪示的X方向)),由第三個第二金屬層部分343的邊緣343a至第二場氧化部分252的左側邊緣252a的距離係意指為距離「a」。沿著通道長度方向,由第四個第二金屬層部分344的邊緣344a至第二場氧化部分252的右側邊緣252b的距離係意指為距離「b」。沿著通道長度方向,由第二場氧化部分252的左側邊緣252a至第二場氧化部分252的右側邊緣252b的距離係意指為距離「L」。距離L的範圍可由30微米(µm)至150微米。As shown in FIGS. 2B and 2C, the second field oxide portion 252 includes a left side edge 252a proximate to the source region 291 and a right side edge 252b proximate to the drain region 292. The third second metal layer portion 343 includes an edge 343a located closer to the central portion C of the second field oxide portion 252 than the opposite edge 343b of the third second metal layer portion 343. The fourth second metal layer portion 344 includes an edge 344a that is located closer to the central portion C of the second field oxide portion 252 than an opposite edge 344b. Along the channel length direction of the ultrahigh voltage metal oxide semiconductor device 130 (i.e., the direction in which the carrier flows (the X direction depicted in FIGS. 2A to 2C)), the third second metal layer portion 343 The distance from the edge 343a to the left edge 252a of the second field oxidizing portion 252 is meant to be the distance "a". The distance from the edge 344a of the fourth second metal layer portion 344 to the right edge 252b of the second field oxide portion 252 is referred to as the distance "b" along the length direction of the channel. The distance from the left edge 252a of the second field oxidizing portion 252 to the right edge 252b of the second field oxidizing portion 252 is meant to be the distance "L" along the length of the channel. The distance L can range from 30 micrometers (μm) to 150 micrometers.
根據本發明之一實施例,當a/L比值係等於或高於0.46,且b/L比值係等於或低於0.3,超高壓金屬氧化物半導體元件130具有相對高的崩潰電壓,且在高溫環境中係可靠的(reliable)。According to an embodiment of the present invention, when the a/L ratio is equal to or higher than 0.46 and the b/L ratio is equal to or lower than 0.3, the ultrahigh voltage metal oxide semiconductor device 130 has a relatively high breakdown voltage and is at a high temperature. The environment is reliable.
實驗例1:崩潰試驗(Breakdown test)Experimental Example 1: Breakdown test
崩潰試驗係對於樣品1至樣品6進行測試,樣品1至6被製造為具有如第2A至第2C圖所繪示的結構。樣品1至樣品6的尺寸除了距離a、b、L之外,其餘皆相同。表一概述樣品1至樣品6中的距離a、b、與L,以及比值a/L與b/L。
表一
The crash test was performed on Samples 1 to 6, and Samples 1 through 6 were fabricated to have the structures as shown in Figures 2A through 2C. The sizes of Samples 1 to 6 are the same except for the distances a, b, and L. Table 1 summarizes the distances a, b, and L in samples 1 through 6, and the ratios a/L and b/L.
Table I
在崩潰試驗的期間,第一個第二金屬層部分341、第二個第二金屬層部分342、與第三個第二金屬層部分343係接地,且由0伏特持續地增加的電壓係施加於第四個第二金屬層部分344與第五個第二金屬層部分345,直到元件崩潰為止(即一突然地增加的汲極-源極電流),以確認元件的崩潰電壓。During the crash test, the first second metal layer portion 341, the second second metal layer portion 342, and the third second metal layer portion 343 are grounded and applied by a voltage system that is continuously increased by 0 volts. The fourth second metal layer portion 344 and the fifth second metal layer portion 345 are until the component collapses (i.e., a sudden increase in the drain-source current) to confirm the breakdown voltage of the device.
第3圖顯示藉由崩潰試驗確認樣品1至樣品6的崩潰電壓的示意圖。根據第3圖,距離為a2的樣品2、4與6分別地相較於距離為a1的樣品1、3與5具有更高的崩潰電壓。亦即,崩潰電壓隨著增加的距離「a」而增加。這是因為當距離「a」增加,第三個第二金屬層部分343的右側邊緣343a係更接近地朝向第二場氧化部分252的中央部分C延伸,因而使源極區291與汲極區292之間的電位分布(potential distribution)變得更均勻。因此,崩潰電壓係增加。Figure 3 shows a schematic diagram confirming the breakdown voltage of Sample 1 to Sample 6 by a crash test. According to Fig. 3, samples 2, 4 and 6 of distance a2 have higher breakdown voltages than samples 1, 3 and 5 of distance a1, respectively. That is, the breakdown voltage increases with an increased distance "a". This is because when the distance "a" increases, the right edge 343a of the third second metal layer portion 343 more closely extends toward the central portion C of the second field oxide portion 252, thereby causing the source region 291 and the drain region The potential distribution between 292 becomes more uniform. Therefore, the breakdown voltage is increased.
此外,根據第3圖,距離為b3的樣品5與6相較於距離為b2的樣品3與4具有更高的崩潰電壓,且距離為b2的樣品3與4相較於距離為b1的樣品1與2具有更高的崩潰電壓。亦即,崩潰電壓隨著距離「b」的減少而增加。這是因為當距離「b」減少,第四個第二金屬層部分344的左側邊緣344a係更接近地朝向第二場氧化部分252的右側邊緣252b延伸,因而使源極區291與汲極區292之間的電位分布變得更均勻。因此,崩潰電壓係增加。Further, according to Fig. 3, samples 5 and 6 of distance b3 have higher breakdown voltages than samples 3 and 4 of distance b2, and samples 3 and 4 of distance b2 are compared with samples of distance of b1. 1 and 2 have higher breakdown voltages. That is, the breakdown voltage increases as the distance "b" decreases. This is because when the distance "b" decreases, the left edge 344a of the fourth second metal layer portion 344 extends more closely toward the right edge 252b of the second field oxide portion 252, thereby causing the source region 291 and the drain region The potential distribution between 292 becomes more uniform. Therefore, the breakdown voltage is increased.
又,根據第3圖,距離為a2與a3的樣品6具有600伏特的崩潰電壓,此崩潰電壓係高於樣品1至5的崩潰電壓。此外,基於藉由第3圖的虛線所示的內差法(extrapolation),當距離「a」係大於a2且距離「b」係大於b3時,可達到高於600伏特的崩潰電壓。亦即,當元件係以高於0.46的a/L比值且小於0.3的b/L比值形成時,元件可具有高於600伏特的崩潰電壓。Further, according to Fig. 3, the sample 6 having the distances a2 and a3 has a breakdown voltage of 600 volts, which is higher than the breakdown voltage of the samples 1 to 5. Further, based on the extrapolation shown by the broken line in FIG. 3, when the distance "a" is larger than a2 and the distance "b" is larger than b3, a breakdown voltage higher than 600 volts can be achieved. That is, when the component is formed with a b/L ratio higher than the a/L ratio of 0.46 and less than 0.3, the component may have a breakdown voltage higher than 600 volts.
實驗例2:高溫逆向偏壓試驗(High temperature reverse bias test)Experimental Example 2: High temperature reverse bias test
一高溫逆向偏壓試驗(HTRB test)係對於樣品11至30進行測試,樣品11至30被製造為具有如第2A圖至第2C圖所繪示的結構。高溫逆向偏壓試驗評估當樣品關閉(turned-off)時,樣品在高逆向偏壓之下的長期可靠度(reliability)與穩定度(stability)。除了樣品11至20的距離「a」為a1=26微米,且距離「b」為b3=20微米,以及樣品21至30的距離「a」為a2=30微米,且距離「b」為b3=20微米之外,樣品11至30的尺寸皆相同。在高溫逆向偏壓試驗的期間,第一個第二金屬層部分341(亦即基極端(bulk terminal))、第二個第二金屬層部分342(亦即源極端(source terminal))、與第三個第二金屬層部分343(亦即閘極端(gate terminal))係接地,且一400伏特的電壓係在150ºC的環境中施加於第四個第二金屬層部分344與第五個第二金屬層部分345(亦即汲極端(drain terminal))達168小時。臨界電壓(threshold voltage, VT )係當傳導通道剛開始連接電晶體的源極區與汲極區時,閘極-源極電壓之值,來允許顯著的電流流通。當一小的電壓(例如0.1伏特)係在試驗前後施加於汲極區時,係量測閘極端與源極端之間之各個樣品的臨界電壓。當某一操作電壓(例如15伏特)施加於閘極端以確保樣品電晶體係在導通(on-state)的情況下,並用以量測試驗前後的電阻時,係量測汲極端與源極端之間之各個樣品的導通電阻(on-state resistance, Ron )。當樣品關閉(turned-off)時,係在試驗之後量測汲極端與源極端之間之各個樣品的崩潰電壓。A high temperature reverse bias test (HTRB test) was conducted for samples 11 to 30, and samples 11 to 30 were fabricated to have the structures as shown in Figs. 2A to 2C. The high temperature reverse bias test evaluates the long-term reliability and stability of the sample under high reverse bias when the sample is turned-off. The distance "a" of the samples 11 to 20 is a1 = 26 μm, and the distance "b" is b3 = 20 μm, and the distance "a" of the samples 21 to 30 is a2 = 30 μm, and the distance "b" is b3. Samples 11 through 30 were the same size except for 20 microns. During the high temperature reverse bias test, the first second metal layer portion 341 (ie, the bulk terminal), the second second metal layer portion 342 (ie, the source terminal), and The third second metal layer portion 343 (ie, the gate terminal) is grounded, and a voltage of 400 volts is applied to the fourth second metal layer portion 344 and the fifth portion in an environment of 150 ° C. The two metal layer portion 345 (i.e., the drain terminal) is 168 hours. The threshold voltage (V T ) is the value of the gate-source voltage when the conduction channel is initially connected to the source and drain regions of the transistor to allow significant current flow. When a small voltage (e.g., 0.1 volt) is applied to the drain region before and after the test, the threshold voltage of each sample between the gate terminal and the source terminal is measured. When an operating voltage (for example, 15 volts) is applied to the gate terminal to ensure that the sample cell system is on-state and used to measure the resistance before and after the test, the 汲 extreme and source terminals are measured. The on-state resistance (R on ) of each sample in between. When the sample is turned-off, the breakdown voltage of each sample between the 汲 extreme and the source terminal is measured after the test.
表二概述樣品11至30的試驗結果。Table 2 summarizes the test results for samples 11 to 30.
表二
Table II
在表二中,臨界電壓變化(ΔVT )係試驗之後所量測的臨界電壓對於試驗之前所量測的臨界電壓的變化。導通電阻變化(ΔRon )係試驗之後所量測的導通電阻對於試驗之前所量測的導通電阻的變化。用於通過高溫逆向偏壓試驗的標準是在試驗之後所量測的崩潰電壓應高於500伏特,且導通電阻變化(ΔRon )應小於30%。In Table 2, the threshold voltage change (ΔV T ) is the change in the threshold voltage measured after the test for the threshold voltage measured before the test. The on-resistance change (ΔR on ) is the change in on-resistance measured after the test for the on-resistance measured before the test. Standard for high temperature reverse bias test is the amount measured after the test should be higher than the breakdown voltage of 500 volts, and the on-resistance variation (ΔR on) should be less than 30%.
根據表二,距離「a」較大的樣品21至30相較於距離「a」較小的樣品11至20具有更低的導通電阻變化(ΔRon )。亦即,當距離「a」增加,導通電阻變化係降低。此外,當距離「a」增加時,元件在高溫逆向偏壓試驗中係可靠的(reliable)。According to Table 2, the samples 21 to 30 having a larger distance from "a" have a lower on-resistance change (ΔR on ) than the samples 11 to 20 having a smaller distance from "a". That is, as the distance "a" increases, the on-resistance change decreases. In addition, when the distance "a" increases, the component is reliable in the high temperature reverse bias test.
雖然本發明上述之實施例中的超高壓金屬氧化物半導體元件130係提供於一P型半導體基板上,本領域中具有通常知識者將了解到本發明所揭露的概念係可運用於提供於N型半導體基板、半導體上覆絕緣體基板(semiconductor on insulator substrate, SOI substrate)、或其他任何合適的基板上的超高壓金屬氧化物半導體元件。Although the ultrahigh voltage metal oxide semiconductor device 130 of the above-described embodiments of the present invention is provided on a P-type semiconductor substrate, those skilled in the art will appreciate that the concepts disclosed in the present invention can be applied to N. A semiconductor substrate, a semiconductor on insulator substrate (SOI substrate), or any other suitable high voltage metal oxide semiconductor device on a substrate.
雖然上述實施例中的超高壓金屬氧化物半導體元件130包括2個金屬層(亦即第一金屬層320與第二金屬層340),本領域中具有通常知識者將了解到本發明所揭露的概念係亦可運用於包括任何數量的金屬層的超高壓金屬氧化物半導體元件,例如是單一金屬層、或3個或更多個金屬層。亦即,只要最上金屬層係以比值a/L等於或高於0.46且比值b/L等於或低於0.3,超高壓金屬氧化物半導體元件可具有一相對高的崩潰電壓,且在高溫的逆向偏壓的環境中係可靠的。Although the ultrahigh voltage metal oxide semiconductor device 130 in the above embodiment includes two metal layers (ie, the first metal layer 320 and the second metal layer 340), those skilled in the art will appreciate the disclosure of the present invention. The concept can also be applied to ultrahigh voltage metal oxide semiconductor components including any number of metal layers, such as a single metal layer, or three or more metal layers. That is, as long as the uppermost metal layer has a ratio a/L equal to or higher than 0.46 and the ratio b/L is equal to or lower than 0.3, the ultrahigh voltage metal oxide semiconductor device may have a relatively high breakdown voltage and reverse in high temperature. Reliable in a biased environment.
雖然上述實施例中的超高壓金屬氧化物半導體元件130的絕緣層250係由場氧化物所組成,絕緣層250可由其他合適的介電絕緣結構(例如是淺溝槽隔離結構(shallow trench isolation structure, STI structure))所組成。Although the insulating layer 250 of the ultrahigh voltage metal oxide semiconductor device 130 in the above embodiment is composed of a field oxide, the insulating layer 250 may be formed by other suitable dielectric insulating structures (for example, a shallow trench isolation structure). , STI structure)).
雖然第2A至2C圖所繪示的超高壓金屬氧化物半導體元件130具有橫向汲極金屬氧化物半導體元件(Lateral Drain Metal-Oxide-Semiconductor device, LDMOS device),本領域中具有通常知識者將了解到本發明所揭露的概念係等於應用於其他半導體元件,例如是絕緣閘極雙極電晶體元件(Insulated-Gate Bipolar Transistor device, IGBT device)與二極體。Although the ultrahigh voltage metal oxide semiconductor device 130 illustrated in FIGS. 2A to 2C has a Lateral Drain Metal-Oxide-Semiconductor device (LDMOS device), those having ordinary knowledge in the art will understand The concept disclosed in the present invention is equivalent to application to other semiconductor elements, such as an insulated gate dielectric device (IGBT device) and a diode.
雖然上述實施例中的超高壓金屬氧化物半導體元件130包括第一N型埋入層至第三N型埋入層211至213,本領域中具有通常知識者將了解到第一N型埋入層至第三N型埋入層211至213可藉由以一淺P型井取代第一P型井231來移除。Although the ultrahigh voltage metal oxide semiconductor device 130 in the above embodiment includes the first N-type buried layer to the third N-type buried layer 211 to 213, those skilled in the art will understand the first N-type buried. The layer to third N-type buried layers 211 to 213 may be removed by replacing the first P-type well 231 with a shallow P-type well.
本發明所屬技術領域中具有通常知識者可清楚了解本發明之其他實施例,考慮到依據本發明所揭露的說明書來實現本發明。然說明書以及範例僅應視為範例,本發明之保護範圍當視後附之申請專利範圍所界定者為準。Other embodiments of the invention will be apparent to those skilled in the <RTIgt; The specification and examples are to be considered as illustrative only, and the scope of the invention is defined by the scope of the appended claims.
110‧‧‧高壓側操作區 110‧‧‧High-voltage side operating area
120‧‧‧低壓側操作區 120‧‧‧Low-side operating area
130‧‧‧超高壓金屬氧化物半導體元件 130‧‧‧Ultra-high voltage metal oxide semiconductor components
160‧‧‧超高壓金屬氧化物半導體區 160‧‧‧Ultra-high voltage metal oxide semiconductor region
170‧‧‧自屏蔽區 170‧‧‧Self-shielded area
180‧‧‧高壓內連區 180‧‧‧High pressure interconnected area
200‧‧‧基板 200‧‧‧Substrate
211、212、213‧‧‧N型埋入層 211, 212, 213‧‧‧N type buried layer
221、222‧‧‧高壓N型井 221, 222‧‧‧High pressure N-type well
231、232、233‧‧‧P型井 231, 232, 233‧‧‧P type well
240‧‧‧漂移區 240‧‧‧ drift zone
242‧‧‧P型頂層 242‧‧‧P type top
244‧‧‧N型階層 244‧‧‧N-class
250‧‧‧絕緣層 250‧‧‧Insulation
251、252、253、254‧‧‧場氧化部分 251, 252, 253, 254‧‧ ‧ field oxidation
252a、252b、343a、343b、344a、344b‧‧‧邊緣 Edge of 252a, 252b, 343a, 343b, 344a, 344b‧‧
260‧‧‧閘極氧化層 260‧‧‧ gate oxide layer
270‧‧‧閘極層 270‧‧ ‧ gate layer
280‧‧‧間隔物 280‧‧‧ spacers
291、292、293‧‧‧N+區 291, 292, 293‧‧‧N +
300‧‧‧P+區 300‧‧‧P + District
310‧‧‧層間介電層 310‧‧‧Interlayer dielectric layer
320‧‧‧第一金屬層 320‧‧‧First metal layer
321、322、323、324、325、326‧‧‧第一金屬層部分 321 , 322 , 323 , 324 , 325 , 326‧‧‧ the first metal layer
330‧‧‧金屬間介電層 330‧‧‧Metal dielectric layer
340‧‧‧第二金屬層 340‧‧‧Second metal layer
341、342、343、344、345‧‧‧第二金屬層部分 341, 342, 343, 344, 345‧‧‧ second metal layer
C‧‧‧中央部分 C‧‧‧Central Part
a、b、L‧‧‧距離 a, b, L‧‧‧ distance
Vbulk‧‧‧本體電壓 V bulk ‧‧‧ body voltage
VS‧‧‧源極電壓 V S ‧‧‧ source voltage
VG‧‧‧閘極電壓 V G ‧‧‧ gate voltage
VB‧‧‧開機電壓 V B ‧‧‧Starting voltage
VD‧‧‧汲極電壓 V D ‧‧‧汲polar voltage
Claims (20)
一基板;
一漂移區(drift region),配置於該基板中;
一絕緣層,配置於該基板之上且覆蓋該漂移區,該絕緣層包括一第一邊緣與一第二邊緣,該第二邊緣相對於該第一邊緣;
一閘極層(gate layer),配置於該基板之上且覆蓋該絕緣層的該第一邊緣;以及
一金屬層,配置於該基板與該絕緣層之上,該金屬層包括一金屬部分,該金屬部分連接於該閘極層且重疊於該絕緣層的該第一邊緣,
其中該金屬部分包括一第一邊緣,該金屬部分的該第一邊緣位在比該金屬部分之相對的一第二邊緣更接近於該絕緣層的一中央部分之處,
沿一通道長度方向由該金屬部分的該第一邊緣至該絕緣層的該第一邊緣的一距離係a,
由該絕緣層的該第一邊緣至該絕緣層的該第二邊緣的一距離係L,且
a/L比值係等於或高於0.46。A semiconductor component comprising:
a substrate;
a drift region disposed in the substrate;
An insulating layer disposed on the substrate and covering the drift region, the insulating layer including a first edge and a second edge, the second edge being opposite to the first edge;
a gate layer disposed on the substrate and covering the first edge of the insulating layer; and a metal layer disposed on the substrate and the insulating layer, the metal layer including a metal portion The metal portion is connected to the gate layer and overlaps the first edge of the insulating layer,
Wherein the metal portion includes a first edge, the first edge of the metal portion being closer to a central portion of the insulating layer than a second edge opposite the metal portion,
a distance a from the first edge of the metal portion to the first edge of the insulating layer along a length direction of the channel,
a distance L from the first edge of the insulating layer to the second edge of the insulating layer, and
The a/L ratio is equal to or higher than 0.46.
該金屬層更包括一第二金屬部分,該第二金屬部分可連接以接收一開機電壓(boot voltage)且重疊於該絕緣層,
該第二金屬部分包括一第一邊緣,該第二金屬部分的該第一邊緣係位在比該第二金屬部分的相對的一第二邊緣更接近於該絕緣層的該中央部分之處,
沿該通道長度方向由該第二金屬部分的該第一邊緣至該絕緣層的該第二邊緣的一距離係b,且
b/L比值係等於或低於0.3。The component of claim 1, wherein the metal portion is a first metal portion, the metal portion being connected to the gate layer and overlapping the first edge of the insulating layer,
The metal layer further includes a second metal portion connectable to receive a boot voltage and overlap the insulating layer.
The second metal portion includes a first edge, the first edge of the second metal portion being tied closer to the central portion of the insulating layer than an opposite second edge of the second metal portion
a distance b from the first edge of the second metal portion to the second edge of the insulating layer along the length of the channel, and
The b/L ratio is equal to or lower than 0.3.
該第三金屬部分係可連接以接收不同於該開機電壓的一汲極電壓(drain voltage)。The component of claim 2, wherein the metal layer further comprises a third metal portion electrically connected to a drain region disposed in the substrate, and the third metal A portion is connectable to receive a drain voltage different from the turn-on voltage.
該些第一部分中的各個包括一頂區(top region)與一階區 (grade region),該頂區具有一第一導電型,該階區具有一第二導電型,且
該些第二部分中的各個不包括該頂區與該階區。The element of claim 1, wherein the drift region comprises a plurality of first portions and second portions that are alternately arranged,
Each of the first portions includes a top region and a grade region, the top region having a first conductivity type, the step region having a second conductivity type, and the second portions Each of the sections does not include the top zone and the zone zone.
一基板;
一漂移區,配置於該基板中;
一絕緣層,配置於該基板之上且覆蓋該漂移區,該絕緣層包括一第一邊緣與一第二邊緣,該第二邊緣相對於該第一邊緣;
一閘極層,配置於該基板之上且覆蓋該絕緣層的該第一邊緣;以及
一金屬層,配置於該基板與該絕緣層之上,該金屬層包括一金屬部分,該金屬部分係可連接以接收一開機電壓且重疊於該絕緣層,
其中該金屬部分包括一第一邊緣,該第一邊緣位在比該金屬部分之相對的一第二邊緣更接近於該絕緣層的一中央部分之處,
沿一通道長度方向由該金屬部分的該第一邊緣至該絕緣層的該第二邊緣的一距離係a,
由該絕緣層的該第一邊緣至該絕緣層的該第二邊緣的一距離係L,且
b/L比值係等於或低於0.3。A semiconductor component comprising:
a substrate;
a drift region disposed in the substrate;
An insulating layer disposed on the substrate and covering the drift region, the insulating layer including a first edge and a second edge, the second edge being opposite to the first edge;
a gate layer disposed on the substrate and covering the first edge of the insulating layer; and a metal layer disposed on the substrate and the insulating layer, the metal layer comprising a metal portion, the metal portion Connectable to receive a turn-on voltage and overlap the insulating layer,
Wherein the metal portion includes a first edge, the first edge being located closer to a central portion of the insulating layer than a second edge opposite the metal portion,
a distance a from the first edge of the metal portion to the second edge of the insulating layer along a length direction of the channel,
a distance L from the first edge of the insulating layer to the second edge of the insulating layer, and
The b/L ratio is equal to or lower than 0.3.
該金屬層更包括一第二金屬部分,該第二金屬部分係電性連接於配置於該基板中的一汲極區,
該第二金屬部分係連接並接收不同於該開機電壓的一汲極電壓,該汲極電壓。The component of claim 14, wherein the metal portion is a first metal portion, the metal portion being connectable to receive the startup voltage and overlapping the insulating layer,
The metal layer further includes a second metal portion electrically connected to a drain region disposed in the substrate.
The second metal portion is connected to and receives a drain voltage different from the turn-on voltage, the drain voltage.
該元件更包括至少一另外的金屬層,該另外的金屬層係配置於該基板與該第一金屬層之間。The component of claim 14, wherein the metal layer is a first metal layer, and the component further comprises at least one additional metal layer disposed on the substrate and the first metal Between the layers.
一基板,包括一高側操作區、一低側操作區與一超高壓金屬氧化物半導體區,該超高壓金屬氧化物半導體區係配置於該高側操作區與該低側操作區之間;
一漂移區,配置於該基板的該超高壓金屬氧化物半導體區中;
一絕緣層,配置於該基板之上且覆蓋該漂移區,該絕緣層包括一第一邊緣與一第二邊緣,該第二邊緣相對於該第一邊緣;
一閘極層,配置於該基板之上且覆蓋該絕緣層的該第一邊緣;以及
一金屬層,配置於該基板與該絕緣層之上,該金屬層包括一金屬部分,該金屬部分係連接於該閘極層且重疊於該絕緣層的該第一邊緣,
其中該金屬部分包括一第一邊緣,該第一邊緣位在比該金屬部分之相對的一第二邊緣更接近於該絕緣層的一中央部分之處,
沿一通道長度方向由該金屬部分的該第一邊緣至該絕緣層的該第一邊緣的一距離係a,
由該絕緣層的該第一邊緣至該絕緣層的該第二邊緣的一距離係L,且
a/L比值係等於或高於0.46。An integrated circuit comprising:
a substrate comprising a high side operating region, a low side operating region and an ultrahigh voltage metal oxide semiconductor region, the ultrahigh voltage metal oxide semiconductor region being disposed between the high side operating region and the low side operating region;
a drift region disposed in the ultrahigh voltage metal oxide semiconductor region of the substrate;
An insulating layer disposed on the substrate and covering the drift region, the insulating layer including a first edge and a second edge, the second edge being opposite to the first edge;
a gate layer disposed on the substrate and covering the first edge of the insulating layer; and a metal layer disposed on the substrate and the insulating layer, the metal layer comprising a metal portion, the metal portion Connecting to the gate layer and overlapping the first edge of the insulating layer,
Wherein the metal portion includes a first edge, the first edge being located closer to a central portion of the insulating layer than a second edge opposite the metal portion,
a distance a from the first edge of the metal portion to the first edge of the insulating layer along a length direction of the channel,
a distance L from the first edge of the insulating layer to the second edge of the insulating layer, and
The a/L ratio is equal to or higher than 0.46.
該金屬層更包括一第二金屬部分,該第二金屬部分係可連接以接收一開機電壓且重疊於該絕緣層,
該第二金屬部分包括一第一邊緣,該第二金屬部分的該第一邊緣係位在比該第二金屬部分的相對的一第二邊緣更接近於該絕緣層的該中央部分之處,
沿該通道長度方向由該第二金屬部分的該第一邊緣至該絕緣層的該第二邊緣的一距離係b,且
b/L比值係等於或低於0.3。The integrated circuit of claim 18, wherein the metal portion is a first metal portion connected to the gate layer and overlapping the first side of the insulating layer,
The metal layer further includes a second metal portion connectable to receive a turn-on voltage and overlap the insulating layer.
The second metal portion includes a first edge, the first edge of the second metal portion being tied closer to the central portion of the insulating layer than an opposite second edge of the second metal portion
a distance b from the first edge of the second metal portion to the second edge of the insulating layer along the length of the channel, and
The b/L ratio is equal to or lower than 0.3.
該第三金屬部分係可連接以接收不同於該崩潰電壓的一汲極電壓。
The integrated circuit of claim 19, wherein the metal layer further comprises a third metal portion electrically connected to a drain region disposed in the substrate, and the first The tri-metal portion is connectable to receive a drain voltage different from the breakdown voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103120987A TWI531070B (en) | 2014-06-18 | 2014-06-18 | Semiconductor device having metal layer over drift region |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103120987A TWI531070B (en) | 2014-06-18 | 2014-06-18 | Semiconductor device having metal layer over drift region |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201601315A true TW201601315A (en) | 2016-01-01 |
TWI531070B TWI531070B (en) | 2016-04-21 |
Family
ID=55641324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103120987A TWI531070B (en) | 2014-06-18 | 2014-06-18 | Semiconductor device having metal layer over drift region |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI531070B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI565053B (en) * | 2014-09-24 | 2017-01-01 | 東部高科股份有限公司 | High voltage semiconductor device and method of manufacturing the same |
TWI667791B (en) * | 2017-11-21 | 2019-08-01 | 世界先進積體電路股份有限公司 | Lateral diffused metal oxide semiconductor field effect transistor |
US10790365B2 (en) | 2018-02-23 | 2020-09-29 | Vanguard International Semiconductor Corporation | Lateral diffused metal oxide semiconductor field effect transistor |
TWI724834B (en) * | 2020-03-25 | 2021-04-11 | 旺宏電子股份有限公司 | Semiconductor device having floating conductive layer |
CN114050181A (en) * | 2022-01-07 | 2022-02-15 | 北京芯可鉴科技有限公司 | NLDMOS device, preparation method and chip |
-
2014
- 2014-06-18 TW TW103120987A patent/TWI531070B/en active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI565053B (en) * | 2014-09-24 | 2017-01-01 | 東部高科股份有限公司 | High voltage semiconductor device and method of manufacturing the same |
TWI667791B (en) * | 2017-11-21 | 2019-08-01 | 世界先進積體電路股份有限公司 | Lateral diffused metal oxide semiconductor field effect transistor |
US10790365B2 (en) | 2018-02-23 | 2020-09-29 | Vanguard International Semiconductor Corporation | Lateral diffused metal oxide semiconductor field effect transistor |
TWI724834B (en) * | 2020-03-25 | 2021-04-11 | 旺宏電子股份有限公司 | Semiconductor device having floating conductive layer |
CN114050181A (en) * | 2022-01-07 | 2022-02-15 | 北京芯可鉴科技有限公司 | NLDMOS device, preparation method and chip |
CN114050181B (en) * | 2022-01-07 | 2022-03-22 | 北京芯可鉴科技有限公司 | NLDMOS device, preparation method and chip |
Also Published As
Publication number | Publication date |
---|---|
TWI531070B (en) | 2016-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9553142B2 (en) | Semiconductor device having buried layer | |
US10438950B2 (en) | S-contact for SOI | |
TWI449175B (en) | Dual channel trench ldmos transistors and bcd process with deep trench isolation | |
TWI531070B (en) | Semiconductor device having metal layer over drift region | |
US9082841B1 (en) | Semiconductor device having metal layer over drift region | |
US9660108B2 (en) | Bootstrap MOS for high voltage applications | |
US9349732B2 (en) | High voltage lateral double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) having a deep fully depleted drain drift region | |
US9263432B2 (en) | High voltage semiconductor device and method for manufacturing the same | |
US9627528B2 (en) | Semiconductor device having gate structures and manufacturing method thereof | |
KR20180131722A (en) | High Voltage Semiconductor Device | |
US10777544B2 (en) | Method of manufacturing a semiconductor device | |
US9029947B2 (en) | Field device and method of operating high voltage semiconductor device applied with the same | |
TWI536542B (en) | Semiconductor device including high-voltage diode | |
US20150048452A1 (en) | Ultra-high voltage semiconductor having an isolated structure for high side operation and method of manufacture | |
US9331143B1 (en) | Semiconductor structure having field plates over resurf regions in semiconductor substrate | |
CN105280634B (en) | Semiconductor element with metal level on drift region | |
US9397205B1 (en) | Semiconductor device | |
CN109585444A (en) | A kind of semiconductor wafer | |
TWI472035B (en) | Field device | |
CN111326578B (en) | Gate drive integrated circuit | |
TWI570916B (en) | Semiconductor structure | |
TWI512990B (en) | Semiconductor structure and semiconductor device having same |