TW201545827A - Porous structure and method for producing same, and method for producing composite metal nanoparticle - Google Patents

Porous structure and method for producing same, and method for producing composite metal nanoparticle Download PDF

Info

Publication number
TW201545827A
TW201545827A TW104107605A TW104107605A TW201545827A TW 201545827 A TW201545827 A TW 201545827A TW 104107605 A TW104107605 A TW 104107605A TW 104107605 A TW104107605 A TW 104107605A TW 201545827 A TW201545827 A TW 201545827A
Authority
TW
Taiwan
Prior art keywords
metal
porous structure
composite
composite metal
nanoparticle
Prior art date
Application number
TW104107605A
Other languages
Chinese (zh)
Other versions
TWI658887B (en
Inventor
Hiroshi Kitagawa
Hirokazu Kobayashi
Megumi Mukoyoshi
Original Assignee
Univ Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kyoto filed Critical Univ Kyoto
Publication of TW201545827A publication Critical patent/TW201545827A/en
Application granted granted Critical
Publication of TWI658887B publication Critical patent/TWI658887B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/01Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
    • C07C65/03Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring
    • C07C65/05Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring o-Hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The present invention provides a porous structure containing at least two kinds of metal ions and an organic ligand, said porous structure being characterized in that the at least two kinds of metal ions are homogeneously mixed together at an atomic level.

Description

多孔性結構體及其製造方法以及複合金屬奈米粒子之製造方法 Porous structure, method for producing the same, and method for producing composite metal nanoparticle 技術領域 Technical field

本發明係有關於複合金屬奈米粒子、多孔性結構體及其製造方法,詳而言之有關於2種以上金屬、金屬氧化物或金屬離子依原子級均一混合之複合金屬奈米粒子、多孔性結構體及其製造方法。 The present invention relates to a composite metal nanoparticle, a porous structure, and a method for producing the same, and more specifically relates to a composite metal nanoparticle in which two or more metals, metal oxides or metal ions are uniformly mixed at an atomic level, and porous Sex structure and its manufacturing method.

此外,在本說明書中,有時統稱MOF及PCP而記載為「PCP」。 In addition, in this specification, MOF and PCP are collectively referred to as "PCP".

背景技術 Background technique

包含2種以上金屬的多孔性結構體是習知的。 A porous structure containing two or more kinds of metals is conventionally known.

例如非專利文獻1藉使用有機配位子之Na鹽(Na2NO2-ip),且提高PCP形成之反應速度,可合成由2種金屬(Zn、Mn)構成之PCP(ZnxMn1-xCID-5)。製得之PCP之Zn及Mn之各元素的映射影像顯示不同之分布,由重疊2者之影像可知有只觀測到來自Mn之元素分布(綠)的地方(圖S15)。其結果顯示Zn及Mn之分布完全不一樣,且ZnCID-5及MnCID-5之領域的一部份重合。此外,由於原料使用Na鹽,故合成之PCP中亦可能混入不純物。 For example, Non-Patent Document 1 can synthesize a PCP composed of two metals (Zn, Mn) by using a Na salt (Na 2 NO 2 -ip) of an organic ligand and increasing the reaction rate of PCP formation (ZnxMn1-xCID- 5). The map images of the respective elements of Zn and Mn of the obtained PCP showed different distributions, and it was found from the images of the overlapped two that only the element distribution (green) from Mn was observed (Fig. S15). The results show that the distributions of Zn and Mn are completely different, and some of the fields of ZnCID-5 and MnCID-5 overlap. Further, since the raw material uses Na salt, impurities may be mixed in the synthesized PCP.

先前技術文獻 Prior technical literature 非專利文獻 Non-patent literature

非專利文獻1:J. Am. Chem. Soc. 2012, 134, 13341-13347 Non-Patent Document 1: J. Am. Chem. Soc. 2012, 134, 13341-13347

發明概要 Summary of invention

本發明之目的在於提供2種以上金屬均一混合之多孔性結構體及其製造方法,以及合金奈米粒子、複合氧化物奈米粒子等之複合金屬奈米粒子的製造方法。 An object of the present invention is to provide a porous structure in which two or more kinds of metals are uniformly mixed, a method for producing the same, and a method for producing composite metal nanoparticles such as alloy nanoparticles or composite oxide nanoparticles.

本發明人鑑於上述課題反覆檢討,結果發現2種以上金屬離子與有機配位子形成多孔性結構體的速度不同,藉由按照該等之速度的時序,具體而言,藉由先添加形成多孔性結構體之速度慢的金屬,然後添加形成多孔性結構體之速度快的金屬,可製得2種以上金屬依原子級均一混合之多孔性結構體。在非專利文獻1中使用之有機配位子的Na鹽由於快速地形成多孔性結構體,每一金屬離子之速度差小,因此雖然可減少2種以上金屬之多孔性結構體整體的組成比不均,但是以原子級來看時,仍會產生多孔性結構體之各金屬離子分布的偏差。 The inventors of the present invention have repeatedly reviewed the above-mentioned problems, and as a result, it has been found that two or more kinds of metal ions and organic ligands have different speeds for forming a porous structure, and in particular, by adding the pores according to the timing of the speeds. A metal having a slow rate of the structure and then a metal having a high rate of formation of the porous structure can be obtained, and a porous structure in which two or more kinds of metals are uniformly mixed at the atomic level can be obtained. Since the Na salt of the organic ligand used in Non-Patent Document 1 rapidly forms a porous structure, the difference in velocity of each metal ion is small, and therefore the composition ratio of the entire porous structure of two or more kinds of metals can be reduced. It is uneven, but at the atomic level, variations in the distribution of metal ions of the porous structure still occur.

另一方面,本發明發現為使多孔性結構體內之金屬離子依原子級均一混合,在氧存在下或不存在下加熱該多孔性結構體來分解有機配位子,以將合金或金屬氧化 物轉變成金屬離子,藉此可製得2種以上金屬之合金奈米粒子或2種以上金屬之複合氧化物奈米粒子等之複合金屬奈米粒子,且該合金/複合氧化物奈米粒子與多孔性結構體同樣為2種以上金屬依原子級均一混合之奈米粒子。 On the other hand, the present invention has found that in order to uniformly mix metal ions in a porous structure in an atomic level, the porous structure is heated in the presence or absence of oxygen to decompose the organic ligand to oxidize the alloy or metal. The material is converted into a metal ion, whereby composite metal nanoparticles such as alloy nanoparticles of two or more kinds of metal or composite oxide nanoparticles of two or more kinds of metals can be obtained, and the alloy/composite oxide nanoparticle Similarly to the porous structure, it is a nanoparticle in which two or more kinds of metals are uniformly mixed at an atomic level.

本發明提供以下之多孔性結構體及其製造方法、以及複合金屬奈米粒子之製造方法。 The present invention provides the following porous structure, a method for producing the same, and a method for producing a composite metal nanoparticle.

項1.一種多孔性結構體,包含2種以上金屬離子及有機配位子,且其特徵在於2種以上金屬離子係依原子級均一混合。 Item 1. A porous structure comprising two or more metal ions and an organic ligand, and characterized in that two or more metal ions are uniformly mixed at an atomic level.

項2.如項1記載之多孔性結構體,其中前述多孔性結構體係多孔性配位高分子(Porous Coordination Polymer(PCP))或金屬-有機物結構體(Metal-Organic Framework(MOF))。 The porous structure according to Item 1, wherein the porous structural system is a Porous Coordination Polymer (PCP) or a Metal-Organic Framework (MOF).

項3.一種複合體之製造方法,該複合體包含2種以上金屬依原子級均一混合之複合金屬奈米粒子及碳,且該製造方法之特徵在於包含下述步驟:在真空下、減壓下、還原氣體環境下、惰性氣體環境下或氧化氣體環境下加熱如項1或2記載之多孔性結構體以熱分解有機配位子而產生碳,並將金屬離子轉變成複合金屬而製得複合金屬奈米粒子;其中前述複合金屬奈米粒子係合金奈米粒子、複合金屬氧化物奈米粒子、或包含合金部分及複合金屬氧化物部分的奈米粒子,且該複合金屬氧化物部分係由2種以上金屬氧化物構成。 Item 3. A method for producing a composite comprising composite metal nanoparticles and carbon in which two or more metals are uniformly mixed at an atomic level, and the production method is characterized by comprising the steps of: decompressing under vacuum; Heating the porous structure according to Item 1 or 2 in a reducing gas atmosphere, an inert gas atmosphere or an oxidizing gas atmosphere to thermally decompose an organic ligand to generate carbon, and convert the metal ion into a composite metal. a composite metal nanoparticle; wherein the composite metal nanoparticle is an alloy nanoparticle, a composite metal oxide nanoparticle, or a nanoparticle comprising an alloy portion and a composite metal oxide portion, and the composite metal oxide portion is It is composed of two or more kinds of metal oxides.

項4.一種複合體之製造方法,該複合體包含2種以上金屬依原子級均一混合之合金奈米粒子及碳,且該製造方法 之特徵在於在真空下、還原氣體環境下或惰性氣體環境下加熱如項1或2記載之多孔性結構體以熱分解有機配位子而產生碳,並將金屬離子轉變成金屬而製得合金奈米粒子。 Item 4. A method for producing a composite comprising alloy nanoparticles in which two or more kinds of metals are uniformly mixed at an atomic level, and carbon, and the method of producing the same It is characterized in that the porous structure according to Item 1 or 2 is heated under vacuum, in a reducing gas atmosphere or in an inert gas atmosphere to thermally decompose an organic ligand to generate carbon, and to convert the metal ions into a metal to obtain an alloy. Nano particles.

項5.一種複合體之製造方法,該複合體包含奈米粒子及碳,且該奈米粒子含有2種以上金屬依原子級均一混合之複合金屬氧化物部分;該製造方法之特徵在於在減壓下或氧化氣體環境下加熱如項1或2記載之多孔性結構體以熱分解有機配位子而產生碳,並將金屬離子轉變成金屬氧化物而製得具有複合金屬氧化物部分之奈米粒子。 Item 5. A method for producing a composite comprising nano particles and carbon, wherein the nano particles comprise a composite metal oxide portion in which two or more metals are uniformly mixed at an atomic level; and the manufacturing method is characterized in that Heating the porous structure according to Item 1 or 2 under pressure or an oxidizing gas to thermally decompose an organic ligand to generate carbon, and converting the metal ion into a metal oxide to obtain a composite metal oxide portion Rice particles.

項6.如項5記載之製造方法,其中含有複合金屬氧化物部分之奈米粒子係由複合金屬氧化物構成。 Item 6. The production method according to Item 5, wherein the nanoparticle containing the composite metal oxide moiety is composed of a composite metal oxide.

項7.如項5記載之製造方法,其中含有複合金屬氧化物部分之奈米粒子包含合金部分及由2種以上金屬氧化物構成之複合金屬氧化物部分。 Item 7. The production method according to Item 5, wherein the nanoparticle containing the composite metal oxide portion comprises an alloy portion and a composite metal oxide portion composed of two or more metal oxides.

項8.如項3至7中任一項記載之製造方法,其加熱溫度係400℃至600℃。 Item 8. The production method according to any one of items 3 to 7, wherein the heating temperature is from 400 ° C to 600 ° C.

項9.一種多孔性結構體之製造方法,該多孔性結構體係如項1或2記載者,且該製造方法之特徵在於按照由各金屬離子及有機配位子形成多孔性結構體之速度來調整添加金屬離子之時序,藉此使2種以上金屬離子依原子級均一混合。 Item 9. A method for producing a porous structure according to Item 1 or 2, wherein the production method is characterized by a rate at which a porous structure is formed from each metal ion and an organic ligand. The timing of the addition of the metal ions is adjusted, whereby two or more kinds of metal ions are uniformly mixed at the atomic level.

項10.如項1或2記載之多孔性結構體或如項3至9中任一項記載之製造方法,其中2種以上金屬係選自於由金、白金、銀、銅、釕、錫、鈀、銠、銥、鋨、鎳、鈷、鋅、鐵、釔、 鎂、錳、鈦、鋯、鉿、鉬構成之群組。 The porous structure according to any one of items 3 to 9, wherein the two or more metals are selected from the group consisting of gold, platinum, silver, copper, rhodium, and tin. , palladium, rhodium, ruthenium, osmium, nickel, cobalt, zinc, iron, bismuth, A group consisting of magnesium, manganese, titanium, zirconium, hafnium and molybdenum.

藉本發明製造方法製得之合金或複合氧化物之奈米粒子係不僅2種以上金屬整體的組成比,而且在各奈米粒子內部依原子級均一混合之均一性亦非常高的奈米粒子,因此可期待作為觸媒、氫吸附材料、光學材料、磁性材料等具有優異之性能。 The nanoparticle of the alloy or the composite oxide obtained by the production method of the present invention is not only a composition ratio of two or more kinds of metals as a whole, but also a nanoparticle having a uniform homogeneity evenly mixed in the atomic level in each nanoparticle. Therefore, it is expected to have excellent performance as a catalyst, a hydrogen absorbing material, an optical material, a magnetic material, and the like.

圖式之簡單說明 Simple description of the schema

圖1係示意顯示藉本發明製造方法製得之Co-Ni合金奈米粒子的結構。 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view schematically showing the structure of Co-Ni alloy nanoparticles prepared by the production method of the present invention.

圖2係顯示Co-MOF-74及Ni-MOF-74之產率與時間的關係。合成速度:Co-MOF-74>Ni-MOF-74。 Figure 2 shows the yield versus time for Co-MOF-74 and Ni-MOF-74. Synthesis speed: Co-MOF-74>Ni-MOF-74.

圖3係顯示依據圖2之MOF-74形成之反應速度的結果決定,用以製造Co及Ni依原子級均一混合之MOF74的步驟。 Fig. 3 is a view showing the steps for producing a MOF 74 in which Co and Ni are uniformly mixed in atomic order, depending on the result of the reaction rate of formation of MOF-74 of Fig. 2.

圖4係顯示CoNi-MOF-74之XRD圖案。 Figure 4 shows the XRD pattern of CoNi-MOF-74.

圖5係顯示CoNi-MOF74之STEM-EDS分析。Co及Ni在MOF74中均質地分布。 Figure 5 shows the STEM-EDS analysis of CoNi-MOF74. Co and Ni are homogeneously distributed in MOF74.

圖6係顯示CoNi合金奈米粒子之XRD圖案。 Figure 6 shows the XRD pattern of CoNi alloy nanoparticles.

圖7係顯示藉TEM影像決定之CoNi合金奈米粒子(430-24h)的粒徑分布。觀察到單分散奈米粒子。 Fig. 7 is a graph showing the particle size distribution of CoNi alloy nanoparticles (430-24h) determined by TEM image. Monodisperse nanoparticles were observed.

圖8係顯示CoNi合金奈米粒子(430-24h)之HAADF-STEM影像。 Figure 8 shows a HAADF-STEM image of CoNi alloy nanoparticle (430-24h).

圖9係顯示圖8之CoNi合金奈米粒子(430-24h)之一部份的放大圖。 Figure 9 is an enlarged view showing a portion of the CoNi alloy nanoparticle (430-24h) of Figure 8.

圖10係顯示CoNi合金奈米粒子(430-24h)之HAADF-STEM EDS分析。證實形成有CoNi固溶體合金奈米粒子。 Figure 10 is a HAADF-STEM EDS analysis showing CoNi alloy nanoparticle (430-24h). It was confirmed that CoNi solid solution alloy nanoparticles were formed.

用以實施發明之形態 Form for implementing the invention

藉本發明製造方法製得之複合金屬奈米粒子係2種以上金屬依原子級均一混合的奈米粒子(圖1)。 The composite metal nanoparticle obtained by the production method of the present invention is a nanoparticle in which two or more kinds of metals are uniformly mixed at an atomic level (Fig. 1).

在此,所謂「2種以上金屬依原子級均一混合」意味在奈米粒子中2種以上金屬原子(金屬離子、金屬或金屬氧化物之金屬原子)均一地存在,且各金屬原子之分布沒有偏差。 Here, "two or more kinds of metals are uniformly mixed at the atomic level" means that two or more kinds of metal atoms (metal ions, metal atoms of metal or metal oxides) are uniformly present in the nanoparticles, and the distribution of each metal atom is not present. deviation.

本發明之多孔性結構體包含2種以上金屬離子,且由該等金屬離子及有機配位子構成。多孔性結構體亦可包含相對陰離子。多孔性結構體可舉多孔性配位高分子(PCP),金屬-有機物結構體(MOF)等為例。以下舉例說明可採用不同金屬離子之代表多孔性結構體及其中可包含之金屬離子的關係。 The porous structure of the present invention contains two or more kinds of metal ions and is composed of the metal ions and organic ligands. The porous structure may also contain a relative anion. Examples of the porous structure include a porous coordination polymer (PCP), a metal-organic structure (MOF), and the like. The following exemplifies the relationship between the representative porous structure of different metal ions and the metal ions which may be contained therein.

MOF-74:Mg、Mn、Fe、Co、Ni、Cu、Zn MOF-74: Mg, Mn, Fe, Co, Ni, Cu, Zn

HKUST-1:Cu、Fe、Cr、Zn、Mo、Ru HKUST-1: Cu, Fe, Cr, Zn, Mo, Ru

UiO-66:Zr、Hf、Ti UiO-66: Zr, Hf, Ti

MIL53:Al、Cr、Fe MIL53: Al, Cr, Fe

MIL-88:Cr、Fe MIL-88: Cr, Fe

MIL101:Al、Cr MIL101: Al, Cr

ZIF-8:Zn、Co、Cu ZIF-8: Zn, Co, Cu

除上述以外,包含多數金屬離子之多孔性結構體亦廣泛地包含在本發明之多孔性結構體中。 In addition to the above, a porous structure containing a plurality of metal ions is also widely included in the porous structure of the present invention.

本發明之較佳多孔性結構體具有MOF-74、HKUST-1、UiO-66、MIL53、MIL-88、MIL101、ZIF-8之結構。 The preferred porous structure of the present invention has a structure of MOF-74, HKUST-1, UiO-66, MIL53, MIL-88, MIL101, and ZIF-8.

多孔性結構體、合金、複合金屬氧化物之金屬原子(金屬離子、金屬或金屬氧化物之金屬原子)可舉例如:金、白金、銀、銅、釕、錫、鈀、銠、銥、鋨、鎳、鈷、鋅、鋁、鉻、鐵、鉬、釔、鎂、錳、鈦、鋯、鉿等,而以銅、釕、鎳、鈷、鋅、鋁、鉻、鐵、鉬、鎂、錳、鈦、鋯、鉿等為較佳。 The metal atom (metal ion, metal or metal atom of metal oxide) of the porous structure, the alloy, and the composite metal oxide may, for example, be gold, platinum, silver, copper, ruthenium, tin, palladium, iridium, ruthenium or osmium. , nickel, cobalt, zinc, aluminum, chromium, iron, molybdenum, niobium, magnesium, manganese, titanium, zirconium, hafnium, etc., and copper, bismuth, nickel, cobalt, zinc, aluminum, chromium, iron, molybdenum, magnesium, Manganese, titanium, zirconium, hafnium, etc. are preferred.

合金、複合氧化物中含有之金屬數係2種以上,例如2至4種,且宜為2至3種。Co與Ni之組合特別好。 The number of metals contained in the alloy or the composite oxide is two or more, for example, two to four, and preferably two to three. The combination of Co and Ni is particularly good.

本發明可製得包含2種以上金屬/金屬氧化物之複合金屬奈米粒子。本發明之合金/複合金屬氧化物奈米粒子藉改變金屬之組成比,可表現如其他單一金屬之行為,或,即使是通常難以變成合金之金屬組合,由於固定在多孔性結構體中接近金屬離子之位置,亦可容易地製造合金奈米粒子。 In the present invention, composite metal nanoparticles comprising two or more metal/metal oxides can be obtained. The alloy/composite metal oxide nanoparticle of the present invention can exhibit behavior such as other single metals by changing the composition ratio of the metal, or even a metal combination which is usually difficult to become an alloy, close to the metal due to being fixed in the porous structure The alloy nanoparticles can also be easily fabricated by the position of the ions.

以下顯示本發明之較佳摻合比(莫耳比)。 The preferred blend ratio (Morby ratio) of the present invention is shown below.

金屬為2種時之莫耳比係例如10:1至1:10,且宜為5:1至1:5,較佳為4:1至1:4,更佳為3:1至1:3,而特佳為2:1至1:2。 The molar ratio of the metal is, for example, 10:1 to 1:10, and is preferably 5:1 to 1:5, preferably 4:1 to 1:4, more preferably 3:1 to 1: 3, and the best is 2:1 to 1:2.

金屬為3種時,各金屬之摻合量下限宜為5莫耳%,而以10莫耳%為更佳。 When the metal is three kinds, the lower limit of the blending amount of each metal is preferably 5 mol%, and more preferably 10 mol%.

構成多孔性結構體之較佳配位子可舉例如:在苯、萘、蒽、菲、茀、茚烷、茚、芘、1,4-二氫萘、四氫萘、伸聯苯、苯並菲、乙烯合萘、乙烷合萘等之芳香環上結合2個、3個或4個羧基之化合物(前述配位子亦可以下列取代基取代1、2或3個,該取代基包括:F、Cl、Br、I等之鹵原子,硝基,胺基,乙醯胺基等之醯胺基,氰基,羥基,亞甲二氧基、亞乙二氧基、甲氧基、乙氧基等之具有直鏈或支鏈之碳數1至4的烷氧基,甲基、乙基、丙基、三級丁基、異丁基等之具有直鏈或支鏈之碳數1至4的烷基,SH,三氟甲基,磺酸基,胺甲醯基,甲胺基等之烷胺基,二甲胺基等之二烷胺基等),反丁烯二酸、順丁烯二酸、檸康酸、伊康酸等之不飽和2價羧酸,可藉由吡、4,4'-聯吡啶、二氮雜芘等之2以上環內氮原子配位之含氮芳香族化合物(亦可藉前述取代基取代1、2或3個)等。配位子為中性時,具有中和金屬離子所需之相對陰離子。如此之相對陰離子可舉例如:氯化物離子,溴化物離子,碘化物離子,硫酸離子,硝酸離子,磷酸離子,三氟乙酸離子,甲烷磺酸離子,甲苯磺酸離子,苯磺酸離子,過氯酸離子等。 Preferred ligands constituting the porous structure include, for example, benzene, naphthalene, anthracene, phenanthrene, anthracene, decane, anthracene, anthracene, 1,4-dihydronaphthalene, tetrahydronaphthalene, extended biphenyl, and benzene. a compound in which two, three or four carboxyl groups are bonded to an aromatic ring such as phenanthrene, ethylene naphthalene or ethane naphthalene (the aforementioned ligand may also be substituted with 1, 2 or 3 of the following substituents, and the substituent includes : halogen atom of F, Cl, Br, I, etc., nitro group, amine group, decylamino group, etc., cyano group, hydroxy group, methylenedioxy group, ethylenedioxy group, methoxy group, a linear or branched alkoxy group having 1 to 4 carbon atoms, such as an ethoxy group, a linear or branched carbon number such as a methyl group, an ethyl group, a propyl group, a tertiary butyl group or an isobutyl group. An alkyl group of 1 to 4, an SH group, a trifluoromethyl group, a sulfonic acid group, an amine methyl sulfonyl group, an alkylamino group such as a methylamino group, a dialkylamine group such as a dimethylamino group, etc.), fumaric acid An unsaturated divalent carboxylic acid such as maleic acid, citraconic acid or itaconic acid, which can be pyridinated And a nitrogen-containing aromatic compound (which may be substituted by 1, 2 or 3, with the above substituent) in which 2 or more of 4,4'-bipyridine or diazapine are coordinated to the nitrogen atom in the ring. When the ligand is neutral, it has the opposite anion required to neutralize the metal ion. Such relative anions may, for example, be chloride ions, bromide ions, iodide ions, sulfate ions, nitrate ions, phosphate ions, trifluoroacetate ions, methanesulfonate ions, toluenesulfonic acid ions, benzenesulfonate ions, Chlorate ion, etc.

構成MOF、PCP等之多孔性結構體之有機配位子亦包含單座之配位子。單座之配位子之比例變大時,多孔性結構體之尺寸可減少,且可使製得之複合體尺寸減少。單座之配位子可舉安息香酸等之含1個羧基的配位子,吡啶、 咪唑等含1個可配位氮原子的配位子為例,但不限於此。 The organic ligand constituting the porous structure of MOF, PCP or the like also contains a single-site ligand. When the proportion of the single-seat ligand becomes large, the size of the porous structure can be reduced, and the size of the resulting composite can be reduced. The single-seat ligand can be a carboxy-containing ligand such as benzoic acid, pyridine, A ligand having one coordinating nitrogen atom such as imidazole is exemplified, but is not limited thereto.

本發明使用之多孔性結構體係2種以上金屬金屬離子依原子級均一混合。雖然在水等溶劑中單純地混合構成多孔性結構體之2種以上金屬離子、有機配位子時,形成豐富地含有各金屬離子之多孔性結構體的部分(例如非常小之粒子),該等集合而形成1多孔性結構體,但是該結構體中之各金屬離子的分布有原子級之偏差,且熱處理如此均一性不足之多孔性結構體時,成為不依原子級均一混合之複合金屬奈米粒子。 The porous structural system used in the present invention has two or more kinds of metal metal ions uniformly mixed at the atomic level. When two or more kinds of metal ions and organic ligands constituting the porous structure are simply mixed in a solvent such as water, a portion (for example, very small particles) rich in the porous structure of each metal ion is formed. When a porous structure is formed by equal aggregation, the distribution of each metal ion in the structure has an atomic level deviation, and when the porous structure having such uniformity is heat-treated, the composite metal is not uniformly mixed at the atomic level. Rice particles.

本發明人為製得具有以金屬原子級均一分布之複合金屬奈米粒子而檢討,結果發現測量由溶劑中含有各金屬離子及有機配位子之溶液析出而製得之多孔性結構體的反應速度,藉按照該反應速度使添加金屬離子之時序變化,可製得「金屬離子依原子級均一混合」之多孔性結構體。多孔性結構體中之2種以上金屬離子以金屬原子級均一地混合,即非常均一地分布時,可發現將其加熱而製得之複合金屬奈米粒子同樣是在合金/複合金屬氧化物中以金屬原子級均一地混合之奈米粒子。以金屬原子級均一地混合之奈米粒子可藉由HAADF-STEM EDS分析確認。 The inventors of the present invention conducted a review to obtain a composite metal nanoparticle having a uniform atomic distribution on a metal atomic level, and as a result, found that the reaction rate of the porous structure obtained by precipitating a solution containing each metal ion and an organic ligand in a solvent was measured. By changing the timing of the addition of metal ions according to the reaction rate, a porous structure in which "metal ions are uniformly mixed at the atomic level" can be obtained. When two or more kinds of metal ions in the porous structure are uniformly mixed at a metal atom level, that is, when they are distributed very uniformly, it is found that the composite metal nanoparticles obtained by heating them are also in the alloy/composite metal oxide. Nanoparticles uniformly mixed at a metal atomic level. Nanoparticles uniformly mixed at the atomic level of the metal can be confirmed by HAADF-STEM EDS analysis.

金屬離子可藉溶解金屬之溶性鹽,例如硫酸鹽、硝酸鹽、乙酸鹽、碳酸鹽、氟化物、氯化物、溴化物、碘化物、過氯酸鹽、氫氧化物等於溶劑中而供給。溶劑可舉例如:水、甲醇、乙醇、丙醇等之低級醇,DMF、DMSO、二甲基乙醯胺、N-甲基吡咯啶酮等之水混合極性溶劑,THF、 乙醚、二異丙醚等之醚類,二環氧乙烷、丙酮、丁酮等之酮類,乙酸乙酯等之酯類,氯仿、氯甲撐、四氯化碳、二氯乙烷等之氯碳氫化合物等。 The metal ion can be supplied by dissolving a soluble salt of a metal such as a sulfate, a nitrate, an acetate, a carbonate, a fluoride, a chloride, a bromide, an iodide, a perchlorate or a hydroxide in a solvent. The solvent may, for example, be a lower alcohol such as water, methanol, ethanol or propanol, or a water-mixed polar solvent such as DMF, DMSO, dimethylacetamide or N-methylpyrrolidone, THF, or the like. An ether such as diethyl ether or diisopropyl ether; a ketone such as ethylene oxide, acetone or methyl ethyl ketone; an ester such as ethyl acetate; chloroform, chloromethane, carbon tetrachloride, dichloroethane, etc. Chlorine hydrocarbons, etc.

例如,圖2顯示Co-MOF-74及Ni-MOF-74之產率與反應時間的關係,顯示Co-MOF-74比較快形成,而Ni-MOF-74比較慢形成。如此,在如此情形中,宜先混合Ni離子(圖3中係硝酸鎳)及有機配位子,稍後(圖3中係18小時後)添加Co離子(圖3中係硝酸鈷)。雖然在最初混合Ni離子及有機配位子之情形中,Ni離子及有機配位子形成配位鍵結,但是為在形成多孔性結構體之部分結構前添加下一金屬離子(Co離子),一面保持Ni離子及Co離子之分布/配置均一之狀態,一面形成多孔性結構體之部分結構。因此,最後製得之多孔性結構體成為金屬離子均一混合之結構。 For example, Figure 2 shows the relationship between the yield of Co-MOF-74 and Ni-MOF-74 and the reaction time, showing that Co-MOF-74 is formed relatively quickly, while Ni-MOF-74 is relatively slow to form. Thus, in such a case, it is preferable to mix Ni ions (nickel nitrate in Fig. 3) and an organic ligand first, and later (after 18 hours in Fig. 3), Co ions (cobalt nitrate in Fig. 3) are added. Although the Ni ion and the organic ligand form a coordination bond in the case where the Ni ion and the organic ligand are initially mixed, the next metal ion (Co ion) is added before the partial structure of the porous structure is formed, A part of the structure of the porous structure is formed while maintaining a uniform distribution and arrangement of Ni ions and Co ions. Therefore, the finally obtained porous structure becomes a structure in which metal ions are uniformly mixed.

雖然圖2、圖3舉例說明關於Co-MOF-74及Ni-MOF-74,製得Ni離子及Co離子依原子級均一混合之多孔性結構體(Co/Ni-MOF-74)之方法,但是如果是所屬技術領域中具有通常知識者,可參考該記載而容易地製得包含其他2以上金屬離子之依原子級均一混合的多孔性結構體。 2 and 3 illustrate a method for producing a porous structure (Co/Ni-MOF-74) in which Ni ions and Co ions are uniformly mixed in atomic order with respect to Co-MOF-74 and Ni-MOF-74, However, if it is a person having ordinary knowledge in the technical field, a porous structure containing a uniform atomic level of two or more metal ions can be easily obtained by referring to the description.

多孔性結構體藉在真空下、減壓下、惰性氣體環境下、還原氣體環境下(空氣環境下、含氧氣體環境下、含臭氧環境下)加熱,熱分解有機配位子而產生碳,可製造複合體,而該複合體包含2種以上金屬依原子級均一混合之合金奈米粒子、複合氧化物奈米粒子等之複合金屬奈米粒子及碳。 The porous structure is heated under the vacuum, under reduced pressure, in an inert gas atmosphere, under a reducing gas atmosphere (in an air environment, in an oxygen-containing gas environment, or in an ozone-containing environment) to thermally decompose the organic ligand to generate carbon. The composite body can be produced, and the composite body comprises composite metal nanoparticles such as alloy nanoparticles in which two or more metals are uniformly mixed in atomic order, composite oxide nanoparticles, and carbon.

熱分解有機配位子而製得之碳在有機配位子含有氮之情形中,可進行氮摻雜。此外,在氧化氣體環境中熱分解之情形中,可進行氧摻雜。碳中之氮、氧等之雜原子的摻雜量按質量係10%以下,且宜為5%以下,而以3%以下為更佳,以1%以下為特佳。 The carbon obtained by thermally decomposing the organic ligand can be nitrogen doped in the case where the organic ligand contains nitrogen. Further, in the case of thermal decomposition in an oxidizing gas environment, oxygen doping can be performed. The doping amount of the hetero atom such as nitrogen or oxygen in the carbon is 10% or less by mass, and preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.

惰性氣體環境可舉氮、氬、氦、二氧化碳等之氣體環境為例。還原氣體環境可舉氫氣體環境為例。氧化氣體環境可舉臭氧環境、氧氣體環境、大氣環境為例。臭氧環境、氧氣體環境只要含有臭氧或氧即可,亦可為臭氧或氧100%之氣體環境,且臭氧或氧亦可包含1ppm以上、10ppm以上、100ppm以上、1000ppm以上或10000ppm以上。氣體環境中之氧含量可藉減壓調整。 The inert gas atmosphere can be exemplified by a gaseous environment such as nitrogen, argon, helium or carbon dioxide. The reducing gas environment can be exemplified by a hydrogen gas environment. The oxidizing gas environment can be exemplified by an ozone environment, an oxygen gas environment, and an atmospheric environment. The ozone environment and the oxygen gas atmosphere may be ozone or oxygen, or may be ozone or oxygen in a gaseous atmosphere of 100%, and the ozone or oxygen may be contained in an amount of 1 ppm or more, 10 ppm or more, 100 ppm or more, 1000 ppm or more, or 10000 ppm or more. The oxygen content in the gaseous environment can be adjusted by decompression.

在減壓下、惰性氣體環境下、還原氣體環境下,最好真空下加熱多孔性結構體的情形中,有機配位子熱分解而成為碳,且多孔性結構體中之2種以上金屬離子還原而形成合金之奈米粒子,因此製得包含複合金屬奈米粒子及碳之複合體。另一方面,在氧化氣體環境(氧或臭氧存在之氣體環境,例如大氣環境)中,可製得包含2種以上金屬原子之複合金屬氧化物之奈米粒子及碳的複合體。在氣體環境中之氧濃度低之情形中,或在難以氧化金屬之情形中,亦有例如複合金屬氧化物只形成在表面而內部保持合金的結構,且呈氧化程度低(氧對金屬之比率比理論之金屬氧化物低)之狀態的情況。此外,如貴金屬地依據金屬種類,亦有在氧化氣體環境(氧或臭氧存在之氣體環境)中加熱製得合 金之情形。 In the case where the porous structure is heated under vacuum under a reduced pressure, an inert gas atmosphere, or a reducing gas atmosphere, the organic ligand is thermally decomposed to become carbon, and two or more metal ions in the porous structure are formed. The nanoparticles of the alloy are formed by reduction, and thus a composite comprising the composite metal nanoparticles and carbon is obtained. On the other hand, in an oxidizing gas atmosphere (a gaseous environment in which oxygen or ozone exists, for example, an atmospheric environment), a composite of nano particles and carbon containing a composite metal oxide of two or more kinds of metal atoms can be obtained. In the case where the oxygen concentration in the gas atmosphere is low, or in the case where it is difficult to oxidize the metal, there is also a structure in which, for example, the composite metal oxide is formed only on the surface while maintaining the alloy, and the degree of oxidation is low (oxygen to metal ratio) The state of the state lower than the theoretical metal oxide. In addition, depending on the type of metal, such as precious metals, it is also heated in an oxidizing gas environment (a gaseous environment in which oxygen or ozone is present). The situation of gold.

本發明之複合金屬奈米粒子包含含有如此不完全金屬氧化物部分的奈米粒子。 The composite metal nanoparticles of the present invention comprise nanoparticles comprising such incomplete metal oxide moieties.

多孔性結構體之有機配位子在熱處理過程中分解成碳,接著分解殘渣可藉洗淨或依據比重之分離方法(例如離心分離、沈降)等由複合金屬奈米粒子分離。 The organic ligand of the porous structure is decomposed into carbon during the heat treatment, and then the decomposition residue can be separated by the composite metal nanoparticle by washing or separation according to specific gravity (for example, centrifugation, sedimentation).

雖然用以製造複合金屬奈米粒子之加熱溫度隨多孔性結構體而不同,但可為例如400至1000℃左右,且宜為400至600℃左右,較佳為400至500℃左右,而以400至450℃左右為更佳。雖然加熱時間亦隨加熱溫度而不同,但通常可舉1至200小時左右為例。加熱可在減壓下、惰性氣體環境下、還原氣體環境下、氧化氣體環境下,最好真空環境下進行。加熱反應時之減壓下的壓力可為1000Pa左右以下,且宜為100Pa左右以下,特別是5至100Pa左右。 Although the heating temperature for producing the composite metal nanoparticle varies depending on the porous structure, it may be, for example, about 400 to 1000 ° C, and preferably about 400 to 600 ° C, preferably about 400 to 500 ° C, and It is preferably about 400 to 450 °C. Although the heating time varies depending on the heating temperature, it is usually exemplified by about 1 to 200 hours. The heating can be carried out under reduced pressure, in an inert gas atmosphere, in a reducing gas atmosphere, in an oxidizing gas atmosphere, preferably under a vacuum atmosphere. The pressure under reduced pressure at the time of heating reaction may be about 1000 Pa or less, and is preferably about 100 Pa or less, particularly about 5 to 100 Pa.

有機配位子還原金屬離子,接著緩緩地失去氫而變化成碳等之分解物。藉加熱多孔性結構體,小複合金屬奈米粒子緩緩地成長,接著成為大金屬奈米粒子。因此,藉控制加熱之條件,可控制複合金屬奈米粒子之尺寸。雖然藉本發明之製造方法製得之複合金屬奈米粒子係例如如圖7所示之單分散系奈米粒子,但亦可混合2種以上複合金屬奈米粒子而形成多分散系奈米粒子。 The organic ligand reduces the metal ion, and then slowly loses hydrogen to change into a decomposition product such as carbon. By heating the porous structure, the small composite metal nanoparticles grow slowly, and then become large metal nanoparticles. Therefore, by controlling the heating conditions, the size of the composite metal nanoparticle can be controlled. Although the composite metal nanoparticles obtained by the production method of the present invention are, for example, monodisperse nanoparticles as shown in FIG. 7, two or more kinds of composite metal nanoparticles may be mixed to form polydisperse nanoparticles. .

本發明之複合金屬奈米粒子(合金奈米粒子、複合氧化物奈米粒子)之平均粒徑係1至100nm左右,且宜為1至20nm左右,更佳為1至10nm左右,特別是1至6nm左右。複合金 屬奈米粒子之平均粒徑可藉TEM等之顯微鏡照片確認。複合金屬奈米粒子之形狀沒有特別限制,可為球狀、橢圓球狀、桿狀、柱狀、鱗片狀等任意形狀。 The composite metal nanoparticles (alloy nanoparticles, composite oxide nanoparticles) of the present invention have an average particle diameter of about 1 to 100 nm, and preferably about 1 to 20 nm, more preferably about 1 to 10 nm, particularly 1 To about 6nm. Compound gold The average particle diameter of the nanoparticles can be confirmed by a microscope photograph of TEM or the like. The shape of the composite metal nanoparticle is not particularly limited, and may be any shape such as a spherical shape, an elliptical shape, a rod shape, a column shape, or a scale shape.

複合金屬奈米粒子在加熱時之氣體環境的氧濃度低或進行短時間加熱處理時,有時會形成複合金屬奈米粒子之混合物,或成為氧化程度低之複合金屬奈米粒子,但是該等亦包含在本發明「複合金屬奈米粒子」中。 When the composite metal nanoparticles have a low oxygen concentration in a gas atmosphere during heating or a short-time heat treatment, a mixture of composite metal nanoparticles may be formed or composite metal nanoparticles having a low degree of oxidation may be formed. Also included in the "composite metal nanoparticle" of the present invention.

實施例 Example

以下,依據實施例更詳細地說明本發明,但當然本發明不限於該等實施例。 Hereinafter, the present invention will be described in more detail based on the examples, but the invention is of course not limited to the examples.

製造例1:單一金屬之PCP多孔性結構體的調製 Production Example 1: Modulation of a single metal PCP porous structure

在50ml茄形燒瓶中以20ml之DMF-乙醇-水(按容量為1:1:1)作為溶劑,且加入Ni(NO3)2.6H2O(291mg、1mmol)或Co(NO3)2.6H2O(291mg、1mmol)、2,5-二羥對苯二酸(H4dhtp、59mg),接著在100℃下攪拌6小時、12小時、18小時、24小時、48小時、72小時、96小時、120小時使之反應。藉吸引過濾回收析出之單一金屬之多孔性結構體(Ni2(dhtp)或Co2(dhtp))後,藉甲醇、水洗淨。接著,在25℃在減壓下乾燥24小時,以製得單一金屬之多孔性結構體(Ni2(dhtp)或Co2(dhtp))。製得單一金屬之多孔性結構體可藉粉末X光結構分析確認。各反應時間之Ni2(dhtp)或Co2(dhtp)的產率顯示於圖2中。 In a 50 ml eggplant-shaped flask, 20 ml of DMF-ethanol-water (1:1:1 by volume) was used as a solvent, and Ni(NO 3 ) 2 was added . 6H 2 O (291 mg, 1 mmol) or Co(NO 3 ) 2 . 6H 2 O (291 mg, 1 mmol), 2,5-dihydroxy terephthalic acid (H 4 dhtp, 59 mg), followed by stirring at 100 ° C for 6 hours, 12 hours, 18 hours, 24 hours, 48 hours, 72 hours It was reacted in 96 hours and 120 hours. The porous metal structure (Ni 2 (dhtp) or Co 2 (dhtp)) of the precipitated single metal was recovered by suction filtration, and then washed with methanol or water. Subsequently, it was dried at 25 ° C for 24 hours under reduced pressure to obtain a single metal porous structure (Ni 2 (dhtp) or Co 2 (dhtp)). The porous structure in which a single metal is obtained can be confirmed by powder X-ray structure analysis. The yield of Ni 2 (dhtp) or Co 2 (dhtp) for each reaction time is shown in Fig. 2 .

製造例2:PCP多孔性結構體之調製 Production Example 2: Modulation of PCP porous structure

在3000ml茄形燒瓶中以1500ml之DMF-乙醇-水(按容量 為1:1:1)作為溶劑,且加入Ni(NO3)2.6H2O(1.8g)、2,5-二羥對苯二酸(H4dhtp、0.375g),接著在100℃下攪拌18小時使之反應,進一步添加Co(NO3)2.6H2O(1.8g)使之反應6小時。藉吸引過濾回收析出之多孔性結構體(CoNi-MOF-74)後,藉甲醇、水洗淨。接著,在25℃在減壓下乾燥24小時,以製得目的之多孔性結構體(CoNi-MOF-74)。製得目的之多孔性結構體可藉粉末X光結構分析確認(圖4)。進一步,藉HAADF-STEM(高角度散射環狀暗視野掃描式穿透電子顯微鏡)對製得之CoNi-MOF-74進行分析。結果顯示於圖5中。由圖5之結果可知是在碳(C)、Ni、Co及該等之重疊中Ni離子及Co離子依原子級均一混合的多孔性結構體。 In a 3000 ml eggplant-shaped flask, 1500 ml of DMF-ethanol-water (by volume: 1:1:1) was used as a solvent, and Ni(NO 3 ) 2 was added . 6H 2 O (1.8 g), 2,5-dihydroxy terephthalic acid (H 4 dhtp, 0.375 g), followed by stirring at 100 ° C for 18 hours to further react, and further adding Co(NO 3 ) 2 . 6H 2 O (1.8 g) was allowed to react for 6 hours. The precipitated porous structure (CoNi-MOF-74) was recovered by suction filtration, and then washed with methanol or water. Subsequently, it was dried at 25 ° C for 24 hours under reduced pressure to obtain a desired porous structure (CoNi-MOF-74). The resulting porous structure can be confirmed by powder X-ray structural analysis (Fig. 4). Further, the obtained CoNi-MOF-74 was analyzed by HAADF-STEM (High Angle Scattering Loop Dark Vision Scanning Electron Microscope). The results are shown in Figure 5. As is clear from the results of FIG. 5, it is a porous structure in which carbon ions (C), Ni, Co, and the like are uniformly mixed in the atomic order.

實施例1 Example 1

對藉製造例2製得之CoNi-MOF-74,在350℃、400℃或430℃在真空下加熱24小時,以製得CoNi合金奈米粒子及碳之複合體。對製得之CoNi合金奈米粒子及碳的複合體測量XRD圖案之結果顯示於圖6,且依據TEM影像測量粒徑之結果顯示於圖7。藉本發明製得之CoNi合金奈米粒子的平均粒徑係4.1±0.7nm,由此可知是粒徑分布非常狹窄之單分散奈米粒子。此外,顯示CoNi合金奈米粒子及碳之複合體的HAADF-STEM影像(圖8),圖8之CoNi合金奈米粒子及碳之複合體的一部份放大圖(圖9),CoNi合金奈米粒子之HAADF-STEM EDS分析(圖10)。 The CoNi-MOF-74 obtained in Production Example 2 was heated under vacuum at 350 ° C, 400 ° C or 430 ° C for 24 hours to obtain a composite of CoNi alloy nanoparticles and carbon. The results of measuring the XRD pattern of the obtained CoNi alloy nanoparticle and carbon composite are shown in Fig. 6, and the results of measuring the particle diameter according to the TEM image are shown in Fig. 7. The average particle diameter of the CoNi alloy nanoparticles prepared by the present invention is 4.1 ± 0.7 nm, and thus it is known that the particle diameter distribution is very narrow. In addition, a HAADF-STEM image of the CoNi alloy nanoparticle and carbon composite (Fig. 8), a partial enlarged view of the CoNi alloy nanoparticle and carbon composite of Fig. 8 (Fig. 9), CoNi alloy Nai HAADF-STEM EDS analysis of rice particles (Fig. 10).

如圖8至10所示,可知本發明之複合金屬奈米粒子的複合體係在多孔性結構體內部鄰接之金屬離子集合/ 凝集而長成複合金屬粒子且產生奈米粒子,以製得藉有機配位子之熱分解產生之碳及奈米粒子的複合體。這暗示製得之奈米粒子之2種以上金屬原子的分布與多孔性結構體之金屬離子的分布相同。 As shown in FIGS. 8 to 10, it can be seen that the composite system of the composite metal nanoparticle of the present invention is adjacent to the metal ion collection inside the porous structure/ Aggregate and grow into composite metal particles and produce nanoparticles to obtain a composite of carbon and nanoparticles produced by thermal decomposition of organic ligands. This suggests that the distribution of two or more kinds of metal atoms of the obtained nanoparticle is the same as the distribution of the metal ions of the porous structure.

Claims (10)

一種多孔性結構體,包含2種以上金屬離子及有機配位子,且其特徵在於2種以上金屬離子係依原子級均一混合。 A porous structure comprising two or more metal ions and an organic ligand, and characterized in that two or more metal ions are uniformly mixed at an atomic level. 如請求項1之多孔性結構體,其中前述多孔性結構體係多孔性配位高分子(Porous Coordination Polymer(PCP))或金屬-有機物結構體(Metal-Organic Framework(MOF))。 The porous structure according to claim 1, wherein the porous structural system is a Porous Coordination Polymer (PCP) or a Metal-Organic Framework (MOF). 一種複合體之製造方法,該複合體包含2種以上金屬依原子級均一混合之複合金屬奈米粒子及碳,且該製造方法之特徵在於包含下述步驟:在真空下、減壓下、還原氣體環境下、惰性氣體環境下或氧化氣體環境下加熱如請求項1或2之多孔性結構體以熱分解有機配位子而產生碳,並將金屬離子轉變成複合金屬而製得複合金屬奈米粒子;其中前述複合金屬奈米粒子係合金奈米粒子、複合金屬氧化物奈米粒子、或包含合金部分及複合金屬氧化物部分的奈米粒子,且該複合金屬氧化物部分係由2種以上金屬氧化物構成。 A method for producing a composite comprising composite metal nanoparticles and carbon in which two or more metals are uniformly mixed at an atomic level, and the production method is characterized by comprising the steps of: reducing under vacuum, under reduced pressure, and under reduced pressure Heating in a gaseous environment, in an inert gas atmosphere or in an oxidizing gas atmosphere, the porous structure of claim 1 or 2 generates carbon by thermally decomposing an organic ligand, and converts the metal ion into a composite metal to obtain a composite metal naphthalene. a rice particle; wherein the composite metal nanoparticle is an alloy nanoparticle, a composite metal oxide nanoparticle, or a nanoparticle comprising an alloy portion and a composite metal oxide portion, and the composite metal oxide portion is composed of two The above metal oxide is composed. 一種複合體之製造方法,該複合體包含2種以上金屬依原子級均一混合之合金奈米粒子及碳,且該製造方法之特徵在於在真空下、還原氣體環境下或惰性氣體環境下加熱如請求項1或2之多孔性結構體以熱分解有機配位子而產生碳,並將金屬離子轉變成金屬而製得合金奈米 粒子。 A manufacturing method of a composite body comprising alloy nanoparticles and carbon in which two or more metals are uniformly mixed in an atomic order, and the manufacturing method is characterized in that it is heated under a vacuum, a reducing gas atmosphere or an inert gas atmosphere. The porous structure of claim 1 or 2 thermally decomposes an organic ligand to generate carbon, and converts the metal ion into a metal to obtain an alloy nano particle. 一種複合體之製造方法,該複合體包含奈米粒子及碳,且該奈米粒子含有2種以上金屬依原子級均一混合之複合金屬氧化物部分;該製造方法之特徵在於在減壓下或氧化氣體環境下加熱如請求項1或2之多孔性結構體以熱分解有機配位子而產生碳,並將金屬離子轉變成金屬氧化物而製得具有複合金屬氧化物部分之奈米粒子。 A method for producing a composite comprising nano particles and carbon, and the nano particles comprise a composite metal oxide portion in which two or more metals are uniformly mixed at an atomic level; the manufacturing method is characterized by under reduced pressure or The porous structure according to claim 1 or 2 is heated in an oxidizing gas atmosphere to thermally decompose the organic ligand to generate carbon, and to convert the metal ion into a metal oxide to obtain a nanoparticle having a composite metal oxide portion. 如請求項5之製造方法,其中含有複合金屬氧化物部分之奈米粒子係由複合金屬氧化物構成。 The method of claim 5, wherein the nanoparticle containing the composite metal oxide portion is composed of a composite metal oxide. 如請求項5之製造方法,其中含有複合金屬氧化物部分之奈米粒子包含合金部分及由2種以上金屬氧化物構成之複合金屬氧化物部分。 The method of claim 5, wherein the nanoparticle containing the composite metal oxide portion comprises an alloy portion and a composite metal oxide portion composed of two or more metal oxides. 如請求項3至7中任一項之製造方法,其加熱溫度係400℃至600℃。 The manufacturing method according to any one of claims 3 to 7, wherein the heating temperature is from 400 ° C to 600 ° C. 一種多孔性結構體之製造方法,該多孔性結構體係如請求項1或2所記載者,且該製造方法之特徵在於按照由各金屬離子及有機配位子形成多孔性結構體之速度來調整添加金屬離子之時序,藉此使2種以上金屬離子依原子級均一混合。 A method for producing a porous structure according to claim 1 or 2, wherein the method of production is characterized in that the rate of formation of the porous structure by each metal ion and organic ligand is adjusted The timing of the metal ions is added, whereby two or more metal ions are uniformly mixed at the atomic level. 如請求項1或2之多孔性結構體或如請求項3至9中任一項之製造方法,其中2種以上金屬係選自於由金、白金、銀、銅、釕、錫、鈀、銠、銥、鋨、鎳、鈷、鋅、鐵、釔、鎂、錳、鈦、鋯、鉿、鉬構成之群組。 The porous structure of claim 1 or 2, wherein the two or more metals are selected from the group consisting of gold, platinum, silver, copper, ruthenium, tin, palladium, and the production method according to any one of claims 3 to 9. A group consisting of ruthenium, osmium, iridium, nickel, cobalt, zinc, iron, lanthanum, magnesium, manganese, titanium, zirconium, hafnium and molybdenum.
TW104107605A 2014-03-11 2015-03-10 Porous structure, manufacturing method thereof, and manufacturing method of composite body TWI658887B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014047181 2014-03-11
JP2014-047181 2014-03-11

Publications (2)

Publication Number Publication Date
TW201545827A true TW201545827A (en) 2015-12-16
TWI658887B TWI658887B (en) 2019-05-11

Family

ID=54071717

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104107605A TWI658887B (en) 2014-03-11 2015-03-10 Porous structure, manufacturing method thereof, and manufacturing method of composite body

Country Status (3)

Country Link
JP (1) JPWO2015137272A1 (en)
TW (1) TWI658887B (en)
WO (1) WO2015137272A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480907B (en) * 2020-10-23 2022-07-01 天津师范大学 Carbon-based/metal composite material and preparation method thereof
CN114015215B (en) * 2021-11-26 2023-03-24 江苏科技大学 Polylactic acid racemic blend/MIL-88 composite material and preparation method thereof
CN114289065B (en) * 2021-12-23 2023-09-22 淮阴工学院 Preparation method and application of metal ion doped x-MOF-74 photocatalyst
CN114906801B (en) * 2022-05-26 2023-10-10 重庆大学 MgH (MgH) 2 @Fe-ZIF hydrogen storage material and preparation method thereof
CN114950555B (en) * 2022-06-14 2023-08-18 淮阴师范学院 Zirconium-based monoatomic catalyst, preparation method and application thereof in selective synthesis of 2, 5-furandimethanol

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605648B1 (en) * 1999-04-06 2003-08-12 Phillips Plastics Corporation Sinterable structures and method
JP2005255651A (en) * 2004-03-15 2005-09-22 Kyoto Univ Organometallic complex structure, method for producing the same, functional membrane using the organometallic complex structure, functional composite material, functional structure and absorption and desorption sensor
JP2005289885A (en) * 2004-03-31 2005-10-20 Osaka Organic Chem Ind Ltd Multidimensional organic-inorganic composite compound, composite burnt product and methods for producing these
KR101310883B1 (en) * 2006-03-29 2013-09-25 삼성에스디아이 주식회사 Porous metal oxide and process for preparing the same
JP5386979B2 (en) * 2008-06-06 2014-01-15 東洋紡株式会社 Fuel cell catalyst, membrane electrode assembly, fuel cell, and oxidation-reduction catalyst using heat-treated coordination polymer metal complex.
EP2611766A4 (en) * 2010-09-01 2014-04-30 Basf Se Process for producing carbon-comprising composite
WO2013021944A1 (en) * 2011-08-05 2013-02-14 国立大学法人京都大学 Metal nanoparticle-pcp complex and manufacturing method therefor
JP2014028943A (en) * 2012-07-03 2014-02-13 Kuraray Co Ltd Coordination polymer, and adsorbent, occlusion material, and separation material comprising the same
CN102877009B (en) * 2012-10-23 2014-03-19 河北工业大学 Method for preparing porous nickel-based amorphous alloy material

Also Published As

Publication number Publication date
JPWO2015137272A1 (en) 2017-04-06
WO2015137272A1 (en) 2015-09-17
TWI658887B (en) 2019-05-11

Similar Documents

Publication Publication Date Title
Zinatloo-Ajabshir et al. Praseodymium oxide nanostructures: novel solvent-less preparation, characterization and investigation of their optical and photocatalytic properties
JP6188700B2 (en) Metal nanoparticle composite and method for producing the same
Dai et al. Recent progresses in metal–organic frameworks based core–shell composites
Salavati-Niasari et al. Preparation of NiO nanoparticles from metal-organic frameworks via a solid-state decomposition route
TW201545827A (en) Porous structure and method for producing same, and method for producing composite metal nanoparticle
JP2020528499A (en) Carbon-coated transition metal nanocomposites, their manufacture and applications
US9675958B2 (en) Metal-organic framework composite with nano metal-organic frameworks embedded in host metal-organic framework, method for producing the metal-organic framework composite and gas storage including the metal-organic framework composite
Li et al. Chelated ion‐exchange strategy toward BiOCl mesoporous single‐crystalline nanosheets for boosting photocatalytic selective aromatic alcohols oxidation
Safarifard et al. Sonochemical syntheses of a new fibrous-like nano-scale manganese (II) coordination supramolecular compound; precursor for the fabrication of octahedral-like Mn3O4 nano-structure
Yang et al. Control of the formation of rod-like ZnO mesocrystals and their photocatalytic properties
Salavati-Niasari et al. Fabrication of chain-like Mn2O3 nanostructures via thermal decomposition of manganese phthalate coordination polymers
Kumar et al. Synthesis of CuO and Cu 2 O nano/microparticles from a single precursor: Effect of temperature on CuO/Cu 2 O formation and morphology dependent nitroarene reduction
Togashi et al. Solvent-free synthesis of monodisperse Cu nanoparticles by thermal decomposition of an oleylamine-coordinated Cu oxalate complex
Hosseini et al. Sonochemical synthesis of nanoparticles of Cd metal organic framework based on thiazole ligand as a new precursor for fabrication of cadmium sulfate nanoparticles
Tang et al. Cost-effective aqueous-phase synthesis of long copper nanowires
JP6080614B2 (en) Method for producing metal complex-supported mesoporous material
Liu et al. Multicomponent (Ce, Cu, Ni) oxides with cage and core–shell structures: tunable fabrication and enhanced CO oxidation activity
Davar et al. A novel chelating acid-assisted thermolysis procedure for preparation of tin oxide nanoparticles
US20180161762A1 (en) Composite hollow particle, a method for making thereof, and a method for producing hydrogen gas
Mohammadikish et al. Synthesis and optical band gap determination of CuO nanoparticles from salen-based infinite coordination polymer nanospheres
JP6048750B2 (en) Method for producing composite
Zhang et al. Facile synthesis of antimony selenide with lamellar nanostructures and their efficient catalysis for the hydrogenation of p-nitrophenol
Derakhshandeh et al. Sonochemical synthesis of a new nano-sized cerium (III) supramolecular compound; Precursor for nanoceria
CN109293940B (en) One-dimensional HKUST-1 nanobelt and preparation method thereof
Hazrati et al. The effects of altering reaction conditions in green sonochemical synthesis of a thallium (I) coordination polymer and in achieving to different morphologies of thallium (III) oxide nanostructures via solid-state process

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees