JPWO2015137272A1 - Porous structure, method for producing the same, and method for producing composite metal nanoparticles - Google Patents

Porous structure, method for producing the same, and method for producing composite metal nanoparticles Download PDF

Info

Publication number
JPWO2015137272A1
JPWO2015137272A1 JP2016507729A JP2016507729A JPWO2015137272A1 JP WO2015137272 A1 JPWO2015137272 A1 JP WO2015137272A1 JP 2016507729 A JP2016507729 A JP 2016507729A JP 2016507729 A JP2016507729 A JP 2016507729A JP WO2015137272 A1 JPWO2015137272 A1 JP WO2015137272A1
Authority
JP
Japan
Prior art keywords
metal
porous structure
composite
nanoparticles
composite metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016507729A
Other languages
Japanese (ja)
Inventor
北川 宏
宏 北川
浩和 小林
浩和 小林
恵 向吉
恵 向吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JPWO2015137272A1 publication Critical patent/JPWO2015137272A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/01Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
    • C07C65/03Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring
    • C07C65/05Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring o-Hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本発明は、2種以上の金属イオンと有機配位子を含む多孔性構造体であって、2種以上の金属イオンが原子レベルで均一に混ざり合っていることを特徴とする、多孔性構造体を提供するものである。The present invention relates to a porous structure comprising two or more kinds of metal ions and an organic ligand, wherein the two or more kinds of metal ions are uniformly mixed at the atomic level. Provide the body.

Description

本発明は、複合金属ナノ粒子、多孔性構造体およびそれらの製造方法に関し、詳しくは2種以上の金属、金属酸化物又は金属イオンが原子レベルで均一に混ざり合っている複合金属ナノ粒子、多孔性構造体およびそれらの製造方法に関する。   The present invention relates to composite metal nanoparticles, porous structures, and methods for producing the same, and more specifically, composite metal nanoparticles in which two or more kinds of metals, metal oxides, or metal ions are uniformly mixed at an atomic level, porous The present invention relates to a sex structure and a manufacturing method thereof.

なお、本明細書において、MOFとPCPを総称して「PCP」と記載する場合がある。   In this specification, MOF and PCP may be collectively referred to as “PCP”.

2種以上の金属を含む多孔性構造体が知られている。
例えば非特許文献1は、有機配位子のNa塩(Na2NO2-ip)を用い、PCP形成の反応速度を高めることにより、2種類の金属(Zn、Mn)からなるPCP(ZnxMn1-xCID-5)を合成している。得られたPCPのZnとMnのそれぞれの元素マッピング像は異なる分布を示しており、2つを重ね合わせた像からはMnに由来する元素分布(緑)のみが観測される箇所がある(Figure S15)。これらの結果は、ZnとMnの分布は完全に一様ではなく、一部、ZnCID-5とMnCID-5のドメインが重なり合っていることを示している。また、原料にNa塩を使っているため合成したPCPに不純物が混入する可能性もある。
Porous structures containing two or more metals are known.
For example, Non-Patent Document 1 uses PCP (ZnxMn1-) consisting of two types of metals (Zn, Mn) by using an organic ligand Na salt (Na 2 NO 2 -ip) and increasing the reaction rate of PCP formation. xCID-5) is synthesized. The elemental mapping images of the obtained PCP Zn and Mn show different distributions, and only the elemental distribution (green) derived from Mn is observed in the superimposed image (Figure). S15). These results indicate that the distribution of Zn and Mn is not completely uniform, and that the domains of ZnCID-5 and MnCID-5 overlap. In addition, because Na salt is used as a raw material, impurities may be mixed into the synthesized PCP.

J. Am. Chem. Soc. 2012, 134, 13341-13347J. Am. Chem. Soc. 2012, 134, 13341-13347

本発明は、2種以上の金属が均一に混ざり合った多孔性構造体及びその製造方法、並びに合金ナノ粒子、複合酸化物ナノ粒子などの複合金属ナノ粒子の製造方法を提供することを目的とする。 An object of the present invention is to provide a porous structure in which two or more kinds of metals are uniformly mixed, a method for producing the same, and a method for producing composite metal nanoparticles such as alloy nanoparticles and composite oxide nanoparticles. To do.

本発明者は、上記課題に鑑み検討を重ねた結果、2種以上の金属イオンは、有機配位子と多孔性構造体を形成する速度が異なっており、これらの速度に応じたタイミングで、具体的には、多孔性構造体を形成する速度の遅い金属を先に添加し、多孔性構造体を形成する速度の速い金属を後で添加することで、2種以上の金属が原子レベルで均一に混ざり合っている多孔性構造体が得られることを見出した。非特許文献1で使用した有機配位子のNa塩は多孔性構造体を速やかに形成するので金属イオンごとの速度の差が小さくなり、2種以上の金属の多孔性構造体全体における組成比のばらつきは小さくできるが、原子レベルで見ると多孔性構造体の各金属イオンの分布に偏りが生じることになる。   As a result of repeated investigations in view of the above problems, the present inventor has two or more types of metal ions that have different rates of forming a porous structure with an organic ligand, and at a timing according to these rates, Specifically, two or more kinds of metals are added at the atomic level by adding a slow metal that forms a porous structure first, and then adding a fast metal that forms a porous structure later. It has been found that a porous structure that is uniformly mixed can be obtained. Since the organic ligand Na salt used in Non-Patent Document 1 forms a porous structure quickly, the difference in speed between metal ions is reduced, and the composition ratio of two or more metals in the entire porous structure However, when viewed at the atomic level, the distribution of each metal ion in the porous structure is biased.

一方、本発明では、多孔性構造体内の金属イオンが原子レベルで均一に混ざり合っているために、この多孔性構造体を酸素の存在下または非存在下で加熱して有機配位子を分解し、金属イオンを合金又は金属酸化物に変換することで、2種以上の金属の合金ナノ粒子もしくは2種以上の金属の複合酸化物ナノ粒子などの複合金属ナノ粒子が得られ、この合金/複合酸化物ナノ粒子は、多孔性構造体と同様に2種以上の金属が原子レベルで均一に混ざり合っているナノ粒子であることを見出した。   On the other hand, in the present invention, since metal ions in the porous structure are uniformly mixed at the atomic level, this porous structure is heated in the presence or absence of oxygen to decompose the organic ligand. Then, by converting metal ions into an alloy or metal oxide, composite metal nanoparticles such as alloy nanoparticles of two or more metals or composite oxide nanoparticles of two or more metals are obtained. It was found that the composite oxide nanoparticles are nanoparticles in which two or more kinds of metals are uniformly mixed at the atomic level as in the porous structure.

本発明は、以下の多孔性構造体及びその製造方法、複合金属ナノ粒子の製造方法を提供するものである。
項1. 2種以上の金属イオンと有機配位子を含む多孔性構造体であって、2種以上の金属イオンが原子レベルで均一に混ざり合っていることを特徴とする、多孔性構造体。
項2. 前記多孔性構造体が、多孔性配位高分子(Porous Coordination Polymer(PCP))又は金属−有機物構造体(Metal-Organic Framework(MOF))である、項1に記載の多孔性構造体。
項3. 項1又は2に記載の多孔性構造体を真空下、減圧下、還元雰囲気下、不活性雰囲気下もしくは酸化雰囲気下で加熱して有機配位子を熱分解してカーボンに導き、金属イオンを複合金属に変換して複合金属ナノ粒子を得る工程を含み、前記複合金属ナノ粒子が合金ナノ粒子、複合金属酸化物ナノ粒子もしくは合金部分と2種以上の金属酸化物から構成される複合金属酸化物部分を含むナノ粒子であることを特徴とする、2種以上の金属が原子レベルで均一に混ざり合っている複合金属ナノ粒子とカーボンを含む複合体の製造方法。
項4. 項1又は2に記載の多孔性構造体を真空下、還元雰囲気下または不活性雰囲気下で加熱して有機配位子を熱分解してカーボンに導き、金属イオンを金属に変換して合金ナノ粒子を得ることを特徴とする、2種以上の金属が原子レベルで均一に混ざり合っている合金ナノ粒子とカーボンを含む複合体の製造方法。
項5. 項1又は2に記載の多孔性構造体を減圧下もしくは酸化雰囲気下で加熱して有機配位子を熱分解してカーボンに導き、かつ、金属イオンを金属酸化物に変換して複合金属酸化物部分を有するナノ粒子を得ることを特徴とする、2種以上の金属が原子レベルで均一に混ざり合った複合金属酸化物部分を含有するナノ粒子とカーボンを含む複合体の製造方法。
項6. 複合金属酸化物部分を含有するナノ粒子が、複合金属酸化物からなるナノ粒子である項5に記載の製造方法。
項7. 複合金属酸化物部分を含有するナノ粒子が、合金部分と2種以上の金属酸化物から構成される複合金属酸化物部分を含むナノ粒子である項5に記載の製造方法。
項8. 加熱温度が400℃〜600℃である、項3〜7のいずれかに記載の製造方法。
項9. 各金属イオンと有機配位子による多孔性構造体の形成速度に応じて金属イオンを加えるタイミングを調整し、それにより2種以上の金属イオンを原子レベルで均一に混合させることを特徴とする、項1又は2に記載の多孔性構造体の製造方法。
項10. 2種以上の金属が、金、白金、銀、銅、ルテニウム、スズ、パラジウム、ロジウム、イリジウム、オスミウム、ニッケル、コバルト、亜鉛、鉄、イットリウム、マグネシウム、マンガン、チタン、ジルコニウム、ハフニウム、モリブデンからなる群から選ばれる、項1又は2に記載の多孔性構造体、項3〜9のいずれか1項に記載の製造方法。
The present invention provides the following porous structure, a method for producing the same, and a method for producing composite metal nanoparticles.
Item 1. A porous structure comprising two or more kinds of metal ions and an organic ligand, wherein the two or more kinds of metal ions are uniformly mixed at an atomic level.
Item 2. Item 2. The porous structure according to item 1, wherein the porous structure is a porous coordination polymer (PCP) or a metal-organic framework (Metal-Organic Framework (MOF)).
Item 3. The porous structure according to Item 1 or 2 is heated under vacuum, reduced pressure, reducing atmosphere, inert atmosphere or oxidizing atmosphere to thermally decompose the organic ligand and lead to carbon, Including a step of converting a metal ion into a composite metal to obtain composite metal nanoparticles, wherein the composite metal nanoparticles are composed of alloy nanoparticles, composite metal oxide nanoparticles or alloy portions, and two or more metal oxides A method for producing a composite comprising carbon and composite metal nanoparticles in which two or more metals are uniformly mixed at the atomic level, wherein the composite is a nanoparticle including a composite metal oxide portion.
Item 4. The porous structure according to Item 1 or 2 is heated in a vacuum, in a reducing atmosphere or in an inert atmosphere to thermally decompose the organic ligand to lead to carbon, thereby converting metal ions to metal. A method for producing a composite containing alloy nanoparticles and carbon in which two or more metals are uniformly mixed at an atomic level, characterized in that alloy nanoparticles are obtained.
Item 5. The porous structure according to Item 1 or 2 is heated under reduced pressure or in an oxidizing atmosphere to thermally decompose the organic ligand into carbon, and the metal ion is converted into a metal oxide. A method for producing a composite comprising a nanoparticle containing a composite metal oxide portion in which two or more metals are uniformly mixed at an atomic level and carbon, characterized by obtaining a nanoparticle having a composite metal oxide portion .
Item 6. Item 6. The method according to Item 5, wherein the nanoparticle containing the composite metal oxide portion is a nanoparticle made of a composite metal oxide.
Item 7. Item 6. The production method according to Item 5, wherein the nanoparticle containing the composite metal oxide portion is a nanoparticle comprising a composite metal oxide portion composed of an alloy portion and two or more metal oxides.
Item 8. Item 8. The method according to any one of Items 3 to 7, wherein the heating temperature is 400 ° C to 600 ° C.
Item 9. Adjusting the timing of adding metal ions according to the formation rate of the porous structure by each metal ion and organic ligand, thereby uniformly mixing two or more metal ions at the atomic level, Item 3. A method for producing a porous structure according to Item 1 or 2.
Item 10. Two or more metals are gold, platinum, silver, copper, ruthenium, tin, palladium, rhodium, iridium, osmium, nickel, cobalt, zinc, iron, yttrium, magnesium, manganese, titanium, zirconium, hafnium, molybdenum Item 10. The porous structure according to Item 1 or 2, selected from the group, and the production method according to any one of Items 3 to 9.

本発明の製造方法で得られる合金もしくは複合酸化物のナノ粒子は、2種以上の金属の全体の組成比だけでなく、各ナノ粒子の内部においても原子レベルで均一に混ざり合っている均一性の非常に高いナノ粒子であるため、触媒、水素吸蔵材料、光学材料、磁性材料などとして優れた性能を有することが期待される。 The alloy or composite oxide nanoparticles obtained by the production method of the present invention are uniformly mixed not only at the total composition ratio of two or more metals, but also at the atomic level within each nanoparticle. Therefore, it is expected to have excellent performance as a catalyst, a hydrogen storage material, an optical material, a magnetic material, and the like.

本発明の製造方法で得られるCo−Ni合金ナノ粒子の構造を模式的に示す。The structure of the Co-Ni alloy nanoparticle obtained with the manufacturing method of this invention is shown typically. Co−MOF−74とNi−MOF−74の収率と時間の関係を示す。合成速度:Co-MOF-74>Ni-MOF-74.The relationship between the yield of Co-MOF-74 and Ni-MOF-74 and time is shown. Synthesis rate: Co-MOF-74> Ni-MOF-74. 図2のMOF−74形成の反応速度の結果に基づき決定された、CoとNiが原子レベルで均一に混ざり合っているMOF74を製造するための手順を示す。FIG. 3 shows a procedure for manufacturing MOF 74 in which Co and Ni are uniformly mixed at the atomic level, determined based on the reaction rate result of MOF-74 formation in FIG. 2. CoNi-MOF-74のXRDパターンを示す。The XRD pattern of CoNi-MOF-74 is shown. CoNi-MOF74のSTEM-EDS分析を示す。CoとNiはMOF74中で均質に分布する。The STEM-EDS analysis of CoNi-MOF74 is shown. Co and Ni are homogeneously distributed in MOF74. CoNi合金ナノ粒子のXRDパターンを示す。The XRD pattern of CoNi alloy nanoparticles is shown. TEM画像により決定されたCoNi合金ナノ粒子(430-24h)の粒度分布を示す。単分散ナノ粒子が観察された。The particle size distribution of CoNi alloy nanoparticles (430-24h) determined by TEM images is shown. Monodisperse nanoparticles were observed. CoNi合金ナノ粒子(430-24h)のHAADF-STEM画像を示す。The HAADF-STEM image of CoNi alloy nanoparticles (430-24h) is shown. 図8のCoNi合金ナノ粒子(430-24h)の一部の拡大図を示す。FIG. 9 shows an enlarged view of a part of the CoNi alloy nanoparticles (430-24h) in FIG. 8. CoNi合金ナノ粒子(430-24h)のHAADF-STEM EDS分析を示す。CoNi固溶体合金ナノ粒子が形成されていることが実証された。The HAADF-STEM EDS analysis of CoNi alloy nanoparticles (430-24h) is shown. It was demonstrated that CoNi solid solution alloy nanoparticles were formed.

本発明の製造方法で得られる複合金属ナノ粒子は、2種以上の金属が原子レベルで均一に混ざり合っているナノ粒子である(図1)。
ここで、「2種以上の金属が原子レベルで均一に混ざり合っている」とは、ナノ粒子の中で2種以上の金属原子(金属イオン、金属又は金属酸化物の金属原子)が均一に存在し、各金属原子の分布に偏りがないことを意味する。
本発明の多孔性構造体は、2種以上の金属イオンを含み、これらの金属イオンと有機配位子から構成される。多孔性構造体は、カウンターアニオンを含んでいてもよい。多孔性構造体としては、多孔性配位高分子(PCP)、金属−有機物構造体(MOF)などが挙げられる。異なる金属イオンを取り得る代表的な多孔性構造体とそこに含まれ得る金属イオンとの関係を以下に例示する:
MOF-74:Mg, Mn, Fe, Co, Ni, Cu, Zn
HKUST-1:Cu, Fe, Cr, Zn, Mo, Ru
UiO-66:Zr, Hf, Ti
MIL53:Al, Cr, Fe
MIL-88:Cr, Fe
MIL101:Al, Cr
ZIF-8:Zn, Co, Cu
上記以外にも、複数の金属イオンを含む多孔性構造体は広く本発明の多孔性構造体に含まれる。
本発明の好ましい多孔性構造体は、MOF-74、HKUST-1、UiO-66、MIL53、MIL-88、MIL101又はZIF-8の構造を持つ。
多孔性構造体、合金、複合金属酸化物の金属原子(金属イオン、金属又は金属酸化物の金属原子)としては、金、白金、銀、銅、ルテニウム、スズ、パラジウム、ロジウム、イリジウム、オスミウム、ニッケル、コバルト、亜鉛、アルミニウム、クロム、鉄、モリブデン、イットリウム、マグネシウム、マンガン、チタン、ジルコニウム、ハフニウムなどが挙げられ、銅、ルテニウム、ニッケル、コバルト、亜鉛、アルミニウム、クロム、鉄、モリブデン、マグネシウム、マンガン、チタン、ジルコニウム、ハフニウム等がより好ましい。
合金、複合酸化物に含まれる金属の数は、2種以上、例えば2〜4種、好ましくは2〜3種である。CoとNiの組み合わせが特に好ましい。
The composite metal nanoparticles obtained by the production method of the present invention are nanoparticles in which two or more metals are uniformly mixed at the atomic level (FIG. 1).
Here, “two or more kinds of metals are uniformly mixed at the atomic level” means that two or more kinds of metal atoms (metal ions, metal or metal oxide metal atoms) are uniformly present in the nanoparticles. It means that there is no bias in the distribution of each metal atom.
The porous structure of the present invention contains two or more kinds of metal ions and is composed of these metal ions and an organic ligand. The porous structure may contain a counter anion. Examples of the porous structure include a porous coordination polymer (PCP) and a metal-organic structure (MOF). The relationship between a representative porous structure that can take different metal ions and the metal ions that can be contained therein is exemplified below:
MOF-74: Mg, Mn, Fe, Co, Ni, Cu, Zn
HKUST-1: Cu, Fe, Cr, Zn, Mo, Ru
UiO-66: Zr, Hf, Ti
MIL53: Al, Cr, Fe
MIL-88: Cr, Fe
MIL101: Al, Cr
ZIF-8: Zn, Co, Cu
In addition to the above, porous structures containing a plurality of metal ions are widely included in the porous structure of the present invention.
A preferred porous structure of the present invention has a structure of MOF-74, HKUST-1, UiO-66, MIL53, MIL-88, MIL101 or ZIF-8.
As metal atoms (metal ions, metal or metal oxide metal atoms) of porous structures, alloys and composite metal oxides, gold, platinum, silver, copper, ruthenium, tin, palladium, rhodium, iridium, osmium, Nickel, cobalt, zinc, aluminum, chromium, iron, molybdenum, yttrium, magnesium, manganese, titanium, zirconium, hafnium, etc., copper, ruthenium, nickel, cobalt, zinc, aluminum, chromium, iron, molybdenum, magnesium, Manganese, titanium, zirconium, hafnium and the like are more preferable.
The number of metals contained in the alloy or composite oxide is 2 or more, for example, 2 to 4 types, preferably 2 to 3 types. A combination of Co and Ni is particularly preferred.

本発明では、2種以上の金属/金属酸化物を含む複合金属ナノ粒子が得られる。本発明の合金/複合金属酸化物ナノ粒子は、金属の組成比を変えることで、別の単一金属のような挙動を示し得、或いは、通常では合金になりにくい金属の組み合わせであっても多孔質構造体において金属イオンが近い位置に固定されているために、容易に合金ナノ粒子を製造することができる。
本発明の好ましい配合比(モル比)を以下に示す。
In the present invention, composite metal nanoparticles containing two or more kinds of metals / metal oxides are obtained. The alloy / complex metal oxide nanoparticles of the present invention can behave like another single metal by changing the composition ratio of the metals, or even a combination of metals that are usually difficult to be alloyed. Since the metal ions are fixed at a close position in the porous structure, alloy nanoparticles can be easily produced.
A preferable blending ratio (molar ratio) of the present invention is shown below.

金属が2種の場合のモル比は、例えば10:1〜1:10、好ましくは5:1〜1:5、より好ましくは4:1〜1:4、さらに好ましくは3:1〜1:3、特に好ましくは2:1〜1:2である。   The molar ratio in the case of two metals is, for example, 10: 1 to 1:10, preferably 5: 1 to 1: 5, more preferably 4: 1 to 1: 4, and even more preferably 3: 1 to 1: 3, particularly preferably 2: 1 to 1: 2.

金属が3種類以上の場合、各金属の配合量の下限は、5モル%が好ましく、10モル%がより好ましい。   When there are three or more kinds of metals, the lower limit of the amount of each metal is preferably 5 mol%, more preferably 10 mol%.

多孔性構造体を構成する好ましいリガンドとしては、ベンゼン、ナフタレン、アントラセン、フェナントレン、フルオレン、インダン、インデン、ピレン、1,4−ジヒドロナフタレン、テトラリン、ビフェニレン、トリフェニレン、アセナフチレン、アセナフテンなどの芳香環に2個、3個又は4個のカルボキシル基が結合した化合物(前記リガンドは、F,Cl、Br,Iなどのハロゲン原子、ニトロ基、アミノ基、アセチルアミノ基などのアシルアミノ基、シアノ基、水酸基、メチレンジオキシ、エチレンジオキシ、メトキシ、エトキシなどの直鎖又は分岐を有する炭素数1〜4のアルコキシ基、メチル、エチル、プロピル、tert-ブチル、イソブチルなどの直鎖又は分岐を有する炭素数1〜4のアルキル基、SH、トリフルオロメチル基、スルホン酸基、カルバモイル基、メチルアミノなどのアルキルアミノ基、ジメチルアミノなどのジアルキルアミノ基などの置換基で1,2又は3置換されていてもよい)、フマル酸、マレイン酸、シトラコン酸、イタコン酸などの不飽和2価カルボン酸、ピラジン、4,4’−ビピリジル、ジアザピレン、などの2以上の環内窒素原子により配位可能な含窒素芳香族化合物(前記置換基により1、2または3置換されていてもよい。)などが挙げられる。配位子が中性の場合、金属イオンを中和するのに必要なカウンターアニオンを有する。このようなカウンターアニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、硫酸イオン、硝酸イオン、リン酸イオン、トリフルオロ酢酸イオン、メタンスルホン酸イオン、トルエンスルホン酸イオン、ベンゼンスルホン酸イオン、過塩素酸イオンなどが挙げられる。   Preferred ligands constituting the porous structure include benzene, naphthalene, anthracene, phenanthrene, fluorene, indane, indene, pyrene, 1,4-dihydronaphthalene, tetralin, biphenylene, triphenylene, acenaphthylene, acenaphthene, and other aromatic rings. Compound having three, four or four carboxyl groups bonded thereto (the ligand is a halogen atom such as F, Cl, Br, or I, an acylamino group such as a nitro group, an amino group or an acetylamino group, a cyano group, a hydroxyl group, C1-C4 alkoxy group having straight or branched chain such as methylenedioxy, ethylenedioxy, methoxy, ethoxy, etc., and C1 having straight chain or branched chain such as methyl, ethyl, propyl, tert-butyl, isobutyl, etc. ~ 4 alkyl groups, SH, trifluoromethyl A sulfonic acid group, a carbamoyl group, an alkylamino group such as methylamino, or a dialkylamino group such as dimethylamino, which may be substituted by 1, 2 or 3), fumaric acid, maleic acid, citraconic acid, Nitrogen-containing aromatic compounds capable of coordinating with two or more ring nitrogen atoms such as unsaturated divalent carboxylic acids such as itaconic acid, pyrazine, 4,4′-bipyridyl, diazapyrene, etc. 3 may be substituted.) And the like. When the ligand is neutral, it has a counter anion necessary to neutralize the metal ion. Such counter anions include chloride, bromide, iodide, sulfate, nitrate, phosphate, trifluoroacetate, methanesulfonate, toluenesulfonate, benzenesulfonate, Examples include chlorate ions.

MOF、PCPなどの多孔性構造体を構成する有機配位子は単座の配位子を含んでいてもよい。単座の配位子の割合が多くなると、多孔性構造体のサイズを小さくすることができ、得られる複合体のサイズを小さくすることができる。単座の配位子としては、安息香酸などのカルボキシル基を1個含む配位子、ピリジン、イミダゾールなどの配位可能な窒素原子を1個含む配位子が挙げられるが、これらに限定されない。   The organic ligand constituting the porous structure such as MOF or PCP may contain a monodentate ligand. When the ratio of the monodentate ligand is increased, the size of the porous structure can be reduced, and the size of the resulting composite can be reduced. Examples of the monodentate ligand include, but are not limited to, a ligand containing one carboxyl group such as benzoic acid and a ligand containing one coordinateable nitrogen atom such as pyridine and imidazole.

本発明で使用する多孔性構造体は、2種以上の金属イオンが原子レベルで均一に混ざり合っているものである。多孔性構造体を構成する2種以上の金属イオン、有機配位子を水などの溶媒中で単純に混合した場合、各金属イオンを豊富に含む多孔性構造体の部分(例えば非常に小さい粒子)が形成され、それらが集合して1つの多孔性構造体を形成するが、その構造体中の各金属イオンの分布には原子レベルでの偏りがあり、そのような均一性の不十分な多孔性構造体を熱処理すると、原子レベルで均一に混合されていない複合金属ナノ粒子になる。   The porous structure used in the present invention is one in which two or more metal ions are uniformly mixed at the atomic level. When two or more kinds of metal ions and organic ligands constituting the porous structure are simply mixed in a solvent such as water, a portion of the porous structure rich in each metal ion (for example, very small particles) ) Are formed to form a porous structure, but the distribution of each metal ion in the structure is biased at the atomic level, and such uniformity is insufficient Heat treatment of the porous structure results in composite metal nanoparticles that are not uniformly mixed at the atomic level.

本発明者は、金属原子のレベルで均一な分布を有する複合金属ナノ粒子を得るために検討した結果、各金属イオンと有機配位子を溶媒中に含む溶液から析出して得られる多孔性構造体の反応速度を測定し、その反応速度に応じて金属イオンを加えるタイミングを変化させることで、「金属イオンが原子レベルで均一に混ざり合っている」多孔性構造体が得られることを見出した。多孔性構造体中の2種以上の金属イオンが金属原子レベルで均一に混ざり合っている、すなわち非常に均一に分布している場合、それを加熱して得られる複合金属ナノ粒子は、同様に合金/複合金属酸化物において金属原子レベルで均一に混ざり合っているナノ粒子であることを見出した。金属原子レベルで均一に混ざり合っているナノ粒子であることは、HAADF-STEM EDS分析により確認できる。   As a result of studying to obtain composite metal nanoparticles having a uniform distribution at the level of metal atoms, the present inventor has obtained a porous structure obtained by precipitation from a solution containing each metal ion and an organic ligand in a solvent. By measuring the reaction rate of the body and changing the timing of adding metal ions according to the reaction rate, we found that a porous structure in which "metal ions are uniformly mixed at the atomic level" can be obtained. . When two or more kinds of metal ions in the porous structure are uniformly mixed at the metal atom level, that is, they are very evenly distributed, the composite metal nanoparticles obtained by heating it are similarly It was found that the nanoparticles were mixed uniformly at the metal atom level in alloy / complex metal oxides. It can be confirmed by HAADF-STEM EDS analysis that the nanoparticles are uniformly mixed at the metal atom level.

金属イオンは金属の水溶性塩、例えば硫酸塩、硝酸塩、酢酸塩、炭酸塩、フッ化物、塩化物、臭化物、ヨウ化物、過塩素酸塩、水酸化物などを溶媒に溶解することで供給できる。溶媒としては、水、メタノール、エタノール、プロパノール、ブタノール等の低級アルコール、DMF、DMSO,ジメチルアセトアミド、N−メチルピロリドン等の水混和性極性溶媒、THF、エーテル、ジイソプロピルエーテル等のエーテル、ジオキサン、アセトン、メチルエチルケトン等のケトン、酢酸エチル等のエステル、クロロホルム、塩化メチレン、四塩化炭素、ジクロルエタンなどの塩素化炭化水素などが挙げられる。   Metal ions can be supplied by dissolving a water-soluble metal salt such as sulfate, nitrate, acetate, carbonate, fluoride, chloride, bromide, iodide, perchlorate, hydroxide, etc. in a solvent. . Solvents include water, lower alcohols such as methanol, ethanol, propanol and butanol, water-miscible polar solvents such as DMF, DMSO, dimethylacetamide and N-methylpyrrolidone, ethers such as THF, ether and diisopropyl ether, dioxane and acetone. And ketones such as methyl ethyl ketone, esters such as ethyl acetate, and chlorinated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, and dichloroethane.

例えば、図2には、Co−MOF−74とNi−MOF−74の収率と反応時間との関係が示され、Co−MOF−74の方が速やかに形成され、Ni−MOF−74はゆっくりと形成されることが示されている。このような場合、Niイオン(図3では硝酸ニッケル)と有機配位子を先に混合し、しばらくしてから(図3では18時間後に) Coイオン(図3では硝酸コバルト)を添加するのがよい。最初にNiイオンと有機配位子を混合した場合、Niイオンと有機配位子は配位結合を形成するが、多孔性構造体の部分構造が形成される前に次の金属イオン(Coイオン)が添加されるためにNiイオンとCoイオンの分布/配置が均一な状態を保ちながら多孔性構造体の部分構造が形成されていく。このために、最終的に得られる多孔性構造体は、金属イオンが均一に混ざり合った構造となる。
図2、図3は、Co−MOF−74とNi−MOF−74について、NiイオンとCoイオンが原子レベルで均一に混ざり合っている多孔性構造体(Co/Ni−MOF−74)を得る方法を例示しているが、当業者であればこの記載を参考にして他の2種以上の金属イオンを含む原子レベルで均一に混ざり合っている多孔性構造体を容易に得ることができる。
For example, FIG. 2 shows the relationship between the yield of Co-MOF-74 and Ni-MOF-74 and the reaction time. Co-MOF-74 is formed more rapidly, and Ni-MOF-74 It has been shown to form slowly. In such a case, Ni ions (nickel nitrate in FIG. 3) and an organic ligand are mixed first, and after a while (after 18 hours in FIG. 3), Co ions (cobalt nitrate in FIG. 3) are added. Is good. When Ni ions and organic ligands are first mixed, Ni ions and organic ligands form coordinate bonds, but before the partial structure of the porous structure is formed, the next metal ions (Co ions) ) Is added, the partial structure of the porous structure is formed while the distribution / arrangement of Ni ions and Co ions is kept uniform. For this reason, the porous structure finally obtained has a structure in which metal ions are uniformly mixed.
FIGS. 2 and 3 show a porous structure (Co / Ni-MOF-74) in which Ni ions and Co ions are uniformly mixed at the atomic level for Co-MOF-74 and Ni-MOF-74. Although a method is illustrated, those skilled in the art can easily obtain a porous structure uniformly mixed at an atomic level containing two or more other metal ions with reference to this description.

多孔性構造体は、真空下、減圧下、不活性雰囲気下、還元雰囲気下もしくは酸化雰囲気下(空気雰囲気下、酸素含有雰囲気下、オゾン含有雰囲気下)で加熱することにより、有機配位子を熱分解してカーボンに導き、2種以上の金属が原子レベルで均一に混ざり合っている合金ナノ粒子、複合酸化物ナノ粒子などの複合金属ナノ粒子とカーボンを含む複合体を製造することができる。   The porous structure is heated under vacuum, reduced pressure, inert atmosphere, reducing atmosphere or oxidizing atmosphere (air atmosphere, oxygen-containing atmosphere, ozone-containing atmosphere) to It is possible to produce a composite containing carbon and composite metal nanoparticles such as alloy nanoparticles and composite oxide nanoparticles in which two or more kinds of metals are uniformly mixed at the atomic level by being pyrolyzed to carbon. .

有機配位子を熱分解して得られるカーボンは、有機配位子に窒素が含まれている場合には、窒素ドープされていてもよい。また、酸化雰囲気で熱分解する場合には、酸素ドープされていてもよい。カーボンにおける窒素、酸素などのヘテロ原子のドープ量は、質量で10%以下、好ましくは5%以下、より好ましくは3%以下、特に1%以下である。   Carbon obtained by thermally decomposing an organic ligand may be doped with nitrogen when the organic ligand contains nitrogen. Moreover, when thermally decomposing in an oxidizing atmosphere, oxygen doping may be performed. The doping amount of heteroatoms such as nitrogen and oxygen in carbon is 10% or less, preferably 5% or less, more preferably 3% or less, and particularly 1% or less by mass.

不活性雰囲気としては、窒素、アルゴン、ヘリウム、二酸化炭素等の雰囲気が挙げられる。還元雰囲気としては水素雰囲気が挙げられる。酸化雰囲気としては、オゾン雰囲気、酸素雰囲気、大気雰囲気が挙げられる。オゾン雰囲気、酸素雰囲気は、オゾンもしくは酸素が含まれていればよく、オゾンもしくは酸素が100%の雰囲気であってもよく、オゾンもしくは酸素が1ppm以上、10ppm以上、100ppm以上、1000ppm以上或いは10000ppm以上含まれていてもよい。雰囲気中の酸素の含有量は減圧にすることで調整することもできる。
多孔性構造体を減圧下、不活性雰囲気下、還元雰囲気下、好ましくは真空下で加熱した場合には、有機配位子は熱分解されてカーボンになり、多孔性構造体中の2種以上の金属イオンが還元されて合金のナノ粒子が形成され、複合金属ナノ粒子とカーボンを含む複合体が得られる。一方、酸化雰囲気(酸素もしくはオゾンが存在する雰囲気、例えば大気雰囲気)では、2種以上の金属原子を含む複合金属酸化物のナノ粒子とカーボンの複合体が得られる。雰囲気中の酸素濃度が低い場合、あるいは酸化されにくい金属の場合には、複合金属酸化物は、例えば表面のみに形成されて内部は合金の構造を保持していたり、酸化の程度の低い(金属に対する酸素の割合が理論的な金属酸化物よりも低い)状態になることもある。また、貴金属のように金属の種類によっては、酸化雰囲気(酸素もしくはオゾンが存在する雰囲気)で加熱しても合金が得られる場合もある。
本発明の複合金属ナノ粒子は、このような不完全な金属酸化物部分を含むナノ粒子を包含する。
多孔性構造体の有機配位子は熱処理の過程でカーボンに分解し、分解残渣は洗浄或いは比重に基づく分離方法(例えば遠心分離、沈降)などにより複合金属ナノ粒子から分離することができる。
複合金属ナノ粒子を製造するための加熱温度は多孔性構造体により相違するが、例えば400〜1000℃程度、好ましくは400〜600℃程度、より好ましくは400〜500℃程度、さらに好ましくは400〜450℃程度である。加熱時間は、加熱温度にもよるが、通常1〜200時間程度が挙げられる。加熱は減圧下、不活性雰囲気下、還元雰囲気下、酸化雰囲気下、好ましくは真空下に行うことができる。加熱反応時の減圧下の圧力としては、1000 Pa程度以下、好ましくは100 Pa程度以下、特に5〜100 Pa程度である。
有機配位子は、金属イオンを還元し、徐々に水素を失ってカーボン等の分解物に変化していく。多孔性構造体を加熱することで小さい複合金属ナノ粒子が徐々に成長し、大きな金属ナノ粒子になる。従って、加熱の条件を制御することで、複合金属ナノ粒子のサイズを制御することができる。本発明の製造方法で得られる複合金属ナノ粒子は、例えば図7に示すように単分散系のナノ粒子であるが、2種以上の複合金属ナノ粒子を混合して多分散系のナノ粒子とすることもできる。
本発明の複合金属ナノ粒子(合金ナノ粒子、複合酸化物ナノ粒子)の平均粒径は、1〜100nm程度、好ましくは1〜20nm程度、より好ましくは1〜10nm程度、特に1〜6nm程度である。複合金属ナノ粒子の平均粒径は、TEMなどの顕微鏡写真により確認することができる。複合金属ナノ粒子の形状は特に限定されず、球状、楕円体状、ロッド状、柱状、リン片状など任意の形状であってよい。
複合金属ナノ粒子は、加熱時の雰囲気中の酸素濃度が低いか短時間加熱処理した場合には合金と複合金属酸化物ナノ粒子の混合物となるか、酸化の程度の低い複合金属酸化物ナノ粒子となる場合があるが、これらも本発明「複合金属ナノ粒子」に含まれる。
Examples of the inert atmosphere include nitrogen, argon, helium, carbon dioxide, and the like. An example of the reducing atmosphere is a hydrogen atmosphere. Examples of the oxidizing atmosphere include an ozone atmosphere, an oxygen atmosphere, and an air atmosphere. The ozone atmosphere and the oxygen atmosphere need only contain ozone or oxygen, and may be an atmosphere in which ozone or oxygen is 100%. Ozone or oxygen is 1 ppm or more, 10 ppm or more, 100 ppm or more, 1000 ppm or more, or 10000 ppm or more It may be included. The oxygen content in the atmosphere can also be adjusted by reducing the pressure.
When the porous structure is heated under reduced pressure, under an inert atmosphere, under a reducing atmosphere, preferably under vacuum, the organic ligand is thermally decomposed into carbon, and two or more kinds in the porous structure The metal ions are reduced to form alloy nanoparticles, and a composite containing composite metal nanoparticles and carbon is obtained. On the other hand, in an oxidizing atmosphere (an atmosphere in which oxygen or ozone exists, for example, an air atmosphere), a composite of composite metal oxide nanoparticles containing two or more metal atoms and carbon is obtained. When the oxygen concentration in the atmosphere is low, or in the case of a metal that is difficult to oxidize, the composite metal oxide is formed only on the surface and retains the structure of the alloy inside, or has a low degree of oxidation (metal The ratio of oxygen to the lower than the theoretical metal oxide). Further, depending on the type of metal such as a noble metal, an alloy may be obtained even when heated in an oxidizing atmosphere (an atmosphere in which oxygen or ozone is present).
The composite metal nanoparticles of the present invention include nanoparticles containing such imperfect metal oxide moieties.
The organic ligand of the porous structure is decomposed into carbon during the heat treatment, and the decomposition residue can be separated from the composite metal nanoparticles by washing or separation method based on specific gravity (for example, centrifugation, sedimentation).
The heating temperature for producing the composite metal nanoparticles varies depending on the porous structure, for example, about 400 to 1000 ° C., preferably about 400 to 600 ° C., more preferably about 400 to 500 ° C., further preferably 400 to It is about 450 ℃. Although heating time is based also on heating temperature, about 1 to 200 hours are mentioned normally. Heating can be performed under reduced pressure, under an inert atmosphere, under a reducing atmosphere, under an oxidizing atmosphere, preferably under vacuum. The pressure under reduced pressure during the heating reaction is about 1000 Pa or less, preferably about 100 Pa or less, particularly about 5 to 100 Pa.
The organic ligand reduces metal ions, gradually loses hydrogen, and changes into decomposition products such as carbon. By heating the porous structure, small composite metal nanoparticles grow gradually and become large metal nanoparticles. Therefore, the size of the composite metal nanoparticles can be controlled by controlling the heating conditions. The composite metal nanoparticles obtained by the production method of the present invention are, for example, monodisperse nanoparticles as shown in FIG. 7, but two or more kinds of composite metal nanoparticles are mixed to form polydisperse nanoparticles. You can also
The average particle size of the composite metal nanoparticles (alloy nanoparticles, composite oxide nanoparticles) of the present invention is about 1 to 100 nm, preferably about 1 to 20 nm, more preferably about 1 to 10 nm, especially about 1 to 6 nm. is there. The average particle diameter of the composite metal nanoparticles can be confirmed by a micrograph such as TEM. The shape of the composite metal nanoparticles is not particularly limited, and may be any shape such as a spherical shape, an ellipsoidal shape, a rod shape, a column shape, or a flake shape.
The composite metal nanoparticles are a mixture of alloy and composite metal oxide nanoparticles when the oxygen concentration in the atmosphere during heating is low or heat-treated for a short time, or composite metal oxide nanoparticles with a low degree of oxidation These are also included in the “composite metal nanoparticles” of the present invention.

以下、本発明を実施例に基づきより詳細に説明するが、本発明がこれら実施例に限定されないことはいうまでもない。
製造例1:単一金属のPCP多孔性構造体の調製
50mlナスフラスコに溶媒としてDMF-エタノール-水(容量で1:1:1)20 ml、Ni(NO3)2・6H2O(291mg、1mmol)またはCo(NO3)2・6H2O(291mg、1mmol)、2,5-ジヒドロキシテレフタル酸(H4dhtp、59mg)を加え、100℃で6時間、12時間、18時間、24時間、48時間、72時間、96時間、120時間撹拌して反応させた。析出した単一金属の多孔性構造体(Ni2(dhtp)又はCo2(dhtp))を吸引濾過により回収した後、メタノール、水で洗浄した。続いて、25℃で24時間減圧下で乾燥し、単一金属の多孔性構造体(Ni2(dhtp)又はCo2(dhtp))を得た。単一金属の多孔性構造体が得られたことは、粉末X線構造解析で確認した。各反応時間におけるNi2(dhtp)又はCo2(dhtp)の収率を図2に示す。
製造例2:PCP多孔性構造体の調製
3000mlナスフラスコに溶媒としてDMF-エタノール-水(容量で1:1:1)1500 ml、Ni(NO3)2・6H2O(1.8 g)、2,5-ジヒドロキシテレフタル酸(H4dhtp、0.375 g)を加え、100℃で18時間撹拌して反応させ、さらにCo(NO3)2・6H2O(1.8 g)を加えて6時間反応させた。析出した多孔性構造体(CoNi-MOF-74)を吸引濾過により回収した後、メタノール、水で洗浄した。続いて、25℃で24時間減圧下で乾燥し、目的の多孔性構造体(CoNi-MOF-74)を得た。目的の多孔性構造体が得られたことは、粉末X線構造解析で確認した(図4)。さらに、得られたCoNi-MOF-74についてHAADF-STEM(高角散乱環状暗視野走査透過顕微鏡法)による分析を行った。結果を図5に示す。図5の結果から、炭素(C)、Ni、Co及びこれらの重ね合わせにおいてNiイオンとCoイオンが原子レベルで均一に混ざり合っている多孔性構造体であることが明らかになった。
実施例1
製造例2で得られたCoNi-MOF-74について、350℃、400℃又は430℃で24時間真空下に加熱して、CoNi合金ナノ粒子とカーボンの複合体を得た。得られたCoNi合金ナノ粒子とカーボンの複合体についてXRDパターンを測定した結果を図6に示し、TEM画像に基づき粒子径を測定した結果を図7に示す。本発明で得られたCoNi合金ナノ粒子の平均粒径は、4.1±0.7nmであり、粒子径の分布が非常に狭い単分散ナノ粒子であることが明らかになった。さらに、CoNi合金ナノ粒子とカーボンの複合体のHAADF-STEM画像(図8)、図8のCoNi合金ナノ粒子とカーボンの複合体の一部の拡大図(図9)、CoNi合金ナノ粒子のHAADF-STEM EDS分析(図10)を示す。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, it cannot be overemphasized that this invention is not limited to these Examples.
Production Example 1: Preparation of a single metal PCP porous structure
DMF-ethanol-water (volume ratio 1: 1: 1) 20 ml, Ni (NO 3 ) 2 · 6H 2 O (291 mg, 1 mmol) or Co (NO 3 ) 2 · 6H 2 O (50 ml eggplant flask as solvent) 291 mg, 1 mmol), 2,5-dihydroxyterephthalic acid (H 4 dhtp, 59 mg) was added and stirred at 100 ° C. for 6 hours, 12 hours, 18 hours, 24 hours, 48 hours, 72 hours, 96 hours, 120 hours. And reacted. The precipitated single metal porous structure (Ni 2 (dhtp) or Co 2 (dhtp)) was collected by suction filtration, and then washed with methanol and water. Subsequently, it was dried under reduced pressure at 25 ° C. for 24 hours to obtain a single metal porous structure (Ni 2 (dhtp) or Co 2 (dhtp)). It was confirmed by powder X-ray structural analysis that a single metal porous structure was obtained. The yield of Ni 2 (dhtp) or Co 2 (dhtp) at each reaction time is shown in FIG.
Production Example 2: Preparation of PCP porous structure
DMF-ethanol-water (capacity 1: 1: 1) 1500 ml, Ni (NO 3 ) 2 · 6H 2 O (1.8 g), 2,5-dihydroxyterephthalic acid (H 4 dhtp, 0.375 g) was added and stirred at 100 ° C. for 18 hours to react, and further Co (NO 3 ) 2 · 6H 2 O (1.8 g) was added and reacted for 6 hours. The deposited porous structure (CoNi-MOF-74) was collected by suction filtration, and then washed with methanol and water. Subsequently, it was dried under reduced pressure at 25 ° C. for 24 hours to obtain the target porous structure (CoNi-MOF-74). It was confirmed by powder X-ray structural analysis that the desired porous structure was obtained (FIG. 4). Furthermore, the obtained CoNi-MOF-74 was analyzed by HAADF-STEM (high angle scattering annular dark field scanning transmission microscopy). The results are shown in FIG. From the results shown in FIG. 5, it was clarified that the porous structure is a mixture of carbon (C), Ni, Co, and Ni ions and Co ions uniformly at the atomic level in the superposition thereof.
Example 1
The CoNi-MOF-74 obtained in Production Example 2 was heated under vacuum at 350 ° C., 400 ° C. or 430 ° C. for 24 hours to obtain a CoNi alloy nanoparticle / carbon composite. FIG. 6 shows the result of measuring the XRD pattern of the obtained CoNi alloy nanoparticles and carbon composite, and FIG. 7 shows the result of measuring the particle diameter based on the TEM image. The average particle size of the CoNi alloy nanoparticles obtained in the present invention was 4.1 ± 0.7 nm, and it was revealed that the particle size distribution was monodisperse nanoparticles. Furthermore, the HAADF-STEM image of the composite of CoNi alloy nanoparticles and carbon (Fig. 8), the enlarged view of a part of the composite of CoNi alloy nanoparticles and carbon in Fig. 8 (Fig. 9), HAADF of CoNi alloy nanoparticles -STEM EDS analysis (Figure 10) is shown.

図8〜10に示されるように、本発明の複合金属ナノ粒子とカーボンの複合体は、多孔性構造体の内部で隣接する金属イオンが集合/凝集して複合金属粒子が成長しナノ粒子が生じ、有機配位子の熱分解により生じるカーボンとナノ粒子の複合体が得られることが明らかになった。得られたナノ粒子の2種以上の金属原子の分布は、多孔性構造体の金属イオンの分布と同様であることが示唆された。   As shown in FIGS. 8 to 10, in the composite of composite metal nanoparticles and carbon of the present invention, adjacent metal ions gather / aggregate inside the porous structure, and the composite metal particles grow to form nanoparticles. It was revealed that a composite of carbon and nanoparticles produced by thermal decomposition of the organic ligand was obtained. It was suggested that the distribution of two or more kinds of metal atoms in the obtained nanoparticles was the same as the distribution of metal ions in the porous structure.

Claims (10)

2種以上の金属イオンと有機配位子を含む多孔性構造体であって、2種以上の金属イオンが原子レベルで均一に混ざり合っていることを特徴とする、多孔性構造体。 A porous structure comprising two or more kinds of metal ions and an organic ligand, wherein the two or more kinds of metal ions are uniformly mixed at an atomic level. 前記多孔性構造体が、多孔性配位高分子(Porous Coordination Polymer(PCP))又は金属−有機物構造体(Metal-Organic Framework(MOF))である、請求項1に記載の多孔性構造体。 2. The porous structure according to claim 1, wherein the porous structure is a porous coordination polymer (PCP) or a metal-organic framework (Metal-Organic Framework (MOF)). 請求項1又は2に記載の多孔性構造体を真空下、減圧下、還元雰囲気下、不活性雰囲気下もしくは酸化雰囲気下で加熱して有機配位子を熱分解してカーボンに導き、金属イオンを複合金属に変換して複合金属ナノ粒子を得る工程を含み、前記複合金属ナノ粒子が合金ナノ粒子、複合金属酸化物ナノ粒子もしくは合金部分と2種以上の金属酸化物から構成される複合金属酸化物部分を含むナノ粒子であることを特徴とする、2種以上の金属が原子レベルで均一に混ざり合っている複合金属ナノ粒子とカーボンを含む複合体の製造方法。 The porous structure according to claim 1 or 2 is heated under vacuum, reduced pressure, reducing atmosphere, inert atmosphere or oxidizing atmosphere to thermally decompose the organic ligand to lead to carbon, and metal ions A composite metal comprising a step of converting a composite metal into a composite metal nanoparticle, wherein the composite metal nanoparticle is composed of an alloy nanoparticle, a composite metal oxide nanoparticle or an alloy portion, and two or more metal oxides A method for producing a composite comprising carbon and composite metal nanoparticles in which two or more metals are uniformly mixed at an atomic level, wherein the composite is a nanoparticle including an oxide portion. 請求項1又は2に記載の多孔性構造体を真空下、還元雰囲気下または不活性雰囲気下で加熱して有機配位子を熱分解してカーボンに導き、金属イオンを金属に変換して合金ナノ粒子を得ることを特徴とする、2種以上の金属が原子レベルで均一に混ざり合っている合金ナノ粒子とカーボンを含む複合体の製造方法。 3. The porous structure according to claim 1 or 2 is heated in a vacuum, in a reducing atmosphere or in an inert atmosphere to thermally decompose organic ligands to lead to carbon, and metal ions are converted to metal to form an alloy. A method for producing a composite comprising an alloy nanoparticle in which two or more metals are uniformly mixed at an atomic level and carbon, wherein the nanoparticle is obtained. 請求項1又は2に記載の多孔性構造体を減圧下もしくは酸化雰囲気下で加熱して有機配位子を熱分解してカーボンに導き、かつ、金属イオンを金属酸化物に変換して複合金属酸化物部分を有するナノ粒子を得ることを特徴とする、2種以上の金属が原子レベルで均一に混ざり合った複合金属酸化物部分を含有するナノ粒子とカーボンを含む複合体の製造方法。 The porous structure according to claim 1 or 2 is heated under reduced pressure or in an oxidizing atmosphere to thermally decompose the organic ligand to lead to carbon, and a metal ion is converted into a metal oxide to form a composite metal A method for producing a composite comprising a nanoparticle containing a composite metal oxide portion in which two or more metals are uniformly mixed at an atomic level and carbon, wherein the nanoparticle has an oxide portion. 複合金属酸化物部分を含有するナノ粒子が、複合金属酸化物からなるナノ粒子である請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the nanoparticles containing the composite metal oxide portion are nanoparticles made of a composite metal oxide. 複合金属酸化物部分を含有するナノ粒子が、合金部分と2種以上の金属酸化物から構成される複合金属酸化物部分を含むナノ粒子である請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the nanoparticles containing the composite metal oxide portion are nanoparticles including a composite metal oxide portion composed of an alloy portion and two or more kinds of metal oxides. 加熱温度が400℃〜600℃である、請求項3〜7のいずれかに記載の製造方法。 The manufacturing method in any one of Claims 3-7 whose heating temperature is 400 to 600 degreeC. 各金属イオンと有機配位子による多孔性構造体の形成速度に応じて金属イオンを加えるタイミングを調整し、それにより2種以上の金属イオンを原子レベルで均一に混合させることを特徴とする、請求項1又は2に記載の多孔性構造体の製造方法。 Adjusting the timing of adding metal ions according to the formation rate of the porous structure by each metal ion and organic ligand, thereby uniformly mixing two or more metal ions at the atomic level, The manufacturing method of the porous structure of Claim 1 or 2. 2種以上の金属が、金、白金、銀、銅、ルテニウム、スズ、パラジウム、ロジウム、イリジウム、オスミウム、ニッケル、コバルト、亜鉛、鉄、イットリウム、マグネシウム、マンガン、チタン、ジルコニウム、ハフニウム、モリブデンからなる群から選ばれる、請求項1又は2に記載の多孔性構造体、請求項3〜9のいずれか1項に記載の製造方法。 Two or more metals are gold, platinum, silver, copper, ruthenium, tin, palladium, rhodium, iridium, osmium, nickel, cobalt, zinc, iron, yttrium, magnesium, manganese, titanium, zirconium, hafnium, molybdenum The porous structure according to claim 1 or 2, which is selected from the group, and the production method according to any one of claims 3 to 9.
JP2016507729A 2014-03-11 2015-03-09 Porous structure, method for producing the same, and method for producing composite metal nanoparticles Pending JPWO2015137272A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014047181 2014-03-11
JP2014047181 2014-03-11
PCT/JP2015/056802 WO2015137272A1 (en) 2014-03-11 2015-03-09 Porous structure and method for producing same, and method for producing composite metal nanoparticle

Publications (1)

Publication Number Publication Date
JPWO2015137272A1 true JPWO2015137272A1 (en) 2017-04-06

Family

ID=54071717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016507729A Pending JPWO2015137272A1 (en) 2014-03-11 2015-03-09 Porous structure, method for producing the same, and method for producing composite metal nanoparticles

Country Status (3)

Country Link
JP (1) JPWO2015137272A1 (en)
TW (1) TWI658887B (en)
WO (1) WO2015137272A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480907B (en) * 2020-10-23 2022-07-01 天津师范大学 Carbon-based/metal composite material and preparation method thereof
CN114015215B (en) * 2021-11-26 2023-03-24 江苏科技大学 Polylactic acid racemic blend/MIL-88 composite material and preparation method thereof
CN114289065B (en) * 2021-12-23 2023-09-22 淮阴工学院 Preparation method and application of metal ion doped x-MOF-74 photocatalyst
CN114906801B (en) * 2022-05-26 2023-10-10 重庆大学 MgH (MgH) 2 @Fe-ZIF hydrogen storage material and preparation method thereof
CN114950555B (en) * 2022-06-14 2023-08-18 淮阴师范学院 Zirconium-based monoatomic catalyst, preparation method and application thereof in selective synthesis of 2, 5-furandimethanol

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255651A (en) * 2004-03-15 2005-09-22 Kyoto Univ Organometallic complex structure, method for producing the same, functional membrane using the organometallic complex structure, functional composite material, functional structure and absorption and desorption sensor
JP2005289885A (en) * 2004-03-31 2005-10-20 Osaka Organic Chem Ind Ltd Multidimensional organic-inorganic composite compound, composite burnt product and methods for producing these
JP2007261939A (en) * 2006-03-29 2007-10-11 Samsung Sdi Co Ltd Porous metal oxide and method of preparing the same
WO2013021944A1 (en) * 2011-08-05 2013-02-14 国立大学法人京都大学 Metal nanoparticle-pcp complex and manufacturing method therefor
JP2013537877A (en) * 2010-09-01 2013-10-07 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing carbon-containing composite
JP2013243161A (en) * 2008-06-06 2013-12-05 Toyobo Co Ltd Fuel cell catalyst using coordination polymer metal complex subjected to heat treatment, membrane-electrode assembly, fuel cell and oxidation-reduction catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605648B1 (en) * 1999-04-06 2003-08-12 Phillips Plastics Corporation Sinterable structures and method
JP2014028943A (en) * 2012-07-03 2014-02-13 Kuraray Co Ltd Coordination polymer, and adsorbent, occlusion material, and separation material comprising the same
CN102877009B (en) * 2012-10-23 2014-03-19 河北工业大学 Method for preparing porous nickel-based amorphous alloy material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255651A (en) * 2004-03-15 2005-09-22 Kyoto Univ Organometallic complex structure, method for producing the same, functional membrane using the organometallic complex structure, functional composite material, functional structure and absorption and desorption sensor
JP2005289885A (en) * 2004-03-31 2005-10-20 Osaka Organic Chem Ind Ltd Multidimensional organic-inorganic composite compound, composite burnt product and methods for producing these
JP2007261939A (en) * 2006-03-29 2007-10-11 Samsung Sdi Co Ltd Porous metal oxide and method of preparing the same
JP2013243161A (en) * 2008-06-06 2013-12-05 Toyobo Co Ltd Fuel cell catalyst using coordination polymer metal complex subjected to heat treatment, membrane-electrode assembly, fuel cell and oxidation-reduction catalyst
JP2013537877A (en) * 2010-09-01 2013-10-07 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing carbon-containing composite
WO2013021944A1 (en) * 2011-08-05 2013-02-14 国立大学法人京都大学 Metal nanoparticle-pcp complex and manufacturing method therefor

Also Published As

Publication number Publication date
WO2015137272A1 (en) 2015-09-17
TWI658887B (en) 2019-05-11
TW201545827A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
Cai et al. Tailored catalytic nanoframes from metal–organic frameworks by anisotropic surface modification and etching for the hydrogen evolution reaction
JP6188700B2 (en) Metal nanoparticle composite and method for producing the same
WO2015137272A1 (en) Porous structure and method for producing same, and method for producing composite metal nanoparticle
Yao et al. Fabrication of hollow Cu 2 O@ CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction
JP2020528499A (en) Carbon-coated transition metal nanocomposites, their manufacture and applications
Chen et al. Constructing a novel hierarchical β-Ag2MoO4/BiVO4 photocatalyst with Z-scheme heterojunction utilizing Ag as an electron mediator
Song et al. Surfactant-free synthesis of reduced graphene oxide supported porous PtAu alloyed nanoflowers with improved catalytic activity
Zhao et al. Seed-assisted synthesis of Pd@ Au core–shell nanotetrapods and their optical and catalytic properties
JP6292502B2 (en) Mesoporous metal nanoparticles, production method thereof, and catalyst containing mesoporous metal nanoparticles
Yang et al. A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity
Kumar et al. Synthesis of CuO and Cu 2 O nano/microparticles from a single precursor: Effect of temperature on CuO/Cu 2 O formation and morphology dependent nitroarene reduction
Zhang et al. Synthesis of sub-5 nm Au–Ag alloy nanoparticles using bio-reducing agent in aqueous solution
Shi et al. Thiacalix [4] arene-supported tetradecanuclear cobalt nanocage cluster as precursor to synthesize CoO/Co 9 S 8@ CN composite for supercapacitor application
Barman et al. Uninterrupted galvanic reaction for scalable and rapid synthesis of metallic and bimetallic sponges/dendrites as efficient catalysts for 4-nitrophenol reduction
JP5686674B2 (en) Method for producing composite catalyst
Li et al. Size-controlled nanoscale octahedral HKUST-1 as an enhanced catalyst for oxidative conversion of vanillic alcohol: The mediating effect of polyvinylpyrrolidone
JP6080614B2 (en) Method for producing metal complex-supported mesoporous material
JP6993640B2 (en) Nitrogen-containing polycyclic compound
JP6048750B2 (en) Method for producing composite
Chen et al. Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts
Li et al. Bromine anion-induced synthesis of copper nanoplates and their recyclable catalytic activity towards 4-nitrophenol reduction
Mohammadikish et al. Synthesis and optical band gap determination of CuO nanoparticles from salen-based infinite coordination polymer nanospheres
JP2014172830A (en) Method for producing porous metal complex
Bersani et al. Transmetallation as an effective strategy for the preparation of bimetallic CoPd and CuPd nanoparticles
CN112705237B (en) Carbon-coated nickel carbide and nickel nanocomposite as well as preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001