JP2005289885A - Multidimensional organic-inorganic composite compound, composite burnt product and methods for producing these - Google Patents

Multidimensional organic-inorganic composite compound, composite burnt product and methods for producing these Download PDF

Info

Publication number
JP2005289885A
JP2005289885A JP2004107542A JP2004107542A JP2005289885A JP 2005289885 A JP2005289885 A JP 2005289885A JP 2004107542 A JP2004107542 A JP 2004107542A JP 2004107542 A JP2004107542 A JP 2004107542A JP 2005289885 A JP2005289885 A JP 2005289885A
Authority
JP
Japan
Prior art keywords
organic
compound
inorganic
composite
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004107542A
Other languages
Japanese (ja)
Inventor
Masakuni Yoshihara
正邦 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Organic Chemical Industry Co Ltd
Original Assignee
Osaka Organic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Organic Chemical Industry Co Ltd filed Critical Osaka Organic Chemical Industry Co Ltd
Priority to JP2004107542A priority Critical patent/JP2005289885A/en
Publication of JP2005289885A publication Critical patent/JP2005289885A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multidimensional organic-inorganic composite compound which has new functional physical properties such as excellent electron-transfer property, oxidation-reduction activity, visible light responsiveness and photocatalytic activity and is capable of serving as a next-generation, highly functional hybrid material. <P>SOLUTION: The multidimensional organic-inorganic composite compound is a compound (C) of formula (1) obtained by reacting at least two inorganic metal compounds (A) with a polyfunctional organic compound (B), wherein at least two metal elements are bound to a polyfunctional organic group via covalent bonds. A composite burnt product is obtained by burning the multidimensional organic-inorganic composite compound under reduced pressure or in an inert gas atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多次元有機・無機複合体化合物、複合焼成体およびこれらの製造方法に関するものであり、さらに詳しくは2種類以上の無機金属元素と多官能性有機基が共有結合を介して結合している多次元有機・無機複合体化合物、この多次元有機・無機複合体化合物を減圧下あるいは不活性ガス雰囲下に焼成して得られる複合焼成体およびこれらの製造方法並びにその利用に関するものである。   The present invention relates to a multidimensional organic / inorganic composite compound, a composite fired body, and a production method thereof, and more specifically, two or more kinds of inorganic metal elements and a polyfunctional organic group are bonded through a covalent bond. Multi-dimensional organic / inorganic composite compounds, composite fired bodies obtained by firing the multi-dimensional organic / inorganic composite compounds under reduced pressure or in an inert gas atmosphere, methods for their production and use thereof is there.

従来から、無機材料の有する堅牢性と有機材料の有する多彩な性質を利用するため有機・無機ハイブリッド化合物は化粧品(コア・シェル材料)、コーテイング材料(無機粒子−高分子複合体)、電子材料(ゾル−ゲルバインダー)、界面改質材(各種カップリング剤)など様々な分野に提供されている。例えば、ガラス等の表面改質に用いられるシランカップリング剤は有機基を導入したシリル化合物であり、無機物表面に有機基を効果的に導入し、塗料等の有機材料によるコーティングを容易なものに改質する。
また、工業製品として有用な樹脂形成体は、その強度を向上させるためにフュームドシリカ等のフィラーを添加して形成能および強度を両立した有機・無機ハイブリッド材料として用いられている。これらはバルク体でのハイブリッド材料を提供している。
Conventionally, organic / inorganic hybrid compounds have been used in cosmetics (core / shell materials), coating materials (inorganic particle-polymer composites), electronic materials (in order to take advantage of the robustness of inorganic materials and the various properties of organic materials. Sol-gel binders), interface modifiers (various coupling agents) and the like. For example, a silane coupling agent used for surface modification of glass or the like is a silyl compound into which an organic group has been introduced, which effectively introduces an organic group onto the surface of an inorganic material and facilitates coating with an organic material such as paint. Reform.
In addition, resin formed articles useful as industrial products are used as organic / inorganic hybrid materials that have both formability and strength by adding fillers such as fumed silica in order to improve the strength. They provide hybrid materials in bulk.

一方、分子性のハイブリッド材料としては、金属錯体が挙げられる。これらは金属元素に有機物が配位結合を介して形成された化合物である。これらは光機能材料、酸化還元触媒等への応用が盛んに研究されている。   On the other hand, a metal complex is mentioned as a molecular hybrid material. These are compounds in which an organic substance is formed on a metal element through a coordinate bond. These have been actively studied for application to optical functional materials, redox catalysts, and the like.

しかし、前者のバルク体ハイブリッド材料は有機材料の特性と無機材料の特性との単なる加算的特性を発現するに過ぎず、一方、金属錯体のような分子性ハイブリッド材料は機能の中心は金属元素が担っており、有機配位子は金属の活性を制御する機能しか持ちあわせていない場合が多い。   However, the former bulk hybrid material only exhibits the additive properties of organic and inorganic materials, while molecular hybrid materials such as metal complexes are mainly composed of metal elements. In many cases, the organic ligand has only a function of controlling the activity of the metal.

そこで、本発明者は、先に、1種類の無機金属化合物と多官能性有機化合物とを反応させて得られる金属元素と多官能性有機基が共有結合を介して結合している新規な有機・無機ハイブリッド材料であって、新たな機能的物性を有し、次世代の高機能ハイブリッド素材となり得る有機・無機複合体化合物を提供した(特許文献1参照)。また、この有機・無機複合体化合物を減圧下に焼成して得られる複合焼成体を提供した(特許文献2参照)。
特開2002−053669 特願2004−056380
Therefore, the present inventor previously developed a novel organic compound in which a metal element obtained by reacting one kind of inorganic metal compound with a polyfunctional organic compound and a polyfunctional organic group are bonded via a covalent bond. An organic / inorganic composite compound that is an inorganic hybrid material and has new functional properties and can be a next-generation high-performance hybrid material has been provided (see Patent Document 1). In addition, a composite fired body obtained by firing the organic / inorganic composite compound under reduced pressure was provided (see Patent Document 2).
JP 2002-053669 A Japanese Patent Application No. 2004-056380

本発明の第1の目的は、本発明者が先に提案した1種類の無機金属化合物を用いた前記有機・無機複合体化合物およびこの有機・無機複合体化合物を減圧下に焼成して得られる複合焼成体よりさらに優れた機能的物性を有する有機・無機複合体化合物および複合焼成体を提供することであり、
本発明の第2の目的は、そのような有機・無機複合体化合物および複合焼成体を容易に製造できる方法を提供することである。
The first object of the present invention is obtained by firing the organic / inorganic composite compound using one kind of inorganic metal compound previously proposed by the present inventor and the organic / inorganic composite compound under reduced pressure. It is to provide an organic / inorganic composite compound and a composite fired body having functional properties further superior to the composite fired body,
The second object of the present invention is to provide a method capable of easily producing such an organic / inorganic composite compound and a composite fired body.

本発明者は、上記課題を解決することを目的として鋭意研究した結果、2種類以上の無機金属化合物と多官能性有機化合物とを反応させて得られる有機・無機複合体化合物およびこの有機・無機複合体化合物を減圧下あるいは不活性ガス雰囲下にて焼成することにより得られる複合焼成体により課題を解決できることを見いだし、本発明を完成させた。   As a result of intensive research aimed at solving the above problems, the present inventor has obtained an organic / inorganic composite compound obtained by reacting two or more kinds of inorganic metal compounds with a polyfunctional organic compound, and the organic / inorganic compound. The present inventors have found that the problem can be solved by a composite fired body obtained by firing a composite compound under reduced pressure or in an inert gas atmosphere, and completed the present invention.

本発明の請求項1の発明は、式(1)で示される、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを反応させて得られる化合物(C)であって、2種類以上の金属元素と多官能性有機基が共有結合を介して結合していることを特徴とする多次元有機・無機複合体化合物である。   The invention of claim 1 of the present invention is a compound (C) obtained by reacting two or more inorganic metal compounds (A) represented by the formula (1) with a polyfunctional organic compound (B). And a multi-dimensional organic / inorganic composite compound in which two or more kinds of metal elements and a polyfunctional organic group are bonded via a covalent bond.

Figure 2005289885
Figure 2005289885

(ただし、式(1)中、Mは金属元素を示し、R1 はアルコキシ基、ハロゲンイオン、カルボン酸陰イオン、アセチルアセトン等の錯形成基を示し、n1はR1の金属元素Mに対する置換数n1≧2を示す。また式中R2 はアルキル基、置換アルキル基、アルキルベンゼン基、フェニル基、置換フェニル基、ナフチル基、置換ナフチル基、アリル基等の非共役有機基あるいは共役有機基を示し、Xはヒドロキシル基、アミノ基、チオール基、フォスフィン基等の金属元素と共有結合を形成する置換基を示し、n2はR2 に対する置換数n2≧2を示す。) (In the formula (1), M represents a metal element, R 1 represents a complex-forming group such as an alkoxy group, a halogen ion, a carboxylate anion, and acetylacetone, and n1 represents the number of substitutions for the metal element M in R 1. n1 ≧ 2 In the formula, R 2 represents a nonconjugated organic group or a conjugated organic group such as an alkyl group, a substituted alkyl group, an alkylbenzene group, a phenyl group, a substituted phenyl group, a naphthyl group, a substituted naphthyl group, and an allyl group. X represents a substituent that forms a covalent bond with a metal element such as a hydroxyl group, an amino group, a thiol group, or a phosphine group, and n2 represents the number of substitutions for R 2 n2 ≧ 2.

本発明の請求項2の発明は、前記式(1)で示される、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを反応させて得られる化合物(C)であって、2種類以上の金属元素と多官能性有機基が共有結合を介して結合している多次元有機・無機複合体化合物を減圧下あるいは不活性ガス雰囲下で焼成して得られることを特徴とする複合焼成体である。   The invention of claim 2 of the present invention is a compound (C) obtained by reacting two or more inorganic metal compounds (A) represented by the formula (1) with a polyfunctional organic compound (B). It is obtained by firing a multidimensional organic / inorganic composite compound in which two or more kinds of metal elements and a polyfunctional organic group are bonded through a covalent bond under reduced pressure or in an inert gas atmosphere. Is a composite fired body.

本発明の請求項3の発明は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、前記多次元有機・無機複合体化合物の形状が、粒子、結晶構造体、薄膜、厚膜であることを特徴とする。   The invention according to claim 3 of the present invention is the multidimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, wherein the shape of the multidimensional organic / inorganic composite compound is particles, crystals It is a structure, a thin film, or a thick film.

本発明の請求項4の発明は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、前記多次元有機・無機複合体化合物が、別途有機化合物が添加されていることを特徴とする。   The invention according to claim 4 of the present invention is the multidimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, wherein the multidimensional organic / inorganic composite compound is separately added with an organic compound. It is characterized by being.

本発明の請求項5の発明は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、前記多次元有機・無機複合体化合物が、別途無機化合物が添加されていることを特徴とする。   The invention according to claim 5 of the present invention is the multidimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, wherein the multidimensional organic / inorganic composite compound is added with an inorganic compound separately. It is characterized by being.

本発明の請求項6の発明は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、前記多次元有機・無機複合体化合物が、別途有機化合物および無機化合物が添加されていることを特徴とする。   The invention according to claim 6 of the present invention is the multidimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, wherein the multidimensional organic / inorganic composite compound is an organic compound and an inorganic compound separately. A compound is added.

本発明の請求項7の発明は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、電子移動性を有することを特徴とする。   The invention according to claim 7 of the present invention is characterized in that the multidimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2 has electron mobility.

本発明の請求項8の発明は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、酸化還元活性を有することを特徴とする。   The invention according to claim 8 of the present invention is characterized in that the multidimensional organic-inorganic composite compound according to claim 1 or the composite fired body according to claim 2 has redox activity.

本発明の請求項9の発明は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、可視光応答性を有することを特徴とする。   The ninth aspect of the present invention is characterized in that the multidimensional organic / inorganic composite compound according to the first aspect or the composite fired body according to the second aspect has visible light responsiveness.

本発明の請求項10の発明は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、光触媒活性を有することを特徴とする。   The invention of claim 10 of the present invention is characterized in that the multidimensional organic-inorganic composite compound of claim 1 or the composite fired body of claim 2 has photocatalytic activity.

本発明の請求項11の発明は、前記式(1)で示すように、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを、溶媒の存在下に反応させることを特徴とする、新規化合物(C)である、2種類以上の金属元素と多官能性有機基が共有結合を介して結合している多次元有機・無機複合体化合物の製造方法である。   According to the eleventh aspect of the present invention, as shown by the formula (1), two or more kinds of inorganic metal compounds (A) and a polyfunctional organic compound (B) are reacted in the presence of a solvent. Is a novel compound (C), which is a method for producing a multidimensional organic / inorganic composite compound in which two or more kinds of metal elements and a multifunctional organic group are bonded via a covalent bond.

本発明の請求項12の発明は、前記式(1)で示すように、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを、溶媒の存在下に反応させて得られる新規化合物(C)である、2種類以上の金属元素と多官能性有機基が共有結合を介して結合している多次元有機・無機複合体化合物を減圧下あるいは不活性ガス雰囲下で焼成することを特徴とする複合焼成体の製造方法である。   In the invention of claim 12 of the present invention, as shown by the formula (1), two or more kinds of inorganic metal compounds (A) and a polyfunctional organic compound (B) are reacted in the presence of a solvent. The resulting new compound (C) is a multidimensional organic / inorganic composite compound in which two or more kinds of metal elements and a multifunctional organic group are bonded via a covalent bond, under reduced pressure or in an inert gas atmosphere. It is the manufacturing method of the composite baked body characterized by baking by.

本発明の請求項13の発明は、請求項12記載の複合焼成体の製造方法において、400〜800℃で焼成することを特徴とする。   According to a thirteenth aspect of the present invention, in the method for producing a composite fired body according to the twelfth aspect, firing is performed at 400 to 800 ° C.

本発明の請求項1の多次元有機・無機複合体化合物は、前記式(1)で示される、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを反応させて得られる化合物(C)であって、2種類以上の金属元素と多官能性有機基が共有結合を介して結合していることを特徴とするものであり、2種類以上の金属の相乗作用により1種類の金属の場合よりさらに優れた機能的物性を有するとともに、多官能性有機基・無機金属元素直接相互作用とバルク体特有の高次構造固体物性の両立による加算的機能が発現され、これら優れた新規機能により電子、光的特性が確認されたことより、電子材料や光機能材料などに種々の用途が提供されるという、顕著な効果を奏する。   The multidimensional organic-inorganic composite compound according to claim 1 of the present invention is obtained by reacting two or more inorganic metal compounds (A) represented by the formula (1) with a polyfunctional organic compound (B). A compound (C) to be obtained, wherein two or more kinds of metal elements and a polyfunctional organic group are bonded via a covalent bond, and the synergistic action of two or more kinds of metals In addition to having more excellent functional properties than the case of one kind of metal, an additional function is realized by combining the direct interaction between polyfunctional organic group / inorganic metal elements and the physical properties of higher-order structure solids specific to bulk materials. Since the electronic and optical characteristics have been confirmed by an excellent new function, there is a remarkable effect that various uses are provided for electronic materials and optical functional materials.

本発明の請求項2の複合焼成体は、前記式(1)で示される、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを反応させて得られる化合物(C)であって、2種類以上の金属元素と多官能性有機基が共有結合を介して結合している多次元有機・無機複合体化合物を減圧下あるいは不活性ガス雰囲下で焼成して得られることを特徴とするものであり、
例えば前記多次元有機・無機複合体化合物を、減圧下あるいは不活性ガス雰囲下、約400〜800℃で焼成すると有機骨格が炭化して得られる微小な炭化物マトリックス中に2種類以上の金属の酸化物、硫化物、窒化物、リン化物のナノサイズクラスターが、あるいは金属がオスミウム、ルテニウムなどの場合は0価の金属微粒子のナノサイズクラスターが、均一に分散した新規な複合焼成体が得られ、この複合焼成体は、2種類以上の金属の相乗作用により1種類の金属の場合よりさらに優れた電子移動性、酸化還元活性、可視光応答性、光触媒活性などを示し、これら新規機能により電子、光的特性が確認されたことより、電子移動性を有する材料、酸化還元活性を有する材料、可視光応答性を有する材料、光触媒活性を有する材料などの電子材料や光機能材料など種々の用途に適用可能である、という顕著な効果を奏する。
The composite fired body of claim 2 of the present invention is a compound (C) obtained by reacting two or more inorganic metal compounds (A) represented by the formula (1) with a polyfunctional organic compound (B). Obtained by firing a multidimensional organic-inorganic composite compound in which two or more kinds of metal elements and a polyfunctional organic group are bonded through a covalent bond under reduced pressure or in an inert gas atmosphere. It is characterized by being able to
For example, when the multidimensional organic / inorganic composite compound is fired at about 400 to 800 ° C. under reduced pressure or in an inert gas atmosphere, two or more kinds of metals are contained in a fine carbide matrix obtained by carbonization of the organic skeleton. A new composite fired body in which nano-sized clusters of oxides, sulfides, nitrides, phosphides, or nano-sized clusters of zero-valent metal particles are uniformly dispersed when the metal is osmium, ruthenium, etc. This composite fired body exhibits electron mobility, redox activity, visible light responsiveness, photocatalytic activity, etc., which are superior to those of a single metal due to the synergistic action of two or more metals. Since the optical properties have been confirmed, the material has electron mobility, the material has redox activity, the material has visible light responsiveness, the material has photocatalytic activity. Of which is applicable to electronic materials and optical functional materials such as a variety of applications, a marked effect of.

本発明の請求項3は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、多次元有機・無機複合体化合物の形状が、粒子、結晶構造体、薄膜、厚膜であることを特徴とするものであり、種々の特性が要求される多様なニーズに応じることができる、というさらなる顕著な効果を奏する。   Claim 3 of the present invention is the multidimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, wherein the shape of the multidimensional organic / inorganic composite compound is a particle, a crystal structure, It is characterized by being a thin film or a thick film, and has a further remarkable effect that it can meet various needs requiring various characteristics.

本発明の請求項4は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、前記多次元有機・無機複合体化合物が、別途有機化合物が添加されていることを特徴とするものであり、種々の特性が要求される多様なニーズに応じることができる、というさらなる顕著な効果を奏する。   Claim 4 of the present invention is the multidimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, wherein the multidimensional organic / inorganic composite compound is separately added with an organic compound. It is characterized by the fact that it can meet various needs for which various characteristics are required.

本発明の請求項5は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、前記多次元有機・無機複合体化合物が、別途無機化合物が添加されていることを特徴とするものであり、種々の特性が要求される多様なニーズに応じることができる、というさらなる顕著な効果を奏する。   Claim 5 of the present invention is the multidimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, wherein the multidimensional organic / inorganic composite compound is added with an inorganic compound separately. It is characterized by the fact that it can meet various needs for which various characteristics are required.

本発明の請求項6は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、前記多次元有機・無機複合体化合物が、別途有機化合物および無機化合物が添加されていることを特徴とするものであり、種々の特性が要求される多様なニーズに応じることができる、というさらなる顕著な効果を奏する。   Claim 6 of the present invention is the multidimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, wherein the multidimensional organic / inorganic composite compound is an organic compound and an inorganic compound separately. It is characterized by being added, and has the further remarkable effect of being able to meet various needs requiring various characteristics.

本発明の請求項7は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、電子移動性を有することを特徴とするものであり、電子移動性を有する材料として利用することができる、というさらなる顕著な効果を奏する。   Claim 7 of the present invention is the multi-dimensional organic-inorganic composite compound according to claim 1 or the composite fired body according to claim 2, characterized in that it has electron mobility. There is a further remarkable effect that it can be used as a material having the same.

本発明の請求項8の複合焼成体は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、酸化還元活性を有することを特徴とするものであり、酸化還元活性を有する材料として利用することができる、というさらなる顕著な効果を奏する。   The composite fired body of claim 8 of the present invention is characterized by having redox activity in the multi-dimensional organic-inorganic composite compound of claim 1 or the composite fired body of claim 2. There is a further remarkable effect that it can be used as a material having redox activity.

本発明の請求項9の複合焼成体は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、可視光応答性を有することを特徴とするものであり、可視光応答性を有する材料として利用することができる、というさらなる顕著な効果を奏する。   The composite fired body according to claim 9 of the present invention is characterized in that in the multi-dimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, the composite fired body has visible light responsiveness. Further, it can be used as a material having visible light responsiveness.

本発明の請求項10の複合焼成体は、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体において、光触媒活性を有することを特徴とするものであり、光触媒活性を有する材料として利用することができる、というさらなる顕著な効果を奏する。   A composite fired body according to claim 10 of the present invention is a multi-dimensional organic / inorganic composite compound according to claim 1 or a composite fired body according to claim 2, which has a photocatalytic activity, and is a photocatalyst. There is a further remarkable effect that it can be used as a material having activity.

本発明の請求項11は、前記式(1)で示すように、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを、溶媒の存在下に反応させることを特徴とする、新規化合物(C)である、2種類以上の金属元素と多官能性有機基が共有結合を介して結合している多次元有機・無機複合体化合物の製造方法に関するものであり、本発明の多次元有機・無機複合体化合物を容易に製造できる、という顕著な効果を奏する。   According to an eleventh aspect of the present invention, as represented by the formula (1), two or more kinds of inorganic metal compounds (A) and a polyfunctional organic compound (B) are reacted in the presence of a solvent. The present invention relates to a novel compound (C), a method for producing a multidimensional organic / inorganic composite compound in which two or more kinds of metal elements and a multifunctional organic group are bonded via a covalent bond, There is a remarkable effect that the multidimensional organic / inorganic composite compound of the invention can be easily produced.

本発明の請求項12は、前記式(1)で示すように、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを、溶媒の存在下に反応させて得られる新規化合物(C)である、2種類以上の金属元素と多官能性有機基が共有結合を介して結合している多次元有機・無機複合体化合物を減圧下あるいは不活性ガス雰囲下で焼成することを特徴とする複合焼成体の製造方法に関するものであり、本発明の複合焼成体を容易に製造できる、という顕著な効果を奏する。   Claim 12 of the present invention is obtained by reacting two or more inorganic metal compounds (A) and a polyfunctional organic compound (B) in the presence of a solvent, as shown by the formula (1). A new compound (C), a multidimensional organic / inorganic composite compound in which two or more kinds of metal elements and a polyfunctional organic group are bonded via a covalent bond, is baked under reduced pressure or in an inert gas atmosphere. The present invention relates to a method for producing a composite fired body, and has a remarkable effect that the composite fired body of the present invention can be easily produced.

本発明の請求項13は、請求項12記載の複合焼成体の製造方法において、400〜800℃で焼成することを特徴とするものであり、本発明の複合焼成体を容易に経済的に製造できるという、さらなる顕著な効果を奏する。   According to a thirteenth aspect of the present invention, in the method for producing a composite fired body according to the twelfth aspect, the composite fired body of the present invention is easily and economically manufactured. There is a further remarkable effect of being able to.

以下、本発明の実施の形態について詳細に説明する。
本発明は、新規な多次元有機・無機複合体化合物および複合焼成体の高次構造化に関する。
2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを反応させて得られる2種類以上の無機金属元素と多官能性有機基が共有結合を介して結合している無機金属元素―多官能性有機基直接相互作用を有する本発明の多次元有機・無機複合体化合物は、金属−有機骨格間に強い相互作用をもたらす。
図12に示すように、一方の金属元素M1に与えられた刺激(光、酸化還元など)により発生した電荷やスピンなどが共有結合を介して伝達し他方の金属元素M2に伝わる。電荷が伝わる場合は多次元有機・無機複合体化合物は2種類以上の無機金属元素の相互作用により優れた電気導電体となり、またスピンが伝わる場合は多次元有機・無機複合体化合物は2種類以上の無機金属元素の相互作用により優れた磁性材料となり得る。
図12に示した有機骨格Rはこれらの伝達経路の制御因子となっており、有機骨格Rを適切に選択することにより、電気的特性を電気導電体から半導体、不導体まで制御することが可能となり、さらに磁気的特性、触媒的特性をも制御可能に保持させることができる。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention relates to a novel multidimensional organic / inorganic composite compound and a higher-order structure of a composite fired body.
An inorganic material in which two or more inorganic metal elements obtained by reacting two or more inorganic metal compounds (A) with a multifunctional organic compound (B) and a multifunctional organic group are bonded via a covalent bond The multidimensional organic-inorganic composite compound of the present invention having a direct interaction between a metal element and a polyfunctional organic group brings about a strong interaction between the metal-organic framework.
As shown in FIG. 12, charges, spins, and the like generated by stimulation (light, redox, etc.) given to one metal element M1 are transmitted through a covalent bond and transmitted to the other metal element M2. Multi-dimensional organic / inorganic composite compounds are excellent electrical conductors due to the interaction of two or more inorganic metal elements when charge is transmitted, and two or more multi-dimensional organic / inorganic composite compounds are transmitted when spin is transmitted. It can be an excellent magnetic material due to the interaction of inorganic metal elements.
The organic skeleton R shown in FIG. 12 is a control factor for these transmission paths, and by appropriately selecting the organic skeleton R, it is possible to control electrical characteristics from an electric conductor to a semiconductor and a nonconductor. In addition, the magnetic characteristics and catalytic characteristics can be controlled and maintained.

本発明の多次元有機・無機複合体化合物は、例えば、下記式(2)で示されるように、2種類以上の無機金属化合物(A)1、(A)2、(A)3・・・と多官能性有機化合物(B)とを反応させて得られる多次元有機・無機複合体化合物は、グープ(C)1、グループ(C)2、グループ(C)3・・・・・・を含むハイブリッドポリマーである。
このハイブリッドポリマーは、各グループが交互に順序良く結合した交互結合体であるか、各グループが2つ以上結合したブロックが交互に順序良くあるいは適宜順序で結合したブロック結合体であるか、各グループがランダムに結合したランダム結合体であるか、あるいはこれらの2種以上の混合であってもよく、各グループの配列は特に限定されるものではない。
このハイブリッドポリマーの分子量も合成可能で取り扱いできる範囲であればよく特に限定されるものではない。
The multidimensional organic / inorganic composite compound of the present invention has two or more kinds of inorganic metal compounds (A) 1, (A) 2, (A) 3,..., For example, as shown by the following formula (2). Multi-dimensional organic / inorganic composite compound obtained by reacting polyfunctional organic compound (B) with group (C) 1, group (C) 2, group (C) 3, ... It is a hybrid polymer containing.
This hybrid polymer is an alternating combination in which each group is alternately connected in order, or a block combination in which two or more blocks in each group are connected in order or in an appropriate order. May be a random combination obtained by randomly bonding, or a mixture of two or more of these, and the arrangement of each group is not particularly limited.
The molecular weight of the hybrid polymer is not particularly limited as long as it can be synthesized and handled.

Figure 2005289885
Figure 2005289885

本発明の複合焼成体は、前記多次元有機・無機複合体化合物を、減圧下あるいは不活性ガス雰囲下、約400〜800℃で焼成することにより得られる。焼成すると有機骨格が炭化し、炭化して得られる微小な炭化物マトリックス中に2種類以上の金属の酸化物、硫化物、窒化物、リン化物のナノサイズクラスターが、あるいは金属がオスミウム、ルテニウムなどの場合は0価の金属微粒子のナノサイズクラスターが、均一に分散した本発明の新規な複合焼成体が得られる。
前記金属の酸化物、硫化物、窒化物、リン化物などは多くの格子欠陥を含み、この格子欠陥が提供するエネルギー準位が機能発現の基になると考えられる。
この複合焼成体は2種類以上の無機金属元素の相互作用により優れた電子移動性、酸化還元活性、可視光応答性、光触媒活性などを示し、これら新規機能により電子、光的特性が確認されたことより、電子材料や光機能材料など種々の用途に適用可能である。
The composite fired body of the present invention can be obtained by firing the multidimensional organic / inorganic composite compound at about 400 to 800 ° C. under reduced pressure or in an inert gas atmosphere. When baked, the organic skeleton is carbonized, and nanosized clusters of two or more types of metal oxides, sulfides, nitrides, phosphides, or metals are osmium, ruthenium, etc. in a fine carbide matrix obtained by carbonization In this case, a novel composite fired body of the present invention in which nano-sized clusters of zero-valent metal fine particles are uniformly dispersed is obtained.
The metal oxides, sulfides, nitrides, phosphides, and the like contain many lattice defects, and the energy levels provided by the lattice defects are considered to be the basis for function expression.
This composite fired body showed excellent electron mobility, redox activity, visible light response, photocatalytic activity, etc. due to the interaction of two or more kinds of inorganic metal elements, and these new functions confirmed the electronic and optical characteristics. Therefore, it is applicable to various uses such as electronic materials and optical functional materials.

本発明の好適な実施態様においては、R1 はメトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基、メトキシエトキシ基等のアルコキシ基、塩素イオン、臭素イオン、ヨウ素イオン等の、ハロゲンイオン、酢酸根、酒石酸根、シュウ酸根等のカルボン酸陰イオン、アセチルアセトン、エチレンジアミン四酢酸、ノルボルネン等の錯形成化合物、硝酸イオン、硫酸イオン、リン酸イオン等の無機イオンからなる群より選択される。 In a preferred embodiment of the present invention, R 1 is an alkoxy group such as methoxy group, ethoxy group, isopropoxy group, n-butoxy group, t-butoxy group, methoxyethoxy group, chlorine ion, bromine ion, iodine ion, etc. From the group consisting of carboxylate anions such as halogen ions, acetate radicals, tartaric acid radicals and oxalate radicals, complex-forming compounds such as acetylacetone, ethylenediaminetetraacetic acid and norbornene, and inorganic ions such as nitrate ions, sulfate ions and phosphate ions Selected.

本発明の好適な実施態様においては、R2 はアルキル基、置換アルキル基、アルキルベンゼン基、フェニル基、置換フェニル基、ナフチル基、置換ナフチル基、アリル基、アレン基、ビフェニル基、トラン基、ビフェニルエーテル基、ビフェニルスルフィド基、ビフェニルスルホネート基、スチルベン基等の非共役、共役有機基からなる群より選択される。 In a preferred embodiment of the present invention, R 2 is alkyl group, substituted alkyl group, alkylbenzene group, phenyl group, substituted phenyl group, naphthyl group, substituted naphthyl group, allyl group, allene group, biphenyl group, tolan group, biphenyl. It is selected from the group consisting of non-conjugated and conjugated organic groups such as ether group, biphenyl sulfide group, biphenyl sulfonate group and stilbene group.

本発明の好適な実施態様においては、Xはヒドロキシル基、アミノ基、チオール基、フォスフィン基等の金属元素と共有結合可能な置換基より選択される。   In a preferred embodiment of the present invention, X is selected from substituents capable of covalently bonding to metal elements such as hydroxyl group, amino group, thiol group, and phosphine group.

本発明に用いる金属元素Mは安定金属元素であれば特に制限を有するものではないが、本発明の好適な実施態様においては、好ましくは、金属元素Mは第一周期遷移金属元素、第二周期遷移金属元素、第三周期遷移金属元素さらにランタノイド元素からなる群より選択される少なくとも2種類以上である。
本発明で用いる2種類以上の無機金属元素は一方向への電荷分離機能を発現させるためのものであり、それらの酸化物などのバンドエッジのエネルギー準位が異なるものであればどのような組み合わせでもよく限定されるものではない。
The metal element M used in the present invention is not particularly limited as long as it is a stable metal element. However, in a preferred embodiment of the present invention, the metal element M is preferably a first period transition metal element, a second period. There are at least two kinds selected from the group consisting of transition metal elements, third-period transition metal elements, and lanthanoid elements.
Two or more kinds of inorganic metal elements used in the present invention are for the purpose of expressing a charge separation function in one direction, and any combination is possible as long as the energy levels of band edges such as oxides thereof are different. But it is not limited.

本発明に用いる金属元素は具体的には、例えば、スカンジウム、チタニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、水銀、ホルミウム、ストロンチウム、テルル、セレン、ランタン、セリウム、プラセオジウム、ネオジウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ディスプロシウム、ホロニウム、エルビウム、ツリウム、イッテルビウム、ルテチウム等を挙げることができる。また、これ以外の金属元素としては、アルミニウム、珪素、ガリウム、ゲルマニウム、インジウム、スズ、タリウム、鉛等が挙げられる。   Specific examples of the metal element used in the present invention include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, Cadmium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, holmium, strontium, tellurium, selenium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holonium, Erbium, thulium, ytterbium, lutetium and the like can be mentioned. Other metal elements include aluminum, silicon, gallium, germanium, indium, tin, thallium, lead, and the like.

本発明に用いる無機金属化合物は、上記金属元素の化合物であれば特に制限を有するものではないが、好ましくは、メトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基、メトキシエトキシ基等が置換した金属アルコキシド、塩素イオン、臭素イオン、ヨウ素イオン等が置換した、金属ハロゲン化物、酢酸根、酒石酸根、シュウ酸根等が置換した金属カルボン酸塩、アセチルアセトン、エチレンジアミン四酢酸、ノルボルネン等が置換した金属錯体、金属硝酸塩、金属硝酸塩、金属リン酸塩等の無機金属塩等が挙げられる。   The inorganic metal compound used in the present invention is not particularly limited as long as it is a compound of the above metal element, but is preferably a methoxy group, an ethoxy group, an isopropoxy group, an n-butoxy group, a t-butoxy group, a methoxy group. Metal alkoxide substituted by ethoxy group, etc., metal carboxylate substituted by chloride, bromide, iodine, etc., metal carboxylate substituted by metal halide, acetate radical, tartrate radical, oxalate radical, etc., acetylacetone, ethylenediaminetetraacetic acid, norbornene Inorganic metal salts such as metal complexes, metal nitrates, metal nitrates, metal phosphates, etc. substituted with the above.

本発明に用いる多官能性有機化合物は上記金属元素と共有結合可能な官能基を有していれば特に制限を有するものではないが、好ましくは多価アルコール等の水酸基を複数有する化合物、多価アミン等のアミノ基を複数有する化合物、多価チオール等のチオール基を複数有する化合物、多価のフォスフィン基を複数有する化合物が挙げられる。また、これらの官能基の置換数も制限を有するものではないが、好ましくは1〜10置換、より好ましくは2〜4置換である。   The polyfunctional organic compound used in the present invention is not particularly limited as long as it has a functional group capable of covalent bonding with the above metal element, but is preferably a compound having a plurality of hydroxyl groups such as a polyhydric alcohol, Examples thereof include compounds having a plurality of amino groups such as amines, compounds having a plurality of thiol groups such as polyvalent thiols, and compounds having a plurality of polyvalent phosphine groups. Moreover, although the number of substitution of these functional groups is not limited, it is preferably 1 to 10 substitution, more preferably 2 to 4 substitution.

本発明に用いる多官能性有機化合物の中心骨格は、上記官能基を有していれば特に制限を有するものではないが、好ましくは、鎖長1〜16の直鎖または分岐アルキル基、これらにハロゲン、ニトロ基、アリル基等を含む置換アルキル基、前記アルキル基を単数もしくは複数含むアルキルベンゼン基、フェニル基、ハロゲン、ニトロ基、アリル基等を含む置換フェニル基、ナフチル基、ハロゲン、ニトロ基、アリル基等を含む置換ナフチル基、アリル基、アレン基、ビフェニル基、トラン基、ビフェニルエーテル基、ビフェニルスルフィド基、ビフェニルスルホネート基、スチルベン基等が挙げられ、より好ましくは共役系有機化合物である。   The central skeleton of the polyfunctional organic compound used in the present invention is not particularly limited as long as it has the above-mentioned functional group, but is preferably a linear or branched alkyl group having a chain length of 1 to 16, Substituted alkyl groups containing halogen, nitro group, allyl group, etc., alkylbenzene groups containing one or more alkyl groups, substituted phenyl groups containing phenyl group, halogen, nitro group, allyl group, naphthyl group, halogen, nitro group, Examples thereof include substituted naphthyl groups including allyl groups, allyl groups, allene groups, biphenyl groups, tolan groups, biphenyl ether groups, biphenyl sulfide groups, biphenyl sulfonate groups, stilbene groups, and more preferably conjugated organic compounds.

本発明の好適な実施態様においては、多次元有機―無機複合体化合物(C)は、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)を溶媒の存在下で混合・反応させることによって得られる。   In a preferred embodiment of the present invention, the multidimensional organic-inorganic composite compound (C) is a mixture of two or more inorganic metal compounds (A) and a polyfunctional organic compound (B) in the presence of a solvent. It is obtained by reacting.

本発明に用いる溶媒は入手容易なものであれば特に制限を有しないが、好ましくは、石油エーテル、n-ペンタン、n-ヘキサン、シクロペンタン、シクロヘキサン、四塩化炭素、ベンゼン、トルエン、クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン、酢酸エチル、酢酸アミル、メチルエチルケトン、アセトン、ブタノール、イソプロパノール、エタノール、メタノール、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられ、和光純薬株式会社、関東化学株式会社、東京化成株式会社等から入手することができる。また、好ましくはこれら溶媒は公知の方法により脱水蒸留して用いる。   The solvent used in the present invention is not particularly limited as long as it is readily available, but is preferably petroleum ether, n-pentane, n-hexane, cyclopentane, cyclohexane, carbon tetrachloride, benzene, toluene, chloroform, dichloromethane. , Diethyl ether, tetrahydrofuran, ethyl acetate, amyl acetate, methyl ethyl ketone, acetone, butanol, isopropanol, ethanol, methanol, dimethylformamide, dimethyl sulfoxide, etc., Wako Pure Chemicals, Kanto Chemical Co., Tokyo Kasei Co., Ltd. Can be obtained from Preferably, these solvents are used after dehydrating and distilling by a known method.

また、溶媒に対する反応試剤の濃度は特に制限を有するものではないが、好ましくは溶剤に対して0.1〜90質量%、さらに好ましくは1〜20質量%である。また、結晶構造体を得る場合には低濃度が好ましく、薄膜、厚膜を形成させる場合には中〜高濃度が望ましい。   The concentration of the reaction reagent with respect to the solvent is not particularly limited, but is preferably 0.1 to 90% by mass, and more preferably 1 to 20% by mass with respect to the solvent. Further, when a crystal structure is obtained, a low concentration is preferable, and when a thin film or a thick film is formed, a medium to high concentration is desirable.

本発明の好適な実施態様においては、多次元有機―無機複合体化合物(C)は、2種類以上の無機金属化合物(A)に対し、多官能性有機化合物(B)の当量は0.1〜10となる。   In a preferred embodiment of the present invention, the multi-dimensional organic-inorganic composite compound (C) has an equivalent amount of the polyfunctional organic compound (B) of 0.1 or more relative to two or more kinds of inorganic metal compounds (A). -10.

また、2種類以上の金属元素Mに対する多官能性有機化合物の混合量は特に制限を有するものではないが、好ましくは0.1〜10当量、さらに好ましくは0.5〜5当量である。   The amount of the polyfunctional organic compound mixed with two or more kinds of metal elements M is not particularly limited, but is preferably 0.1 to 10 equivalents, more preferably 0.5 to 5 equivalents.

本発明の多次元有機・無機複合体化合物の粒子の大きさは直径1nm〜5μm、好ましくは5nm〜1μm、より好ましくは10nm〜500nmである。   The particle size of the multidimensional organic / inorganic composite compound of the present invention is 1 nm to 5 μm in diameter, preferably 5 nm to 1 μm, more preferably 10 nm to 500 nm.

上記粒子は、反応試剤の混合比、溶媒の種類、濃度、反応温度、反応時間等の合成条件により制御されるが、粒子生成後、機械的粉砕法などの公知の方法を用いても作製し得る。
多次元有機・無機複合体化合物の粒子のサイズは、レーザードップラー型粒度分布測定器、透過型電子顕微鏡などを用いて測定できる。
The particles are controlled by the synthesis conditions such as the mixing ratio of the reaction reagent, the type of solvent, the concentration, the reaction temperature, and the reaction time. obtain.
The particle size of the multi-dimensional organic / inorganic composite compound can be measured using a laser Doppler type particle size distribution analyzer, a transmission electron microscope, or the like.

本発明の多次元有機・無機複合体化合物の結晶構造体の大きさは、長径10nm〜5cm、好ましくは50nm〜1cm、より好ましくは100nm〜1mmである。   The size of the crystal structure of the multidimensional organic / inorganic composite compound of the present invention is 10 nm to 5 cm in major axis, preferably 50 nm to 1 cm, more preferably 100 nm to 1 mm.

多次元有機・無機複合体化合物の結晶構造体のサイズは、レーザードップラー型粒度分布測定器、透過型電子顕微鏡などを用いて測定できる。また、結晶構造は粉末X線解析装置、単結晶X線回折装置、電子線回折装置などを用いて解析できる。   The size of the crystal structure of the multidimensional organic / inorganic composite compound can be measured using a laser Doppler type particle size distribution analyzer, a transmission electron microscope, or the like. The crystal structure can be analyzed using a powder X-ray analyzer, a single crystal X-ray diffractometer, an electron beam diffractometer or the like.

本発明の多次元有機・無機複合体化合物の薄膜、厚膜の膜厚は、1nm〜5mm、好ましくは5nm〜100μm、より好ましくは10nm〜10μmである。   The film thickness of the thin film and the thick film of the multidimensional organic / inorganic composite compound of the present invention is 1 nm to 5 mm, preferably 5 nm to 100 μm, more preferably 10 nm to 10 μm.

多次元有機・無機複合体化合物の薄膜、厚膜のサイズは、膜厚測定装置、透過型電子顕微鏡、走査電子顕微鏡での断面観測などを用いて測定できる。   The size of the thin film and the thick film of the multidimensional organic / inorganic composite compound can be measured using a film thickness measuring device, a transmission electron microscope, a cross-sectional observation with a scanning electron microscope, or the like.

多次元有機・無機複合体化合物の薄膜、厚膜は各種基板上に形成される。基板として特に制限を有しないが、好ましくは、アルミニウム、ステンレス、金、銀、銅等の金属基板、単結晶シリコン、ガリウム−砒素結晶体等の半導体基板、ガラス基板、陶器基板が挙げられる。また、基板表面は各種カップリング剤など公知の方法を用いて表面処理をしてもよい。   Thin films and thick films of multidimensional organic / inorganic composite compounds are formed on various substrates. Although there is no restriction | limiting in particular as a board | substrate, Preferably, metal substrates, such as aluminum, stainless steel, gold | metal | money, silver, copper, semiconductor substrates, such as a single crystal silicon and a gallium arsenic crystal body, a glass substrate, and a ceramic substrate are mentioned. Further, the substrate surface may be surface-treated using a known method such as various coupling agents.

本発明で用いる他種有機化合物含有多次元有機・無機複合体化合物は、他種有機物を複合体合成時に反応試剤と共に添加するか、もしくは複合焼成体合成後に溶媒に分散させた複合焼成体中に添加したり、複合焼成体を他種有機化合物蒸気に暴露させたり、または他種有機化合物を機械的混練することによって得ることができる。
また、他種有機化合物の添加量に制限はないが、好ましくは、多次元有機・無機複合体化合物あるいは複合焼成体100質量部に対し0.01〜1000質量部、さらに好ましくは0.1〜100質量部添加する。
The multi-dimensional organic / inorganic composite compound containing other organic compound used in the present invention is added to the composite fired body in which the other organic material is added together with the reaction agent at the time of composite synthesis or dispersed in a solvent after the composite fired body synthesis. It can be obtained by adding, exposing the composite fired body to other kinds of organic compound vapors, or mechanically kneading other kinds of organic compounds.
Moreover, although there is no restriction | limiting in the addition amount of another kind organic compound, Preferably, it is 0.01-1000 mass parts with respect to 100 mass parts of a multidimensional organic-inorganic composite compound or a composite baked body, More preferably, it is 0.1-1000 mass parts. Add 100 parts by weight.

他種有機化合物の種類については制限はないが、好ましくは、C60等のフラーレン類、テトラチアフルバレン類、テトラシアノキノジメタン類等の電子授受機能を有する化合物、クラウンエーテル類、アザクラウンエーテル類、カリックスアレン類等のイオン捕捉化合物等が挙げられる。   Although there is no restriction | limiting about the kind of other kind organic compound, Preferably, compounds which have electron transfer functions, such as fullerenes, such as C60, tetrathiafulvalenes, tetracyanoquinodimethane, crown ethers, azacrown ethers And ion trapping compounds such as calixarenes.

本発明で用いる他種無機化合物含有多次元有機・無機複合体化合物は他種無機化合物を複合体合成時に反応試剤と共に添加するか、もしくは複合焼成体合成後に溶媒に分散させた複合焼成体中に添加したり、複合焼成体を他種無機化合物蒸気に暴露させたり、または他種無機化合物を機械的混練することによって得ることができる。
また、他種無機化合物の添加量に制限はないが、好ましくは、多次元有機・無機複合体化合物あるいは複合焼成体100質量部に対し0.01〜1000質量部、さらに好ましくは0.1〜100質量部添加する。
The multi-dimensional organic / inorganic composite compound containing other inorganic compound used in the present invention is added to the composite fired body in which the other kind of inorganic compound is added together with the reaction agent at the time of composite synthesis or dispersed in a solvent after the composite fired body synthesis. It can be obtained by adding, exposing the composite fired body to other inorganic compound vapor, or mechanically kneading the other inorganic compound.
Moreover, although there is no restriction | limiting in the addition amount of another kind inorganic compound, Preferably, it is 0.01-1000 mass parts with respect to 100 mass parts of a multidimensional organic-inorganic composite compound or a composite sintered body, More preferably, it is 0.1-1000 mass parts. Add 100 parts by weight.

他種無機化合物の種類については制限はないが、好ましくは、ヨウ素等のハロゲン元素、フェロセン等のメタロセン化合物類、クロロフィル等のポルフィリン化合物類等の電子授受機能を有する化合物、フタロシアニン類等の色素化合物等が挙げられる。   There are no restrictions on the type of other inorganic compounds, but preferably halogen compounds such as iodine, metallocene compounds such as ferrocene, compounds having an electron transfer function such as porphyrin compounds such as chlorophyll, and pigment compounds such as phthalocyanines Etc.

本発明で用いる異種混合無機物含有多次元有機・無機複合体化合物は、異種の無機金属化合物と異種の多官能性有機化合物を溶媒の存在下で同時混合し反応させることによって得ることができる。
もしくは、すでに合成し得た異種の多次元有機・無機複合体化合物を逐次混合し、機械的混練によっても得ることができる。
また、混合する種類、数等に制限はないが、好ましくは同時混合の場合は無機金属化合物と多官能性有機化合物合わせて3〜10種、逐次混合の場合は異種多次元有機・無機複合体化合物を3〜10種、さらに好ましくは同時混合の場合は無機金属化合物3〜5種、逐次混合の場合は異種多次元有機・無機複合体化合物を3〜5種混合する。
The heterogeneous mixed inorganic substance-containing multidimensional organic / inorganic composite compound used in the present invention can be obtained by simultaneously mixing and reacting a heterogeneous inorganic metal compound and a heterogeneous polyfunctional organic compound in the presence of a solvent.
Alternatively, different multidimensional organic / inorganic composite compounds that have already been synthesized can be sequentially mixed and obtained by mechanical kneading.
In addition, there are no restrictions on the type, number, etc. of mixing, but preferably 3 to 10 types of inorganic metal compound and polyfunctional organic compound in the case of simultaneous mixing, heterogeneous multidimensional organic / inorganic composite in the case of sequential mixing 3 to 10 types of compounds, more preferably 3 to 5 types of inorganic metal compounds in the case of simultaneous mixing, and 3 to 5 types of different multidimensional organic / inorganic composite compounds in the case of sequential mixing.

また、異種混合無機化合物含有多次元有機・無機複合体化合物は、上記に示した他種有機化合物含有多次元有機・無機複合体化合物、他種無機化合物含有多次元有機・無機複合体化合物のそれぞれ、もしくは双方を用いてもよい。   In addition, the multi-dimensional organic / inorganic composite compound containing different kinds of mixed inorganic compounds are the above-described multi-dimensional organic / inorganic composite compounds containing other organic compounds and multi-dimensional organic / inorganic composite compounds containing other inorganic compounds, respectively. Or both may be used.

以下、実施例を挙げて本発明を説明するが、本発明は、実施例に限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to an Example.

(セリウム/ホルミウムを含む多次元有機・無機複合体化合物の合成および複合焼成体の製造)
アルゴン雰囲気下、ホルミウム(III)クロリド0.8mmolを無水エタノール10mLに溶解させた溶液と、4−ヒドロキシチオフェノール(2e)2.4mmolおよび1,8−(ジメチルアミノ)ナフタレン2.4mmolを無水エタノール10mLに溶解させた溶液とを混合し、3時間加熱還流を行った後、セリウム(IV)エトキシメトキサイド0.6mmolを無水エタノール10mLに溶解させた溶液を滴下し、3時間加熱還流を行った。
生成した沈殿物をメンブレンフィルタで濾過し、ソックスレー抽出器を用いて無水エタノールで洗浄した。得られた生成物を6時間100℃で真空乾燥し本発明のセリウム/ホルミウムを含む多次元有機・無機複合体化合物3eを得た(式3参照)。
(Synthesis of multi-dimensional organic / inorganic composite compounds containing cerium / holmium and production of composite fired bodies)
Under an argon atmosphere, a solution of 0.8 mmol of holmium (III) chloride dissolved in 10 mL of absolute ethanol, 2.4 mmol of 4-hydroxythiophenol (2e) and 2.4 mmol of 1,8- (dimethylamino) naphthalene were added to absolute ethanol. The solution dissolved in 10 mL was mixed and heated under reflux for 3 hours, and then a solution obtained by dissolving 0.6 mmol of cerium (IV) ethoxymethoxide in 10 mL of absolute ethanol was added dropwise and heated under reflux for 3 hours. .
The produced precipitate was filtered through a membrane filter and washed with absolute ethanol using a Soxhlet extractor. The obtained product was vacuum-dried at 100 ° C. for 6 hours to obtain a multidimensional organic / inorganic composite compound 3e containing cerium / holmium of the present invention (see Formula 3).

Figure 2005289885
Figure 2005289885

得られた本発明の多次元有機・無機複合体化合物3eを1g磁製るつぼに入れて減圧下、温度を変化(400、500、600、700℃、800℃、昇温速度5℃/min)させて1時間焼成して本発明の複合焼成体4e400、4e400、4e600、4e700、4e800を得た。   The obtained multidimensional organic / inorganic composite compound 3e of the present invention was placed in a 1 g magnetic crucible and the temperature was changed under reduced pressure (400, 500, 600, 700 ° C., 800 ° C., temperature increase rate 5 ° C./min). And fired for 1 hour to obtain composite fired bodies 4e400, 4e400, 4e600, 4e700, and 4e800 of the present invention.

得られた複合焼成体100mgを0.01mol/1水素ヘキサクロロプラチネート(IV)ヘキサハイドレート水溶液100mlに分散させ、還元剤としてメタノール5mlを加えた後、ハロゲンランプ(HOYA−SCHOTT製Megalight100 150W)を使用して30分間光照射を行った。その後複合焼成体を濾過し、蒸留水で水洗した。得られた白金を担持した複合焼成体を100℃で6時間真空乾燥した。
(水分解能の評価)
5mlの反応容器に試験体(複合焼成体、および白金を担持した複合焼成体)100mgと脱酸素水2mlを入れ、ハロゲンランプ(150W)を使用して室温で所定時間可視光照射を行った。その後、容器に発生した水素、酸素をガスクロマトグラフ法によって測定した。
100 mg of the obtained composite fired body was dispersed in 100 ml of an aqueous 0.01 mol / 1 hydrogen hexachloroplatinate (IV) hexahydrate solution, 5 ml of methanol was added as a reducing agent, and then a halogen lamp (Megalight 100 150W manufactured by HOYA-SCHOTT) was used. It was used and irradiated for 30 minutes. Thereafter, the composite fired body was filtered and washed with distilled water. The obtained composite fired body carrying platinum was vacuum-dried at 100 ° C. for 6 hours.
(Evaluation of water resolution)
A 5 ml reaction vessel was charged with 100 mg of a test body (composite fired body and composite fired body carrying platinum) and 2 ml of deoxygenated water, and irradiated with visible light at room temperature for a predetermined time using a halogen lamp (150 W). Thereafter, hydrogen and oxygen generated in the container were measured by gas chromatography.

(比較のために、セリウムあるいはホルミウムを含む多次元有機・無機複合体化合物の合成および複合焼成体の製造を行った。)
アルゴン雰囲気下、セリウム(IV)エトキシメトキサイド1.0mmolを無水エタノール10mLに溶解させた溶液に、ハイドロキノン(2a)2.0mmolを無水THF10mLに溶解させた溶液とを混合し、3時間加熱還流を行った。
生成した沈殿物をメンブレンフィルタで濾過し、ソックスレー抽出器を用いて無水THFで洗浄した。得られた生成物を6時間100℃で真空乾燥しセリウムを含む比較の多次元有機・無機複合体化合物3aを得た(式4参照。式4中のX=O)。
ハイドロキノンの代わりに1,4−ベンゼンジチオール(2b)を用いた以外は同様にして比較の多次元有機・無機複合体化合物3bを得た(式4参照。式4中のX=S)。
(For comparison, a multidimensional organic / inorganic composite compound containing cerium or holmium was synthesized and a composite fired body was manufactured.)
Under an argon atmosphere, a solution in which 1.0 mmol of cerium (IV) ethoxymethoxide is dissolved in 10 mL of absolute ethanol is mixed with a solution in which 2.0 mmol of hydroquinone (2a) is dissolved in 10 mL of anhydrous THF, and the mixture is heated to reflux for 3 hours. went.
The produced precipitate was filtered through a membrane filter and washed with anhydrous THF using a Soxhlet extractor. The obtained product was vacuum-dried at 100 ° C. for 6 hours to obtain a comparative multidimensional organic-inorganic composite compound 3a containing cerium (see Formula 4; X═O in Formula 4).
A comparative multidimensional organic-inorganic composite compound 3b was obtained in the same manner except that 1,4-benzenedithiol (2b) was used instead of hydroquinone (see Formula 4; X = S in Formula 4).

Figure 2005289885
Figure 2005289885

アルゴン雰囲気下、ホルミウム(III)クロリド1.0mmolを無水エタノール10mLに溶解させた溶液に、ハイドロキノン(2c)1.5mmolと1,8−(ジメチルアミノ)ナフタレン3.0mmolを無水エタノール10mLに溶解させた溶液とを混合し、3時間加熱還流を行った。
生成した沈殿物をメンブレンフィルタで濾過し、ソックスレー抽出器を用いて無水エタノールで洗浄した。得られた生成物を6時間100℃で真空乾燥しホルミウムを含む比較の多次元有機・無機複合体化合物3cを得た(式5参照。式5中のX=O)。
Under an argon atmosphere, 1.5 mmol of hydroquinone (2c) and 3.0 mmol of 1,8- (dimethylamino) naphthalene were dissolved in 10 mL of absolute ethanol in a solution of 1.0 mmol of holmium (III) chloride dissolved in 10 mL of absolute ethanol. The solution was mixed and heated to reflux for 3 hours.
The produced precipitate was filtered through a membrane filter and washed with absolute ethanol using a Soxhlet extractor. The obtained product was vacuum-dried at 100 ° C. for 6 hours to obtain a comparative multidimensional organic / inorganic composite compound 3c containing holmium (see Formula 5; X = O in Formula 5).

Figure 2005289885
Figure 2005289885

合成した多次元有機・無機複合体化合物および複合焼成体の構造決定、物性評価を下記の機器分析により行った。   Structure determination and physical property evaluation of the synthesized multidimensional organic / inorganic composite compound and composite fired body were performed by the following instrumental analysis.

(機器分析)
(1)元素分析(C,H,N)
ヤナコ機器開発研究所 CHNCORDER MT−6、MTA−620 AUSTSAMPLERを用いて測定した。
(2)元素分析(S)
ヤナコ機器開発研究所 微量ハロゲン、硫黄分析装置YS−10型を用い、固体検量線法により測定した。
(3)蛍光X線分析(XRF)
理学電機 蛍光X線分析装置RIX2000を用い、線源にRh(50kv−50mA)を用いて測定した。
(4)FT−IRスペクトル
パーキン−エルマーFTIR1760−X Infrared FourirTransform Spectrometerを用いてKBr錠剤法により測定した。
(5)透過型電子顕微鏡(TEM)
日本電子 JEM−3010電子顕微鏡を用い、コロジオン膜張付きメッシュを用い、加速電圧300kVで測定した。
(6)UV−VISスペクトル
日立製作所 U−4000自記分光光度計を用いて拡散反射法で300〜800nmの波長領域を測定した。
(7)ESRスペクトル
日本電子 JEM−TE200ESR SPECTROMETERを用い、マイクロ波変調幅0.5mT、掃引磁場領域84〜584mT、時定数0.1s、測定温度293Kの条件で測定した。また、光源にはHOYA−SCHOTT製Megalight100ハロゲンランプ(150w)を使用した。
(8)X線光電子分析(XPS)
島津製作所 X線光学電子分析装置ESCA−850を用い、線源にMg−Kα(30kv−8mA)を用いて測定した。
(9)熱物性測定(TG−DTA)
理学電機 TG−DTA−MS8010を用い、窒素雰囲気下、20〜1000℃の温度範囲を測定した。試料測定容器は白金オープンパンを使用した。
(10)粉末X線結晶回折(XRD)
理学電機 X線回折装置MiniFlexを用い、線源にCu−Kα(30kV、15mA)を用いて測定した。
(11)TCDガスクロマトグラフ
島津製作所 GC−9A型(カラム:モレキュラーシーブ5A・2m)を用いて測定した。発生ガスの定性、定量には島津製作所 CR−3A型クマトパック、島津ガスクログラフ用ガスサンプラMGS−4を使用した。
(Instrument analysis)
(1) Elemental analysis (C, H, N)
Measured using Yanako Instrument Development Laboratory CHNCORDER MT-6, MTA-620 AUSTSAMPLER.
(2) Elemental analysis (S)
YANAKO INSTRUMENTS DEVELOPMENT LABORATORY Measured by a solid calibration curve method using a trace halogen, sulfur analyzer YS-10 type.
(3) X-ray fluorescence analysis (XRF)
Measured using Rh (50 kv-50 mA) as a radiation source using a Rigaku X-ray fluorescence analyzer RIX2000.
(4) FT-IR spectrum It measured by the KBr tablet method using Perkin-Elmer FTIR1760-X Infrared FourirTransform Spectrometer.
(5) Transmission electron microscope (TEM)
JEOL Using a JEM-3010 electron microscope, a mesh with a collodion film was used and measured at an acceleration voltage of 300 kV.
(6) UV-VIS spectrum A wavelength region of 300 to 800 nm was measured by a diffuse reflection method using a Hitachi U-4000 spectrophotometer.
(7) ESR spectrum Using JEOL JEM-TE200ESR SPECTROMETER, measurement was performed under the conditions of a microwave modulation width of 0.5 mT, a sweep magnetic field region of 84 to 584 mT, a time constant of 0.1 s, and a measurement temperature of 293K. As a light source, a Megalight 100 halogen lamp (150 w) manufactured by HOYA-SCHOTT was used.
(8) X-ray photoelectron analysis (XPS)
Shimadzu Corporation X-ray optical electron analyzer ESCA-850 was used, and Mg-Kα (30 kv-8 mA) was used as a radiation source.
(9) Thermophysical property measurement (TG-DTA)
Using a Rigaku Denki TG-DTA-MS8010, a temperature range of 20 to 1000 ° C. was measured in a nitrogen atmosphere. A platinum open pan was used as the sample measurement container.
(10) Powder X-ray crystal diffraction (XRD)
The measurement was performed using a Rigaku Denki X-ray diffractometer MiniFlex and Cu-Kα (30 kV, 15 mA) as a radiation source.
(11) TCD gas chromatograph Shimadzu Corporation GC-9A type (column: molecular sieve 5A · 2m) was used for measurement. Shimadzu CR-3A type Kumato pack and Shimadzu gas chromatograph gas sampler MGS-4 were used for qualitative and quantitative analysis of the generated gas.

前記多次元有機・無機複合体化合物3a、3b、3c、3eを得る合成反応は速やかに進行し、前記多次元有機・無機複合体化合物3a、3b、3c、3eが得られた。これらの組成および構造を明らかにするため、元素分析、FT−IRスペクトルの測定を行った。3a、3b、3cの元素分析結果を表1に、3a、3b、3cのIRスペクトルの測定結果を表2に、3eの元素分析結果を表3に、3eのIRスペクトルの測定結果を表4にそれぞれ示す。   The synthesis reaction for obtaining the multidimensional organic / inorganic composite compounds 3a, 3b, 3c, 3e proceeded rapidly, and the multidimensional organic / inorganic composite compounds 3a, 3b, 3c, 3e were obtained. In order to clarify their composition and structure, elemental analysis and measurement of FT-IR spectrum were performed. The results of elemental analysis of 3a, 3b, and 3c are shown in Table 1, the results of IR spectrum measurement of 3a, 3b, and 3c are shown in Table 2, the results of elemental analysis of 3e are shown in Table 3, and the results of IR spectrum measurement of 3e are shown in Table 4. Respectively.

Figure 2005289885
Figure 2005289885

Figure 2005289885
Figure 2005289885

Figure 2005289885
Figure 2005289885

Figure 2005289885
Figure 2005289885

表1〜表4から多次元有機・無機複合体化合物の元素分析値は理論値に大体近い値を示し、導入した有機基に由来する吸収が確認された。
多次元有機・無機複合体化合物3a、3b、3c、3eを透過型電子顕微鏡(TEM)観察した結果、3eは球形粒子(径約50nm程度)を融合させた形状を有しており、3a、3b、3cに見られる不定形構造が見られないことが判った。この結果、セリウム原子はヒドロキル基、メルカプト基双方と反応性を有するが、ホルミウム原子はヒドロキル基のみと反応が進行する傾向があるが、3e中のホルミウムは、ヒドロキル基と、セリウムは、メルカプト基と選択的に反応が進行しているセリウム−有機基−ホルミウム三元交互構造を有することが示唆された。
多次元有機・無機複合体化合物3eは褐色を呈しており、ハイブリッドポリマー骨格内において容易に電子励起を生じていることが示唆された。そこでこの電子的効果を評価するためにUV−VISスペクトルを測定した。比較の3a、3b、3cについても測定した(図1参照)。
From Tables 1 to 4, the elemental analysis values of the multi-dimensional organic / inorganic composite compound showed values that were approximately close to the theoretical values, and absorption derived from the introduced organic groups was confirmed.
As a result of observing the multidimensional organic / inorganic composite compounds 3a, 3b, 3c, and 3e with a transmission electron microscope (TEM), 3e has a shape in which spherical particles (about 50 nm in diameter) are fused, and 3a, It was found that the amorphous structure seen in 3b and 3c was not seen. As a result, the cerium atom has reactivity with both a hydroxyl group and a mercapto group, but the holmium atom tends to react only with the hydroxyl group, but the holmium in 3e is a hydroxyl group and the cerium is a mercapto group. It was suggested that it has a cerium-organic group-holmium ternary alternating structure in which the reaction proceeds selectively.
The multidimensional organic / inorganic composite compound 3e was brown, suggesting that electronic excitation was easily generated in the hybrid polymer skeleton. Therefore, in order to evaluate this electronic effect, a UV-VIS spectrum was measured. Measurements were also made for comparative 3a, 3b, and 3c (see FIG. 1).

その結果、セリウムおよびホルミウムを含む3eはセリウム単独あるいはホルミウム単独の3、3b、3cの吸収波長と比較して、長波長側にシフトしており有機基−金属交互骨格内において電子励起が容易に生じることが判った。
そこで、ポリマー骨格内において電子励起が容易に生じればポリマー骨格内に不対電子種を生成すると考えられるので、これを確認するために次にESRスペクトルの測定を行った(図2参照)。
その結果3a、3b、3c、3e全てに337mT(g=2.0032)に有機系ラジカル種に基づくシグナルが観測され、ポリマー骨格内で容易に電子移動を生じていることが判明した。3eのシグナルは3a、3b、3cと比較して著しく高くなっており、ポリマー骨格内に効果的な電子移動経路が形成され、電子移動能が向上していることが判明した。
As a result, 3e containing cerium and holmium is shifted to the longer wavelength side compared to the absorption wavelength of cerium alone or 3, 3b, 3c of holmium alone, and electronic excitation is easily performed in the organic group-metal alternating skeleton. It was found that it occurred.
Therefore, since it is considered that unpaired electron species are generated in the polymer skeleton if electronic excitation easily occurs in the polymer skeleton, the ESR spectrum was next measured in order to confirm this (see FIG. 2).
As a result, signals based on organic radical species were observed at 337 mT (g = 2.0032) in all 3a, 3b, 3c, and 3e, and it was found that electron transfer was easily caused in the polymer skeleton. The signal of 3e was remarkably higher than those of 3a, 3b, and 3c, and it was found that an effective electron transfer path was formed in the polymer skeleton and the electron transfer ability was improved.

そこで、この電子移動過程を検討するため3eのXPS測定を行った(図3、図4参照)。3eのセリウム原子のピーク(3d5/2)は882.2eVに確認され、セリウム単独の3bの883.1eVと比較して低エネルギー側へシフトしていることが判った。これは3eにおけるセリウム原子の電子密度が増大していることを意味しており、ポリマー骨格内において有機基からセリウム金属へ電子移動を誘発していることを示唆している。
一方、3eのホルミウム原子のピーク(4d5/2)は162.2eVに確認され、ホルミウム単独の3cの160.5eVと比較して高エネルギー側へシフトしており、4f8 電子を有するホルミウム原子がセリウム原子へ電子供与した際に生じた有機ラジカルカチオンを安定化することで、ホルミウム上の電子密度が減少していることを示唆している。
以上の結果より、3eにおいては、レドックス活性なセリウムへ有機基から電子移動が誘発され、それにより生じた有機基上のラジカルカチオンが隣接する4f8 電子を有するホルミウム原子によって安定化されるので、3a、3b、3cと較べ、ポリマー骨格内の電子移動がより効果的になったことが判った(図5参照)。
Therefore, XPS measurement of 3e was performed in order to examine this electron transfer process (see FIGS. 3 and 4). The peak of 3e cerium atom (3d5 / 2) was confirmed at 882.2 eV, and was found to be shifted to the lower energy side as compared with 883.1 eV of 3b of cerium alone. This means that the electron density of the cerium atom in 3e is increasing, suggesting that electron transfer is induced from the organic group to the cerium metal in the polymer skeleton.
On the other hand, the peak of 3e holmium atom (4d5 / 2) was confirmed at 162.2 eV and shifted to the higher energy side compared with 160.5 eV of holmium alone 3c, and the holmium atom having 4f 8 electrons This suggests that the electron density on holmium is reduced by stabilizing organic radical cations generated when electrons are donated to cerium atoms.
These results, in the 3e, electron transfer from an organic group to the redox active cerium is induced, since the radical cation of the organic groups generated it is stabilized by holmium atoms having adjacent 4f 8 electrons, Compared with 3a, 3b, 3c, it was found that the electron transfer in the polymer skeleton became more effective (see FIG. 5).

本発明の複合焼成体4e400〜4e800の元素分析を行った結果を表5に示す。   Table 5 shows the results of elemental analysis of the composite fired bodies 4e400 to 4e800 of the present invention.

Figure 2005289885
Figure 2005289885

表5から焼成前の3eに較べて複合焼成体4e400〜4e800は水素、炭素、硫黄の含有率が大幅に減少しており、骨格内の有機基が炭化していることが判明した。焼成温度が高くなるに従いセリウム、ホルミウムの含有率が増大しており、その比率(Ce/Ho)は0.71〜0.75となり、金属は昇華することなく酸化物を形成していることが示唆された。   From Table 5, it was found that the composite fired bodies 4e400 to 4e800 had significantly reduced hydrogen, carbon, and sulfur contents as compared with 3e before firing, and the organic groups in the skeleton were carbonized. As the firing temperature increases, the content of cerium and holmium increases, the ratio (Ce / Ho) becomes 0.71 to 0.75, and the metal forms an oxide without sublimation. It was suggested.

そこで、粉末X線回折(XRD)の測定を行った。3e、4e400〜4e800の粉末X線回折の結果を図6に示す。
その結果、4e800では、2θ=28.5deg,29.0degにそれぞれ酸化セリウム(CeO2 )、酸化ホルミウム(HoO2 )に由来するピークが認められ、複合焼成体内の各金属が酸化物を形成していることが判った。700℃以下の系でも、2θ=47.6deg,48.4deg,56.3deg,57.4degなどに各酸化物に由来するブロードなピークが認められ、焼成により複合焼成体内の各金属が一部酸化物を形成し、焼成温度の上昇とともに酸化物の成長反応が進行することが判った。
Therefore, powder X-ray diffraction (XRD) was measured. The result of the powder X-ray diffraction of 3e, 4e400-4e800 is shown in FIG.
As a result, in 4e800, peaks derived from cerium oxide (CeO 2 ) and holmium oxide (HoO 2 ) were observed at 2θ = 28.5 deg and 29.0 deg, respectively, and each metal in the composite fired body formed an oxide. I found out. Even in a system of 700 ° C. or less, broad peaks derived from the respective oxides are observed at 2θ = 47.6 deg, 48.4 deg, 56.3 deg, 57.4 deg, etc., and a part of each metal in the composite fired body is obtained by firing It was found that an oxide was formed and the growth reaction of the oxide progressed as the firing temperature increased.

複合焼成体4e400〜4e800を透過型電子顕微鏡(TEM)観察した結果、4e400〜4e700、3eは不定形粒子であり、粒子内に1〜2nmの密度の高いコアが均一に分散した構造を有することが判った。複合焼成体4e800は密度の高い微粒子は10nm以上の大きさに凝集していることが判った。この密度の高いコアは元素分析とXRDの結果を考慮すると、金属酸化物の微粒子と考えられ、炭化物のマトリックス中にナノサイズの酸化物クラスターが分散している構造を有することが判った。また全ての系において炭化物のマトリックスに粒界は認められず、炭化物はバルク成長しているのでなく、微小炭素クラスターを形成していると考えられる。   As a result of observing the composite fired bodies 4e400 to 4e800 with a transmission electron microscope (TEM), 4e400 to 4e700 and 3e are irregular particles, and have a structure in which cores having a high density of 1 to 2 nm are uniformly dispersed in the particles. I understood. In the composite fired body 4e800, it was found that fine particles with high density were aggregated to a size of 10 nm or more. Considering the results of elemental analysis and XRD, this high-density core is considered to be a metal oxide fine particle and has a structure in which nano-sized oxide clusters are dispersed in a carbide matrix. In all systems, no grain boundary is observed in the carbide matrix, and it is considered that the carbide does not grow in bulk but forms fine carbon clusters.

炭素クラスターの構造を検討するために4e600、3eのXPS測定を行った(図7参照)。3eは1s1/2のピークは284.9eVに観測されたのに対し、4e600は283.6eVとなり、結合エネルギーが約1.3eV減少していた。これは焼成前に較べ炭素原子上への電子密度が増加しており、導入した有機基が炭化し、不飽和結合を有する炭素クラスターを形成していることが示唆された。
以上の結果より3eを焼成して得られた本発明の複合焼成体は、不飽和結合を有する炭素クラスターとセリウム、ホルミウム酸化物超微粒子との複合体になっており、特に4e600は微小炭素クラスター−セリウム、ホルミウム酸化物の複合体を形成していることが判った。
In order to examine the structure of the carbon cluster, XPS measurement of 4e600 and 3e was performed (see FIG. 7). In 3e, the peak of 1s1 / 2 was observed at 284.9 eV, whereas 4e600 was 283.6 eV, and the binding energy was reduced by about 1.3 eV. This suggests that the electron density on the carbon atom is increased compared with that before firing, and the introduced organic group is carbonized to form a carbon cluster having an unsaturated bond.
Based on the above results, the composite fired body of the present invention obtained by firing 3e is a composite of carbon clusters having unsaturated bonds and cerium and holmium oxide ultrafine particles, and in particular 4e600 is a fine carbon cluster. -It was found that a complex of cerium and holmium oxide was formed.

3e、4e400〜4e800、3eの電子物性を評価するためにESRスペクトル測定を行った(図8参照)。
全ての系において、有機ラジカル種に由来するシグナルが337mT(g=2.0032)に認められ、特に600℃焼成体4e400においてシグナルが極めて強いことが認められた。これは炭素クラスターとセリウム、ホルミウム金属間の強い相互作用により電子移動が促進されたことを示唆している。
In order to evaluate the electronic properties of 3e, 4e400 to 4e800, 3e, ESR spectrum measurement was performed (see FIG. 8).
In all systems, a signal derived from an organic radical species was observed at 337 mT (g = 2.0032), and in particular, a very strong signal was observed in the 600 ° C. fired body 4e400. This suggests that electron transfer was promoted by strong interaction between carbon cluster and cerium and holmium metals.

ESRスペクトル測定の結果最も電子物性に優れていた4e600を用い、可視光照射によるESRスペクトルの経時測定を行った(図9参照)。
その結果、可視光照射によりシグナルが減少し、照射後は元のシグナル強度まで回復することが判り、複合焼成体4e600骨格内の電子移動が可視光応答性を示すことが判った。
As a result of ESR spectrum measurement, 4e600, which was most excellent in electronic physical properties, was used to measure the ESR spectrum over time by irradiation with visible light (see FIG. 9).
As a result, it was found that the signal was decreased by irradiation with visible light and recovered to the original signal intensity after irradiation, and it was found that electron transfer in the composite fired body 4e600 skeleton showed visible light responsiveness.

ESRスペクトル測定の結果最も電子物性に優れていた4e600に酸化剤(ベンゾキノン)を添加した場合と、還元剤(トリエチルアミン)を添加した場合について、ESRスペクトル測定を行った(図10参照)。
その結果、酸化剤(ベンゾキノン)を添加した場合は添加前に較べてシグナル強度の減少が認められ、還元剤(トリエチルアミン)を添加した場合は添加前に較べてシグナル強度の増大が認められ、複合焼成体4e600内に生成したラジカルはアニオン種であることが判った。
As a result of ESR spectrum measurement, ESR spectrum measurement was performed for the case where an oxidizing agent (benzoquinone) was added to 4e600, which had the best electronic properties, and for the case where a reducing agent (triethylamine) was added (see FIG. 10).
As a result, when the oxidizing agent (benzoquinone) was added, a decrease in signal intensity was observed compared to before addition, and when a reducing agent (triethylamine) was added, an increase in signal intensity was observed compared to before addition. It was found that the radicals generated in the fired body 4e600 are anionic species.

4e600の還元サイトに白金を担持した複合焼成体に酸化剤(ベンゾキノン)を添加した場合と、還元剤(トリエチルアミン)を添加した場合について、ESRスペクトル測定を行った(図11参照)。
ESRスペクトル測定の結果最も電子物性に優れていた4e600の還元サイトに白金を担持した複合焼成体の酸化還元ポテンシャルを求めるために酸化力、還元力の異なる試薬を用い、ESRスペクトル測定のシグナル強度の変化から増減するスピン数をX軸に、ab−initio分子軌道計算(RHF/6−311Gdp)により求めた各種還元剤のHOMOのポテンシャル、およびLUMOポテンシャルをY軸にとり、Y軸切辺を複合焼成体の限界酸化還元ポテンシャルとして、水のHOMO、LUMOポテンシャルと比較した。
その結果複合焼成体の限界酸化還元ポテンシャルは−14.17eVとなり、水のHOMOポテンシャル−13.91eVより低い値となり、本複合焼成体は水の酸化分解反応を進行させることができることが示唆され、また複合焼成体の限界還元還元ポテンシャルは4.09eVとなり、水のLUMOポテンシャル3.97より高い値となり、本複合焼成体は水の還元分解反応を進行させることができることが示唆され、本複合焼成体は水の分解反応を進行させることができることが示唆された。
ESR spectrum measurement was performed for the case where an oxidizing agent (benzoquinone) was added to the composite fired body supporting platinum at the reduction site of 4e600 and for the case where a reducing agent (triethylamine) was added (see FIG. 11).
As a result of the ESR spectrum measurement, a reagent having different oxidizing power and reducing power was used to determine the redox potential of the composite fired body supporting platinum at the 4e600 reduction site, which had the most excellent electronic properties. The number of spins that increase or decrease from the change is taken as the X axis, and the HOMO potential and LUMO potential of various reducing agents determined by ab-initio molecular orbital calculation (RHF / 6-311Gdp) are taken as the Y axis, and the Y axis cutting edge is combined firing. The limit redox potential of the body was compared with the HOMO and LUMO potential of water.
As a result, the limit redox potential of the composite fired body is -14.17 eV, which is lower than the HOMO potential of water -13.91 eV, suggesting that this composite fired body can advance the oxidative decomposition reaction of water. Moreover, the limiting reduction-reduction potential of the composite fired body is 4.09 eV, which is higher than the LUMO potential of water 3.97, suggesting that the composite fired body can proceed with the reductive decomposition reaction of water. It was suggested that the body can proceed with water decomposition reaction.

そこで白金を担持した本複合焼成体100mgを5mlの反応系に封入し、水2mlを加えて72時間ハロゲンランプ(150w)を照射し、水の分解について試験し、ガスクロマトグラフを用いて系中の気体を測定した。
その結果、水素(3.61μmol)、酸素(1.79μmol)の発生が認められ、水の完全分解が進行することが判り、本複合焼成体が人工光合成システムとして機能することが判った。
Therefore, 100 mg of the present composite fired body carrying platinum was sealed in a 5 ml reaction system, 2 ml of water was added and irradiated with a halogen lamp (150 w) for 72 hours to test the decomposition of water, and a gas chromatograph was used. The gas was measured.
As a result, generation of hydrogen (3.61 μmol) and oxygen (1.79 μmol) was observed, and it was found that complete decomposition of water progressed, and that this composite fired body functions as an artificial photosynthesis system.

以上のように本複合焼成体は、酸化セリウム、酸化ホルミウムクラスターと炭素クラスターとの協奏的効果により、低い価電子体準位を有する酸化セリウム、および高い伝導帯準位を有する酸化ホルミウム双方によって高い酸化還元ポテンシャルを発現したものと考えられる。この機能発現は、異なるバンド構造を有する2種の金属酸化物と炭素クラスターの協奏的効果により、酸化セリウムの可視光励起によって生成した励起電子を、炭素クラスターのフェルミ準位を介して酸化ホルミウムの価電子帯に伝達するとともに、酸化ホルミウムが可視光励起によって生成した励起電子を白金のフェルミ準位に伝達する2段階励起システムによるものと考えられ、効果的な電荷分離を実現することで高い酸化還元活性を発現したことが示唆される。   As described above, the composite fired body is high by both cerium oxide, cerium oxide having a low valence state, and holmium oxide having a high conduction band level due to the concerted effect of holmium oxide clusters and carbon clusters. It is thought that the redox potential was expressed. This functional manifestation is due to the concerted effect of two types of metal oxides having different band structures and carbon clusters, and the excited electrons generated by visible light excitation of cerium oxide are converted to the valence of holmium oxide via the Fermi level of the carbon clusters. It is thought to be due to a two-stage excitation system that transmits the electron excited by visible light excitation to holmium oxide to the Fermi level of platinum, and achieves high redox activity by realizing effective charge separation. It is suggested that

(他の多次元有機・無機複合体化合物の合成および複合焼成体の製造)
アルゴン雰囲気下、Te(OC254 0.3mmolを無水THF5mLに溶解させた溶液と、4−ヒドロキシチオフェノール1.2mmolを、無水THF20mLに溶解した溶液とを混合し、1時間室温で攪拌し、この溶液にSr(OC372 0.6mmolを無水THF30mLに溶解させた溶液を加えさらに3時間室温で攪拌し、多次元有機・無機複合体化合物を合成した[式(6)参照]。生成した沈殿物をメンブレンフィルタで濾過し、得られた生成物を24時間60℃で真空乾燥し本発明の多次元有機・無機複合体化合物を得た。
(Synthesis of other multidimensional organic / inorganic composite compounds and production of composite fired bodies)
Under an argon atmosphere, a solution in which 0.3 mmol of Te (OC 2 H 5 ) 4 was dissolved in 5 mL of anhydrous THF and a solution in which 1.2 mmol of 4-hydroxythiophenol was dissolved in 20 mL of anhydrous THF were mixed for 1 hour at room temperature. A solution obtained by dissolving 0.6 mmol of Sr (OC 3 H 7 ) 2 in 30 mL of anhydrous THF was added to this solution, and the mixture was further stirred at room temperature for 3 hours to synthesize a multidimensional organic / inorganic composite compound [formula (6 )reference]. The produced precipitate was filtered through a membrane filter, and the obtained product was vacuum-dried at 60 ° C. for 24 hours to obtain the multidimensional organic / inorganic composite compound of the present invention.

Figure 2005289885
Figure 2005289885

得られた多次元有機・無機複合体化合物を0.2g磁製るつぼに入れて アルゴン雰囲気下、温度を変化(400、500、600℃、昇温速度5℃/min)させて1時間焼成して本発明の複合焼成体を得た。
本発明の多次元有機・無機複合体化合物および複合焼成体は、実施例1の本発明の多次元有機・無機複合体化合物および複合焼成体とほぼ同じ性能を有していた。
The obtained multidimensional organic / inorganic composite compound is put in a 0.2 g magnetic crucible and baked for 1 hour while changing the temperature (400, 500, 600 ° C., heating rate 5 ° C./min) in an argon atmosphere. Thus, a composite fired body of the present invention was obtained.
The multidimensional organic / inorganic composite compound and composite fired body of the present invention had almost the same performance as the multidimensional organic / inorganic composite compound and composite fired body of the present invention of Example 1.

(他の多次元有機・無機複合体化合物の合成および複合焼成体の製造)
アルゴン雰囲気下、GeBr4 0.6mmolを無水エタノールに溶解させた溶液と、p−メルカプトフェノール2.4mmolを無水エタノール10mLに溶解させた溶液とを混合し、この混合溶液にEt3 N4.8mmolをゆっくりと滴下した後、24時間室温で攪拌し、攪拌後、VCl3 0.8mmolを無水エタノール10mLに溶解させた溶液をゆっくりと滴下し、さらに3時間室温で攪拌し、多次元有機・無機複合体化合物を合成した[式(7)参照]。生成した沈殿物をメンブレンフィルタで濾過し、ソックスレー抽出器を用いて無水エタノールで洗浄し、得られた生成物を6時間100℃で真空乾燥し本発明の多次元有機・無機複合体化合物を得た。
(Synthesis of other multidimensional organic / inorganic composite compounds and production of composite fired bodies)
Under an argon atmosphere, a solution in which 0.6 mmol of GeBr 4 was dissolved in absolute ethanol and a solution in which 2.4 mmol of p-mercaptophenol was dissolved in 10 mL of absolute ethanol were mixed, and Et 3 N 4.8 mmol was added to the mixed solution. After slowly dropping, the mixture was stirred for 24 hours at room temperature. After stirring, a solution prepared by dissolving 0.8 mmol of VCl 3 in 10 mL of absolute ethanol was slowly added dropwise, and further stirred at room temperature for 3 hours. Body compound was synthesized [see formula (7)]. The produced precipitate is filtered through a membrane filter, washed with absolute ethanol using a Soxhlet extractor, and the resulting product is vacuum dried at 100 ° C. for 6 hours to obtain the multidimensional organic-inorganic composite compound of the present invention. It was.

Figure 2005289885
Figure 2005289885

得られた多次元有機・無機複合体化合物を0.3g磁製るつぼに入れて減圧下、温度を変化(400、500、600、700℃、昇温速度1.5℃/min)させて1時間焼成して本発明の複合焼成体を得た。
本発明の多次元有機・無機複合体化合物および複合焼成体は、実施例1の本発明の多次元有機・無機複合体化合物および複合焼成体とほぼ同じ性能を有していた。
The obtained multidimensional organic / inorganic composite compound was put in a 0.3 g magnetic crucible and the temperature was changed under reduced pressure (400, 500, 600, 700 ° C., temperature rising rate 1.5 ° C./min) to 1 The composite fired body of the present invention was obtained by firing for a time.
The multidimensional organic / inorganic composite compound and composite fired body of the present invention had almost the same performance as the multidimensional organic / inorganic composite compound and composite fired body of the present invention of Example 1.

(他の多次元有機・無機複合体化合物の合成および複合焼成体の製造)
同様にして式(8)に従って、Zr−Snを含む本発明の多次元有機・無機複合体化合物を得た。
(Synthesis of other multidimensional organic / inorganic composite compounds and production of composite fired bodies)
Similarly, according to Formula (8), the multidimensional organic-inorganic composite compound of the present invention containing Zr-Sn was obtained.

Figure 2005289885
Figure 2005289885

得られた多次元有機・無機複合体化合物を同様にして減圧下、温度を変化(400、500、600、700℃)させて焼成して本発明の複合焼成体を得た。 本発明の多次元有機・無機複合体化合物および複合焼成体は、実施例1の本発明の多次元有機・無機複合体化合物および複合焼成体とほぼ同じ性能を有していた。   The obtained multi-dimensional organic / inorganic composite compound was fired in the same manner under reduced pressure with the temperature changed (400, 500, 600, 700 ° C.) to obtain the composite fired body of the present invention. The multidimensional organic / inorganic composite compound and composite fired body of the present invention had almost the same performance as the multidimensional organic / inorganic composite compound and composite fired body of the present invention of Example 1.

(他の多次元有機・無機複合体化合物の合成および複合焼成体の製造)
同様にしてSc−Yを含む本発明の多次元有機・無機複合体化合物を得た後、同様にして減圧下、温度を変化(400、500、600、700℃)させて焼成して本発明の複合焼成体を得た[式(9)参照]。
本発明の多次元有機・無機複合体化合物および複合焼成体は、実施例1の本発明の多次元有機・無機複合体化合物および複合焼成体とほぼ同じ性能を有していた。
(Synthesis of other multidimensional organic / inorganic composite compounds and production of composite fired bodies)
Similarly, after obtaining the multidimensional organic-inorganic composite compound of the present invention containing Sc-Y, the temperature is changed (400, 500, 600, 700 ° C.) under reduced pressure in the same manner, followed by firing. A composite fired body was obtained [see formula (9)].
The multidimensional organic / inorganic composite compound and composite fired body of the present invention had almost the same performance as the multidimensional organic / inorganic composite compound and composite fired body of the present invention of Example 1.

Figure 2005289885
Figure 2005289885

(他の多次元有機・無機複合体化合物の合成および複合焼成体の製造)
同様にしてNi−Srを含む本発明の多次元有機・無機複合体化合物を得た後、同様にして空気中減圧下、温度を変化(400、500、600、700℃、5℃/min)させて焼成して本発明の複合焼成体を得た[式(10)参照]。 本発明の多次元有機・無機複合体化合物および複合焼成体は、実施例1の本発明の多次元有機・無機複合体化合物および複合焼成体とほぼ同じ性能を有していた。
(Synthesis of other multidimensional organic / inorganic composite compounds and production of composite fired bodies)
Similarly, after obtaining the multi-dimensional organic / inorganic composite compound of the present invention containing Ni-Sr, the temperature is similarly changed under reduced pressure in air (400, 500, 600, 700 ° C., 5 ° C./min). And fired to obtain a composite fired body of the present invention [see formula (10)]. The multidimensional organic / inorganic composite compound and composite fired body of the present invention had almost the same performance as the multidimensional organic / inorganic composite compound and composite fired body of the present invention of Example 1.

Figure 2005289885
Figure 2005289885

(他の多次元有機・無機複合体化合物の合成および複合焼成体の製造)
同様にしてSe−Srを含む本発明の多次元有機・無機複合体化合物を得た後、同様にして空気中減圧下、温度を変化(400、500、600、700℃、5℃/min)させて焼成して本発明の複合焼成体を得た[式(11)参照]。 本発明の多次元有機・無機複合体化合物および複合焼成体は、実施例1の本発明の多次元有機・無機複合体化合物および複合焼成体とほぼ同じ性能を有していた。
(Synthesis of other multidimensional organic / inorganic composite compounds and production of composite fired bodies)
Similarly, after obtaining the multidimensional organic-inorganic composite compound of the present invention containing Se-Sr, the temperature is similarly changed under reduced pressure in air (400, 500, 600, 700 ° C, 5 ° C / min). And fired to obtain a composite fired body of the present invention [see formula (11)]. The multidimensional organic / inorganic composite compound and composite fired body of the present invention had almost the same performance as the multidimensional organic / inorganic composite compound and composite fired body of the present invention of Example 1.

Figure 2005289885
Figure 2005289885

(他の多次元有機・無機複合体化合物の合成および複合焼成体の製造)
同様にしてSe−Sr−Niを含む本発明の多次元有機・無機複合体化合物を得た後、同様にして空気中減圧下、温度を変化(400、500、600、700℃、5℃/min)させて焼成して本発明の複合焼成体を得た[式(12)参照]。
本発明の多次元有機・無機複合体化合物および複合焼成体は、実施例1の本発明の多次元有機・無機複合体化合物および複合焼成体とほぼ同じ性能を有していた。
(Synthesis of other multidimensional organic / inorganic composite compounds and production of composite fired bodies)
Similarly, after obtaining the multi-dimensional organic / inorganic composite compound of the present invention containing Se—Sr—Ni, the temperature was similarly changed under reduced pressure in air (400, 500, 600, 700 ° C., 5 ° C. / min) and firing to obtain a composite fired body of the present invention [see formula (12)].
The multidimensional organic / inorganic composite compound and composite fired body of the present invention had almost the same performance as the multidimensional organic / inorganic composite compound and composite fired body of the present invention of Example 1.

Figure 2005289885
Figure 2005289885

本発明の多次元有機・無機複合体化合物は、前記式(1)で示される、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを反応させて得られる化合物(C)であって、2種類以上の金属元素と多官能性有機基が共有結合を介して結合していることを特徴とするものであり、2種類以上の金属の相乗作用により1種類の金属の場合よりさらに優れた機能的物性を有するとともに、多官能性有機基・無機金属元素直接相互作用とバルク体特有の高次構造固体物性の両立による加算的機能が発現され、これら優れた新規機能により電子、光的特性が確認されたことより、電子材料や光機能材料などに種々の用途が提供されるという、顕著な効果を奏するものであり、
また本発明の複合焼成体は、この多次元有機・無機複合体化合物を減圧下あるいは不活性ガス雰囲下で焼成して得られることを特徴とするものであり、2種類以上の金属の相乗作用により1種類の金属の場合よりさらに優れた電子移動性、酸化還元活性、可視光応答性、光触媒活性などを示し、これら新規機能により電子、光的特性が確認されたことより、電子移動性を有する材料、酸化還元活性を有する材料、可視光応答性を有する材料、光触媒活性を有する材料などの電子材料や光機能材料など種々の用途に適用可能である、という顕著な効果を奏するものであり、
本発明の製造方法により、本発明の多次元有機・無機複合体化合物および複合焼成体を容易に製造できる、という顕著な効果を奏するので、産業上の利用価値が高い。
The multidimensional organic / inorganic composite compound of the present invention is a compound obtained by reacting two or more inorganic metal compounds (A) represented by the formula (1) with a polyfunctional organic compound (B) ( C), characterized in that two or more kinds of metal elements and a polyfunctional organic group are bonded via a covalent bond, and one kind of metal is produced by the synergistic action of two or more kinds of metals. In addition to the functional properties that are superior to those in the case of the above, additional functions are manifested by both the direct interaction between the multifunctional organic group and inorganic metal element and the physical properties of the high-order structure solid material unique to the bulk material. From the fact that the electronic and optical characteristics have been confirmed, various effects are provided for electronic materials, optical functional materials, etc.
The composite fired body of the present invention is obtained by firing this multidimensional organic / inorganic composite compound under reduced pressure or in an inert gas atmosphere. It exhibits electron mobility, redox activity, visible light responsiveness, photocatalytic activity, etc. that are even better than those of a single type of metal. It has a remarkable effect that it can be applied to various applications such as electronic materials such as materials having redox activity, materials having redox activity, materials having visible light responsiveness, materials having photocatalytic activity, and optical functional materials. Yes,
Since the production method of the present invention has a remarkable effect that the multidimensional organic / inorganic composite compound and the composite fired body of the present invention can be easily produced, the industrial utility value is high.

本発明の多次元有機・無機複合体化合物のUV−VISスペクトルを示すグラフである。It is a graph which shows the UV-VIS spectrum of the multidimensional organic-inorganic composite compound of this invention. 図1に示した本発明の多次元有機・無機複合体化合物のESRスペクトルを示すグラフである。It is a graph which shows the ESR spectrum of the multidimensional organic-inorganic composite compound of this invention shown in FIG. 図1に示した本発明の多次元有機・無機複合体化合物のXPSスペクトルを示すグラフである。It is a graph which shows the XPS spectrum of the multidimensional organic-inorganic composite compound of this invention shown in FIG. 図1に示した本発明の多次元有機・無機複合体化合物のXPSスペクトルを示すグラフである。It is a graph which shows the XPS spectrum of the multidimensional organic-inorganic composite compound of this invention shown in FIG. 図1に示した本発明の多次元有機・無機複合体化合物の電子の移動状況を模式的に示す説明図である。It is explanatory drawing which shows typically the movement state of the electron of the multidimensional organic-inorganic composite compound of this invention shown in FIG. 本発明の複合焼成体の粉末X線回折ペクトルを示すグラフである。It is a graph which shows the powder X-ray-diffraction spectrum of the composite baking body of this invention. 本発明の多次元有機・無機複合体化合物および複合焼成体のXPSスペクトルを示すグラフである。It is a graph which shows the XPS spectrum of the multidimensional organic-inorganic composite compound and composite fired body of this invention. 本発明の多次元有機・無機複合体化合物および複合焼成体の多次元有機・無機複合体化合物のESRスペクトルを示すグラフである。It is a graph which shows the ESR spectrum of the multidimensional organic-inorganic composite compound of this invention, and the multidimensional organic-inorganic composite compound of a composite sintered body. 本発明の複合焼成体の可視光照射によるESRスペクトルの経時測定を示すグラフである。It is a graph which shows the time-lapse measurement of the ESR spectrum by visible light irradiation of the composite sintered body of the present invention. 本発明の複合焼成体に酸化剤(ベンゾキノン)を添加した場合と、還元剤(トリエチルアミン)を添加した場合について、ESRスペクトル測定を行った結果を示すグラフである。It is a graph which shows the result of having performed the ESR spectrum measurement about the case where an oxidizing agent (benzoquinone) is added to the composite baking body of this invention, and the case where a reducing agent (triethylamine) is added. 本発明の複合焼成体の還元サイトに白金を担持した複合焼成体に酸化剤(ベンゾキノン)を添加した場合と、還元剤(トリエチルアミン)を添加した場合について、ESRスペクトル測定を行った結果を示すグラフである。The graph which shows the result of having performed the ESR spectrum measurement about the case where an oxidizing agent (benzoquinone) is added to the composite baking body which carry | supported platinum in the reduction site of the composite baking body of this invention, and a reducing agent (triethylamine). It is. 金属元素M1に与えられた刺激(光、酸化還元など)により発生した電荷やスピンなどが共有結合を介して伝達し金属元素M2に伝わる状況を模式的に示す説明図である。It is explanatory drawing which shows typically the condition where the electric charge, spin, etc. which were generated by the stimulus (light, redox etc.) given to metal element M1 are transmitted via a covalent bond, and are transmitted to metal element M2.

Claims (13)

式(1)で示される、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを反応させて得られる化合物(C)であって、2種類以上の金属元素と多官能性有機基が共有結合を介して結合していることを特徴とする多次元有機・無機複合体化合物。
Figure 2005289885
(ただし、式(1)中、Mは金属元素を示し、R1 はアルコキシ基、ハロゲンイオン、カルボン酸陰イオン、アセチルアセトン等の錯形成基を示し、n1はR1の金属元素Mに対する置換数n1≧2を示す。また式中R2 はアルキル基、置換アルキル基、アルキルベンゼン基、フェニル基、置換フェニル基、ナフチル基、置換ナフチル基、アリル基等の非共役有機基あるいは共役有機基を示し、Xはヒドロキシル基、アミノ基、チオール基、フォスフィン基等の金属元素と共有結合を形成する置換基を示し、n2はR2 に対する置換数n2≧2を示す。)
A compound (C) obtained by reacting two or more inorganic metal compounds (A) and a polyfunctional organic compound (B) represented by the formula (1), wherein two or more metal elements and many A multi-dimensional organic-inorganic composite compound, wherein a functional organic group is bonded through a covalent bond.
Figure 2005289885
(In the formula (1), M represents a metal element, R 1 represents a complex-forming group such as an alkoxy group, a halogen ion, a carboxylate anion, and acetylacetone, and n1 represents the number of substitutions for the metal element M in R 1. n1 ≧ 2 In the formula, R 2 represents a nonconjugated organic group or a conjugated organic group such as an alkyl group, a substituted alkyl group, an alkylbenzene group, a phenyl group, a substituted phenyl group, a naphthyl group, a substituted naphthyl group, and an allyl group. X represents a substituent that forms a covalent bond with a metal element such as a hydroxyl group, an amino group, a thiol group, or a phosphine group, and n2 represents the number of substitutions for R 2 n2 ≧ 2.
前記式(1)で示される、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを反応させて得られる化合物(C)であって、2種類以上の金属元素と多官能性有機基が共有結合を介して結合している多次元有機・無機複合体化合物を減圧下あるいは不活性ガス雰囲下で焼成して得られることを特徴とする複合焼成体。   A compound (C) obtained by reacting two or more inorganic metal compounds (A) and a polyfunctional organic compound (B) represented by the formula (1), wherein two or more metal elements and A composite fired body obtained by firing a multidimensional organic / inorganic composite compound having a multifunctional organic group bonded through a covalent bond under reduced pressure or in an inert gas atmosphere. 前記多次元有機・無機複合体化合物の形状が、粒子、結晶構造体、薄膜、厚膜であることを特徴とする請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体。   The multidimensional organic / inorganic composite compound according to claim 1 or the composite according to claim 2, wherein the multidimensional organic / inorganic composite compound is in the form of particles, a crystal structure, a thin film, or a thick film. Fired body. 前記多次元有機・無機複合体化合物が、別途有機化合物が添加されていることを特徴とする請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体。   The multi-dimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, wherein an organic compound is added separately to the multi-dimensional organic / inorganic composite compound. 前記多次元有機・無機複合体化合物が、別途無機化合物が添加されていることを特徴とする請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体。   The multi-dimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, wherein the multi-dimensional organic / inorganic composite compound is separately added with an inorganic compound. 前記多次元有機・無機複合体化合物が、別途有機化合物および無機化合物が添加されていることを特徴とする請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体。   The multi-dimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, wherein an organic compound and an inorganic compound are separately added to the multi-dimensional organic / inorganic composite compound. 電子移動性を有することを特徴とする、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体。   The multi-dimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, characterized by having electron mobility. 酸化還元活性を有することを特徴とする、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体。   The multidimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, which has redox activity. 可視光応答性を有することを特徴とする、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体。   The multi-dimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, which has visible light responsiveness. 光触媒活性を有することを特徴とする、請求項1記載の多次元有機・無機複合体化合物あるいは請求項2記載の複合焼成体。   The multi-dimensional organic / inorganic composite compound according to claim 1 or the composite fired body according to claim 2, which has photocatalytic activity. 前記式(1)で示すように、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを、溶媒の存在下に反応させることを特徴とする、新規化合物(C)である、2種類以上の金属元素と多官能性有機基が共有結合を介して結合している多次元有機・無機複合体化合物の製造方法。   As shown in the formula (1), the novel compound (C) is characterized in that two or more kinds of inorganic metal compounds (A) and a polyfunctional organic compound (B) are reacted in the presence of a solvent. A method for producing a multidimensional organic / inorganic composite compound in which two or more kinds of metal elements and a polyfunctional organic group are bonded via a covalent bond. 前記式(1)で示すように、2種類以上の無機金属化合物(A)と多官能性有機化合物(B)とを、溶媒の存在下に反応させて得られる新規化合物(C)である、2種類以上の金属元素と多官能性有機基が共有結合を介して結合している多次元有機・無機複合体化合物を減圧下あるいは不活性ガス雰囲下で焼成することを特徴とする複合焼成体の製造方法。   As shown by the formula (1), the compound is a novel compound (C) obtained by reacting two or more kinds of inorganic metal compounds (A) and a polyfunctional organic compound (B) in the presence of a solvent. Composite firing characterized by firing a multi-dimensional organic / inorganic composite compound in which two or more metal elements and a multifunctional organic group are bonded via a covalent bond under reduced pressure or in an inert gas atmosphere Body manufacturing method. 400〜800℃で焼成することを特徴とする請求項12記載の複合焼成体の製造方法。   The method for producing a composite fired body according to claim 12, wherein firing is performed at 400 to 800 ° C.
JP2004107542A 2004-03-31 2004-03-31 Multidimensional organic-inorganic composite compound, composite burnt product and methods for producing these Pending JP2005289885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107542A JP2005289885A (en) 2004-03-31 2004-03-31 Multidimensional organic-inorganic composite compound, composite burnt product and methods for producing these

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107542A JP2005289885A (en) 2004-03-31 2004-03-31 Multidimensional organic-inorganic composite compound, composite burnt product and methods for producing these

Publications (1)

Publication Number Publication Date
JP2005289885A true JP2005289885A (en) 2005-10-20

Family

ID=35323243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107542A Pending JP2005289885A (en) 2004-03-31 2004-03-31 Multidimensional organic-inorganic composite compound, composite burnt product and methods for producing these

Country Status (1)

Country Link
JP (1) JP2005289885A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071584A (en) * 2006-09-13 2008-03-27 Toyota Motor Corp Electron transfer mediator modification enzyme electrode, and biological fuel cell equipped with this
JP2015063523A (en) * 2013-09-03 2015-04-09 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Hardmask
WO2015137272A1 (en) * 2014-03-11 2015-09-17 国立大学法人京都大学 Porous structure and method for producing same, and method for producing composite metal nanoparticle
KR20150107749A (en) * 2013-01-16 2015-09-23 에스티씨. 유엔엠 Non-pgm catalysts for orr based on charge transfer organic complexes
JP2016537510A (en) * 2013-08-30 2016-12-01 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH Substrate structure and preparation method thereof
KR102130422B1 (en) * 2019-08-02 2020-07-06 주식회사 제이치글로벌 Wall pater comprising visible light active photocatalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071584A (en) * 2006-09-13 2008-03-27 Toyota Motor Corp Electron transfer mediator modification enzyme electrode, and biological fuel cell equipped with this
KR20150107749A (en) * 2013-01-16 2015-09-23 에스티씨. 유엔엠 Non-pgm catalysts for orr based on charge transfer organic complexes
CN105188922A (en) * 2013-01-16 2015-12-23 Stc.Unm公司 Non-PGM catalysts for ORR based on charge transfer organic complexes
JP2016504968A (en) * 2013-01-16 2016-02-18 エスティーシー. ユーエヌエムStc.Unm Non-PGM catalysts for oxygen reduction reactions based on charge transfer organic complexes
KR102210320B1 (en) 2013-01-16 2021-01-29 유엔엠 레인포레스트 이노베이션즈 Non-pgm catalysts for orr based on charge transfer organic complexes
JP2016537510A (en) * 2013-08-30 2016-12-01 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH Substrate structure and preparation method thereof
US10418300B2 (en) 2013-08-30 2019-09-17 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University Substrate structure and method for preparing the same
JP2015063523A (en) * 2013-09-03 2015-04-09 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Hardmask
WO2015137272A1 (en) * 2014-03-11 2015-09-17 国立大学法人京都大学 Porous structure and method for producing same, and method for producing composite metal nanoparticle
JPWO2015137272A1 (en) * 2014-03-11 2017-04-06 国立大学法人京都大学 Porous structure, method for producing the same, and method for producing composite metal nanoparticles
TWI658887B (en) * 2014-03-11 2019-05-11 國立大學法人京都大學 Porous structure, manufacturing method thereof, and manufacturing method of composite body
KR102130422B1 (en) * 2019-08-02 2020-07-06 주식회사 제이치글로벌 Wall pater comprising visible light active photocatalyst

Similar Documents

Publication Publication Date Title
Bootharaju et al. Cd12Ag32 (SePh) 36: non-noble metal doped silver nanoclusters
Qian et al. Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38 (SC2H4Ph) 24 nanoclusters
JP6004528B2 (en) Method for producing porous silica-encapsulated particles and porous silica
Wen et al. Crystal structure, electrochemical and optical properties of [Au9 (PPh3) 8](NO3) 3
Aslani et al. Sonochemical synthesis of nano-sized metal-organic lead (II) polymer: A precursor for the preparation of nano-structured lead (II) iodide and lead (II) oxide
Akhbari et al. Effect of two sonochemical procedures on achieving to different morphologies of lead (II) coordination polymer nano-structures
Sadeghzadeh et al. Sonochemical synthesis and characterization of nano-belt lead (II) coordination polymer: new precursor to produce pure phase nano-sized lead (II) oxide
Sadeghzadeh et al. Sonochemical synthesis of nano-scale mixed-ligands lead (II) coordination polymers as precursors for preparation of PbO and PbBr (OH) nano-structures; thermal, structural and X-ray powder diffraction studies
Fard-Jahromi et al. Sonochemical synthesis of nanoscale mixed-ligands lead (II) coordination polymers as precursors for preparation of Pb2 (SO4) O and PbO nanoparticles; thermal, structural and X-ray powder diffraction studies
Yue et al. Highly photocatalytic active thiomolybdate [Mo3S13] 2− clusters/BiOBr nanocomposite with enhanced sulfur tolerance
Sadeghzadeh et al. Ultrasonic-assisted synthesis of two new nano-structured 3D lead (II) coordination polymers: Precursors for preparation of PbO nano-structures
Ahmadzadi et al. Structural and X-ray powder diffraction studies of nano-structured lead (II) coordination polymer with η2 Pb⋯ C interactions
Sadeghzadeh et al. Sonochemical syntheses of strawberry-like nano-structure mixed-ligand lead (II) coordination polymer: Thermal, structural and X-ray powder diffraction studies
Moniz et al. A novel route to Pt–Bi2O3 composite thin films and their application in photo-reduction of water
Mirtamizdoust et al. New Flower-Shaped Lead (II) Coordination Polymer at the Nano Scale: Synthesis, Structural Characterization and DFT Calculations of [Pb (o-phen)(N 3) 2] n Containing the Pb-(μ 1, 1-N 3)(μ 1, 3-N 3) Motif
Daliran et al. CsCu2I3 nanoparticles incorporated within a mesoporous metal–organic porphyrin framework as a catalyst for one-pot click cycloaddition and oxidation/knoevenagel tandem reaction
Heitz et al. Unprecedented Alkylzinc–Magnesium Alkoxide Clusters as Suitable Organometallic Precursors for Magnesium‐Containing ZnO Nanoparticles
JP2005289885A (en) Multidimensional organic-inorganic composite compound, composite burnt product and methods for producing these
Teichert et al. Tin and lead alkoxides of ethylene glycol and glycerol and their decomposition to oxide materials
JP6165937B2 (en) Method for producing porous silica-encapsulated particles
Marandi et al. Sonochemical syntheses and characterization of a new nano-structured one-dimensional lead (II) coordination polymer with 4, 4, 4-trifluoro-1-phenyl-1, 3-butandione
WO2004076531A1 (en) Phenylazomethine dendrimer containing metal or metal cluster and method for preparation thereof
Zhou et al. Hydrogenation/oxidation triggered highly efficient reversible color switching of organic molecules
Dissem et al. Single-crystal-to-single-crystal cluster transformation in a microporous molybdoarsenate (V)-metalorganic framework
Boyle et al. Structurally characterized luminescent lanthanide zinc carboxylate precursors for Ln–Zn–O nanomaterials