TW201545342A - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- TW201545342A TW201545342A TW103119042A TW103119042A TW201545342A TW 201545342 A TW201545342 A TW 201545342A TW 103119042 A TW103119042 A TW 103119042A TW 103119042 A TW103119042 A TW 103119042A TW 201545342 A TW201545342 A TW 201545342A
- Authority
- TW
- Taiwan
- Prior art keywords
- field
- semiconductor substrate
- depth
- layer
- impurity concentration
- Prior art date
Links
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
本說明書記載的技術是有關半導體裝置。 The technology described in this specification relates to a semiconductor device.
在具有二極體的元件構造的半導體裝置中,陽極領域的設計是影響耐壓,高速性,低損失性等的特性。例如,在日本特許公開公報2004-88012號(專利文獻1)中揭示有為了使高速性及低損失性提升,而減少往陰極領域的電洞注入量之技術。具體而言,在專利文獻1中,為了減少陽極領域的p型的雜質的劑量,減少往陰極領域的電洞注入量,而在半導體基板的平面方向交替配置露出於半導體基板的表面之淺的高濃度的p層,及露出於半導體基板的表面之深的低濃度的p層。 In a semiconductor device having a device structure of a diode, the design of the anode region is a property that affects withstand voltage, high speed, low loss, and the like. For example, Japanese Patent Laid-Open Publication No. 2004-88012 (Patent Document 1) discloses a technique for reducing the amount of hole injection into the cathode region in order to improve the high speed and low loss. Specifically, in Patent Document 1, in order to reduce the dose of p-type impurities in the anode region, the amount of hole injection into the cathode region is reduced, and the surface exposed in the semiconductor substrate is alternately arranged to be shallow on the surface of the semiconductor substrate. A high-concentration p-layer and a low-concentration p-layer exposed to the surface of the semiconductor substrate.
[先行技術文獻] [Advanced technical literature]
[專利文獻] [Patent Literature]
[專利文獻1]日本特開2004-88012號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2004-88012
如在日本特許公開公報2004-88012號中所記載般,為了減少往陰極領域的電洞注入量,而一旦減少陽極領域的p型的雜質的劑量,則耐壓會降低。陽極領域的深度或雜質濃度,雜質的劑量是為了確保半導體裝置的耐壓而被限制。就以往的半導體裝置而言,難以兼顧耐壓的確保及電洞注入量的減低。 As described in Japanese Laid-Open Patent Publication No. 2004-88012, in order to reduce the amount of hole injection into the cathode region, the pressure resistance is lowered once the dose of the p-type impurity in the anode region is reduced. The depth or impurity concentration of the anode region, and the dose of the impurity are limited in order to secure the withstand voltage of the semiconductor device. In the conventional semiconductor device, it is difficult to achieve both the withstand voltage and the reduction in the amount of hole injection.
本說明書所揭示的第1半導體裝置係具備具有陽極領域及陰極領域的半導體基板。 The first semiconductor device disclosed in the present specification includes a semiconductor substrate having an anode region and a cathode region.
陽極領域係包含:第1導電型的第1領域,其係於離半導體基板的表面第1深度的位置具有第1導電型的雜質濃度的最大值;第1導電型的第2領域,其係於比第1深度還靠半導體基板的表面側的第2深度的位置具有第1導電型的雜質濃度的最大值;及第3領域,其係設於第1領域與第2領域之間,第1導電型的雜質濃度為半導體基板的表面的1/10以下。 The anode field includes a first field of the first conductivity type, which has a maximum value of the impurity concentration of the first conductivity type at a position at a first depth from the surface of the semiconductor substrate, and a second field of the first conductivity type. The second depth of the semiconductor substrate is greater than the first depth, and has a maximum value of the impurity concentration of the first conductivity type; and the third field is between the first field and the second field. The impurity concentration of the one conductivity type is 1/10 or less of the surface of the semiconductor substrate.
若根據上述的第1半導體裝置,則由於在第1領域與第2領域之間包含第1導電型的雜質濃度十分低的第3領域,因此可抑制第1領域影響電洞注入量。為了確保耐壓而提高第1領域的第1導電型的雜質濃度,且為了 抑制電洞注入量,可降低第2領域的第1導電型的雜質,可兼顧耐壓的確保及電洞注入量的減低。 According to the first semiconductor device described above, since the first region and the second region include the third region in which the impurity concentration of the first conductivity type is extremely low, it is possible to suppress the influence of the hole injection amount in the first region. In order to ensure the withstand voltage, the impurity concentration of the first conductivity type in the first field is increased, and By suppressing the amount of hole injection, the impurity of the first conductivity type in the second field can be reduced, and both the withstand voltage can be ensured and the amount of hole injection can be reduced.
在上述的第1半導體裝置中,第3領域亦可為含第2導電型的雜質的領域。而且,第3領域的至少一部分亦可露出於半導體基板的表面,與半導體基板的表面電極蕭特基接合。 In the first semiconductor device described above, the third field may be a field containing impurities of the second conductivity type. Further, at least a part of the third field may be exposed on the surface of the semiconductor substrate and bonded to the surface electrode of the semiconductor substrate.
在上述的半導體裝置中,最好第1領域的第1深度的位置的雜質濃度為1×1016atoms/cm3以下。 In the above semiconductor device, it is preferable that the impurity concentration at the position of the first depth in the first field is 1 × 10 16 atoms/cm 3 or less.
本說明書所揭示的第2半導體裝置係於同一半導體基板具備二極體領域及IGBT領域。 The second semiconductor device disclosed in the present specification is in the field of a diode and an IGBT in the same semiconductor substrate.
二極體領域係包含陽極領域及陰極領域。 The field of diodes includes the anode field and the cathode field.
陽極領域係包含:第1導電型的第1領域,其係於離半導體基板的表面第1深度的位置具有第1導電型的雜質濃度的最大值;及第1導電型的第2領域,其係於比第1深度還靠半導體基板的表面側的第2深度的位置具有第1導電型的雜質濃度的最大值。 The anode field includes a first field of the first conductivity type, which has a maximum value of the impurity concentration of the first conductivity type at a position at a first depth from the surface of the semiconductor substrate, and a second field of the first conductivity type. It is the maximum value of the impurity concentration of the first conductivity type at a position closer to the second depth on the surface side of the semiconductor substrate than the first depth.
IGBT領域係包含:第1導電型的本體領域,第2導電型的漂移領域,第2導電型的射極領域,及第1導電型的集極領域,本體領域係於離半導體基板的表面第1深度的位置具有第1導電型的雜質濃度的第1極大值,且在比第1深度還靠半導體基板的表面側的位置具有第1導電型的雜質濃度的第2極大值。 The IGBT field includes a first conductivity type body field, a second conductivity type drift field, a second conductivity type emitter field, and a first conductivity type collector field, and the body field is on the surface of the semiconductor substrate. The depth of the first conductivity type has a first maximum value of the impurity concentration of the first conductivity type, and has a second maximum value of the impurity concentration of the first conductivity type at a position closer to the surface side of the semiconductor substrate than the first depth.
若根據上述的第2半導體裝置,則與第1半導體裝置同樣,為了確保耐壓而提高第1領域的第1導電型的雜質濃度,且為了抑制電洞注入量,可降低第2領域的第1導電型的雜質。又,由於在第1領域與第2領域之間包含第1導電型的雜質濃度十分低的第3領域,因此可抑制第1領域影響電洞注入量。並且,在IGBT領域中,在具有第1極大值的領域中,可確保耐壓,且在具有第2極大值的領域中,可在IGBT動作時有效率地抽出電洞。 According to the second semiconductor device, the impurity concentration of the first conductivity type in the first region is increased in order to ensure the withstand voltage, and the second field is reduced in order to suppress the amount of hole injection. 1 Conductive type of impurities. Further, since the first field and the second field include the third field in which the impurity concentration of the first conductivity type is extremely low, it is possible to suppress the influence of the hole injection amount in the first field. Further, in the field of the IGBT, in the field having the first maximum value, the withstand voltage can be secured, and in the field having the second maximum value, the hole can be efficiently extracted during the operation of the IGBT.
10‧‧‧半導體裝置 10‧‧‧Semiconductor device
11‧‧‧元件領域 11‧‧‧Component field
12‧‧‧周邊領域 12‧‧‧Around area
20‧‧‧半導體裝置 20‧‧‧Semiconductor device
30‧‧‧半導體裝置 30‧‧‧Semiconductor device
70‧‧‧半導體裝置 70‧‧‧Semiconductor device
71‧‧‧IGBT領域 71‧‧‧IGBT field
72‧‧‧二極體領域 72‧‧‧II field
100‧‧‧半導體基板 100‧‧‧Semiconductor substrate
101‧‧‧陰極層 101‧‧‧ cathode layer
102‧‧‧漂移層 102‧‧‧ drift layer
103‧‧‧第1領域 103‧‧‧1st field
105‧‧‧第2領域 105‧‧‧2nd field
104‧‧‧第3領域 104‧‧‧3rd field
111,112‧‧‧p型的FLR層 111,112‧‧‧p type FLR layer
120‧‧‧陽極領域 120‧‧‧Anode field
131‧‧‧裏面電極 131‧‧‧ inside electrode
132‧‧‧背面電極 132‧‧‧Back electrode
133‧‧‧絕緣膜 133‧‧‧Insulation film
200‧‧‧半導體基板 200‧‧‧Semiconductor substrate
204‧‧‧第3領域 204‧‧‧3rd field
205‧‧‧第2領域 205‧‧‧2nd field
300‧‧‧半導體基板 300‧‧‧Semiconductor substrate
301‧‧‧n型的陰極層 301‧‧‧n type cathode layer
302‧‧‧n型的漂移層 302‧‧‧n type drift layer
303‧‧‧p型的第1領域 The first field of the 303‧‧‧p type
304‧‧‧n型的第3領域 The third field of the type 304‧‧‧n
305‧‧‧p型的第2領域 The second field of 305‧‧‧p type
500‧‧‧半導體基板 500‧‧‧Semiconductor substrate
501‧‧‧n+層 501‧‧‧n + layer
502‧‧‧n層 502‧‧‧n layer
503‧‧‧離子注入層 503‧‧‧Ion implantation layer
504‧‧‧中間層 504‧‧‧Intermediate
505‧‧‧離子注入層 505‧‧‧Ion implantation layer
50‧‧‧半導體基板 50‧‧‧Semiconductor substrate
551‧‧‧n+層 551‧‧‧n + layer
552‧‧‧n層 552‧‧‧n layer
553‧‧‧p型的離子注入層 553‧‧‧p type ion implantation layer
554‧‧‧n型的離子注入層 554‧‧‧n type ion implantation layer
555‧‧‧離子注入層 555‧‧‧Ion implantation layer
700‧‧‧半導體基板 700‧‧‧Semiconductor substrate
701‧‧‧陰極層 701‧‧‧ cathode layer
702‧‧‧漂移層 702‧‧‧ drift layer
703‧‧‧第1領域 703‧‧‧1st field
705‧‧‧第2領域 705‧‧‧2nd field
704‧‧‧第3領域 704‧‧‧3rd field
711‧‧‧p型的集極層 711‧‧‧p type collector layer
712‧‧‧n型的緩衝層 712‧‧‧n type buffer layer
713‧‧‧p型的第1本體層 713‧‧‧p type 1 body layer
714‧‧‧p型的第2本體層 714‧‧‧p type second body layer
715‧‧‧p型的本體接觸層 715‧‧‧p type body contact layer
716‧‧‧n型的射極層 716‧‧‧n type emitter layer
731‧‧‧裏面電極 731‧‧‧ inside electrode
741‧‧‧溝槽式閘極 741‧‧‧Grooved gate
742‧‧‧虛擬閘極 742‧‧‧virtual gate
圖1是實施例1的半導體裝置的平面圖。 1 is a plan view of a semiconductor device of Embodiment 1.
圖2是圖1的II-II線剖面圖。 Fig. 2 is a sectional view taken along line II-II of Fig. 1;
圖3是概念性地表示圖1的半導體裝置的陽極領域的雜質濃度分布的圖。 FIG. 3 is a view conceptually showing an impurity concentration distribution in an anode region of the semiconductor device of FIG. 1. FIG.
圖4是說明實施例1的半導體裝置的製造方法的圖。 4 is a view for explaining a method of manufacturing the semiconductor device of the first embodiment.
圖5是說明實施例1的半導體裝置的製造方法的圖。 FIG. 5 is a view for explaining a method of manufacturing the semiconductor device of the first embodiment.
圖6是說明實施例1的半導體裝置的製造方法的圖。 Fig. 6 is a view for explaining a method of manufacturing the semiconductor device of the first embodiment;
圖7是說明實施例1的半導體裝置的製造方法的圖。 FIG. 7 is a view for explaining a method of manufacturing the semiconductor device of the first embodiment.
圖8是變形例的半導體裝置的縱剖面圖。 Fig. 8 is a longitudinal sectional view showing a semiconductor device according to a modification.
圖9是變形例的半導體裝置的平面圖。 9 is a plan view of a semiconductor device according to a modification.
圖10是變形例的半導體裝置的平面圖。 Fig. 10 is a plan view showing a semiconductor device according to a modification.
圖11是實施例2的半導體裝置的縱剖面圖。 Fig. 11 is a longitudinal sectional view showing a semiconductor device of a second embodiment.
圖12是概念性地表示圖11的半導體裝置的陽極領域 的雜質濃度分布的圖。 FIG. 12 is a view schematically showing an anode field of the semiconductor device of FIG. A diagram of the impurity concentration distribution.
圖13是說明實施例2的半導體裝置的製造方法的圖。 Fig. 13 is a view for explaining a method of manufacturing the semiconductor device of the second embodiment.
圖14是說明實施例2的半導體裝置的製造方法的圖。 Fig. 14 is a view for explaining a method of manufacturing the semiconductor device of the second embodiment.
圖15是說明實施例2的半導體裝置的製造方法的圖。 Fig. 15 is a view for explaining a method of manufacturing the semiconductor device of the second embodiment.
圖16是說明實施例2的半導體裝置的製造方法的圖。 Fig. 16 is a view for explaining a method of manufacturing the semiconductor device of the second embodiment.
圖17是說明實施例2的半導體裝置的製造方法的圖。 Fig. 17 is a view for explaining a method of manufacturing the semiconductor device of the second embodiment.
圖18是說明實施例2的半導體裝置的製造方法的圖。 Fig. 18 is a view for explaining a method of manufacturing the semiconductor device of the second embodiment.
圖19是實施例3的半導體裝置的縱剖面圖。 Fig. 19 is a longitudinal sectional view showing a semiconductor device of a third embodiment.
圖20是概念性地表示圖19的半導體裝置的陽極領域的雜質濃度分布的圖。 FIG. 20 is a view conceptually showing an impurity concentration distribution in an anode region of the semiconductor device of FIG. 19. FIG.
圖21是概念性地表示圖19的半導體裝置的本體領域及其附近的雜質濃度分布的圖。 21 is a view conceptually showing an impurity concentration distribution in the body region of the semiconductor device of FIG. 19 and its vicinity.
圖22是變形例的半導體裝置的縱剖面圖。 Fig. 22 is a longitudinal sectional view showing a semiconductor device according to a modification.
[實施例1] [Example 1]
如圖1,2所示般,半導體裝置10是具備含元件(cell)領域11及周邊領域12的半導體基板100。另 外,在圖1中是省略表面電極132的圖示。 As shown in FIGS. 1 and 2, the semiconductor device 10 is provided with a semiconductor substrate 100 including a cell region 11 and a peripheral region 12. another In addition, in FIG. 1, the illustration of the surface electrode 132 is omitted.
半導體基板100是具備:露出於其背面(z軸的負方向的面)之n型的陰極層101,及設在陰極層101的表面(z軸的正方向的面)之n型的漂移層102。陰極層101及漂移層102是構成陰極領域。陰極層101是與背面電極131接觸。元件領域11是在漂移層102的表面具備有陽極領域120,陽極領域120是包含:接觸於漂移層102的表面之第1領域103,及露出於半導體基板100的表面之第2領域105,及設在第1領域103與第2領域105之間的第3領域104。第2領域105是接觸於表面電極132。周邊領域12是在漂移層102的表面具備有p型的FLR層111,112。FLR層111的表面是在半導體基板100的中央側接觸於表面電極132,在周邊側接觸於絕緣膜133。FLR層111,112是半導體裝置10的周邊耐壓構造。周邊耐壓構造的形態並不限於FLR層,亦可使用RESURF層等以往周知的構造。 The semiconductor substrate 100 includes an n-type cathode layer 101 exposed on the back surface (surface in the negative direction of the z-axis), and an n-type drift layer provided on the surface (surface in the positive direction of the z-axis) of the cathode layer 101. 102. The cathode layer 101 and the drift layer 102 constitute a cathode field. The cathode layer 101 is in contact with the back surface electrode 131. The element region 11 includes an anode region 120 on the surface of the drift layer 102, and the anode region 120 includes a first region 103 contacting the surface of the drift layer 102, and a second region 105 exposed on the surface of the semiconductor substrate 100, and The third field 104 is provided between the first field 103 and the second field 105. The second field 105 is in contact with the surface electrode 132. The peripheral region 12 is provided with a p-type FLR layer 111, 112 on the surface of the drift layer 102. The surface of the FLR layer 111 is in contact with the surface electrode 132 on the center side of the semiconductor substrate 100, and is in contact with the insulating film 133 on the peripheral side. The FLR layers 111, 112 are peripheral pressure resistant structures of the semiconductor device 10. The form of the peripheral pressure resistant structure is not limited to the FLR layer, and a conventionally known structure such as a RESURF layer may be used.
圖3是表示陽極領域120的深度方向的p型的雜質濃度分布的圖。縱軸是表示半導體基板100的深度方向的位置。A1是第2領域105的上端的位置,B1是第2領域105與第3領域104的境界的位置,C1是第3領域104與第1領域103的境界的位置,D1是第1領域103與漂移層102的境界的位置。參照號碼的173,175是分別表示第1領域103,第2領域105的p型的雜質濃度分布。為了比較,一併圖示以往的半導體裝置的陽極領域的 p型的雜質濃度分布,作為參照號碼179。 FIG. 3 is a view showing a p-type impurity concentration distribution in the depth direction of the anode region 120. The vertical axis indicates the position in the depth direction of the semiconductor substrate 100. A1 is the position of the upper end of the second field 105, B1 is the position of the realm of the second domain 105 and the third domain 104, C1 is the position of the realm of the third domain 104 and the first domain 103, and D1 is the first domain 103 and The position of the boundary of the drift layer 102. Reference numerals 173 and 175 are p-type impurity concentration distributions indicating the first field 103 and the second field 105, respectively. For comparison, the anode field of the conventional semiconductor device is also shown. The p-type impurity concentration distribution is referred to as reference numeral 179.
分布173的p型的雜質濃度的最大值是位於離半導體基板100的表面第1深度,分布175的p型的雜質濃度的最大值是位於離半導體基板100的表面第2深度。第1領域103的p型的雜質濃度的最大值(分布173的峰值濃度值)為2×1016atoms/cm3。第2領域的p型的雜質濃度是在半導體基板100的表面(亦即,深度A1)最高,為1×1017atoms/cm3。第3領域104的p型的雜質濃度是比1×1016atoms/cm3更低。第3領域104的p型的雜質濃度是半導體基板100的表面位置之深度A1的p型的雜質濃度的1/10以下。 The maximum value of the p-type impurity concentration of the distribution 173 is located at the first depth from the surface of the semiconductor substrate 100, and the maximum value of the p-type impurity concentration of the distribution 175 is located at the second depth from the surface of the semiconductor substrate 100. The maximum value of the p-type impurity concentration in the first field 103 (the peak concentration value of the distribution 173) is 2 × 10 16 atoms/cm 3 . The impurity concentration of the p-type in the second field is the highest on the surface (that is, the depth A1) of the semiconductor substrate 100, and is 1 × 10 17 atoms/cm 3 . The p-type impurity concentration of the third field 104 is lower than 1 × 10 16 atoms/cm 3 . The p-type impurity concentration of the third field 104 is 1/10 or less of the p-type impurity concentration of the depth A1 of the surface position of the semiconductor substrate 100.
在以往的半導體裝置中,像分布179那樣,陽極領域的p型的雜質濃度是將半導體基板的表面(深度A1)設為最大,隨著變深而降低。因此,為了確保半導體裝置的耐壓,而在陽極領域之接近陰極領域的領域提高p型的雜質濃度時,需要提高半導體基板表面的p型的雜質濃度。一旦半導體基板表面的p型的雜質濃度高,則電洞的注入量會變多,半導體裝置的高速性及低損失性會降低。 In the conventional semiconductor device, as in the image distribution 179, the p-type impurity concentration in the anode region is such that the surface (depth A1) of the semiconductor substrate is maximized and decreases as it becomes deeper. Therefore, in order to secure the withstand voltage of the semiconductor device, it is necessary to increase the p-type impurity concentration on the surface of the semiconductor substrate when the impurity concentration of the p-type is increased in the field of the cathode field close to the cathode field. When the p-type impurity concentration on the surface of the semiconductor substrate is high, the amount of injection of holes is increased, and the high-speed and low loss of the semiconductor device are lowered.
相對的,在半導體裝置10是可個別獨自設計第1領域103的p型的雜質濃度的分布173,及第2領域105的p型的雜質濃度的分布175。為了提高耐壓,而只要適當提高第1領域103的p型的雜質濃度即可,不必一併提高第2領域105的p型的雜質濃度。藉此,可充分降 低第2領域105的p型的雜質濃度,因此可抑制電洞注入量。並且,半導體裝置10是在第1領域103與第2領域105之間具有p型雜質濃度低的第3領域104。因此,可抑制第1領域103的p型的雜質影響電洞注入量。像本實施例那樣,若第3領域104的p型的雜質濃度為半導體基板100的表面位置之深度A1的p型的雜質濃度的1/10以下,則可充分抑制第1領域103的p型的雜質濃度影響電洞注入量。 On the other hand, in the semiconductor device 10, the distribution 173 of the p-type impurity concentration of the first field 103 and the distribution 175 of the p-type impurity concentration of the second field 105 can be individually designed. In order to increase the withstand voltage, it is only necessary to appropriately increase the p-type impurity concentration of the first field 103, and it is not necessary to increase the p-type impurity concentration of the second field 105 as it is. By this, it can be fully reduced Since the p-type impurity concentration of the second field 105 is low, the amount of hole injection can be suppressed. Further, the semiconductor device 10 has the third region 104 having a low p-type impurity concentration between the first region 103 and the second region 105. Therefore, it is possible to suppress the p-type impurity of the first field 103 from affecting the hole injection amount. When the p-type impurity concentration of the third region 104 is 1/10 or less of the p-type impurity concentration of the depth A1 of the surface position of the semiconductor substrate 100 as in the present embodiment, the p-type of the first region 103 can be sufficiently suppressed. The impurity concentration affects the amount of hole injection.
一邊參照圖4~6一邊說明有關半導體裝置10的製造方法。另外,在圖4~6是僅圖示圖2的元件領域11,利用該等的圖只說明在元件領域11形成陽極領域120的工程。半導體裝置10的其他的構成是可藉由與以往的半導體裝置的製造方法同樣的方法來形成。 A method of manufacturing the semiconductor device 10 will be described with reference to FIGS. 4 to 6. 4 to 6 are only the element field 11 of FIG. 2, and only the process of forming the anode region 120 in the element region 11 will be described using the drawings. The other configuration of the semiconductor device 10 can be formed by the same method as the conventional method of manufacturing a semiconductor device.
首先,如圖4所示般,準備半導體基板500。半導體基板500是從背面側依序層疊:成為陰極層101的n+層501,及成為漂移層102的n層502。在此狀態下,如圖4所示般,在離n層502內的半導體基板500的表面第2深度的位置注入p型的雜質離子。第2深度是半導體基板500的幾乎表面的位置。藉此,如圖5所示般,形成p型的離子注入層505。另外,n+層501是亦可在進行形成下記所示的半導體裝置10的表面構造之工程後,形成於半導體基板500。 First, as shown in FIG. 4, the semiconductor substrate 500 is prepared. The semiconductor substrate 500 is sequentially laminated from the back surface side: an n + layer 501 serving as the cathode layer 101 and an n layer 502 serving as the drift layer 102. In this state, as shown in FIG. 4, p-type impurity ions are implanted at a position at a second depth from the surface of the semiconductor substrate 500 in the n-layer 502. The second depth is a position of almost the surface of the semiconductor substrate 500. Thereby, as shown in FIG. 5, a p-type ion implantation layer 505 is formed. In addition, the n + layer 501 may be formed on the semiconductor substrate 500 after performing the process of forming the surface structure of the semiconductor device 10 shown below.
其次,如圖6所示般,在離n層502內的半導體基板500的表面第1深度的位置注入p型的雜質離 子,如圖7所示般,形成p型的離子注入層503。第1深度是比第2深度更深的位置(z軸的負方向的位置)。並且,藉此,在離子注入層503與離子注入層505之間形成有p型的雜質濃度低的中間層504。一旦退火處理圖7所示的狀態的半導體基板500,則如圖2所示般,可製造具有含第1領域103,第2領域105,第3領域104的陽極領域120之半導體裝置10。 Next, as shown in FIG. 6, a p-type impurity is implanted at a position at a first depth from the surface of the semiconductor substrate 500 in the n-layer 502. As shown in FIG. 7, a p-type ion implantation layer 503 is formed. The first depth is a position deeper than the second depth (a position in the negative direction of the z-axis). Further, an intermediate layer 504 having a p-type impurity concentration low is formed between the ion implantation layer 503 and the ion implantation layer 505. When the semiconductor substrate 500 in the state shown in FIG. 7 is annealed, as shown in FIG. 2, the semiconductor device 10 having the anode region 120 including the first region 103, the second region 105, and the third region 104 can be manufactured.
(變形例) (Modification)
在實施例1中,第2領域105會覆蓋第3領域104的表面全體,但並非限於此。例如像圖8,9所示的半導體裝置20那樣,亦可在元件領域中,在第3領域204的表面的一部分形成有第2領域205。第2領域205是在平面視半導體基板200的表面時,形成延伸於y方向伸的條紋狀。在半導體基板200的表面是露出第2領域205及第3領域204,與表面電極132接觸。第2領域205及表面電極132是歐姆接合,第3領域204與表面電極132是蕭特基接合。又,如圖10所示般,在平面視半導體基板210的表面時,亦可在第3領域214的表面分佈圓形狀的第2領域215。 In the first embodiment, the second field 105 covers the entire surface of the third field 104, but is not limited thereto. For example, as in the semiconductor device 20 shown in FIGS. 8 and 9, the second region 205 may be formed in a part of the surface of the third region 204 in the field of components. The second field 205 is formed in a stripe shape extending in the y direction when the surface of the semiconductor substrate 200 is planarly viewed. The second region 205 and the third region 204 are exposed on the surface of the semiconductor substrate 200, and are in contact with the surface electrode 132. The second field 205 and the surface electrode 132 are ohmic junctions, and the third field 204 and the surface electrode 132 are Schottky junctions. Further, as shown in FIG. 10, when the surface of the semiconductor substrate 210 is planarly viewed, a circular second region 215 may be distributed on the surface of the third region 214.
[實施例2] [Embodiment 2]
圖11是表示實施例2的半導體裝置30的元件領域的縱剖面圖。半導體裝置30是具備半導體基板 300。半導體基板300是具備從其背面側依序層疊之,n型的陰極層301,n型的漂移層302,p型的第1領域303,n型的第3領域304,及p型的第2領域305。陰極層301及漂移層302是構成陰極領域。第1領域303,第3領域304及第2領域305是構成陽極領域320。陰極層301是與背面電極131接觸,第2領域305是與表面電極132接觸。半導體裝置30的其他的構成是與圖1所示的半導體裝置10同樣,因此省略說明。 FIG. 11 is a longitudinal cross-sectional view showing an element field of the semiconductor device 30 of the second embodiment. The semiconductor device 30 is provided with a semiconductor substrate 300. The semiconductor substrate 300 is provided with an n-type cathode layer 301, an n-type drift layer 302, a p-type first field 303, an n-type third field 304, and a p-type second layer, which are sequentially stacked from the back side. Field 305. The cathode layer 301 and the drift layer 302 constitute a cathode field. In the first field 303, the third field 304 and the second field 305 constitute the anode region 320. The cathode layer 301 is in contact with the back surface electrode 131, and the second field 305 is in contact with the surface electrode 132. The other configuration of the semiconductor device 30 is the same as that of the semiconductor device 10 shown in FIG. 1, and thus the description thereof is omitted.
圖12是表示陽極領域320的深度方向的雜質濃度分布的圖。縱軸是表示半導體基板300的深度方向的位置。A2是第2領域305的上端的位置,B2是第2領域305與第3領域304的境界的位置,C2是第3領域304與第1領域303的境界的位置,D2是第1領域303與漂移層302的境界的位置。參照號碼的373,375是分別表示第1領域303,第2領域305的p型的雜質濃度分布,參照號碼374是表示第3領域304的n型的雜質濃度分布。 FIG. 12 is a view showing an impurity concentration distribution in the depth direction of the anode region 320. The vertical axis indicates the position in the depth direction of the semiconductor substrate 300. A2 is the position of the upper end of the second field 305, B2 is the position of the realm of the second field 305 and the third field 304, C2 is the position of the realm of the third field 304 and the first field 303, and D2 is the first field 303 and The position of the boundary of the drift layer 302. Reference numerals 373, 375 are p-type impurity concentration distributions indicating the first field 303 and the second field 305, respectively, and reference numeral 374 is an n-type impurity concentration distribution indicating the third field 304.
分布373的p型的雜質濃度的最大值是位於離半導體基板300的表面第1深度(深度C2與D2之間的位置),顯示其濃度分布的曲線是大概擴展於第1領域303內。分布375的p型的雜質濃度的最大值是位於離半導體基板300的表面第2深度(在本實施例是深度A1),顯示濃度分布的曲線是擴展至第1領域303。分布374的n型的雜質濃度的最大值是位於離半導體基板300的表面第3深度(深度B2與C2之間的位置),顯示其濃度分布的曲線是 大概擴展於第3領域304內。 The maximum value of the p-type impurity concentration of the distribution 373 is located at the first depth (the position between the depths C2 and D2) from the surface of the semiconductor substrate 300, and the curve showing the concentration distribution is roughly expanded in the first field 303. The maximum value of the p-type impurity concentration of the distribution 375 is located at the second depth from the surface of the semiconductor substrate 300 (in the present embodiment, the depth A1), and the curve showing the concentration distribution is extended to the first field 303. The maximum value of the n-type impurity concentration of the distribution 374 is located at the third depth from the surface of the semiconductor substrate 300 (the position between the depths B2 and C2), and the curve showing the concentration distribution is Probably expanded in the third field 304.
第1領域303的p型的雜質濃度的最大值(分布373的峰值濃度值)是2×1016atoms/cm3。第2領域的p型的雜質濃度是在半導體基板300的表面(亦即,深度A2)為最高,1×1017atoms/cm3。第3領域304的p型的雜質濃度是比1×1016atoms/cm3更低。第3領域304的p型的雜質濃度是半導體基板300的表面位置之深度A2的p型的雜質濃度的1/10以下。 The maximum value of the p-type impurity concentration in the first field 303 (the peak concentration value of the distribution 373) is 2 × 10 16 atoms/cm 3 . The impurity concentration of the p-type in the second field is the highest on the surface (that is, the depth A2) of the semiconductor substrate 300, and is 1 × 10 17 atoms/cm 3 . The p-type impurity concentration of the third field 304 is lower than 1 × 10 16 atoms/cm 3 . The p-type impurity concentration of the third field 304 is 1/10 or less of the p-type impurity concentration of the depth A2 of the surface position of the semiconductor substrate 300.
一邊參照圖13~18一邊說明有關半導體裝置30的製造方法。首先,如圖13所示般,準備半導體基板550。半導體基板550是從背面側依序層疊:成為陰極層301的n+層551,及成為漂移層302的n層552。在此狀態下,如圖13所示般,在離n層552內的半導體基板550的表面第2深度的位置注入p型的雜質離子。第2深度是半導體基板550的幾乎表面的位置。藉此,如圖14所示般,形成p型的離子注入層555。 A method of manufacturing the semiconductor device 30 will be described with reference to FIGS. 13 to 18. First, as shown in FIG. 13, a semiconductor substrate 550 is prepared. The semiconductor substrate 550 is sequentially laminated from the back surface side: an n + layer 551 serving as the cathode layer 301 and an n layer 552 serving as the drift layer 302. In this state, as shown in FIG. 13, p-type impurity ions are implanted at a position at a second depth from the surface of the semiconductor substrate 550 in the n-layer 552. The second depth is a position of almost the surface of the semiconductor substrate 550. Thereby, as shown in FIG. 14, a p-type ion implantation layer 555 is formed.
其次,如圖15所示般,在離離子注入層555內的半導體基板550的表面第1深度的位置注入p型的雜質離子,如圖16所示般,形成p型的離子注入層553。第1深度是比第2深度更深的位置(z軸的負方向的位置)。 Next, as shown in FIG. 15, a p-type impurity ion is implanted at a position at a first depth from the surface of the semiconductor substrate 550 in the ion implantation layer 555, and a p-type ion implantation layer 553 is formed as shown in FIG. The first depth is a position deeper than the second depth (a position in the negative direction of the z-axis).
其次,如圖17所示般,在離子注入層555內的第1深度與第2深度之間的位置注入n型的雜質離子,如圖18所示般,形成n型的離子注入層554。一旦退火 處理圖18所示的狀態的半導體基板550,則如圖11所示般,可製造具有包含第1領域303,第2領域305,第3領域304的退火層320之半導體裝置30。 Next, as shown in FIG. 17, an n-type impurity ion is implanted at a position between the first depth and the second depth in the ion implantation layer 555, and an n-type ion implantation layer 554 is formed as shown in FIG. Once annealed When the semiconductor substrate 550 in the state shown in FIG. 18 is processed, as shown in FIG. 11, the semiconductor device 30 including the annealing layer 320 including the first region 303, the second region 305, and the third region 304 can be manufactured.
像本實施例那樣,藉由進行n型的離子注入,亦可形成第3領域304。此情況,在第2領域305具有最大值的p型的雜質濃度的分布是如分布375所示般亦可擴大於陽極領域320全體。 As in the present embodiment, the third field 304 can be formed by performing n-type ion implantation. In this case, the distribution of the p-type impurity concentration having the maximum value in the second field 305 can be expanded to the entire anode region 320 as shown by the distribution 375.
[實施例3] [Example 3]
圖19是表示實施例3的半導體裝置70的元件領域的縱剖面圖。半導體裝置70是具備形成有IGBT領域71及二極體領域72的半導體基板700。在半導體基板700的IGBT領域71是從其背面側依序層疊有p型的集極層711,n型的緩衝層712,n型的漂移層702,p型的第1本體層713,及p型的第2本體層714。在第2本體層714的表面形成有p型的本體接觸層715及n型的射極層716,露出於半導體基板700的表面。緩衝層712及漂移層702是延伸至二極體領域72。在半導體基板700是設有從其表面貫通第1本體層713及第2本體層714而到達漂移領域702的溝槽式閘極741。溝槽式閘極741是在其側面與射極層716接觸。第1本體層713,第2本體層714及本體接觸層715是作為IGBT領域71的本體領域的機能。 19 is a longitudinal cross-sectional view showing an element field of the semiconductor device 70 of the third embodiment. The semiconductor device 70 includes a semiconductor substrate 700 in which an IGBT region 71 and a diode region 72 are formed. In the IGBT region 71 of the semiconductor substrate 700, a p-type collector layer 711, an n-type buffer layer 712, an n-type drift layer 702, a p-type first body layer 713, and p are sequentially laminated from the back surface side thereof. A second body layer 714 of the type. A p-type body contact layer 715 and an n-type emitter layer 716 are formed on the surface of the second body layer 714, and are exposed on the surface of the semiconductor substrate 700. The buffer layer 712 and the drift layer 702 extend to the diode region 72. The semiconductor substrate 700 is provided with a trench gate 741 that penetrates the first body layer 713 and the second body layer 714 from the surface thereof and reaches the drift region 702. The trench gate 741 is in contact with the emitter layer 716 on its side. The first body layer 713, the second body layer 714, and the body contact layer 715 function as the body of the IGBT field 71.
在二極體領域72是從其背面側依序層疊有n 型的陰極層701,緩衝層712,漂移層702,p型的第1領域703,及n型的第3領域704。在第3領域704的表面的一部分形成有p型的第2領域705,露出於半導體基板700的表面。二極體領域72的陰極領域是藉由陰極層701,緩衝層712,及漂移層702所構成,陽極領域720是藉由第1領域703,第2領域705,及第3領域704所構成。在半導體基板700是設有從其表面貫通第2領域704及第1領域703而到達漂移領域702的虛擬閘極742。 In the diode field 72, n is sequentially stacked from the back side thereof. The cathode layer 701, the buffer layer 712, the drift layer 702, the p-type first field 703, and the n-type third field 704. A p-type second region 705 is formed on a part of the surface of the third region 704, and is exposed on the surface of the semiconductor substrate 700. The cathode region of the diode region 72 is composed of a cathode layer 701, a buffer layer 712, and a drift layer 702. The anode region 720 is composed of a first field 703, a second field 705, and a third field 704. The semiconductor substrate 700 is provided with a dummy gate 742 that penetrates the second region 704 and the first region 703 from the surface thereof and reaches the drift region 702.
第2領域705,第3領域704,本體接觸層715及射極層716是與表面電極732接觸。陰極層701與集極層711是彼此鄰接而露出於半導體基板700的背面,接觸於背面電極731。 In the second field 705, the third field 704, the body contact layer 715 and the emitter layer 716 are in contact with the surface electrode 732. The cathode layer 701 and the collector layer 711 are adjacent to each other and exposed on the back surface of the semiconductor substrate 700, and are in contact with the back surface electrode 731.
圖20是表示陽極領域720的深度方向的p型的雜質濃度分布的圖。縱軸是表示半導體基板700的深度方向的位置。A3是第2領域705的上端的位置,B3是第2領域705的下端的位置,C3是第3領域704與第1領域703的境界的位置,D3是第1領域703與漂移層702的境界的位置。參照號碼的773,775是分別表示第1領域703,第2領域705的p型的雜質濃度分布。 FIG. 20 is a view showing a p-type impurity concentration distribution in the depth direction of the anode region 720. The vertical axis indicates the position in the depth direction of the semiconductor substrate 700. A3 is the position of the upper end of the second field 705, B3 is the position of the lower end of the second field 705, C3 is the position of the boundary of the third field 704 and the first field 703, and D3 is the boundary of the first field 703 and the drift layer 702. s position. Reference numerals 773, 775 are p-type impurity concentration distributions indicating the first field 703 and the second field 705, respectively.
圖21是表示從本體接觸層715到第1本體層713為止的深度方向的p型的雜質濃度分布的圖。縱軸是表示半導體基板700的深度方向的位置。A4是本體接觸層715的上端的位置,B4是本體接觸層715的下端的位 置,C4是第2本體層714與第1本體層713的境界的位置,D4是第1本體層713與漂移層702的境界的位置。參照號碼的783,784,785是分別表示第1本體層713,第2領域705的p型的雜質濃度分布。分布775及分布785是亦可藉由同一工程來形成。又,分布773及分布783是亦可藉由同一工程來形成。如圖21所示般,IGBT領域71的本體領域是在離半導體基板700的表面第1深度的位置具有p型的雜質濃度的第1極大值(分布783的最大值),且在比第1深度還成為半導體基板700的表面側的位置具有p型的雜質濃度的第2極大值(分布775的最大值)。在具有第1極大值的領域與具有第2極大值的領域之間是存在p型的雜質濃度比較低的領域。 21 is a view showing a p-type impurity concentration distribution in the depth direction from the main body contact layer 715 to the first main body layer 713. The vertical axis indicates the position in the depth direction of the semiconductor substrate 700. A4 is the position of the upper end of the body contact layer 715, and B4 is the position of the lower end of the body contact layer 715. C4 is a position of the boundary between the second body layer 714 and the first body layer 713, and D4 is a position of the boundary between the first body layer 713 and the drift layer 702. Reference numerals 783, 784, and 785 are p-type impurity concentration distributions indicating the first main body layer 713 and the second field 705, respectively. Distribution 775 and distribution 785 can also be formed by the same process. Further, the distribution 773 and the distribution 783 can also be formed by the same process. As shown in FIG. 21, the body region of the IGBT region 71 has a first maximum value (maximum value of the distribution 783) of a p-type impurity concentration at a position at a first depth from the surface of the semiconductor substrate 700, and is larger than the first The depth also has a second maximum value (maximum value of the distribution 775) of the p-type impurity concentration at the position on the surface side of the semiconductor substrate 700. Between the field having the first maximum value and the field having the second maximum value, there is a field in which the impurity concentration of the p-type is relatively low.
像本實施例那樣,半導體裝置是亦可在其一部分含二極體以外的半導體元件構造。半導體裝置70是同一半導體基板700含IGBT領域71及二極體領域72的RC-IGBT。在RC-IGBT中,在二極體領域72內的漂移層702內,為了降低載子的壽命來使開關特性提升,而有時形成壽命控制領域(例如藉由離子照射等而形成之高濃度含結晶缺陷的領域)。若根據半導體裝置70,則在二極體領域72中,可減少從陽極領域往陰極領域的電洞注入量,因此可降低壽命控制領域的壽命控制機能。在使壽命控制機能降低之下,可抑制壽命控制領域所引起之IGBT領域71的特性惡化,降低洩漏電流。並且,在IGBT領域71中,在具有第1極大值的領域(第1本體層713)中, 可確保耐壓,且在具有第2極大值的領域(本體接觸層715)中,可在IGBT動作時有效率地抽出電洞。藉由調整具有第1極大值的領域及具有第2極大值的領域之間的領域(第2本體層714)的雜質濃度,可在IGBT動作時進行沿著溝槽式閘極741而形成之n型的通道控制。 As in the present embodiment, the semiconductor device may have a semiconductor element structure other than a diode. The semiconductor device 70 is an RC-IGBT including the IGBT region 71 and the diode region 72 in the same semiconductor substrate 700. In the RC-IGBT, in the drift layer 702 in the diode field 72, in order to reduce the lifetime of the carrier, the switching characteristics are improved, and the lifetime control field (for example, a high concentration formed by ion irradiation or the like) may be formed. In the field of crystal defects). According to the semiconductor device 70, in the diode field 72, the amount of hole injection from the anode region to the cathode region can be reduced, so that the life control function in the life control field can be reduced. When the life control function is lowered, the deterioration of the characteristics of the IGBT field 71 caused by the field of life control can be suppressed, and the leakage current can be reduced. Further, in the IGBT field 71, in the field having the first maximum value (the first body layer 713), The withstand voltage can be ensured, and in the field having the second maximum value (the body contact layer 715), the hole can be efficiently extracted while the IGBT is operating. By adjusting the impurity concentration of the field having the first maximum value and the field (the second body layer 714) between the domains having the second maximum value, the groove gate 741 can be formed during the IGBT operation. N-type channel control.
(變形例) (Modification)
IGBT領域的構成並非限於在實施例3所說明的形態。例如,像圖22所示的半導體裝置70a那樣,半導體基板700a的IGBT領域71是亦可包含:含射極層716的領域71a,及不含射極層716的領域71b。在領域71b中,閘極導通時通道未被形成,IGBT領域71的通道密度低,所以可蓄積載子。因此,在半導體裝置70a中,可降低導通電阻。 The configuration of the IGBT field is not limited to the embodiment described in the third embodiment. For example, like the semiconductor device 70a shown in FIG. 22, the IGBT region 71 of the semiconductor substrate 700a may include a region 71a including the emitter layer 716 and a region 71b not including the emitter layer 716. In the field 71b, the channel is not formed when the gate is turned on, and the channel density of the IGBT field 71 is low, so that the carrier can be accumulated. Therefore, in the semiconductor device 70a, the on-resistance can be lowered.
以上,詳細說明有關本發明的實施例,但該等只不過是舉例說明,並非是限定申請專利範圍者。申請專利範圍記載的技術是包含將以上所舉例說明的具體例予以各式各樣變形,變更者。 The embodiments of the present invention have been described in detail above, but these are merely illustrative and are not intended to limit the scope of the claims. The technology described in the patent application scope includes various modifications and modifications of the specific examples described above.
在本說明書或圖面說明的技術要素是藉由單獨或各種的組合來發揮技術的有用性者,並非是限定於申請時請求項記載的組合者。並且,在本說明書或圖面所舉例說明的技術是可同時達成複數目的者,達成其中之一個目的為本身持技術的有用性者。 The technical elements described in the specification or the drawings are those that exhibit the usefulness of the technology by a single or various combinations, and are not limited to the combination described in the claims at the time of filing. Moreover, the technique exemplified in the specification or the drawings is a person who can achieve a plurality of numbers at the same time, and one of the objectives is to achieve the usefulness of the technology itself.
10‧‧‧半導體裝置 10‧‧‧Semiconductor device
11‧‧‧元件領域 11‧‧‧Component field
12‧‧‧周邊領域 12‧‧‧Around area
100‧‧‧半導體基板 100‧‧‧Semiconductor substrate
101‧‧‧陰極層 101‧‧‧ cathode layer
102‧‧‧漂移層 102‧‧‧ drift layer
103‧‧‧第1領域 103‧‧‧1st field
104‧‧‧第3領域 104‧‧‧3rd field
105‧‧‧第2領域 105‧‧‧2nd field
111,112‧‧‧p型的FLR層 111,112‧‧‧p type FLR layer
120‧‧‧陽極領域 120‧‧‧Anode field
131‧‧‧裏面電極 131‧‧‧ inside electrode
132‧‧‧背面電極 132‧‧‧Back electrode
133‧‧‧絕緣膜 133‧‧‧Insulation film
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103119042A TW201545342A (en) | 2014-05-30 | 2014-05-30 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103119042A TW201545342A (en) | 2014-05-30 | 2014-05-30 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201545342A true TW201545342A (en) | 2015-12-01 |
Family
ID=55407199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103119042A TW201545342A (en) | 2014-05-30 | 2014-05-30 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201545342A (en) |
-
2014
- 2014-05-30 TW TW103119042A patent/TW201545342A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10157986B2 (en) | Silicon carbide semiconductor device and method for manufacturing same | |
JP5787853B2 (en) | Power semiconductor device | |
WO2014087499A1 (en) | Semiconductor device | |
JP5819064B2 (en) | Semiconductor device | |
US20150228717A1 (en) | Method for manufacturing semiconductor device and semiconductor device | |
JPWO2018030444A1 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP2009289904A (en) | Semiconductor device | |
JP2008294214A (en) | Semiconductor device | |
CN106165101B (en) | Semiconductor device | |
JP6903222B2 (en) | Silicon carbide semiconductor device and its manufacturing method | |
JP2013201237A (en) | Semiconductor device | |
JP6606007B2 (en) | Switching element | |
JPWO2015104949A1 (en) | Silicon carbide semiconductor device | |
JP2020031155A (en) | Semiconductor device | |
JP2019087611A (en) | Switching element and manufacturing method thereof | |
US9899374B2 (en) | Semiconductor device | |
JP6733829B2 (en) | Semiconductor device | |
WO2020121371A1 (en) | Silicon carbide semiconductor device and method for manufacturing same | |
JP2014060376A (en) | Schottky barrier diode and manufacturing method of the same | |
JP2017191817A (en) | Method for manufacturing switching element | |
KR101360070B1 (en) | Semiconductor device and method manufacturing the same | |
CN109844954B (en) | Semiconductor device and method for manufacturing the same | |
JP5741069B2 (en) | Semiconductor device | |
JP2023023389A (en) | Field effect transistor and manufacturing method thereof | |
JP6935373B2 (en) | Semiconductor device |