TW201539145A - Overlay metrology method - Google Patents

Overlay metrology method Download PDF

Info

Publication number
TW201539145A
TW201539145A TW103123005A TW103123005A TW201539145A TW 201539145 A TW201539145 A TW 201539145A TW 103123005 A TW103123005 A TW 103123005A TW 103123005 A TW103123005 A TW 103123005A TW 201539145 A TW201539145 A TW 201539145A
Authority
TW
Taiwan
Prior art keywords
wafer
pattern layer
metric
overlay
wafers
Prior art date
Application number
TW103123005A
Other languages
Chinese (zh)
Other versions
TWI544288B (en
Inventor
Yung-Yao Lee
Ying-Ying Wang
Yi-Ping Hsieh
Heng-Hsin Liu
Original Assignee
Taiwan Semiconductor Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/252,612 external-priority patent/US9164398B2/en
Application filed by Taiwan Semiconductor Mfg Co Ltd filed Critical Taiwan Semiconductor Mfg Co Ltd
Publication of TW201539145A publication Critical patent/TW201539145A/en
Application granted granted Critical
Publication of TWI544288B publication Critical patent/TWI544288B/en

Links

Abstract

A process of measuring overlay metrologies of wafers, the wafer having a plurality of patterned layers. The process begins with retrieving historical overlay metrologies from a database, and real overlay metrologies of a first group of the wafers are measured. On the other hand, virtual overlay metrologies of a second group of the wafers are calculated with the retrieved historical overly metrologies. The real overlay metrologies of the first group of the wafers and the virtual overlay metrologies of the second group of the wafers are stored to the database as the historical overlay metrologies.

Description

疊對度量方法 Overlap metric

本發明是有關於一種疊對度量方法,特別是有關於一種虛擬疊對度量值的計算方法。 The present invention relates to a method of overlay pair measurement, and more particularly to a method for calculating a virtual overlay pair metric.

半導體積體電路工業呈現著指數級的成長,在積體電路工業的發展過程中,元件尺寸的縮減使得單一晶圓上的元件密度大幅增加。因此,能製造出比前個世代更小且更複雜的電路。此縮減過程增加了生產效率並降低了製造成本,同時也讓積體電路的製造過程變得更為複雜。 The semiconductor integrated circuit industry is experiencing exponential growth. During the development of the integrated circuit industry, the reduction in component size has led to a significant increase in component density on a single wafer. Therefore, it is possible to manufacture a circuit that is smaller and more complicated than the previous generation. This reduction process increases production efficiency and reduces manufacturing costs, while also complicating the manufacturing process of integrated circuits.

這些積體電路是在半導體晶圓廠中經過多項的製程製造而得,其中每項製程會各在晶圓上形成一圖案層。為了使元件能正確運作,此些圖案層之間必須精確地對準。若是圖案層間具有疊對誤差,將會導致電路短路或連接失敗,使晶圓廠之良率與利潤大幅降低。 These integrated circuits are manufactured in a number of processes in a semiconductor fab, each of which forms a patterned layer on the wafer. In order for the components to function properly, such patterned layers must be precisely aligned. If there is a stacking error between the pattern layers, it will lead to short circuit or connection failure, which will greatly reduce the fab's yield and profit.

因此,在積體電路元件的製造過程中,量測圖案層間的疊對誤差值是非常重要的,通常又稱為疊對度量。藉由疊對度量能獲知其中一圖案層與下一層圖案層之間的對準精度。因此,隨著積體電路的密度與複雜性增加,疊對 度量變得越來越重要,相對的進行疊對度量也變得更為困難。 Therefore, in the manufacturing process of integrated circuit components, it is very important to measure the overlap error values between pattern layers, which is also commonly referred to as a stack pair metric. The alignment accuracy between one of the pattern layers and the next pattern layer can be known by the overlay pair metric. Therefore, as the density and complexity of integrated circuits increase, stacked pairs Metrics are becoming more and more important, and it is more difficult to perform overlapping pairs of measurements.

有鑑於此,本發明之一態樣為一種一種測量複數個晶圓之疊對度量值的方法,其中每一片晶圓上有複數個圖案層。此方法先取出一資料庫中之歷史疊對度量值,並測量一第一組晶圓之真實疊對度量值。另一方面,藉由取出之歷史疊對度量值計算一第二組晶圓之虛擬疊對度量值。第一組晶圓之真實疊對度量值以及第二組晶圓之虛擬疊對度量值將儲存至資料庫中,並作為歷史疊對度量值。 In view of this, one aspect of the present invention is a method of measuring a stack metric of a plurality of wafers, wherein each wafer has a plurality of pattern layers thereon. The method first takes a historical overlay pair metric in a database and measures the true overlay metric for a first set of wafers. On the other hand, the virtual overlay metric of a second set of wafers is calculated by taking the historical overlay pair metrics. The true overlay metric for the first set of wafers and the virtual overlay metric for the second set of wafers are stored in the database and used as historical overlay metrics.

本發明之另一態樣為一種晶圓疊對度量值的測量設備,包含一資料庫,資料庫內儲存有歷史疊對度量值;以及一疊對度量裝置,其設置能取出資料庫內的歷史疊對度量值並量測晶圓的疊對度量值。疊對度量裝置包含一真實疊對度量裝置以及一虛擬疊對度量裝置,其中虛擬疊對度量裝置設置能取出資料庫內的歷史疊對度量值。 Another aspect of the present invention is a device for measuring a wafer stack metric value, comprising: a database in which a historical overlay metric value is stored; and a stack metric device configured to be taken out of the database The history overlays the metric and measures the overlay metric of the wafer. The overlay pair metric device includes a real overlay metric device and a virtual overlay metric device, wherein the virtual overlay metric device is configured to retrieve historical overlay metric values within the database.

本發明之另一態樣為一種形成複數個圖案層於複數個晶圓上的方法,包含取出一資料庫中的歷史疊對度量值以及一曝光裝置中的一製程配方至一先進製程控制器中。接著依據歷史疊對度量值決定製程配方中之疊對參數,回傳製程配方至曝光裝置中,並依據製程配方形成多個圖案層於此些晶圓上。測量一第一組晶圓的真實疊對度量值,以及計算一第二組晶圓的虛擬疊對度量值。其中計 算第二組晶圓的虛擬疊對度量值係由第二組晶圓中之一晶圓上挑選一第一圖案層,並搜尋具有一第二圖案層的一第一參照晶圓,其中第二圖案層形成至第一參照晶圓的時間最接近第一圖案層形成至晶圓的時間。再搜尋具有第一圖案層的一標準晶圓,其中第一圖案層形成至標準晶圓的時間早於第一圖案層形成至晶圓的時間。最後搜尋具有第二圖案層的一第二參照晶圓,其中第二圖案層形成至第二參照晶圓的時間最接近第一圖案層形成至標準晶圓的時間。取出資料庫中標準晶圓上第一圖案層、第一參照晶圓上第二圖案層以及第二參照晶圓上第二圖案層的疊對度量值,並計算第一參照晶圓上第二圖案層以及第二參照晶圓上第二圖案層之間的疊對度量差值。更取出資料庫中晶圓上一或多個圖案層的疊對度量值,其中此些圖案層形成於晶圓的時間早於第一圖案層,並加總疊對度量差值、標準晶圓上第一圖案層之疊對度量值、以及晶圓上形成時間早於第一圖案層的多個圖案層之疊對度量值,以得到晶圓上第一圖案層之虛擬疊對度量值。最後將真實疊對度量值以及虛擬疊對度量值儲存至該資料庫中。 Another aspect of the present invention is a method of forming a plurality of pattern layers on a plurality of wafers, comprising taking a historical overlay pair metric in a database and a process recipe in an exposure apparatus to an advanced process controller in. Then, the stacking parameters in the process recipe are determined according to the historical stacking metric value, the process recipe is returned to the exposure apparatus, and a plurality of pattern layers are formed on the wafers according to the process recipe. A true overlay metric for a first set of wafers is measured, and a virtual overlay metric for a second set of wafers is calculated. Among them Calculating the virtual overlay metric of the second set of wafers by selecting a first pattern layer from one of the second set of wafers and searching for a first reference wafer having a second pattern layer, wherein The time during which the second pattern layer is formed to the first reference wafer is closest to the time at which the first pattern layer is formed to the wafer. A standard wafer having a first pattern layer is further searched, wherein the time at which the first pattern layer is formed to the standard wafer is earlier than the time at which the first pattern layer is formed to the wafer. Finally, a second reference wafer having a second pattern layer is formed, wherein the time when the second pattern layer is formed to the second reference wafer is closest to the time when the first pattern layer is formed to the standard wafer. Extracting a stack metric value of the first pattern layer on the standard wafer, the second pattern layer on the first reference wafer, and the second pattern layer on the second reference wafer in the database, and calculating the second on the first reference wafer The overlay metric difference between the pattern layer and the second pattern layer on the second reference wafer. Further extracting the overlay metric values of one or more pattern layers on the wafer in the database, wherein the pattern layers are formed on the wafer earlier than the first pattern layer, and the total overlap metric difference, standard wafer The overlay metric of the first patterned layer and the overlay metric of the plurality of patterned layers on the wafer prior to the formation of the first patterned layer to obtain a virtual overlay metric of the first patterned layer on the wafer. Finally, the true overlay pair metric and the virtual overlay metric are stored in the database.

110‧‧‧資料庫 110‧‧‧Database

120‧‧‧曝光裝置 120‧‧‧Exposure device

130‧‧‧自適應裝置 130‧‧‧Adaptive device

140‧‧‧真實疊對度量裝置 140‧‧‧Real stacking metric device

150‧‧‧虛擬疊對度量裝置 150‧‧‧Virtual Overlap Measurer

160‧‧‧先進製程控制器 160‧‧‧Advanced Process Controller

210~260‧‧‧步驟 210~260‧‧‧Steps

310‧‧‧晶圓 310‧‧‧ wafer

320‧‧‧第一參照晶圓 320‧‧‧First reference wafer

330‧‧‧標準晶圓 330‧‧‧Standard Wafer

340‧‧‧第二參照晶圓 340‧‧‧second reference wafer

312A、312B‧‧‧第一圖案層 312A, 312B‧‧‧ first pattern layer

322A、322B‧‧‧第二圖案層 322A, 322B‧‧‧ second pattern layer

410~440‧‧‧步驟 410~440‧‧‧Steps

510、521~526、531~532、540‧‧‧步驟 510, 521~526, 531~532, 540‧‧ steps

314‧‧‧第三圖案層 314‧‧‧ Third pattern layer

316‧‧‧第四圖案層 316‧‧‧Four pattern layer

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖繪示根據本發明部分實施方式的晶圓疊對度量 值測量設備。 The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; Value measuring device.

第2圖繪示根據本發明部分實施方式的晶圓疊對度量值測量方法流程圖。 2 is a flow chart of a method for measuring a wafer stack metric according to some embodiments of the present invention.

第3圖繪示根據本發明部分實施方式的晶圓在曝光裝置中形成圖案層的示意圖。 3 is a schematic view showing the formation of a pattern layer in a exposure apparatus of a wafer according to some embodiments of the present invention.

第4圖繪示根據本發明部分實施方式測量第一組晶圓真實疊對度量值的方法流程圖。 4 is a flow chart of a method for measuring a true stack pair metric of a first set of wafers in accordance with some embodiments of the present invention.

第5圖繪示根據本發明部分實施方式計算第二組晶圓虛擬疊對度量值的方法流程圖。 5 is a flow chart of a method for calculating a second set of wafer virtual overlay metrics in accordance with some embodiments of the present invention.

第6圖繪示根據本發明部分實施方式的晶圓爆炸圖。 Figure 6 is a diagram showing a wafer exploded view in accordance with some embodiments of the present invention.

以下將以圖式及詳細說明清楚說明本發明之精神,任何所屬技術領域中具有通常知識者在瞭解本發明之較佳實施例後,當可由本發明所教示之技術,加以改變及修飾,其並不脫離本發明之精神與範圍。並為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,熟悉本領域之技術人員應當瞭解到,在本發明部分實施方式中,這些實務上的細節並非必要的,因此不應用以限制本發明。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。 The spirit and scope of the present invention will be apparent from the following description of the preferred embodiments of the invention. The spirit and scope of the invention are not departed. For the sake of clarity, many of the practical details will be explained in the following description. However, it should be understood by those skilled in the art that the details of the invention are not essential to the details of the invention. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.

在習知的技術中,是以一真實測量來得知晶圓圖案層間的疊對誤差,通常又稱為一真實疊對度量。但若對所有的晶圓都進行真實測量,將對測量系統造成龐大的負 荷。因此,必須使用一種計算疊對度量值的方法,並能據此獲得可靠性高的一虛擬疊對度量值。虛擬疊對度量值能取代部分的真實疊對度量值,以減輕真實測量時的系統負荷。本發明提供了一種計算虛擬疊對度量值的機制,用以減輕真實疊對度量系統的負荷。 In the prior art, the overlay error between the layers of the wafer pattern is known by a real measurement, which is also commonly referred to as a true overlay metric. However, if all the wafers are actually measured, it will cause a huge negative impact on the measurement system. Lotus. Therefore, a method of calculating the overlapping pair metrics must be used, and a highly reliable virtual overlay metric can be obtained accordingly. The virtual overlay pair metric can replace part of the true overlay metric to reduce the system load during real measurements. The present invention provides a mechanism for calculating virtual overlay metrics to mitigate the load of a true overlay metric system.

第1圖為依據本發明部分實施例的晶圓疊對度量值測量設備,其中每一片晶圓都具有複數個圖案層。晶圓疊對度量測量設備100包含一資料庫110,一曝光裝置120,一自適應裝置130、一真實疊對度量裝置140以及一虛擬疊對度量裝置150。在第1圖中,實線表示晶圓的行進路線,而虛線表示資料流的傳輸路線。 1 is a wafer stack metric measurement device in accordance with some embodiments of the present invention, wherein each wafer has a plurality of pattern layers. The wafer stack metric measuring apparatus 100 includes a database 110, an exposure device 120, an adaptive device 130, a real overlay metric device 140, and a virtual overlay metric device 150. In Fig. 1, the solid line indicates the traveling route of the wafer, and the broken line indicates the transmission route of the data stream.

請參閱第1圖,當這些晶圓進入真實疊對度量裝置140以及虛擬疊對度量裝置150後,即能得知晶圓的疊對度量值。這些疊對度量值將儲存至資料庫110中,並作為歷史疊對度量值。資料庫110中的歷史疊對度量值可作為反饋信息以增加製程間控制(run-to-run)的效率。其中製程間控制可為批與批(lot-to-lot)之間的控制或晶圓與晶圓(wafer-to-wafer)之間的控制。 Referring to FIG. 1, when the wafers enter the real overlay metric device 140 and the virtual overlay metric device 150, the overlay metric of the wafer can be known. These overlay pairs of metrics are stored in the repository 110 and used as historical overlay metrics. Historical overlay metrics in database 110 can be used as feedback information to increase the efficiency of run-to-run. The inter-process control can be between batch-to-lot control or wafer-to-wafer control.

在曝光裝置120中,圖案層是依據一製程配方形成於晶圓上,且同一片晶圓上的圖案層彼此之間並不相同。 In the exposure device 120, the pattern layers are formed on the wafer according to a process recipe, and the pattern layers on the same wafer are not identical to each other.

曝光裝置120中的製程配方包含一曝光區域內參數以及一曝光區域間參數。曝光區域內參數包含一晶圓水平位移參數、一晶圓垂直位移參數、一晶圓水平放大參數、一晶圓垂直放大參數、一晶圓水平旋轉參數以及一晶圓垂 直旋轉參數。曝光區域間參數包含一光罩水平位移參數、一光罩垂直位移參數、一光罩水平放大參數、一光罩垂直放大參數、一光罩水平旋轉參數以及一光罩垂直旋轉參數。 The process recipe in exposure device 120 includes an in-exposure region parameter and an inter-exposure region parameter. The parameters in the exposure area include a wafer horizontal displacement parameter, a wafer vertical displacement parameter, a wafer horizontal amplification parameter, a wafer vertical amplification parameter, a wafer horizontal rotation parameter, and a wafer sag Rotate the parameters directly. The inter-exposure zone parameters include a reticle horizontal displacement parameter, a reticle vertical displacement parameter, a reticle horizontal magnification parameter, a reticle vertical magnification parameter, a reticle horizontal rotation parameter, and a reticle vertical rotation parameter.

設備100更包含一先進製程控制器160,其可從曝光裝置120中取出製程配方,以及從資料庫110取出歷史疊對度量值。先進製程控制器160能分析歷史疊對度量值並決定製程配方中的疊對參數,接著再將變更過的製程配方傳送至曝光裝置120中。 Apparatus 100 further includes an advanced process controller 160 that can retrieve process recipes from exposure apparatus 120 and retrieve historical overlay metrics from database 110. The advanced process controller 160 can analyze the historical overlay metrics and determine the overlay parameters in the process recipe, and then transfer the changed process recipes to the exposure device 120.

當晶圓在曝光裝置120中形成圖案層後,自適應裝置130先由資料庫110取得歷史疊對度量值,並分配一第一組晶圓進入真實疊對度量裝置140中以及一第二組晶圓進入虛擬疊對度量裝置150中。自適應裝置130是以歷史疊對度量值的穩定性來決定第一組晶圓以及第二組晶圓的數量。 After the wafer forms a pattern layer in the exposure device 120, the adaptive device 130 first obtains the historical overlay metric from the database 110, and assigns a first set of wafers into the real overlay metric device 140 and a second group. The wafer enters the virtual overlay metric device 150. The adaptive device 130 determines the number of first and second sets of wafers based on the stability of the historical overlay metric.

在真實疊對度量裝置140中,將真實測量第一組晶圓的真實疊對度量值。而在虛擬疊對度量裝置150中,是以資料庫110中的歷史疊對度量值來計算第二組晶圓的虛擬疊對度量值。應用虛擬疊對度量裝置150能大幅減少真實疊對度量裝置140的系統負荷。 In the true overlay pair metric device 140, the true overlay metric values for the first set of wafers will be measured realistically. In the virtual overlay metric device 150, the virtual overlay metric of the second set of wafers is calculated based on the historical overlay metric in the database 110. Applying the virtual overlay pair metric device 150 can substantially reduce the system load of the true overlay pair metric device 140.

由於真實疊對度量裝置140與虛擬疊對度量裝置150均連結至資料庫110,因此測量而得的真實疊對度量值與計算而得的虛擬疊對度量值均將儲存至資料庫110中,以作為歷史疊對度量值。 Since both the real overlay pair metric device 140 and the virtual overlay metric device 150 are coupled to the database 110, the measured true overlay metrics and the calculated virtual overlay metrics are stored in the repository 110. Take the metric as a historical overlay.

第2圖為依據本發明部分實施例的晶圓疊對度量 值測量方法。第2圖提供晶圓疊對度量值測量方法的流程圖,且此方法係於第1圖的設備100上運行。 2 is a wafer stack pair metric according to some embodiments of the present invention. Value measurement method. Figure 2 provides a flow chart of a wafer overlay metric measurement method that is run on device 100 of Figure 1.

首先執行步驟210,取出資料庫110中的歷史疊對度量值。晶圓上圖案層的疊對度量值已儲存至資料庫110中,這些疊對度量值將作為歷史疊對度量值,並用於下述步驟中。 First, step 210 is performed to retrieve the historical overlay metric value in the database 110. The overlay metric values for the pattern layers on the wafer have been stored in the database 110. These overlay metric values will be used as historical overlay metrics and used in the following steps.

繼續執行步驟220,曝光裝置120依據製程配方,在每一個晶圓上各形成一層圖案層。請參閱第3圖以進一步了解步驟220。第3圖繪示晶圓在曝光裝置120中形成圖案層的示意圖。在第3圖中,曝光裝置120分別形成不同類型的圖案層於每一個晶圓上。為了確認晶圓上圖案層間疊對的精準度,必須測量或計算這些在曝光裝置120中形成之圖案層的疊對度量值。 Continuing with step 220, the exposure device 120 forms a pattern layer on each of the wafers according to the process recipe. See Figure 3 for a further understanding of step 220. FIG. 3 is a schematic view showing the formation of a pattern layer in the exposure device 120 by the wafer. In FIG. 3, exposure devices 120 respectively form different types of pattern layers on each of the wafers. In order to confirm the accuracy of the pattern layer stacking on the wafer, the overlay metric values of the pattern layers formed in the exposure device 120 must be measured or calculated.

接著執行步驟230,分配第一組晶圓進入真實疊對度量裝置140以及第二組晶圓進入虛擬疊對度量裝置150。自適應裝置130在分析資料庫110中的歷史疊對度量值後,決定第一組晶圓以及第二組晶圓的數量。 Next, step 230 is performed to allocate the first set of wafers into the real overlay pair metric device 140 and the second set of wafers into the virtual overlay metric device 150. The adaptive device 130 determines the number of the first set of wafers and the second set of wafers after analyzing the historical overlay metrics in the database 110.

繼續執行步驟240,在真實疊對度量裝置140中測量第一組晶圓的真實疊對度量值。另一方面,步驟250係於虛擬疊對度量裝置150中,由取出的歷史疊對度量值計算第二組晶圓的虛擬疊對度量值。 Continuing with step 240, a true overlay pair metric for the first set of wafers is measured in the real overlay pair metric device 140. On the other hand, step 250 is tied to virtual overlay metric device 150 to calculate a virtual overlay metric for the second set of wafers from the retrieved historical overlay metric.

最後執行步驟260,儲存第一組晶圓的真實疊對度量值以及第二組晶圓的虛擬疊對度量值至資料庫110中。儲存至資料庫110中之第一組晶圓的真實疊對度量值與第 二組晶圓的虛擬疊對度量值即為歷史疊對度量值,並能作為下一階段製程的反饋信息。 Finally, step 260 is performed to store the true overlay metric of the first set of wafers and the virtual overlay metric of the second set of wafers into the repository 110. The true stack pair metric and the first set of wafers stored in the database 110 The virtual overlay metric of the two sets of wafers is the historical overlay metric and can be used as feedback information for the next stage of the process.

第4圖繪示測量第一組晶圓的真實疊對度量值之方法流程圖,請參閱第4圖以進一步了解步驟240。首先執行步驟410,提供複數個場於第一組晶圓表面,其中此些場包含複數個內場位於晶圓表面之一中央區中、複數個外場鄰近於晶圓表面之一周圍邊緣。 Figure 4 is a flow chart showing the method of measuring the true overlay metric of the first set of wafers, see Figure 4 for a further understanding of step 240. First, step 410 is performed to provide a plurality of fields on the first set of wafer surfaces, wherein the fields include a plurality of internal fields in a central region of the wafer surface, and the plurality of external fields are adjacent to a peripheral edge of the wafer surface.

繼續執行步驟420,測量其中一內場中第一數量的疊對結構,並得到第一數量的疊對狀況。 Continuing to step 420, a first number of stacked pairs in one of the inner fields is measured and a first number of stacked pairs are obtained.

接著執行步驟430,測量其中一外場中第二數量的疊對結構,並得到第二數量的疊對狀況。其中第二數量大於第一數量。 Next, step 430 is performed to measure a second number of overlapping pairs in one of the outer fields and obtain a second number of overlapping pairs. Wherein the second quantity is greater than the first quantity.

最後執行步驟440,藉由第一數量的疊對狀況以及第二數量的疊對狀況決定晶圓上圖案層之真實疊對度量值。 Finally, step 440 is performed to determine a true overlay metric of the pattern layer on the wafer by the first number of overlay states and the second number of overlay states.

而步驟250係計算第二組晶圓的虛擬疊對度量值,請參閱第3圖以及第5圖以進一步了解步驟250。第5圖繪示計算第二組晶圓的虛擬疊對度量值之方法流程圖。首先執行步驟510,從第二組晶圓中的一晶圓310上的多個圖案層中選定一第一圖案層312A。請一併參閱第3圖,晶圓310上具有多個圖案層外,更於曝光裝置120中形成第一圖案層312A。第一圖案層312A係以虛擬疊對度量裝置150計算其虛擬疊對度量值。第一圖案層312A的虛擬疊對度量值係由第一虛擬疊對度量值以及第二虛擬疊對度量值 加總而得,其分別以不同的機制進行計算。 Step 250 calculates the virtual overlay metric for the second set of wafers, see FIG. 3 and FIG. 5 for further understanding of step 250. Figure 5 is a flow chart showing the method of calculating the virtual overlay metric of the second set of wafers. First, step 510 is performed to select a first pattern layer 312A from a plurality of pattern layers on a wafer 310 of the second set of wafers. Referring to FIG. 3 together, the wafer 310 has a plurality of pattern layers on the wafer 310, and a first pattern layer 312A is formed in the exposure device 120. The first pattern layer 312A calculates its virtual overlay metric value with the virtual overlay pair metric device 150. The virtual overlay metric of the first pattern layer 312A is determined by the first virtual overlay metric and the second virtual overlay metric In total, they are calculated by different mechanisms.

步驟521至525係用於計算晶圓310上第一圖案層312A的第一虛擬疊對度量值。請先參閱步驟521,搜尋具有一第二圖案層322A的一第一參照晶圓320,其中第二圖案層322A形成至第一參照晶圓320的時間最接近第一圖案層312A形成至晶圓310的時間。請參閱第3圖,在曝光裝置120中,與第一圖案層312A不同類型的圖案層將形成於第一參照晶圓320上。並且,形成第二圖案層322A至第一參照晶圓320的時間最接近形成第一圖案層312A至晶圓310的時間。 Steps 521 through 525 are used to calculate a first virtual overlay metric of the first pattern layer 312A on the wafer 310. Referring to step 521, a first reference wafer 320 having a second pattern layer 322A is formed. The second pattern layer 322A is formed to the first reference wafer 320 at a time closest to the first pattern layer 312A. 310 hours. Referring to FIG. 3, in the exposure device 120, a different type of pattern layer from the first pattern layer 312A will be formed on the first reference wafer 320. Also, the time from the formation of the second pattern layer 322A to the first reference wafer 320 is closest to the time at which the first pattern layer 312A to the wafer 310 are formed.

繼續執行步驟522,搜尋具有一第一圖案層312B的一標準晶圓330,其中第一圖案層312B形成至標準晶圓330的時間早於第一圖案層312A形成至晶圓310的時間。請參閱第3圖,第一圖案層312B與第一圖案層312A為相同類型的圖案層。並且,形成第一圖案層312B至標準晶圓330的時間早於形成第一圖案層312A至晶圓310的時間。 Continuing to step 522, a standard wafer 330 having a first pattern layer 312B is searched for, wherein the first pattern layer 312B is formed to the standard wafer 330 earlier than the first pattern layer 312A is formed to the wafer 310. Referring to FIG. 3, the first pattern layer 312B and the first pattern layer 312A are the same type of pattern layer. Moreover, the time from the formation of the first pattern layer 312B to the standard wafer 330 is earlier than the time from the formation of the first pattern layer 312A to the wafer 310.

接著執行步驟523,搜尋具有一第二圖案層322B的一第二參照晶圓340,其中第二圖案層322B形成至第二參照晶圓340的時間最接近第一圖案層312B形成至標準晶圓330的時間。請參閱第3圖,第二圖案層322B與第二圖案層322A為相同類型的圖案層。並且,形成第二圖案層322B至第二參照晶圓340的時間最接近形成第一圖案層312B至標準晶圓330的時間。 Next, step 523 is performed to search for a second reference wafer 340 having a second pattern layer 322B. The second pattern layer 322B is formed to the second reference wafer 340 at a time closest to the first pattern layer 312B to form a standard wafer. 330 hours. Referring to FIG. 3, the second pattern layer 322B and the second pattern layer 322A are the same type of pattern layer. Also, the time from the formation of the second pattern layer 322B to the second reference wafer 340 is closest to the time when the first pattern layer 312B is formed to the standard wafer 330.

在本發明之部分實施例中,形成第一圖案層312B 至標準晶圓330的時間、形成第二圖案層322A至第一參照晶圓320的時間、以及形成第二圖案層322B至第二參照晶圓340的時間均早於形成第一圖案層312A至晶圓310的時間。 In some embodiments of the present invention, the first pattern layer 312B is formed The time to the standard wafer 330, the time to form the second pattern layer 322A to the first reference wafer 320, and the time to form the second pattern layer 322B to the second reference wafer 340 are both earlier than the formation of the first pattern layer 312A The time of wafer 310.

繼續執行步驟524,從資料庫110中取出標準晶圓330上第一圖案層312B、第一參照晶圓320上第二圖案層322A以及第二參照晶圓340上第二圖案層322B的疊對度量值。由於第一圖案層312B以及第二圖案層322A與322B的形成時間均早於第一圖案層312A,此些圖案層的虛擬疊對度量值均儲存於資料庫110中作為歷史疊對度量值。能藉由此些歷史疊對度量值計算出晶圓310上第一圖案層312A的第一虛擬疊對度量值。 Proceed to step 524, the first pattern layer 312B on the standard wafer 330, the second pattern layer 322A on the first reference wafer 320, and the second pattern layer 322B on the second reference wafer 340 are taken out from the database 110. metric. Since the formation time of the first pattern layer 312B and the second pattern layers 322A and 322B is earlier than the first pattern layer 312A, the virtual overlay metric values of the pattern layers are stored in the database 110 as historical overlay metric values. The first virtual overlay metric value of the first pattern layer 312A on the wafer 310 can be calculated by the historical overlay metrics.

接著執行步驟525,計算第一參照晶圓320上第二圖案層322A以及第二參照晶圓340上第二圖案層322B之間的一疊對度量差值。先前於步驟524中已取出第二圖案層322A與322B的疊對度量值,依此計算此兩者疊對度量值之間的差值,此疊對度量差值又稱為裝置校準。裝置校準為曝光裝置120中產生的疊對度量偏差,藉由裝置校準能精確地計算出晶圓310上第一圖案層312A的第一虛擬疊對度量值。 Next, step 525 is performed to calculate a stack of metric difference values between the second pattern layer 322A on the first reference wafer 320 and the second pattern layer 322B on the second reference wafer 340. The overlapping metric values of the second pattern layers 322A and 322B have been previously taken out in step 524, and the difference between the two pairs of metric values is calculated accordingly, which is also referred to as device calibration. The device is calibrated to the overlay metric bias produced in exposure device 120, and the first virtual overlay metric value of first pattern layer 312A on wafer 310 can be accurately calculated by device calibration.

最後執行步驟526,將標準晶圓330上第一圖案層312B的疊對度量值加上此疊對度量差值,以得到晶圓310上第一圖案層312A的第一虛擬疊對度量值。在步驟524中已取出第一圖案層312A的疊對度量值,接著以疊對度量差 值進行修正,計算出晶圓310上第一圖案層312A的第一虛擬疊對度量值。藉由考慮曝光裝置120在製程中對疊對度量值產生的影響,晶圓310上第一圖案層312A的第一虛擬疊對度量值之可靠性將大幅增加。 Finally, step 526 is performed to add the overlay metric difference value of the first pattern layer 312B on the standard wafer 330 to obtain the first virtual overlay metric value of the first pattern layer 312A on the wafer 310. The overlay metric value of the first pattern layer 312A has been taken out in step 524, followed by the difference in the overlay metric The value is corrected to calculate a first virtual overlay metric for the first pattern layer 312A on the wafer 310. The reliability of the first virtual overlay metric of the first pattern layer 312A on the wafer 310 will be substantially increased by considering the effect of the exposure device 120 on the overlay metric values in the process.

另一方面,虛擬疊對度量裝置150亦對晶圓310自身之特徵進行校準。曝光裝置120將形成第一圖案層312A至晶圓310上,以及形成第一圖案層312B至標準晶圓330上。但晶圓310與標準晶圓330間存在特徵上的差異,舉例來說,晶圓尺寸、晶圓的位移或是旋轉。且形成第一圖案層312A與312B的光罩間亦具有特徵上的差異,舉例來說,光罩尺寸、光罩的位移或是旋轉。 On the other hand, the virtual overlay metric device 150 also calibrates the features of the wafer 310 itself. Exposure device 120 will form first pattern layer 312A onto wafer 310 and form first pattern layer 312B onto standard wafer 330. However, there are characteristic differences between the wafer 310 and the standard wafer 330, for example, wafer size, wafer displacement or rotation. There is also a difference in characteristics between the reticle forming the first pattern layers 312A and 312B, for example, the size of the reticle, the displacement of the reticle or the rotation.

此些晶圓或光罩特徵上的差異將導致計算的虛擬疊對度量值產生偏值。若忽略此些差異,前述計算得之第一虛擬疊對度量值必然難以近似至真實疊對度量值。因此,為了進一步提升虛擬疊對度量值的可靠性,步驟531與532將用於校準不同晶圓間或不同光罩間特徵上的差異。 Differences in such wafer or reticle features will result in a bias value for the calculated virtual overlay metric. If these differences are ignored, the previously calculated first virtual overlay pair metric must be difficult to approximate to the true overlay metric. Therefore, to further enhance the reliability of the virtual overlay metric, steps 531 and 532 will be used to calibrate differences in features between different wafers or between different reticle.

如前所述,晶圓310上具有多個圖案層。請參閱第6圖,第6圖繪示晶圓310的爆炸圖。在曝光裝置120中形成第一圖案層312A前,晶圓310上已有一第三圖案層314與一第四圖案層316。由於第三圖案層314與第四圖案層316的形成時間均早於第一圖案層312A,第三圖案層314與第四圖案層316的疊對度量值已儲存於資料庫110作為歷史疊對度量值。第三圖案層314與第四圖案層316的疊對度量值代表著晶圓310的尺寸、位移或是旋轉上的特徵。 As previously mentioned, the wafer 310 has a plurality of patterned layers thereon. Please refer to FIG. 6 , which illustrates an exploded view of the wafer 310 . Before the first pattern layer 312A is formed in the exposure device 120, a third pattern layer 314 and a fourth pattern layer 316 are formed on the wafer 310. Since the formation time of the third pattern layer 314 and the fourth pattern layer 316 is earlier than the first pattern layer 312A, the overlapping metric values of the third pattern layer 314 and the fourth pattern layer 316 have been stored in the database 110 as a historical overlay. metric. The overlay metric values of the third pattern layer 314 and the fourth pattern layer 316 represent features of the wafer 310 in size, displacement, or rotation.

請參閱步驟531,取出資料庫110中晶圓310上一或多個圖案層的疊對度量值,其中此些圖案層形成至晶圓310的時間早於第一圖案層312A。由於第三圖案層314與第四圖案層316的形成時間均早於第一圖案層312A,圖案層314與316的疊對度量值已儲存至資料庫110中,可於步驟531中將這些疊對度量值取出以供後續計算使用。 Referring to step 531, the overlay metric values of one or more pattern layers on the wafer 310 in the database 110 are taken out, wherein the pattern layers are formed to the wafer 310 earlier than the first pattern layer 312A. Since the formation time of the third pattern layer 314 and the fourth pattern layer 316 is earlier than the first pattern layer 312A, the overlapping metric values of the pattern layers 314 and 316 have been stored in the database 110, and the stacks may be stacked in step 531. The metrics are taken for use in subsequent calculations.

接著執行步驟532,加總形成時間早於第一圖案層312A的此些圖案層之疊對度量值,以計算出晶圓310上第一圖案層312A的第二虛擬疊對度量值。第二虛擬疊對度量值又稱作晶圓特徵校準,第三圖案層314與第四圖案層316的疊對誤差特徵將保留於第二虛擬疊對度量值中,並大幅提升虛擬疊對量度量值的可靠性。 Next, step 532 is performed to add a stack metric value of the pattern layers earlier than the first pattern layer 312A to calculate a second virtual overlay metric value of the first pattern layer 312A on the wafer 310. The second virtual overlay pair metric is also referred to as wafer feature calibration, and the overlay error feature of the third pattern layer 314 and the fourth pattern layer 316 will remain in the second virtual overlay metric and substantially increase the virtual overlay metric. The reliability of the magnitude.

繼續執行步驟540,加總第一虛擬疊對度量值以及第二虛擬疊對度量值以得到晶圓310上第一圖案層312A的虛擬疊對度量值。藉由修正曝光裝置120在製程中對疊對度量值產生的影響,以及修正晶圓間或光罩間特徵上的差異,即能計算得虛擬疊對度量值。此虛擬疊對度量值之可靠性高,能部分或完全取代真實疊對度量值以降低真實疊對度量裝置140的系統負荷。 Proceeding to step 540, the first virtual overlay pair metric and the second virtual overlay metric are summed to obtain a virtual overlay metric of the first pattern layer 312A on the wafer 310. The virtual overlay metric can be calculated by correcting the effect of the exposure device 120 on the overlay metrics in the process, and by correcting differences in features between wafers or reticle. This virtual overlay pair metric has high reliability and can partially or completely replace the true overlay metric to reduce the system load of the true overlay metric device 140.

在本發明之部分實施例中是將第一虛擬疊對度量值與第二虛擬疊對度量值加總得到虛擬疊對度量值。其中,第一虛擬疊對度量值以及第二虛擬疊對度量值係由上述的機制或演算法計算而得,但並不以此些方法為限。可採用任何步驟或方法,以能有效並精確地計算出近似於真 實疊對度量值的虛擬疊對度量值,來減少疊對度量裝置的系統負荷。 In some embodiments of the present invention, the first virtual overlay pair metric and the second virtual overlay metric are summed to obtain a virtual overlay metric. The first virtual overlay pair metric and the second virtual overlay metric are calculated by the above mechanism or algorithm, but are not limited by the methods. Any step or method can be used to calculate the approximate true and effective The virtual overlay metric of the metric value is actually stacked to reduce the system load of the overlay metric device.

此外,曝光裝置120中的製程配方以及資料庫110中的歷史疊對度量值將傳送至先進製程控制器160中。先進製程控制器160分析歷史疊對度量值,重新決定製程配方中的疊對參數後,再將新的製程配方傳送回曝光裝置120。使用先進製程控制器160,能使在曝光裝置120中形成的圖案層間具有更佳的對準性。 In addition, the process recipes in exposure device 120 and the historical overlay metrics in database 110 are communicated to advanced process controller 160. The advanced process controller 160 analyzes the historical overlay metrics, re-determines the overlay parameters in the process recipe, and then transmits the new process recipe back to the exposure device 120. Using the advanced process controller 160, it is possible to achieve better alignment between the pattern layers formed in the exposure device 120.

請繼續參閱第6圖以進一步了解先進製程控制器160如何提升圖案層之間的對準性。如前所述,晶圓310上的第四圖案層316的形成時間早於第三圖案層314。當第三圖案層314形成後,藉由真實疊對度量值測量或虛擬疊對度量值計算來得到第三圖案層314的疊對度量值。 Please continue to Figure 6 to learn more about how the advanced process controller 160 enhances the alignment between the pattern layers. As previously described, the fourth pattern layer 316 on the wafer 310 is formed earlier than the third pattern layer 314. After the third pattern layer 314 is formed, the overlay metric values of the third pattern layer 314 are obtained by a true overlay pair metric measurement or a virtual overlay metric calculation.

第三圖案層314的疊對度量值代表著第三圖案層314與第四圖案層316之間的疊對誤差,接著更將形成第一圖案層312A於第三圖案層314上。為了降低第一圖案層312A與第三圖案層314之間的疊對誤差,在形成第一圖案層312A於晶圓310上前,應用先進製程控制器160進行運算控制。 The overlay metric of the third pattern layer 314 represents the overlay error between the third pattern layer 314 and the fourth pattern layer 316, and then the first pattern layer 312A is formed over the third pattern layer 314. In order to reduce the overlay error between the first pattern layer 312A and the third pattern layer 314, the advanced process controller 160 is applied for arithmetic control before the first pattern layer 312A is formed on the wafer 310.

藉由改變曝光裝置120中製程配方內的疊對參數來校準疊對誤差。其中曝光裝置120中製程配方包含一曝光區域內參數以及一曝光區域間參數。曝光區域內參數包含一晶圓水平位移參數、一晶圓垂直位移參數、一晶圓水平放大參數、一晶圓垂直放大參數、一晶圓水平旋轉參數 以及一晶圓垂直旋轉參數。曝光區域間參數包含一光罩水平位移參數、一光罩垂直位移參數、一光罩水平放大參數、一光罩垂直放大參數、一光罩水平旋轉參數以及一光罩垂直旋轉參數。 The overlay error is calibrated by changing the overlay parameters within the recipe recipe in exposure apparatus 120. The process recipe in the exposure device 120 includes an intra-exposure region parameter and an exposure inter-region parameter. The parameters in the exposure area include a wafer horizontal displacement parameter, a wafer vertical displacement parameter, a wafer horizontal amplification parameter, a wafer vertical amplification parameter, and a wafer horizontal rotation parameter. And a wafer vertical rotation parameter. The inter-exposure zone parameters include a reticle horizontal displacement parameter, a reticle vertical displacement parameter, a reticle horizontal magnification parameter, a reticle vertical magnification parameter, a reticle horizontal rotation parameter, and a reticle vertical rotation parameter.

先進製程控制器160先分析第三圖案層314的疊對度量值,依此重新決定製程配方中疊對參數的數值。具有新疊對參數的製程配方將傳送回曝光裝置120中,並據此形成第一圖案層312A於晶圓310上。以新疊對參數形成的第一圖案層312A,其與第三圖案層314之間的疊對誤差將大幅降低。 The advanced process controller 160 first analyzes the overlay metric values of the third pattern layer 314, thereby redetermining the values of the overlay parameters in the process recipe. The process recipe with the new overlay parameters will be transferred back to the exposure device 120 and the first pattern layer 312A formed thereon on the wafer 310. The stacking error between the first pattern layer 312A formed with the new stacking parameters and the third pattern layer 314 will be greatly reduced.

由上述本發明揭露之實施例中可知,本發明具有下列優點。在部份實施例中,虛擬疊對度量值能部分地取代真實疊對度量值,並大幅降低真實疊對度量裝置140的系統負荷。藉由裝置校準與晶圓特徵校準計算出的虛擬疊對度量值能非常近似於真實測量得到的真實疊對度量值,因此,虛擬疊對度量值具有非常高的可靠性。 It will be apparent from the above-disclosed embodiments of the present invention that the present invention has the following advantages. In some embodiments, the virtual overlay pair metric can partially replace the true overlay pair metric and substantially reduce the system load of the true overlay pair metric device 140. The virtual overlay metric calculated by device calibration and wafer feature calibration can closely approximate the true overlay metric obtained by real measurement. Therefore, the virtual overlay metric has very high reliability.

此外,真實疊對度量值與虛擬疊對度量值將儲存至資料庫110中作為歷史疊對度量值,此些歷史疊對度量值作為下一階段製程的反饋信息,同時增加製程間控制的效率。藉由虛擬疊對度量值的計算,先進製程控制器160能快速取得圖案層間的疊加訊息,並立即改變製程配方以減少後續形成之圖案層間的疊對誤差。總結以上數點,藉由計算虛擬疊對度量值能降低真實疊對度量裝置140的系統負荷,並且減少圖案層間的疊對誤差。 In addition, the true overlay metric and the virtual overlay metric are stored in the database 110 as historical overlay metrics, which are used as feedback information for the next phase of the process, while increasing the efficiency of the inter-process control. . By calculating the virtual overlay metrics, the advanced process controller 160 can quickly obtain overlay information between the pattern layers and immediately change the recipe recipe to reduce stacking errors between subsequently formed pattern layers. Summarizing the above points, the calculation of the virtual overlay metric can reduce the system load of the true overlay pair metric device 140 and reduce the overlay error between the pattern layers.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and retouched without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

210~260‧‧‧步驟 210~260‧‧‧Steps

Claims (10)

一種測量複數個晶圓之疊對度量值的方法,其中每一片晶圓上有複數個圖案層,該方法包含:取出一資料庫中之歷史疊對度量值;測量一第一組晶圓之真實疊對度量值;以取出之該歷史疊對度量值計算一第二組晶圓之虛擬疊對度量值;以及儲存該真實疊對度量值以及該虛擬疊對度量值至該資料庫中。 A method of measuring a stack metric of a plurality of wafers, wherein each wafer has a plurality of pattern layers, the method comprising: taking a historical overlay metric in a database; measuring a first set of wafers a true overlay pair metric; calculating a virtual overlay metric of the second set of wafers by taking the historical overlay pair metric; and storing the true overlay metric and the virtual overlay metric into the database. 如請求項1所述之方法,其中該些晶圓上的該些圖案層之疊對度量值均儲存至資料庫作為該歷史疊對度量值。 The method of claim 1, wherein the stack metric values of the pattern layers on the wafers are stored to the database as the historical overlay metric. 如請求項1所述之方法,其中測量該第一組晶圓之該真實疊對度量值包含:提供複數個場於該第一組晶圓之一表面,其中該些場包含複數個內場位於該表面之一中央區中以及複數個外場鄰近於該表面之一周圍邊緣;測量其中一內場中一第一數量的疊對結構並得到該第一數量的疊對狀況;測量其中一外場中一第二數量的疊對結構並得到該第二數量的疊對狀況,其中該第二數量大於該第一數量;以及 以該第一數量的疊對狀況以及該第二數量的疊對狀況決定該晶圓上其中一圖案層之該真實疊對度量值。 The method of claim 1, wherein measuring the true overlay metric of the first set of wafers comprises: providing a plurality of fields on a surface of the first set of wafers, wherein the fields comprise a plurality of infields Located in a central region of the surface and a plurality of outer fields adjacent to a peripheral edge of the surface; measuring a first number of overlapping structures in one of the inner fields and obtaining the first number of overlapping pairs; measuring one of a second number of stacked pairs in the outer field and obtaining the second number of stacked pairs, wherein the second quantity is greater than the first quantity; The true overlay metric of one of the pattern layers on the wafer is determined by the first number of overlay states and the second number of overlay states. 如請求項1所述之方法,其中計算該第二組晶圓之該虛擬疊對度量值包含:自該第二組晶圓中之一晶圓上挑選一第一圖案層;以該歷史疊對度量值計算該第一圖案層之一第一虛擬疊對度量值以及一第二虛擬疊對度量值;以及加總該第一虛擬疊對度量值以及該第二虛擬疊對度量值以得到該晶圓上該第一圖案層之一虛擬疊對度量值。 The method of claim 1, wherein calculating the virtual overlay metric of the second set of wafers comprises: selecting a first pattern layer from one of the second set of wafers; Calculating a first virtual overlay metric value and a second virtual overlay metric value of the first pattern layer for the metric value; and summing the first virtual overlay metric value and the second virtual overlay metric value to obtain One of the first pattern layers on the wafer is a virtual overlay metric. 如請求項4所述之方法,其中計算該晶圓上該第一圖案層之該第一虛擬疊對度量值包含:搜尋具有一第二圖案層的一第一參照晶圓,其中該第二圖案層形成至該第一參照晶圓的時間最接近該第一圖案層形成至該晶圓的時間;搜尋具有該第一圖案層的一標準晶圓,其中該第一圖案層形成至該標準晶圓的時間早於該第一圖案層形成至該晶圓的時間;搜尋具有該第二圖案層的一第二參照晶圓,其中該第二圖案層形成至該第二參照晶圓的時間最接近該第一圖案層形成至該標準晶圓的時間;取出該資料庫中該標準晶圓上該第一圖案層、該第一參照晶圓上該第二圖案層以及該第二參照晶圓上該第二圖 案層之疊對度量值;計算該第一參照晶圓上該第二圖案層以及該第二參照晶圓上該第二圖案層之間的疊對度量差值;以及加總該標準晶圓上該第一圖案層之疊對度量值以及該疊對度量差值以得到該晶圓上該第一圖案層之該第一虛擬疊對度量值。 The method of claim 4, wherein calculating the first virtual overlay metric of the first pattern layer on the wafer comprises: searching for a first reference wafer having a second pattern layer, wherein the second Forming the pattern layer to the first reference wafer at a time closest to the time at which the first pattern layer is formed to the wafer; searching for a standard wafer having the first pattern layer, wherein the first pattern layer is formed to the standard The time of the wafer is earlier than the time when the first pattern layer is formed to the wafer; searching for a second reference wafer having the second pattern layer, wherein the second pattern layer is formed to the second reference wafer The time when the first pattern layer is formed to the standard wafer; the first pattern layer on the standard wafer, the second pattern layer on the first reference wafer, and the second reference crystal are taken out from the database The second picture on the circle a stack metric of the layer; calculating a stack metric difference between the second pattern layer on the first reference wafer and the second pattern layer on the second reference wafer; and summing the standard wafer The stack metric value of the first pattern layer and the overlay metric difference value are used to obtain the first virtual overlay metric value of the first pattern layer on the wafer. 如請求項5所述之方法,其中計算該晶圓上該第一圖案層之該第二虛擬疊對度量值包含:取出該資料庫中該晶圓上一或多個圖案層之疊對度量值,其中該些圖案層形成至該晶圓的時間早於該第一圖案層;以及加總該些圖案層之該些疊對度量值以計算得該晶圓上該第一圖案層之該第二虛擬疊對度量值。 The method of claim 5, wherein calculating the second virtual overlay metric of the first pattern layer on the wafer comprises: extracting a stack metric of one or more pattern layers on the wafer in the database a value, wherein the pattern layers are formed to the wafer earlier than the first pattern layer; and the overlap metric values of the pattern layers are added to calculate the first pattern layer on the wafer The second virtual overlay pair metric. 一種晶圓疊對度量值的測量設備,包含:一資料庫,該資料庫內儲存有歷史疊對度量值;以及一疊對度量裝置,其設置能取出該資料庫內之該歷史疊對度量值並量測複數個晶圓的疊對度量值,該疊對度量裝置包含;一真實疊對度量裝置;以及一虛擬疊對度量裝置,其設置能取出該資料庫內之該歷史疊對度量值。 A wafer overlay metric measurement device includes: a database storing historical overlay metrics; and a stack metric device configured to extract the historical overlay metrics in the database And measuring a stack metric of the plurality of wafers, the overlay metric device comprising: a true overlay metric device; and a virtual overlay metric device configured to retrieve the historical overlay metric within the database value. 如請求項7所述之測量設備,其中該虛擬疊對度量裝置係以該歷史疊對度量值計算該些晶圓的虛擬疊對度量值,藉由以下之步驟:自該晶圓上挑選一第一圖案層;搜尋具有一第二圖案層的一第一參照晶圓,其中該第二圖案層形成至該第一參照晶圓的時間最接近該第一圖案層形成至該晶圓的時間;搜尋具有該第一圖案層的一標準晶圓,其中該第一圖案層形成至該標準晶圓的時間早於該第一圖案層形成至該晶圓的時間;搜尋具有該第二圖案層的一第二參照晶圓,其中該第二圖案層形成至該第二參照晶圓的時間最接近該第一圖案層形成至該標準晶圓的時間;取出該資料庫中該標準晶圓上該第一圖案層、該第一參照晶圓上該第二圖案層以及該第二參照晶圓上該第二圖案層之疊對度量值;計算該第一參照晶圓上該第二圖案層以及該第二參照晶圓上該第二圖案層之間的疊對度量差值;取出該資料庫中該晶圓上一或多個圖案層之疊對度量值,其中該些圖案層形成於該晶圓的時間早於該第一圖案層;以及加總該疊對度量差值、該標準晶圓上該第一圖案層之疊對度量值、以及該晶圓上形成時間早於該第一圖案層的該些圖案層之該些疊對度量值以得到該晶圓上該第一圖案 層之一虛擬疊對度量值。 The measuring device of claim 7, wherein the virtual overlay metric device calculates the virtual overlay metric of the wafers by using the historical overlay metric, by selecting one of the wafers a first pattern layer; searching for a first reference wafer having a second pattern layer, wherein the second pattern layer is formed to the first reference wafer at a time closest to the time at which the first pattern layer is formed to the wafer Searching for a standard wafer having the first pattern layer, wherein the first pattern layer is formed to the standard wafer earlier than the first pattern layer is formed to the wafer; the search has the second pattern layer a second reference wafer, wherein the second pattern layer is formed to the second reference wafer at a time closest to the time when the first pattern layer is formed to the standard wafer; and the standard wafer is taken out of the database Calculating a stack metric of the first pattern layer, the second pattern layer on the first reference wafer, and the second pattern layer on the second reference wafer; calculating the second pattern layer on the first reference wafer And the second pattern layer on the second reference wafer a stacking metric difference between the stacks; taking out a stack metric of the one or more pattern layers on the wafer in the database, wherein the pattern layers are formed on the wafer earlier than the first pattern layer; And summing the stack metric difference, the stack metric of the first pattern layer on the standard wafer, and the stacked pairs of the pattern layers on the wafer earlier than the first pattern layer Measured to obtain the first pattern on the wafer One of the layers is a virtual overlay pair metric. 一種形成複數個圖案層於複數個晶圓上的方法,包含:取出一資料庫中的歷史疊對度量值以及一曝光裝置中的一製程配方至一先進製程控制器中;依據該歷史疊對度量值決定該製程配方中之疊對參數;回傳該製程配方至該曝光裝置並依據該製程配方形成該些圖案層於該些晶圓上;測量一第一組晶圓的真實疊對度量值;計算一第二組晶圓的虛擬疊對度量值,包含:從該第二組晶圓中之一晶圓上挑選一第一圖案層;搜尋具有一第二圖案層的一第一參照晶圓,其中該第二圖案層形成至該第一參照晶圓的時間最接近該第一圖案層形成至該晶圓的時間;搜尋具有該第一圖案層的一標準晶圓,其中該第一圖案層形成至該標準晶圓的時間早於該第一圖案層形成至該晶圓的時間;搜尋具有該第二圖案層的一第二參照晶圓,其中該第二圖案層形成至該第二參照晶圓的時間最接近該第一圖案層形成至該標準晶圓的時間;取出該資料庫中該標準晶圓上該第一圖案層、該 第一參照晶圓上該第二圖案層以及該第二參照晶圓上該第二圖案層的疊對度量值;計算該第一參照晶圓上該第二圖案層以及該第二參照晶圓上該第二圖案層之間的疊對度量差值;取出該資料庫該晶圓上一或多個圖案層的疊對度量值,其中該些圖案層形成於該晶圓的時間早於該第一圖案層;以及加總該疊對度量差值、該標準晶圓上該第一圖案層之疊對度量值、以及該晶圓上形成時間早於該第一圖案層的該些圖案層之該些疊對度量值以得到該晶圓上該第一圖案層之一虛擬疊對度量值;以及儲存該真實疊對度量值以及該虛擬疊對度量值至該資料庫中。 A method for forming a plurality of pattern layers on a plurality of wafers, comprising: taking out a historical overlay pair metric in a database and a process recipe in an exposure device to an advanced process controller; The metric determines a stacking parameter in the process recipe; the process recipe is returned to the exposure apparatus and the pattern layer is formed on the wafers according to the process recipe; and the true overlay metric of the first set of wafers is measured Calculating a virtual overlay metric of a second set of wafers, comprising: selecting a first pattern layer from one of the second set of wafers; searching for a first reference having a second pattern layer a wafer, wherein the second pattern layer is formed to the first reference wafer at a time closest to the time at which the first pattern layer is formed to the wafer; searching for a standard wafer having the first pattern layer, wherein the Forming a pattern layer to the standard wafer earlier than a time at which the first pattern layer is formed to the wafer; searching for a second reference wafer having the second pattern layer, wherein the second pattern layer is formed to Second reference wafer Between the first pattern layer is formed closest to the standard time of the wafer; the first pattern layer on the wafer taken out of the standard database, the Calculating a stack metric of the second pattern layer on the second reference layer and the second pattern layer on the second reference wafer; calculating the second pattern layer and the second reference wafer on the first reference wafer a stacking metric difference between the second pattern layers; taking out a stack metric of the one or more pattern layers on the wafer of the database, wherein the pattern layers are formed on the wafer earlier than the a first pattern layer; and a total of the overlay metric difference, a stack metric of the first pattern layer on the standard wafer, and the pattern layer on the wafer prior to the first pattern layer The stacked pairs of metrics to obtain a virtual overlay metric of the first pattern layer on the wafer; and storing the true overlay metric and the virtual overlay metric into the database. 如請求項9所述之方法,其中測量該第一組晶圓之真實疊對度量值包含:提供複數個場於該第一組晶圓之一表面,其中該些場包含複數個內場位於該表面之一中央區中以及複數個外場鄰近於該表面之一周圍邊緣。測量其中一內場中一第一數量的疊對結構並得到該第一數量的疊對狀況。測量其中一外場中一第二數量的疊對結構並得到該第二數量的疊對狀況,其中該第二數量大於該第一數量。藉由該第一數量的疊對狀況以及該第二數量的疊對狀 況決定該晶圓上該圖案層之該真實疊對度量。 The method of claim 9, wherein measuring the true overlay metric of the first set of wafers comprises: providing a plurality of fields on a surface of the first set of wafers, wherein the fields comprise a plurality of infields One of the central regions of the surface and the plurality of outer fields are adjacent to a peripheral edge of one of the surfaces. A first number of stacked pairs in one of the inner fields is measured and the first number of stacked pairs is obtained. Measuring a second number of stacked pairs in one of the outer fields and obtaining the second number of stacked pairs, wherein the second amount is greater than the first number. By the first number of stacked pairs and the second number of stacked pairs The condition determines the true overlay metric for the pattern layer on the wafer.
TW103123005A 2014-04-14 2014-07-03 Overlay metrology method TWI544288B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/252,612 US9164398B2 (en) 2013-02-27 2014-04-14 Overlay metrology method

Publications (2)

Publication Number Publication Date
TW201539145A true TW201539145A (en) 2015-10-16
TWI544288B TWI544288B (en) 2016-08-01

Family

ID=54851302

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103123005A TWI544288B (en) 2014-04-14 2014-07-03 Overlay metrology method

Country Status (1)

Country Link
TW (1) TWI544288B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763595B (en) * 2021-08-05 2022-05-01 台灣積體電路製造股份有限公司 Measurement pattern and method for measuring overlay shift of bonded wafers
TWI781259B (en) * 2017-12-07 2022-10-21 美商克萊譚克公司 Systems and methods for device-correlated overlay metrology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI781259B (en) * 2017-12-07 2022-10-21 美商克萊譚克公司 Systems and methods for device-correlated overlay metrology
TWI763595B (en) * 2021-08-05 2022-05-01 台灣積體電路製造股份有限公司 Measurement pattern and method for measuring overlay shift of bonded wafers

Also Published As

Publication number Publication date
TWI544288B (en) 2016-08-01

Similar Documents

Publication Publication Date Title
KR101943593B1 (en) Method and system for providing a quality metric for improved process control
TWI685724B (en) Methods of determining corrections for a patterning process, device manufacturing method, control system for a lithographic apparatus and lithographic apparatus
US8793638B2 (en) Method of optimizing design for manufacturing (DFM)
TWI451511B (en) Advanced process control optimization
TWI709824B (en) Method and apparatus for optimization of lithographic process
KR20130095262A (en) Method and system for providing process tool correctables
KR20130007575A (en) Method and system for providing process tool correctables using an optimized sampling scheme with smart interpolation
US9513565B2 (en) Using wafer geometry to improve scanner correction effectiveness for overlay control
TW201617978A (en) Predictive modeling based focus error prediction
KR20080096520A (en) Superposition management method and apparatus, processing apparatus, measurement apparatus and exposure apparatus, device fabrication system and device fabrication method, and program, and information recording medium
KR101869573B1 (en) Method and system for providing tool induced shift using a sub-sampling scheme
US7783444B2 (en) Systems and methods of alternative overlay calculation
TWI544288B (en) Overlay metrology method
TW201842400A (en) Optimizing a sequence of processes for manufacturing of product units
US20190361354A1 (en) Method and apparatus for simulation of lithography overlay
TWI381468B (en) In-line lithography and etch system
TWI582539B (en) Method and system for providing a quality metric for improved process control
JP2011066323A (en) Method for correction of exposure treatment
TW201727381A (en) Method of predicting performance of a lithographic apparatus, calibration of lithographic apparatus, device manufacturing method
Ma et al. Holistic alignment approach for on-product overlay improvement on DUV lithography process with combined solutions
US9164398B2 (en) Overlay metrology method
TW201036034A (en) Semiconductor-device manufacturing method and exposure method
KR20190015118A (en) Substrate processing method, computer storage medium, and substrate processing system
US10008422B2 (en) Method for assessing the usability of an exposed and developed semiconductor wafer
JP2010050148A (en) Method of measuring misalignment, and misalignment inspection mark