TW201537691A - Memory device and method for fabricating the same - Google Patents

Memory device and method for fabricating the same Download PDF

Info

Publication number
TW201537691A
TW201537691A TW104107449A TW104107449A TW201537691A TW 201537691 A TW201537691 A TW 201537691A TW 104107449 A TW104107449 A TW 104107449A TW 104107449 A TW104107449 A TW 104107449A TW 201537691 A TW201537691 A TW 201537691A
Authority
TW
Taiwan
Prior art keywords
region
layer
dielectric layer
substrate
gate dielectric
Prior art date
Application number
TW104107449A
Other languages
Chinese (zh)
Other versions
TWI539559B (en
Inventor
Jung-Yuan Hsieh
Chih-Jung Ni
Chien-Wei Su
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW104107449A priority Critical patent/TWI539559B/en
Publication of TW201537691A publication Critical patent/TW201537691A/en
Application granted granted Critical
Publication of TWI539559B publication Critical patent/TWI539559B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

Provided is a method for fabricating a memory device. A first gate dielectric layer is formed on a substrate in a first region. A second gate dielectric layer is formed on the substrate in a second region and a third region. A first conductive layer, a buffer layer and a first dielectric layer are formed on the substrate. A portion of the first dielectric layer, a portion of the buffer layer, a portion of the first conductive layer and a portion of the second gate dielectric layer on the substrate in the second region are removed. A third gate dielectric layer and a second conductive layer are formed on the substrate in the second region. The buffer layer is removed. A third conductive layer and a second gate dielectric layer are formed on the substrate. Isolations are penetrated through the second dielectric layer and into the substrate so as to be formed in the substrate. A memory device is also provided.

Description

記憶元件及其製造方法 Memory element and method of manufacturing same

本發明是有關於一種記憶元件及其製造方法,且特別是有關於一種非揮發性記憶元件及其製造方法。 The present invention relates to a memory element and a method of fabricating the same, and more particularly to a non-volatile memory element and method of fabricating the same.

記憶體可以分為揮發性記憶體(Volatile Memory)與非揮發性記憶體(Non-Volatile Memory)兩類。揮發性記憶體在電源供應中斷後,其記憶體所儲存的資料便會消失;而非揮發性記憶體即使電源供應中斷,其記憶體所儲存的資料並不會消失,重新供電後,就能夠讀取記憶體中的資料。因此,非揮發性記憶體可廣泛地應用在電子產品,尤其是可攜帶性產品。 Memory can be divided into two types: volatile memory (Volatile Memory) and non-volatile memory (Non-Volatile Memory). Volatile memory will disappear after the power supply is interrupted. The non-volatile memory will not disappear after the power supply is interrupted. After re-powering, it will be able to Read the data in the memory. Therefore, non-volatile memory can be widely used in electronic products, especially portable products.

然而,半導體元件為了達到降低成本及簡化製程步驟的需求,將晶胞區(Cell Region)與周邊區(Periphery Region)的元件整合在同一晶片上已逐漸成為一種趨勢。三重閘氧化層(Triple Gate Oxide)製程則是其中一種能將上述二者整合在同一晶片上的方法。 However, in order to reduce the cost and simplify the process steps of semiconductor components, it has become a trend to integrate components of the Cell Region and the Periphery Region on the same wafer. The Triple Gate Oxide process is one of the ways to integrate the two on the same wafer.

目前,三重氧化層可利用氮植入(Nitrogen Implantation) 的方法來形成,以藉由氮來延緩氧化矽的生成,進而控制氧化矽的生成速率,以形成不同厚度之氧化層。雖然,藉由氮植入可以有效抑制以爐管氧化法之氧化矽的成長,但是以爐管氧化法的成長速率過慢。若改以濕式氧化製程來成長氧化矽,氮植入並無法有效地抑制氧化矽的成長速率。 At present, the triple oxide layer can be implanted with nitrogen (Nitrogen Implantation) The method is formed to delay the formation of yttrium oxide by nitrogen, thereby controlling the rate of yttrium oxide formation to form oxide layers of different thicknesses. Although the growth of cerium oxide by the furnace tube oxidation method can be effectively suppressed by nitrogen implantation, the growth rate of the furnace tube oxidation method is too slow. If the wet oxidation process is used to grow cerium oxide, nitrogen implantation cannot effectively inhibit the growth rate of cerium oxide.

本發明提供一種記憶元件及其製造方法,可簡化製程並且降低生產成本。 The present invention provides a memory element and a method of manufacturing the same, which can simplify the process and reduce the production cost.

本發明提供一種記憶元件的製造方法,包括提供基底,此基底具有第一區、第二區以及第三區。接著,於第一區的基底上形成第一閘介電層。於第二區與第三區的基底上形成第二閘介電層。於基底上依序形成第一導體層與第一介電層。於第一區與第三區之間形成穿過第一介電層且延伸至基底中的第一隔離結構。於基底上形成緩衝層。然後,依序移除第三區的緩衝層、第一介電層、第一導體層以及第二閘介電層,以暴露基底的表面。於第三區的基底上形成第三閘介電層。於基底上依序形成第二導體層以及第二介電層。於第三區的第二介電層、第二導體層、第三閘介電層以及基底中形成多數個溝渠。於第三區的基底上形成多數個第二隔離結構,且上述第二隔離結構填滿上述溝渠。之後,移除第一區與該第二區的緩衝層。 The present invention provides a method of fabricating a memory device comprising providing a substrate having a first region, a second region, and a third region. Next, a first gate dielectric layer is formed on the substrate of the first region. A second gate dielectric layer is formed on the substrates of the second region and the third region. The first conductor layer and the first dielectric layer are sequentially formed on the substrate. A first isolation structure is formed between the first region and the third region and extends through the first dielectric layer and into the substrate. A buffer layer is formed on the substrate. Then, the buffer layer of the third region, the first dielectric layer, the first conductor layer, and the second gate dielectric layer are sequentially removed to expose the surface of the substrate. A third gate dielectric layer is formed on the substrate of the third region. A second conductor layer and a second dielectric layer are sequentially formed on the substrate. A plurality of trenches are formed in the second dielectric layer, the second conductor layer, the third gate dielectric layer, and the substrate in the third region. A plurality of second isolation structures are formed on the substrate of the third region, and the second isolation structure fills the trenches. Thereafter, the buffer layers of the first zone and the second zone are removed.

本發明提供一種記憶元件,包括基底、第一閘極結構、 第二閘極結構、第三導體層、第三閘介電層、第一隔離結構、多數個第二隔離結構以及第三隔離結構。基底具有第一區、第二區以及第三區。第一閘極結構位於第一區的基底上,其中第一閘極結構包括:第一閘介電層位於第一區的基底上;以及第一導體層位於第一閘介電層上。第二閘極結構位於第二區的基底上,其中第二閘極結構包括:第二閘介電層位於第二區的基底上;以及第二導體層位於第二閘介電層上。第三導體層位於第三區的基底上。第三閘介電層位於第三區的基底與第三導體層之間,其中第三導體層的厚度大於第一導體層的厚度,且第三導體層的厚度大於第二導體層的厚度。第一隔離結構位於第三區與第一區之間的基底中。多數個第二隔離結構位於第三區的基底中。第三隔離結構覆蓋部分第一隔離結構,且第三隔離結構的底部為階梯狀。 The invention provides a memory element, comprising a substrate, a first gate structure, a second gate structure, a third conductor layer, a third gate dielectric layer, a first isolation structure, a plurality of second isolation structures, and a third isolation structure. The substrate has a first zone, a second zone, and a third zone. The first gate structure is located on the substrate of the first region, wherein the first gate structure comprises: the first gate dielectric layer is on the substrate of the first region; and the first conductor layer is located on the first gate dielectric layer. The second gate structure is located on the substrate of the second region, wherein the second gate structure comprises: the second gate dielectric layer is on the substrate of the second region; and the second conductor layer is located on the second gate dielectric layer. The third conductor layer is on the substrate of the third zone. The third gate dielectric layer is located between the substrate of the third region and the third conductor layer, wherein the thickness of the third conductor layer is greater than the thickness of the first conductor layer, and the thickness of the third conductor layer is greater than the thickness of the second conductor layer. The first isolation structure is located in the substrate between the third zone and the first zone. A plurality of second isolation structures are located in the substrate of the third zone. The third isolation structure covers a portion of the first isolation structure, and the bottom of the third isolation structure is stepped.

本發明另提供一種記憶元件的製造方法,包括提供基底,此基底具有第一區、第二區以及第三區。接著,於第一區的基底上形成第一閘介電層。於第二區與第三區的基底上形成第二閘介電層。於基底上依序形成第一導體層、緩衝層以及第一介電層。然後,移除第二區的部分第一介電層、部分緩衝層、部分第一導體層以及部分第二閘介電層,以暴露基底的表面。於第二區的基底上依序形成第三閘介電層與第二導體層。之後,移除緩衝層。於基底上依序形成第三導體層與第二介電層。在基底中形成多數個隔離結構,其中多數個隔離結構穿過第二介電層延伸至基底中。 The present invention further provides a method of fabricating a memory device, comprising providing a substrate having a first region, a second region, and a third region. Next, a first gate dielectric layer is formed on the substrate of the first region. A second gate dielectric layer is formed on the substrates of the second region and the third region. Forming a first conductor layer, a buffer layer, and a first dielectric layer on the substrate. Then, a portion of the first dielectric layer, a portion of the buffer layer, a portion of the first conductor layer, and a portion of the second gate dielectric layer of the second region are removed to expose the surface of the substrate. Forming a third gate dielectric layer and a second conductor layer on the substrate of the second region. After that, remove the buffer layer. A third conductor layer and a second dielectric layer are sequentially formed on the substrate. A plurality of isolation structures are formed in the substrate, wherein a plurality of isolation structures extend through the second dielectric layer into the substrate.

綜上所述,本發明提供一種記憶元件及其製造方法,其利用三重閘氧化層製程將晶胞區與周邊區的元件整合在同一晶片上。上述三重閘氧化層製程可相容於現有的高品質的濕式氧化製程,以增加高品質氧化矽的生成速率,加快整體記憶元件的製程速率,以達到降低生產成本並簡化製程之功效。 In summary, the present invention provides a memory device and a method of fabricating the same that utilizes a triple gate oxide process to integrate components of a cell region and a peripheral region on a same wafer. The triple gate oxide process can be compatible with existing high quality wet oxidation processes to increase the rate of formation of high quality yttrium oxide and speed up the overall memory device process to reduce production costs and simplify process efficiency.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

10‧‧‧第一隔離結構 10‧‧‧First isolation structure

12、16、126、126c‧‧‧罩幕層 12, 16, 126, 126c‧‧ ‧ cover layer

14、14a、14b、18、19‧‧‧溝渠 14, 14a, 14b, 18, 19‧‧‧ Ditch

20‧‧‧第二隔離結構 20‧‧‧Second isolation structure

30‧‧‧第三隔離結構 30‧‧‧ Third isolation structure

40、50、490‧‧‧隔離結構 40, 50, 490‧‧ ‧ isolation structure

100、400‧‧‧基底 100, 400‧‧‧ base

110、510‧‧‧高壓閘介電層 110, 510‧‧‧High-voltage gate dielectric layer

112、560‧‧‧低壓閘介電層 112, 560‧‧‧ low-voltage gate dielectric layer

114、122、132、134‧‧‧導體層 114, 122, 132, 134‧‧‧ conductor layers

116、550‧‧‧第一介電層 116, 550‧‧‧ first dielectric layer

118、540‧‧‧緩衝層 118, 540‧‧‧ buffer layer

120、520‧‧‧穿隧介電層 120, 520‧‧‧ Tunneling dielectric layer

124、590‧‧‧第二介電層 124, 590‧‧‧ second dielectric layer

126a、136‧‧‧硬罩幕層 126a, 136‧‧‧ hard mask layer

126b‧‧‧底抗反射層 126b‧‧‧ bottom anti-reflection layer

130‧‧‧閘間介電層 130‧‧‧Interruptor dielectric layer

140、142‧‧‧閘極結構 140, 142‧‧ ‧ gate structure

144‧‧‧控制閘 144‧‧‧Control gate

200、500‧‧‧晶胞區、第三區 200, 500‧‧‧cell area, third zone

300、600‧‧‧周邊區 300, 600‧‧‧ surrounding area

310、610‧‧‧高壓元件區、第一區 310, 610‧‧‧High-voltage component area, first district

320、620‧‧‧低壓元件區、第二區 320, 620‧‧‧Low-voltage component area, second zone

410‧‧‧深井區 410‧‧‧Shenjing District

420‧‧‧第一井區 420‧‧‧First Well Area

430‧‧‧第一高壓井區 430‧‧‧First high pressure well area

440、442‧‧‧第二高壓井區 440, 442‧‧‧ second high pressure well area

444‧‧‧第二高壓井區 444‧‧‧Second high pressure well area

450‧‧‧第一低壓井區 450‧‧‧First low pressure well area

460‧‧‧第二低壓井區 460‧‧‧ second low pressure well area

470、480‧‧‧罩幕層 470, 480‧‧ ‧ cover layer

485、485a、485b‧‧‧階梯狀開口 485, 485a, 485b‧‧‧ stepped openings

530‧‧‧第一導體層 530‧‧‧First conductor layer

570‧‧‧第二導體層 570‧‧‧Second conductor layer

580‧‧‧第三導體層 580‧‧‧3rd conductor layer

D1、D2‧‧‧距離 D1, D2‧‧‧ distance

R1、R3‧‧‧凹陷 R1, R3‧‧‧ dent

R2、R4‧‧‧凹槽 R2, R4‧‧‧ groove

S201~S207、S301~S307‧‧‧步驟 S201~S207, S301~S307‧‧‧ steps

圖1A至圖1R為本發明之第一實施例的記憶元件之製造流程剖面示意圖。 1A to 1R are schematic cross-sectional views showing a manufacturing process of a memory element according to a first embodiment of the present invention.

圖2A至圖2L為本發明之第二實施例的記憶元件之製造流程剖面示意圖。 2A to 2L are schematic cross-sectional views showing a manufacturing process of a memory element according to a second embodiment of the present invention.

圖3A至圖3L為本發明之第三實施例的記憶元件之製造流程剖面示意圖。 3A to 3L are schematic cross-sectional views showing a manufacturing process of a memory element according to a third embodiment of the present invention.

圖4為本發明之第二實施例的記憶元件之製造流程圖。 4 is a flow chart showing the manufacture of a memory element in accordance with a second embodiment of the present invention.

圖5為本發明之第三實施例的記憶元件之製造流程圖。 Figure 5 is a flow chart showing the manufacture of a memory element in accordance with a third embodiment of the present invention.

圖1A至圖1R為本發明之第一實施例的記憶元件之製造流程剖面示意圖。 1A to 1R are schematic cross-sectional views showing a manufacturing process of a memory element according to a first embodiment of the present invention.

請參照圖1A,提供基底100,基底100的材料例如是選自於由Si、Ge、SiGe、GaP、GaAs、SiC、SiGeC、InAs與InP所組成的群組中的至少一種材料。基底100也可以是覆矽絕緣(SOI)基底。上述基底100包括晶胞區200(可視為第三區)與周邊區300。周邊區300包括高壓元件區310(可視為第一區)與低壓元件區320(可視為第二區)。 Referring to FIG. 1A, a substrate 100 is provided. The material of the substrate 100 is, for example, at least one material selected from the group consisting of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP. Substrate 100 can also be a blanket insulating (SOI) substrate. The above substrate 100 includes a cell region 200 (which may be regarded as a third region) and a peripheral region 300. The peripheral zone 300 includes a high voltage component region 310 (which may be considered a first zone) and a low voltage component zone 320 (which may be considered a second zone).

接著,在高壓元件區310的基底100上形成高壓閘介電層110(可視為第一閘介電層)。在低壓元件區320的基底100上形成低壓閘介電層112(可視為第二閘介電層)。在晶胞區200的基底100上形成低壓閘介電層112。高壓閘介電層110與低壓閘介電層112的材料例如是氧化矽層、氮氧化矽層或氮化矽層。高壓閘介電層110的形成方法可以利用局部區域熱氧化法(LOCOS)。低壓閘介電層112的形成方法可以利用化學氣相沉積法、原位蒸汽生成法(ISSG)、低壓自由基氧化法(LPRO)或爐管氧化法等來形成。在一實施例中,高壓閘介電層110的厚度為30nm至70nm。在一實施例中,低壓閘介電層112的厚度為2nm至9nm。 Next, a high voltage thyristor layer 110 (which may be regarded as a first gate dielectric layer) is formed on the substrate 100 of the high voltage device region 310. A low voltage gate dielectric layer 112 (which may be considered a second gate dielectric layer) is formed on the substrate 100 of the low voltage device region 320. A low voltage gate dielectric layer 112 is formed on the substrate 100 of the cell region 200. The material of the high voltage gate dielectric layer 110 and the low voltage gate dielectric layer 112 is, for example, a hafnium oxide layer, a hafnium oxynitride layer or a tantalum nitride layer. The method of forming the high voltage thyristor layer 110 can utilize localized local thermal oxidation (LOCOS). The method of forming the low-voltage gate dielectric layer 112 can be formed by chemical vapor deposition, in-situ steam generation (ISSG), low-pressure radical oxidation (LPRO) or furnace tube oxidation. In an embodiment, the high voltage gate dielectric layer 110 has a thickness of 30 nm to 70 nm. In one embodiment, the low voltage gate dielectric layer 112 has a thickness of 2 nm to 9 nm.

接著,於高壓元件區310的高壓閘介電層110上、於低壓元件區320的低壓閘介電層112上以及晶胞區200的低壓閘介電層112上依序形成導體層114與第一介電層116。導體層114的材料例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法。在一實施例中,導體層114的厚度為20nm至50nm。在一實施例中,第一介電層116的厚度為20nm至60nm。 Next, the conductor layer 114 is sequentially formed on the high voltage gate dielectric layer 110 of the high voltage device region 310, the low voltage gate dielectric layer 112 of the low voltage device region 320, and the low voltage gate dielectric layer 112 of the cell region 200. A dielectric layer 116. The material of the conductor layer 114 is, for example, doped polysilicon, non-doped polysilicon or a combination thereof, and the formation method thereof can be performed by chemical vapor deposition. In an embodiment, the conductor layer 114 has a thickness of 20 nm to 50 nm. In an embodiment, the first dielectric layer 116 has a thickness of 20 nm to 60 nm.

然後,於晶胞區200與高壓元件區310之間的基底100中形成第一隔離結構10、於高壓元件區310的基底100中形成隔離結構40以及於低壓元件區320的基底100中形成隔離結構50。第一隔離結構10、隔離結構40以及隔離結構50的材料例如是摻雜或未摻雜的氧化矽、高密度電漿氧化物、氮氧化矽或其組合,其形成方法可以利用淺溝渠隔離法(Shallow Trench Isolation Process)來形成。更具體地說,以第一隔離結構10為例,在一實施例中,先在基底100上形成圖案化的罩幕層(未繪示),進行乾式蝕刻製程例如是反應性離子蝕刻法(Reactive Ion Etching,RIE),去除晶胞區200與周邊區300之間的部分第一介電層116、導體層114、低壓閘介電層112、高壓閘介電層110以及基底100以形成溝渠。接著,在基底100上形成高密度電漿氧化層,以填滿上述溝渠。之後,利用化學機械研磨法(CMP)平坦化基底100上的高密度電漿氧化層,以暴露周邊區300的部分第一介電層116。在一實施例中,在化學機械研磨過後,晶胞區200的第一介電層116上仍殘餘部分高密度電漿氧化層。 Then, a first isolation structure 10 is formed in the substrate 100 between the cell region 200 and the high voltage device region 310, an isolation structure 40 is formed in the substrate 100 of the high voltage device region 310, and isolation is formed in the substrate 100 of the low voltage device region 320. Structure 50. The materials of the first isolation structure 10, the isolation structure 40 and the isolation structure 50 are, for example, doped or undoped cerium oxide, high-density plasma oxide, cerium oxynitride or a combination thereof, and the formation method thereof can utilize shallow trench isolation method. (Shallow Trench Isolation Process) to form. More specifically, taking the first isolation structure 10 as an example, in an embodiment, a patterned mask layer (not shown) is first formed on the substrate 100, and a dry etching process is performed, for example, reactive ion etching ( Reactive Ion Etching, RIE), removing a portion of the first dielectric layer 116, the conductor layer 114, the low-voltage gate dielectric layer 112, the high-voltage gate dielectric layer 110, and the substrate 100 between the cell region 200 and the peripheral region 300 to form a trench . Next, a high density plasma oxide layer is formed on the substrate 100 to fill the trenches. Thereafter, a high density plasma oxide layer on the substrate 100 is planarized by chemical mechanical polishing (CMP) to expose a portion of the first dielectric layer 116 of the perimeter region 300. In one embodiment, after the chemical mechanical polishing, a portion of the high density plasma oxide layer remains on the first dielectric layer 116 of the cell region 200.

請參照圖1B,於基底100上形成緩衝層118。緩衝層118的材料例如是氧化矽(SiO2)、碳化矽(SiC)、碳氮化矽(SiCN)、氮氧化矽(SiON)、碳氮氧化矽(SiCON)或其組合,其形成方法可以利用化學氣相沉積法、熱氧化法或旋塗法(Spin On Coating)等來形成。在一實施例中,緩衝層118的厚度為100nm至300nm。上述緩衝層118可用於保護其下方的基底100、高壓閘介電層110以及低壓 閘介電層112,避免後續多數次的微影蝕刻製程損害上述三者表面的品質,進而提升產品可靠度。之後,在周邊區300的基底100上形成圖案化的罩幕層12。圖案化的罩幕層12例如是圖案化的光阻層。 Referring to FIG. 1B, a buffer layer 118 is formed on the substrate 100. The material of the buffer layer 118 is, for example, yttrium oxide (SiO 2 ), lanthanum carbide (SiC), lanthanum carbonitride (SiCN), lanthanum oxynitride (SiON), lanthanum oxynitride (SiCON) or a combination thereof, and the formation method thereof can be It is formed by a chemical vapor deposition method, a thermal oxidation method, a spin coating method, or the like. In an embodiment, the buffer layer 118 has a thickness of 100 nm to 300 nm. The buffer layer 118 can be used to protect the substrate 100, the high voltage gate dielectric layer 110 and the low voltage gate dielectric layer 112 underneath, so as to prevent the subsequent microlithography process from damaging the quality of the three surfaces, thereby improving product reliability. Thereafter, a patterned mask layer 12 is formed on the substrate 100 of the peripheral region 300. The patterned mask layer 12 is, for example, a patterned photoresist layer.

接著,請參照圖1C,以圖案化的罩幕層12為罩幕,進行乾式蝕刻製程例如是反應性離子蝕刻法,以去除晶胞區200上的緩衝層118。然後,請參照圖1D,以圖案化的罩幕層12為罩幕,進行乾式或濕式蝕刻製程,以去除晶胞區200上的第一介電層116與導體層114。之後,移除圖案化的罩幕層12與晶胞區200上的低壓閘介電層112,以暴露晶胞區200的基底100的表面(未繪示)。 Next, referring to FIG. 1C, the patterned mask layer 12 is used as a mask, and a dry etching process such as reactive ion etching is performed to remove the buffer layer 118 on the cell region 200. Then, referring to FIG. 1D, the patterned mask layer 12 is used as a mask to perform a dry or wet etching process to remove the first dielectric layer 116 and the conductor layer 114 on the cell region 200. Thereafter, the patterned mask layer 12 and the low voltage gate dielectric layer 112 on the cell region 200 are removed to expose the surface (not shown) of the substrate 100 of the cell region 200.

請參照圖1E,於晶胞區200的基底100上形成穿隧介電層120(可視為第三閘介電層)。穿隧介電層120的材料例如是氧化矽層、氮氧化矽層或氮化矽層,其形成方法可以利用化學氣相沉積法、原位蒸汽生成法、低壓自由基氧化法或爐管氧化法等來形成。在一實施例中,穿隧介電層120的厚度為5nm至9nm。在一實施例中,高壓元件區310的高壓閘介電層110的厚度、低壓元件區320的低壓閘介電層112的厚度以及晶胞區200的穿隧介電層120的厚度可彼此不同。換句話說,經由本發明之記憶元件的製造方法,上述三者的厚度皆可自行調整。由於原本的三重閘氧化層製程是極為複雜的製程,其包括多數層的沉積與移除,皆須經過多道的微影蝕刻製程,故成本高、製程難以控制且元件性能衰退(Degraded)。但本發明之記憶元件的製造方法不需要增加 額外的光罩,同時可簡化製程、降低成本以及減少對元件的損害。 Referring to FIG. 1E, a tunneling dielectric layer 120 (which may be regarded as a third gate dielectric layer) is formed on the substrate 100 of the cell region 200. The material of the tunneling dielectric layer 120 is, for example, a hafnium oxide layer, a hafnium oxynitride layer or a tantalum nitride layer, which can be formed by chemical vapor deposition, in situ steam generation, low pressure radical oxidation or furnace tube oxidation. Law is formed. In an embodiment, the tunneling dielectric layer 120 has a thickness of 5 nm to 9 nm. In one embodiment, the thickness of the high voltage gate dielectric layer 110 of the high voltage device region 310, the thickness of the low voltage gate dielectric layer 112 of the low voltage device region 320, and the thickness of the tunnel dielectric layer 120 of the cell region 200 may be different from each other. . In other words, the thickness of the above three can be adjusted by the method of manufacturing the memory element of the present invention. Since the original triple gate oxide process is an extremely complicated process, including the deposition and removal of most layers, it has to go through multiple lithography processes, so the cost is high, the process is difficult to control, and the component performance is degraded. However, the method of manufacturing the memory element of the present invention does not need to be increased. Additional reticles simplify process, reduce cost and reduce damage to components.

請參照圖1F,於基底100上依序形成導體層122(例如是做為浮置閘極)以及第二介電層124。導體層122的材料例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法來形成。在一實施例中,導體層122的厚度為80nm至150nm,且導體層122的厚度大於導體層114的厚度。導體層114的厚度較薄可降低後續製程所產生的斷差過大問題,將在後續段落詳細說明之。第二介電層124的材料例如是氧化矽層、氮氧化矽層或氮化矽層,其形成方法可以利用化學氣相沉積法、熱氧化法或電漿增強化學氣相沉積法(PECVD)等來形成。在一實施例中,第二介電層124的厚度為30nm至100nm。 Referring to FIG. 1F, a conductor layer 122 (for example, as a floating gate) and a second dielectric layer 124 are sequentially formed on the substrate 100. The material of the conductor layer 122 is, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof can be formed by chemical vapor deposition. In an embodiment, the conductor layer 122 has a thickness of 80 nm to 150 nm, and the conductor layer 122 has a thickness greater than the thickness of the conductor layer 114. The thinner thickness of the conductor layer 114 can reduce the problem of excessive breakage caused by subsequent processes, which will be described in detail in subsequent paragraphs. The material of the second dielectric layer 124 is, for example, a hafnium oxide layer, a hafnium oxynitride layer or a tantalum nitride layer, which may be formed by chemical vapor deposition, thermal oxidation or plasma enhanced chemical vapor deposition (PECVD). Wait to form. In an embodiment, the second dielectric layer 124 has a thickness of 30 nm to 100 nm.

請參照圖1G,在晶胞區200的第二介電層124上形成圖案化的罩幕層126。此圖案化的罩幕層126包括硬罩幕層126a、底抗反射(BARC)層126b以及罩幕層126c。硬罩幕層126a的材料例如是矽材料、金屬材料或碳材料等。底抗反射層126b的材料例如是有機聚合物、碳或氮氧化矽等。罩幕層126c的材料例如是碳、光阻類材料或氮氧化物等。 Referring to FIG. 1G, a patterned mask layer 126 is formed on the second dielectric layer 124 of the cell region 200. The patterned mask layer 126 includes a hard mask layer 126a, a bottom anti-reflective (BARC) layer 126b, and a mask layer 126c. The material of the hard mask layer 126a is, for example, a tantalum material, a metal material or a carbon material. The material of the bottom anti-reflection layer 126b is, for example, an organic polymer, carbon or bismuth oxynitride or the like. The material of the mask layer 126c is, for example, carbon, a photoresist material, or an oxynitride.

然後,請參照圖1H,以上述緩衝層118為蝕刻停止層,進行蝕刻製程(例如是反應性離子蝕刻法),移除晶胞區200的部分第二介電層124、導體層122以及基底100,暴露基底100與部分第一隔離結構10的側面,以形成多數個溝渠14。在進行蝕刻製程的過程中,由於周邊區300的緩衝層118完全被圖案化的罩幕 層12所覆蓋(如圖1B至圖1D),仍存在於周邊區300上,因此在移除周邊區300的第二介電層124以及導體層122時,緩衝層118可當作周邊區300的蝕刻停止層。接著,進行蝕刻製程後的灰化處理,以移除晶胞區200上剩餘的罩幕層126之後,再進行濕式清洗製程。上述溝渠14可包括溝渠14a與溝渠14b。溝渠14b暴露部分第一隔離結構10的側面,其側面並非平整的表面,而是具有斷差的表面(例如階梯狀)。上述斷差是指經上述蝕刻製程後,第一隔離結構10的第一表面S1與緩衝層118的第二表面S2之間的距離D1。當此斷差過大時,即上述距離D1變大,進行後續的蝕刻製程之後,第一隔離結構10的側面容易產生粒子或凹凸的溝渠,此粒子或溝渠難以用一般蝕刻方法去除,因此殘留的粒子或溝渠會影響記憶元件的操作與產品的可靠度。為了避免上述斷差過大的問題,在本實施例中,先沉積厚度較薄的導體層114,使得後續在進行去除晶胞區200的導體層114的蝕刻製程時,不會消耗過多的第一隔離結構10。因此,在形成溝渠14b時,上述距離D1不會過大,所以第一隔離結構10的側面也不會產生難以去除的粒子或凹凸的溝渠。換句話說,本發明可利用原本在晶胞區200形成記憶陣列的蝕刻製程,以解決上述斷差過大的問題。因此,本發明毋需增加額外光罩或特殊製程,即可進行三重閘氧化層製程,以達到降低成本、簡化製程之功效。 Then, referring to FIG. 1H, the buffer layer 118 is used as an etch stop layer, and an etching process (for example, reactive ion etching) is performed to remove a portion of the second dielectric layer 124, the conductor layer 122, and the substrate of the cell region 200. 100. The substrate 100 is exposed to a side of a portion of the first isolation structure 10 to form a plurality of trenches 14. During the etching process, the mask layer 118 of the peripheral region 300 is completely patterned by the mask The layer 12 is covered (as shown in FIG. 1B to FIG. 1D) and still exists on the peripheral region 300. Therefore, when the second dielectric layer 124 and the conductor layer 122 of the peripheral region 300 are removed, the buffer layer 118 can be regarded as the peripheral region 300. The etch stop layer. Next, the ashing treatment after the etching process is performed to remove the remaining mask layer 126 on the cell region 200, and then the wet cleaning process is performed. The trench 14 may include a trench 14a and a trench 14b. The trench 14b exposes a portion of the side of the first isolation structure 10, the side of which is not a flat surface, but a surface having a gap (for example, a stepped shape). The above-mentioned gap refers to the distance D1 between the first surface S1 of the first isolation structure 10 and the second surface S2 of the buffer layer 118 after the above etching process. When the gap is too large, that is, the distance D1 becomes larger, after the subsequent etching process, the side surface of the first isolation structure 10 is likely to generate particles or concave and convex trenches, and the particles or trenches are difficult to be removed by a general etching method, so that residual Particles or trenches can affect the operation of the memory component and the reliability of the product. In order to avoid the problem that the above-mentioned fault is too large, in the present embodiment, the conductor layer 114 having a relatively small thickness is deposited first, so that the etching process of the conductor layer 114 for removing the cell region 200 is not subsequently consumed. Isolation structure 10. Therefore, when the trench 14b is formed, the distance D1 is not excessively large, so that the side surface of the first isolation structure 10 does not cause particles or irregularities which are difficult to remove. In other words, the present invention can utilize an etching process that originally forms a memory array in the cell region 200 to solve the above problem of excessively large variations. Therefore, the present invention requires an additional mask or a special process to perform a triple gate oxide process to reduce cost and simplify process.

請參照圖1I,於溝渠14a中形成多數個第二隔離結構20與並於溝渠14b中形成第三隔離結構30。多數個第二隔離結構20 與第三隔離結構30的材料例如是摻雜或未摻雜的氧化矽、高密度電漿氧化物、旋塗式玻璃、氮氧化矽或其組合,其形成方法可以利用淺溝渠隔離法或旋塗式玻璃法來形成。更具體地說,在一實施例中,先將旋塗式玻璃以塗佈的方法塗在基底100的表面之後,再予以固化(Curing)處理,也就是以熱處理的方式在高溫中將多餘的溶劑趕出,使其固定,形成旋塗玻璃層。由於旋塗式玻璃具有較佳的階梯覆蓋(Step Coverage)能力與溝填(Gap Fill)能力,因此可以將上述溝渠14的空隙填滿。接著進行化學機械研磨製程,以平坦化上述第二隔離結構20與上述第三隔離結構30的表面,以暴露第二介電層124的表面。在一實施例中,第三隔離結構30覆蓋部分第一隔離結構10,且第三隔離結構30的底部為階梯狀。在一實施例中,第一隔離結構10與多數個第二隔離結構20的底部為平面。 Referring to FIG. 1I, a plurality of second isolation structures 20 are formed in the trenches 14a and a third isolation structure 30 is formed in the trenches 14b. a plurality of second isolation structures 20 The material of the third isolation structure 30 is, for example, doped or undoped yttrium oxide, high-density plasma oxide, spin-on glass, ytterbium oxynitride or a combination thereof, which can be formed by shallow trench isolation or spin Formed by a glass method. More specifically, in one embodiment, the spin-on glass is first applied to the surface of the substrate 100 by a coating method, and then subjected to a curing process, that is, heat treatment is performed at a high temperature. The solvent is driven out to fix it to form a spin-on glass layer. Since the spin-on glass has a better step coverage capability and a Gap Fill capability, the gap of the trench 14 can be filled. A chemical mechanical polishing process is then performed to planarize the surfaces of the second isolation structure 20 and the third isolation structure 30 to expose the surface of the second dielectric layer 124. In an embodiment, the third isolation structure 30 covers a portion of the first isolation structure 10, and the bottom of the third isolation structure 30 is stepped. In an embodiment, the bottom of the first isolation structure 10 and the plurality of second isolation structures 20 are planar.

請參照圖1J,於部分晶胞區200以及周邊區300的基底100上形成圖案化的罩幕層16。接著,請參照圖1K,進行蝕刻製程,此蝕刻製程例如是反應性離子蝕刻法,以移除晶胞區200的部分上述第二隔離結構20與部分上述第二介電層124。然後,請參照圖1L,移除圖案化的罩幕層16。在一實施例中,移除圖案化的罩幕層16的方法可以是先以高密度電漿灰化圖案化的罩幕層16,之後,再進行濕式清洗製程。 Referring to FIG. 1J, a patterned mask layer 16 is formed on the partial cell region 200 and the substrate 100 of the peripheral region 300. Next, referring to FIG. 1K, an etching process is performed, such as reactive ion etching, to remove a portion of the second isolation structure 20 and a portion of the second dielectric layer 124 of the cell region 200. Then, referring to FIG. 1L, the patterned mask layer 16 is removed. In one embodiment, the method of removing the patterned mask layer 16 may be to first pattern the mask layer 16 with high density plasma ashing, followed by a wet cleaning process.

請參照圖1M,移除周邊區300的緩衝層118。在一實施例中,周邊區300上的緩衝層118可以在移除介電層124的表面 之原始氧化層(Native Oxide)的同時移除之,且部分上述第二隔離結構20也會同時被移除。在一實施例中,移除原始氧化層的方法可以是溼式蝕刻法,所使用的蝕刻液例如是氫氟酸、氫氟酸蒸氣、硝酸和氫氟酸的混合溶液、硫酸和氫氟酸的混合溶液或熱磷酸(150℃~200℃)等。然後,請參照圖1N,移除第一介電層116與第二介電層124。接著移除導體層122側壁的原始氧化層,其移除方法可以是乾式蝕刻法(例如是濺鍍蝕刻法、反應性離子蝕刻法)或是以氫氟酸蒸氣進行濕式蝕刻等。 Referring to FIG. 1M, the buffer layer 118 of the peripheral region 300 is removed. In an embodiment, the buffer layer 118 on the peripheral region 300 may be on the surface of the dielectric layer 124 removed. The original oxide layer (Native Oxide) is removed at the same time, and part of the above second isolation structure 20 is also removed at the same time. In an embodiment, the method of removing the original oxide layer may be a wet etching method, and the etching liquid used is, for example, hydrofluoric acid, hydrofluoric acid vapor, a mixed solution of nitric acid and hydrofluoric acid, sulfuric acid and hydrofluoric acid. Mixed solution or hot phosphoric acid (150 ° C ~ 200 ° C) and so on. Then, referring to FIG. 1N, the first dielectric layer 116 and the second dielectric layer 124 are removed. The original oxide layer on the sidewall of the conductor layer 122 is then removed, and the removal method may be a dry etching method (for example, a sputtering etching method, a reactive ion etching method) or a wet etching using hydrofluoric acid vapor.

請參照圖1O,於基底100上依序形成閘間介電層130與導體層132(例如控制閘極)。在一實施例中,閘間介電層130例如是包含氧化層/氮化層/氧化層(Oxide-Nitride-Oxide,ONO)材料所構成的複合層,其形成方法可以是化學氣相沉積法、熱氧化法、原位蒸汽生成法、或低壓自由基氧化法等。導體層132的材料例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法來形成。在一實施例中,導體層132的厚度為10nm至40nm。 Referring to FIG. 10, a gate dielectric layer 130 and a conductor layer 132 (eg, a control gate) are sequentially formed on the substrate 100. In an embodiment, the inter-gate dielectric layer 130 is, for example, a composite layer comprising an Oxide-Nitride-Oxide (ONO) material, which may be formed by chemical vapor deposition. , thermal oxidation, in situ steam generation, or low pressure radical oxidation. The material of the conductor layer 132 is, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof can be formed by chemical vapor deposition. In an embodiment, the conductor layer 132 has a thickness of 10 nm to 40 nm.

請參照圖1P,於高壓元件區310的閘間介電層130、導體層132以及導體層114中形成開口18。更具體地說,先在閘間介電層130上形成圖案化的罩幕層(未繪示),然後進行蝕刻製程,此蝕刻製程例如是反應性離子蝕刻法,以去除高壓元件區310的部分導體層132、閘間介電層130以及導體層114,以暴露導體層114。接著,進行灰化製程與濕式清洗製程以去除圖案化的罩幕層。 Referring to FIG. 1P, an opening 18 is formed in the inter-gate dielectric layer 130, the conductor layer 132, and the conductor layer 114 of the high voltage device region 310. More specifically, a patterned mask layer (not shown) is formed on the inter-gate dielectric layer 130, and then an etching process is performed, such as reactive ion etching to remove the high voltage device region 310. A portion of the conductor layer 132, the inter-gate dielectric layer 130, and the conductor layer 114 are exposed to expose the conductor layer 114. Next, an ashing process and a wet cleaning process are performed to remove the patterned mask layer.

請參照圖1Q,於基底100上依序形成導體層134(例如控制閘極)與硬罩幕層136,以填滿開口18。導體層134可以包括多晶矽層、矽化金屬層或其組合。多晶矽層的材料例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法來形成。矽化金屬層的材料例如為矽化鎢、矽化鈦、矽化鈷、矽化鉭、矽化鎳、矽化鉑或矽化鈀,其形成方法可以利用化學氣相沈積製程來形成。硬罩幕層136的材料例如是氧化矽(SiO2)、氮化矽(SiN)、矽材料、金屬材料或碳材料等。 Referring to FIG. 1Q, a conductor layer 134 (eg, a control gate) and a hard mask layer 136 are sequentially formed on the substrate 100 to fill the opening 18. Conductor layer 134 can include a polysilicon layer, a deuterated metal layer, or a combination thereof. The material of the polysilicon layer is, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof can be formed by chemical vapor deposition. The material of the deuterated metal layer is, for example, tungsten telluride, titanium telluride, cobalt telluride, antimony telluride, nickel telluride, platinum telluride or palladium telluride. The formation method can be formed by a chemical vapor deposition process. The material of the hard mask layer 136 is, for example, yttrium oxide (SiO 2 ), tantalum nitride (SiN), tantalum material, metal material or carbon material.

請參照圖1R,將硬罩幕層136圖案化。接著,以圖案化後的硬罩幕層136為罩幕,進行蝕刻製程,以移除部分導體層134、部分導體層132、部分閘間介電層130、部分導體層114以及部分高壓閘介電層110,以在晶胞區200形成閘間介電層130以及控制閘144;在高壓元件區310與低壓元件區320分別形成第一閘極結構140與第二閘極結構142。 Referring to FIG. 1R, the hard mask layer 136 is patterned. Then, using the patterned hard mask layer 136 as a mask, an etching process is performed to remove a portion of the conductor layer 134, a portion of the conductor layer 132, a portion of the inter-gate dielectric layer 130, a portion of the conductor layer 114, and a portion of the high voltage thyristor. The electric layer 110 forms the inter-gate dielectric layer 130 and the control gate 144 in the cell region 200; the first gate structure 140 and the second gate structure 142 are formed in the high voltage device region 310 and the low voltage device region 320, respectively.

綜上所述,本發明之記憶元件的製造方法藉由在周邊區300上形成較薄的導體層114來避免第一隔離結構10的側面的斷差過大的問題。另一方面,利用緩衝層118當作蝕刻停止層,用以保護緩衝層118下方的基底100、高壓閘介電層110(可視為第一閘介電層)以及低壓閘介電層112(可視為第二閘介電層),避免後續多數次微影蝕刻製程的損害,進而提升產品的可靠度。此外,上述製造方法毋需增加額外光罩或特殊製程,即可進行三重閘氧化層製程,達到降低成本、簡化製程以及可相容於現有的原 位蒸汽生成法、低壓自由基氧化法以及爐管氧化法。 In summary, the method of fabricating the memory device of the present invention avoids the problem of excessively large variations in the side faces of the first isolation structure 10 by forming a thinner conductor layer 114 on the peripheral region 300. On the other hand, the buffer layer 118 is used as an etch stop layer for protecting the substrate 100 under the buffer layer 118, the high voltage gate dielectric layer 110 (which can be regarded as the first gate dielectric layer), and the low voltage gate dielectric layer 112 (visible For the second gate dielectric layer), the damage of the subsequent majority of the lithography process is avoided, thereby improving the reliability of the product. In addition, the above manufacturing method requires an additional mask or special process to perform a triple gate oxide layer process, which reduces cost, simplifies the process, and is compatible with existing ones. Bit steam generation method, low pressure radical oxidation method and furnace tube oxidation method.

在以下的實施例中,當第一導電型為N型,第二導電型為P型;當第一導電型為P型,第二導電型為N型。在本實施例中,是以第一導電型為N型,第二導電型為P型為例來實施,但本發明並不以此為限。P型摻雜例如是硼;N型摻雜例如是磷或是砷。 In the following embodiments, when the first conductivity type is N type, the second conductivity type is P type; when the first conductivity type is P type, and the second conductivity type is N type. In the present embodiment, the first conductivity type is N-type and the second conductivity type is P-type as an example, but the invention is not limited thereto. The P-type doping is, for example, boron; the N-type doping is, for example, phosphorus or arsenic.

圖2A至圖2L為本發明之第二實施例的記憶元件之製造流程剖面示意圖。圖4為本發明之第二實施例的記憶元件之製造流程圖。 2A to 2L are schematic cross-sectional views showing a manufacturing process of a memory element according to a second embodiment of the present invention. 4 is a flow chart showing the manufacture of a memory element in accordance with a second embodiment of the present invention.

請參照圖2A與圖4,進行步驟S201,提供基底400,基底400的材料例如是選自於由Si、Ge、SiGe、GaP、GaAs、SiC、SiGeC、InAs與InP所組成的群組中的至少一種材料。基底400也可以是覆矽絕緣基底。上述基底400具有晶胞區500(可視為第三區)與周邊區600。更詳細地說,周邊區600包括高壓元件區610(可視為第一區)與低壓元件區620(可視為第二區)。 Referring to FIG. 2A and FIG. 4, step S201 is performed to provide a substrate 400. The material of the substrate 400 is, for example, selected from the group consisting of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP. At least one material. Substrate 400 can also be a blanket insulating substrate. The substrate 400 has a cell region 500 (which may be regarded as a third region) and a peripheral region 600. In more detail, the peripheral zone 600 includes a high voltage component region 610 (which may be considered a first zone) and a low voltage component zone 620 (which may be considered a second zone).

在晶胞區500的基底400中形成具有第一導電型的深井區410。深井區410可以藉由形成圖案化的罩幕層以及進行離子植入製程來形成。在一實施例中,深井區410所植入的摻雜例如是磷或是砷,摻雜的劑量例如是1×1010/cm2至1×1014/cm2,植入的能量例如是1000KeV至4000KeV。 A deep well region 410 having a first conductivity type is formed in the substrate 400 of the cell region 500. The deep well region 410 can be formed by forming a patterned mask layer and performing an ion implantation process. In an embodiment, the doping implanted in the deep well region 410 is, for example, phosphorus or arsenic, and the doping dose is, for example, 1×10 10 /cm 2 to 1×10 14 /cm 2 , and the implanted energy is, for example, 1000KeV to 4000KeV.

於深井區410中形成具有第二導電型的第一井區420。第一井區420可以藉由形成圖案化的罩幕層以及進行離子植入製程 來形成。在一實施例中,第一井區420所植入的摻雜例如是硼,摻雜的劑量例如是1×1010/cm2至1×1014/cm2,植入的能量例如是10KeV至1000KeV。 A first well region 420 having a second conductivity type is formed in the deep well region 410. The first well region 420 can be formed by forming a patterned mask layer and performing an ion implantation process. In an embodiment, the doping implanted in the first well region 420 is, for example, boron, and the doping dose is, for example, 1×10 10 /cm 2 to 1×10 14 /cm 2 , and the implanted energy is, for example, 10 KeV. Up to 1000KeV.

於高壓元件區610的基底400中形成具有第二導電型的第一高壓井區430。第一高壓井區430可以藉由形成圖案化的罩幕層以及進行離子植入製程來形成。在一實施例中,第一高壓井區430所植入的摻雜例如是硼,摻雜的劑量例如是1×1010/cm2至1×1014/cm2,植入的能量例如是10KeV至1000KeV。 A first high voltage well region 430 having a second conductivity type is formed in the substrate 400 of the high voltage element region 610. The first high voltage well region 430 can be formed by forming a patterned mask layer and performing an ion implantation process. In an embodiment, the doping of the first high voltage well region 430 is, for example, boron, and the doping dose is, for example, 1×10 10 /cm 2 to 1×10 14 /cm 2 , and the implanted energy is, for example, 10KeV to 1000KeV.

於深井區410與第一高壓井區430之間的基底400中形成具有第一導電型的第二高壓井區440。更具體地說,在深井區410的兩側形成二個具有第一導電型的第二高壓井區442、444,第二高壓井區442在深井區410以及第一井區420的一側並與深井區410以及第一井區420相鄰。第二高壓井區444在深井區410與第一高壓井區430之間。第二高壓井區440可以藉由形成圖案化的罩幕層以及進行離子植入製程來形成。在一實施例中,第二高壓井區440所植入的摻雜例如是磷或是砷,摻雜的劑量例如是1×1010/cm2至1×1014/cm2,植入的能量例如是10KeV至2000KeV。 A second high pressure well region 440 having a first conductivity type is formed in the substrate 400 between the deep well region 410 and the first high voltage well region 430. More specifically, two second high pressure well regions 442, 444 having a first conductivity type are formed on both sides of the deep well region 410, and the second high pressure well region 442 is on one side of the deep well region 410 and the first well region 420. Adjacent to the deep well zone 410 and the first well zone 420. The second high pressure well zone 444 is between the deep well zone 410 and the first high pressure well zone 430. The second high pressure well region 440 can be formed by forming a patterned mask layer and performing an ion implantation process. In one embodiment, the doping of the second high voltage well region 440 is, for example, phosphorus or arsenic, and the doping dose is, for example, 1×10 10 /cm 2 to 1×10 14 /cm 2 , implanted. The energy is, for example, 10 KeV to 2000 KeV.

於低壓元件區620的基底400中形成具有第一導電型的第一低壓井區450。第一低壓井區450可以藉由形成圖案化的罩幕層以及進行離子植入製程來形成。在一實施例中,第一低壓井區450所植入的摻雜例如是磷或是砷,摻雜的劑量例如是1×1010/cm2至1×1014/cm2,植入的能量例如是1KeV至1000KeV。 A first low pressure well region 450 having a first conductivity type is formed in the substrate 400 of the low voltage component region 620. The first low pressure well region 450 can be formed by forming a patterned mask layer and performing an ion implantation process. In an embodiment, the doping of the first low-pressure well region 450 is, for example, phosphorus or arsenic, and the doping dose is, for example, 1×10 10 /cm 2 to 1×10 14 /cm 2 , implanted. The energy is, for example, 1 KeV to 1000 KeV.

於第一高壓井區430與第一低壓井區450之間的基底400中形成具有第二導電型的第二低壓井區460。第二低壓井區460可以藉由形成圖案化的罩幕層以及進行離子植入製程來形成。在一實施例中,第二低壓井區460所植入的摻雜例如是硼,摻雜的劑量例如是1×1010/cm2至1×1014/cm2,植入的能量例如是1KeV至1000KeV。 A second low pressure well region 460 having a second conductivity type is formed in the substrate 400 between the first high pressure well region 430 and the first low pressure well region 450. The second low pressure well region 460 can be formed by forming a patterned mask layer and performing an ion implantation process. In one embodiment, the doping of the second low-pressure well region 460 is, for example, boron, and the doping dose is, for example, 1×10 10 /cm 2 to 1×10 14 /cm 2 , and the implanted energy is, for example, 1KeV to 1000KeV.

接著,進行步驟S202,於高壓元件區610的基底400上形成高壓閘介電層510(可視為第一閘介電層)。高壓閘介電層510的材料例如是氧化矽層、氮氧化矽層或氮化矽層,其形成方法可以利用局部區域熱氧化法來形成。在一實施例中,高壓閘介電層510的厚度為30nm至70nm。 Next, in step S202, a high voltage gate dielectric layer 510 (which may be regarded as a first gate dielectric layer) is formed on the substrate 400 of the high voltage device region 610. The material of the high voltage gate dielectric layer 510 is, for example, a hafnium oxide layer, a hafnium oxynitride layer or a tantalum nitride layer, and the formation method thereof can be formed by a partial region thermal oxidation method. In an embodiment, the high voltage gate dielectric layer 510 has a thickness of 30 nm to 70 nm.

繼續進行步驟S202,於晶胞區500與低壓元件區620的基底400上形成穿隧介電層520(可視為第二閘介電層)。穿隧介電層520的材料例如是氧化矽層、氮氧化矽層或氮化矽層,其形成方法可以利用化學氣相沉積法、原位蒸汽生成法、低壓自由基氧化法或爐管氧化法等來形成。在一實施例中,穿隧介電層520的厚度為5nm至9nm。 Proceeding to step S202, a tunneling dielectric layer 520 (which may be regarded as a second gate dielectric layer) is formed on the substrate 400 of the cell region 500 and the low voltage device region 620. The material of the tunneling dielectric layer 520 is, for example, a hafnium oxide layer, a hafnium oxynitride layer or a tantalum nitride layer, and the formation method thereof may be performed by chemical vapor deposition, in situ steam generation, low pressure radical oxidation or furnace tube oxidation. Law is formed. In an embodiment, the tunneling dielectric layer 520 has a thickness of 5 nm to 9 nm.

進行步驟S203,於基底400上形成第一導體層530。第一導體層530材料例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法、低壓化學氣相沈積法或爐管氧化法來形成。在一實施例中,第一導體層530的厚度為10nm至40nm。 Step S203 is performed to form a first conductor layer 530 on the substrate 400. The first conductor layer 530 material is, for example, a doped polysilicon, an undoped polysilicon or a combination thereof, and the formation method thereof can be formed by a chemical vapor deposition method, a low pressure chemical vapor deposition method, or a furnace tube oxidation method. In an embodiment, the first conductor layer 530 has a thickness of 10 nm to 40 nm.

進行步驟S203,於第一導體層530上形成緩衝層540。緩衝層540的材料例如是氧化矽(SiO2)、碳化矽(SiC)、碳氮化矽(SiCN)、氮氧化矽(SiON)、碳氮氧化矽(SiCON)或其組合,其形成方法可以利用化學氣相沉積法、熱氧化法或爐管氧化法等來形成。在一實施例中,緩衝層540的厚度為10nm至40nm。上述緩衝層540可用於保護其下方的基底400、高壓閘介電層510以及穿隧介電層520,避免後續多數次的微影蝕刻製程損害上述三者表面的品質,進而提升產品可靠度。 Step S203 is performed to form a buffer layer 540 on the first conductor layer 530. The material of the buffer layer 540 is, for example, yttrium oxide (SiO 2 ), lanthanum carbide (SiC), lanthanum carbonitride (SiCN), lanthanum oxynitride (SiON), lanthanum oxynitride (SiCON) or a combination thereof, and the formation method thereof may be It is formed by a chemical vapor deposition method, a thermal oxidation method, a furnace tube oxidation method, or the like. In an embodiment, the buffer layer 540 has a thickness of 10 nm to 40 nm. The buffer layer 540 can be used to protect the underlying substrate 400, the high voltage thyristor layer 510, and the tunneling dielectric layer 520, so as to prevent the subsequent lithography process from damaging the quality of the three surfaces, thereby improving product reliability.

進行步驟S203,於緩衝層540上形成第一介電層550。第一介電層550的材料與緩衝層540不同。第一介電層550的材料例如是氧化矽層、氮氧化矽層或氮化矽層,其形成方法可以利用化學氣相沉積法、熱氧化法或低壓化學氣相沉積法等來形成。在一實施例中,第一介電層550的厚度為10nm至40nm。 Step S203 is performed to form a first dielectric layer 550 on the buffer layer 540. The material of the first dielectric layer 550 is different from the buffer layer 540. The material of the first dielectric layer 550 is, for example, a hafnium oxide layer, a hafnium oxynitride layer or a tantalum nitride layer, and the formation method thereof can be formed by a chemical vapor deposition method, a thermal oxidation method, or a low pressure chemical vapor deposition method. In an embodiment, the first dielectric layer 550 has a thickness of 10 nm to 40 nm.

請參照圖2B,在基底400上形成圖案化的罩幕層470。圖案化的罩幕層470的材料例如是碳或光阻類材料等。圖案化的罩幕層470暴露低壓元件區620的部分第一介電層550的表面。 Referring to FIG. 2B, a patterned mask layer 470 is formed on the substrate 400. The material of the patterned mask layer 470 is, for example, a carbon or photoresist type material or the like. The patterned mask layer 470 exposes a portion of the surface of the first dielectric layer 550 of the low voltage device region 620.

請參照圖2C與圖4,進行步驟S204,進行蝕刻製程,依序移除低壓元件區620上的部分第一介電層550、部分緩衝層540以及部分第一導體層530,以暴露穿隧介電層520的表面。然後,移除圖案化的罩幕層470。在一實施例中,移除圖案化的罩幕層470的方法可以是先以高密度電漿灰化圖案化的罩幕層470之後,再進行濕式清洗製程。 Referring to FIG. 2C and FIG. 4, step S204 is performed to perform an etching process to sequentially remove portions of the first dielectric layer 550, the portion of the buffer layer 540, and a portion of the first conductor layer 530 on the low voltage device region 620 to expose tunneling. The surface of the dielectric layer 520. The patterned mask layer 470 is then removed. In one embodiment, the method of removing the patterned mask layer 470 may be followed by a high-density plasma ashing of the patterned mask layer 470 followed by a wet cleaning process.

請參照圖2D與圖4,進行步驟S204,進行濕式蝕刻製程,以移除低壓元件區620上的穿隧介電層520。在一實施例中,溼式蝕刻製程所使用的蝕刻液例如是氫氟酸、氫氟酸蒸氣、硝酸和氫氟酸的混合溶液、熱磷酸(150℃~200℃)或硫酸和氫氟酸的混合溶液等。更具體地說,上述濕式蝕刻製程中可能耗損部分緩衝層540,使得緩衝層540的側面形成凹陷R1。 Referring to FIG. 2D and FIG. 4, step S204 is performed to perform a wet etching process to remove the tunneling dielectric layer 520 on the low voltage device region 620. In one embodiment, the etching solution used in the wet etching process is, for example, hydrofluoric acid, hydrofluoric acid vapor, a mixed solution of nitric acid and hydrofluoric acid, hot phosphoric acid (150 ° C to 200 ° C) or sulfuric acid and hydrofluoric acid. Mixed solution, etc. More specifically, a portion of the buffer layer 540 may be worn out in the wet etching process described above such that the side of the buffer layer 540 forms a recess R1.

請參照圖2E與圖4,進行步驟S204,在基底400上形成低壓閘介電層560(可視為第三閘介電層)。低壓閘介電層560的材料例如是氧化矽層、氮氧化矽層或氮化矽層,其形成方法可以利用化學氣相沉積法、原位蒸汽生成法、低壓自由基氧化法或爐管氧化法等來形成。在一實施例中,低壓閘介電層560的厚度為2nm至9nm。 Referring to FIG. 2E and FIG. 4, step S204 is performed to form a low-voltage gate dielectric layer 560 (which may be regarded as a third gate dielectric layer) on the substrate 400. The material of the low-voltage gate dielectric layer 560 is, for example, a hafnium oxide layer, a hafnium oxynitride layer or a tantalum nitride layer, and the formation method thereof may be performed by chemical vapor deposition, in-situ steam generation, low-pressure radical oxidation or furnace tube oxidation. Law is formed. In an embodiment, the low voltage gate dielectric layer 560 has a thickness of 2 nm to 9 nm.

請參照圖2F與圖4,進行步驟S204,在基底400上形成第二導體層570。具體地說,第二導體層570覆蓋在低壓閘介電層560與緩衝層540的側面上。第二導體層570材料例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法、低壓化學氣相沈積法或爐管氧化法來形成。在一實施例中,第二導體層570的厚度為10nm至40nm。 Referring to FIG. 2F and FIG. 4, step S204 is performed to form a second conductor layer 570 on the substrate 400. Specifically, the second conductor layer 570 is overlaid on the side of the low voltage gate dielectric layer 560 and the buffer layer 540. The second conductor layer 570 material is, for example, a doped polysilicon, an undoped polysilicon or a combination thereof, and the formation method thereof can be formed by a chemical vapor deposition method, a low pressure chemical vapor deposition method, or a furnace tube oxidation method. In an embodiment, the second conductor layer 570 has a thickness of 10 nm to 40 nm.

請參照圖2G,在基底400上形成圖案化的罩幕層480。圖案化的罩幕層480的材料例如是碳材料或光阻類材料等。在一實施例中,圖案化的罩幕層480與相鄰的第二導體層570相隔D2距離。D2的距離例如為100nm至300nm。 Referring to FIG. 2G, a patterned mask layer 480 is formed on the substrate 400. The material of the patterned mask layer 480 is, for example, a carbon material or a photoresist type material. In an embodiment, the patterned mask layer 480 is spaced from the adjacent second conductor layer 570 by a distance of D2. The distance of D2 is, for example, 100 nm to 300 nm.

請參照圖2H,進行蝕刻製程,依序移除晶胞區500與高壓元件區610上的第二導體層570、低壓閘介電層560以及第一介電層550,以暴露緩衝層540的表面。在蝕刻的過程中,為能完全移除共形於緩衝層540的側壁的第二導體層570,第一低壓井區450中未被圖案化的罩幕層480覆蓋的部分基底400因蝕刻耗損,而形成凹槽R2。然後,移除圖案化的罩幕層480。在一實施例中,移除圖案化的罩幕層480的方法可以是先以高密度電漿灰化圖案化的罩幕層480之後,再進行濕式清洗製程。 Referring to FIG. 2H, an etching process is performed to sequentially remove the second conductor layer 570, the low voltage gate dielectric layer 560, and the first dielectric layer 550 on the cell region 500 and the high voltage device region 610 to expose the buffer layer 540. surface. During the etching process, in order to completely remove the second conductor layer 570 conforming to the sidewall of the buffer layer 540, a portion of the substrate 400 of the first low-pressure well region 450 that is not covered by the patterned mask layer 480 is etched away. And the groove R2 is formed. The patterned mask layer 480 is then removed. In one embodiment, the method of removing the patterned mask layer 480 may be followed by a high density plasma ashing of the patterned mask layer 480 followed by a wet cleaning process.

請參照圖2I與圖4,進行步驟S205,進行濕式蝕刻製程,以移除緩衝層540以及未被第二導體層570覆蓋的低壓閘介電層560,裸露出由第二導體層570側壁、穿隧介電層520側壁以及第一低壓井區450表面與凹槽R2構成的階梯狀開口485。在一實施例中,溼式蝕刻製程所使用的蝕刻液例如是氫氟酸、硝酸和氫氟酸的混合溶液、熱磷酸(150℃~200℃)或磷酸和氫氟酸的混合溶液等。 Referring to FIG. 2I and FIG. 4, step S205 is performed to perform a wet etching process to remove the buffer layer 540 and the low-voltage gate dielectric layer 560 not covered by the second conductor layer 570 to expose the sidewall of the second conductor layer 570. And a stepped opening 485 formed by the sidewall of the tunneling dielectric layer 520 and the surface of the first low-pressure well region 450 and the recess R2. In one embodiment, the etching solution used in the wet etching process is, for example, a mixed solution of hydrofluoric acid, nitric acid, and hydrofluoric acid, hot phosphoric acid (150 ° C to 200 ° C), or a mixed solution of phosphoric acid and hydrofluoric acid.

請參照圖2J與圖4,進行步驟S206,於基底400上依序形成第三導體層580與第二介電層590,以填滿上述階梯狀開口485。第三導體層580的材料例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法、低壓化學氣相沈積法或爐管氧化法來形成。在一實施例中,第三導體層580的厚度為50nm至150nm。第二介電層590的材料例如是氧化矽層、氮氧化矽層或氮化矽層,其形成方法可以利用化學氣相沉積法、 物理氣相沉積法、熱氧化法或爐管氧化法等來形成。在一實施例中,第二介電層590的厚度為10nm至100nm。 Referring to FIG. 2J and FIG. 4, in step S206, a third conductor layer 580 and a second dielectric layer 590 are sequentially formed on the substrate 400 to fill the stepped opening 485. The material of the third conductor layer 580 is, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof can be formed by a chemical vapor deposition method, a low pressure chemical vapor deposition method, or a furnace tube oxidation method. In an embodiment, the third conductor layer 580 has a thickness of 50 nm to 150 nm. The material of the second dielectric layer 590 is, for example, a ruthenium oxide layer, a ruthenium oxynitride layer or a tantalum nitride layer, and the formation method thereof can be performed by chemical vapor deposition, Formed by physical vapor deposition, thermal oxidation or furnace tube oxidation. In an embodiment, the second dielectric layer 590 has a thickness of 10 nm to 100 nm.

請參照圖2K與圖4,進行步驟S207,於基底400中形成多數個溝渠19,其中多數個溝渠19穿過第二介電層590延伸至基底400中。更具體地說,於晶胞區500、高壓元件區610以及低壓元件區620周圍的基底400中形成多數個溝渠19。以晶胞區500與高壓元件區610之間的溝渠為例,在一實施例中,先在基底400上形成圖案化的罩幕層(未繪示),進行乾式蝕刻製程例如是反應性離子蝕刻法,去除基底400上的部分第二介電層590、第三導體層580、第一導體層530、高壓閘介電層510、穿隧介電層520、低壓閘介電層560以及基底400以形成溝渠19。 Referring to FIG. 2K and FIG. 4 , step S207 is performed to form a plurality of trenches 19 in the substrate 400 , wherein a plurality of trenches 19 extend through the second dielectric layer 590 into the substrate 400 . More specifically, a plurality of trenches 19 are formed in the substrate 400 around the cell region 500, the high voltage device region 610, and the low voltage device region 620. Taking a trench between the cell region 500 and the high voltage device region 610 as an example, in one embodiment, a patterned mask layer (not shown) is first formed on the substrate 400, and a dry etching process such as reactive ions is performed. A portion of the second dielectric layer 590, the third conductor layer 580, the first conductor layer 530, the high voltage thyristor layer 510, the tunneling dielectric layer 520, the low voltage gate dielectric layer 560, and the substrate on the substrate 400 are removed by etching. 400 to form a trench 19.

請參照圖2L與圖4,進行步驟S207,於溝渠19中形成多數個隔離結構490。更具體地說,在基底400上形成隔離材料層,例如是高密度電漿氧化層或旋塗式玻璃,以填滿多數個溝渠19。之後,利用化學機械研磨法平坦化基底400上的隔離材料層,以暴露基底400上的第二介電層590。接著,接續上述圖1G至圖1I的製造流程,在晶胞區400上形成記憶陣列,於此不再贅述。 Referring to FIG. 2L and FIG. 4, step S207 is performed to form a plurality of isolation structures 490 in the trench 19. More specifically, a layer of insulating material, such as a high density plasma oxide layer or spin-on glass, is formed on substrate 400 to fill a plurality of trenches 19. Thereafter, the layer of isolation material on substrate 400 is planarized by chemical mechanical polishing to expose second dielectric layer 590 on substrate 400. Next, following the manufacturing flow of FIG. 1G to FIG. 1I described above, a memory array is formed on the cell region 400, and details are not described herein again.

圖3A至圖3L為本發明之第三實施例的記憶元件之製造流程剖面示意圖。圖5為本發明之第三實施例的記憶元件之製造流程圖。以下的實施例中,相同或相似的元件、構件、層以相似的元件符號來表示。舉例來說,圖2A之深井區410與圖3A之深井區410為相同或相似的構件;圖2A之第一井區420與圖3A之 第一井區420為相同或相似的構件。於此不再逐一贅述。 3A to 3L are schematic cross-sectional views showing a manufacturing process of a memory element according to a third embodiment of the present invention. Figure 5 is a flow chart showing the manufacture of a memory element in accordance with a third embodiment of the present invention. In the following embodiments, the same or similar elements, members, and layers are denoted by like reference numerals. For example, the deep well region 410 of FIG. 2A is the same or similar member as the deep well region 410 of FIG. 3A; the first well region 420 of FIG. 2A and FIG. 3A The first well zone 420 is the same or similar component. This will not be repeated here.

請同時參照圖3A、圖5、圖2A以及圖4,本發明之第三實施例的記憶元件之製造流程與本發明之第二實施例的記憶元件之製造流程基本上相似(即步驟S201與S301相似,步驟S202與S302相似,步驟S203與S303相似),其步驟已在上述段落說明過,於此便不再詳述。上述兩者不同之處在於:第二實施例的記憶元件之製造流程是在低壓元件區620(可視為第二區)與晶胞區500(可視為第三區)的基底400上形成穿隧介電層520(如步驟S202所示);而第三實施例的記憶元件之製造流程是在低壓元件區620(可視為第二區)與晶胞區500(可視為第三區)的基底400上形成低壓閘介電層560(如步驟S302所示)。 Referring to FIG. 3A, FIG. 5, FIG. 2A and FIG. 4, the manufacturing process of the memory element of the third embodiment of the present invention is substantially similar to the manufacturing process of the memory element of the second embodiment of the present invention (ie, step S201 and S301 is similar, step S202 is similar to S302, and steps S203 are similar to S303. The steps have been described in the above paragraphs, and will not be described in detail herein. The difference between the above two is that the manufacturing process of the memory element of the second embodiment is to form a tunnel on the substrate 400 of the low voltage element region 620 (which can be regarded as the second region) and the cell region 500 (which can be regarded as the third region). The dielectric layer 520 (as shown in step S202); and the manufacturing process of the memory element of the third embodiment is a substrate in the low voltage element region 620 (which can be regarded as the second region) and the cell region 500 (which can be regarded as the third region). A low voltage gate dielectric layer 560 is formed over 400 (as shown in step S302).

接著,請參照圖3B,在基底400上形成圖案化的罩幕層470。圖案化的罩幕層470的材料例如是碳或光阻類材料等。圖案化的罩幕層470暴露晶胞區500以及低壓元件區620的部分第一介電層550的表面。 Next, referring to FIG. 3B, a patterned mask layer 470 is formed on the substrate 400. The material of the patterned mask layer 470 is, for example, a carbon or photoresist type material or the like. The patterned mask layer 470 exposes the surface of the cell region 500 and portions of the first dielectric layer 550 of the low voltage device region 620.

請參照圖3C與圖5,進行步驟S304,進行蝕刻製程,依序移除晶胞區500以及低壓元件區620上的部分第一介電層550、緩衝層540以及第一導體層530,以暴露低壓閘介電層560(可視為第二閘介電層)的表面。然後,移除圖案化的罩幕層470。 Referring to FIG. 3C and FIG. 5, step S304 is performed to perform an etching process to sequentially remove a portion of the first dielectric layer 550, the buffer layer 540, and the first conductor layer 530 on the cell region 500 and the low voltage device region 620. The surface of the low voltage gate dielectric layer 560 (which may be considered a second gate dielectric layer) is exposed. The patterned mask layer 470 is then removed.

請參照圖3D與圖5,進行步驟S304,進行濕式蝕刻製程,以移除晶胞區500以及低壓元件區620上的低壓閘介電層560。上述濕式蝕刻製程中可能耗損部分緩衝層540,使得緩衝層540的側 面形成凹陷R3。 Referring to FIG. 3D and FIG. 5, step S304 is performed to perform a wet etching process to remove the cell region 500 and the low voltage gate dielectric layer 560 on the low voltage device region 620. A portion of the buffer layer 540 may be worn out in the wet etching process described above, such that the side of the buffer layer 540 The face forms a recess R3.

請參照圖3E與圖5,進行步驟S304,在基底400上形成穿隧介電層520(可視為第三閘介電層)。穿隧介電層520的材料、形成方法以及厚度如上述第二實施例之穿隧介電層520所述,於此不再詳述。 Referring to FIG. 3E and FIG. 5, step S304 is performed to form a tunneling dielectric layer 520 (which may be regarded as a third gate dielectric layer) on the substrate 400. The material, the formation method, and the thickness of the tunneling dielectric layer 520 are as described above for the tunneling dielectric layer 520 of the second embodiment, and will not be described in detail herein.

請參照圖3F與圖5,進行步驟S304,在基底400上形成第二導體層570。具體地說,第二導體層570覆蓋在穿隧介電層520的表面以及緩衝層540的側面上。第二導體層570的材料、形成方法以及厚度如上述第二實施例之第二導體層570所述,於此不再詳述。 Referring to FIG. 3F and FIG. 5, step S304 is performed to form a second conductor layer 570 on the substrate 400. Specifically, the second conductor layer 570 covers the surface of the tunnel dielectric layer 520 and the side of the buffer layer 540. The material, formation method, and thickness of the second conductor layer 570 are as described in the second conductor layer 570 of the second embodiment described above, and will not be described in detail herein.

請參照圖3G,在基底400上形成圖案化的罩幕層480。詳細地說,圖案化的罩幕層480覆蓋晶胞區500以及低壓元件區620的部分第二導體層570的表面。在一實施例中,圖案化的罩幕層480與相鄰的第二導體層570相隔D3距離。D3的距離例如為100nm至300nm。 Referring to FIG. 3G, a patterned mask layer 480 is formed on the substrate 400. In detail, the patterned mask layer 480 covers the surface of the cell region 500 and a portion of the second conductor layer 570 of the low voltage device region 620. In one embodiment, the patterned mask layer 480 is spaced from the adjacent second conductor layer 570 by a distance of D3. The distance of D3 is, for example, 100 nm to 300 nm.

請參照圖3H,進行蝕刻製程,依序移除未被圖案化的罩幕層480覆蓋的第二導體層570、穿隧介電層520以及第一介電層550,以暴露緩衝層540的表面。在蝕刻的過程中,為能完全移除共形於緩衝層540的側壁的第二導體層570,第一井區420以及第一低壓井區450中未被圖案化的罩幕層480覆蓋的部分基底400因蝕刻耗損,而形成凹槽R4。然後,移除圖案化的罩幕層480。 Referring to FIG. 3H, an etching process is performed to sequentially remove the second conductor layer 570, the tunneling dielectric layer 520, and the first dielectric layer 550 that are not covered by the patterned mask layer 480 to expose the buffer layer 540. surface. During the etching process, the second well layer 570 conforming to the sidewall of the buffer layer 540 is completely removed, and the first well region 420 and the first low pressure well region 450 are covered by the unpatterned mask layer 480. Part of the substrate 400 is etched to form a recess R4. The patterned mask layer 480 is then removed.

請參照圖3I與圖5,進行步驟S305,進行濕式蝕刻製程, 以移除緩衝層540以及未被第二導體層570覆蓋的穿隧介電層520,裸露出由第二導體層570側壁、穿隧介電層520側壁以及第一井區420表面與凹槽R4構成的階梯狀開口485a,以及裸露出由第二導體層570側壁、穿隧介電層520側壁以及第一低壓井區450表面與凹槽R4構成的階梯狀開口485b。 Referring to FIG. 3I and FIG. 5, step S305 is performed to perform a wet etching process. The sidewalls of the second conductor layer 570, the sidewalls of the tunnel dielectric layer 520, and the surface and recess of the first well region 420 are exposed by removing the buffer layer 540 and the tunneling dielectric layer 520 not covered by the second conductor layer 570. A stepped opening 485a formed by R4, and a stepped opening 485b formed by the sidewall of the second conductor layer 570, the sidewall of the tunneling dielectric layer 520, and the surface of the first low-pressure well region 450 and the recess R4 are exposed.

請參照圖3J與圖5,進行步驟S306,於基底400上依序形成第三導體層580與第二介電層590,以填滿上述階梯狀開口485a、485b。第三導體層580與第二介電層590的材料、形成方法以及厚度如上述第二實施例之第三導體層580與第二介電層590所述,於此不再詳述。 Referring to FIG. 3J and FIG. 5, in step S306, a third conductor layer 580 and a second dielectric layer 590 are sequentially formed on the substrate 400 to fill the stepped openings 485a and 485b. The materials, formation methods, and thicknesses of the third conductor layer 580 and the second dielectric layer 590 are as described in the third conductor layer 580 and the second dielectric layer 590 of the second embodiment described above, and will not be described in detail herein.

請參照圖3K與圖5,進行步驟S307,於基底400中形成多數個溝渠19,其中多數個溝渠19穿過第二介電層590延伸至基底400中。更具體地說,於晶胞區500、高壓元件區610以及低壓元件區620周圍的基底400中形成多數個溝渠19。 Referring to FIG. 3K and FIG. 5 , step S307 is performed to form a plurality of trenches 19 in the substrate 400 , wherein a plurality of trenches 19 extend through the second dielectric layer 590 into the substrate 400 . More specifically, a plurality of trenches 19 are formed in the substrate 400 around the cell region 500, the high voltage device region 610, and the low voltage device region 620.

請參照圖3L與圖5,進行步驟S307,於溝渠19中形成多數個隔離結構490。隔離結構490位於晶胞區500、高壓元件區610以及低壓元件區620周圍的基底400中,其可用以電性隔離晶胞區500、高壓元件區610以及低壓元件區620中的各個元件。接著,接續上述圖1G至圖1I的製造流程,在晶胞區400上形成記憶陣列,於此不再贅述。 Referring to FIG. 3L and FIG. 5, step S307 is performed to form a plurality of isolation structures 490 in the trench 19. The isolation structure 490 is located in the substrate 400 around the cell region 500, the high voltage device region 610, and the low voltage device region 620, which can be used to electrically isolate each of the cell region 500, the high voltage device region 610, and the low voltage device region 620. Next, following the manufacturing flow of FIG. 1G to FIG. 1I described above, a memory array is formed on the cell region 400, and details are not described herein again.

值得注意的是,本發明之第三實施例的記憶元件之製造流程是先形成高壓閘介電層510,再形成低壓閘介電層560(如步 驟S302所示)。然後,再形成穿隧介電層520(如步驟S304所示)。相較高壓閘介電層510與低壓閘介電層560的形成順序,穿隧介電層520較晚形成,因此,其可避免多數次的微影蝕刻製程損害上述穿隧介電層520表面的品質,進而提升產品可靠度。 It should be noted that the manufacturing process of the memory device of the third embodiment of the present invention first forms the high voltage gate dielectric layer 510, and then forms the low voltage gate dielectric layer 560 (step). Step S302 is shown). Then, a tunneling dielectric layer 520 is formed (as shown in step S304). The formation of the higher-voltage gate dielectric layer 510 and the low-voltage gate dielectric layer 560, the tunneling dielectric layer 520 is formed later, so that most of the lithography process can be prevented from damaging the surface of the tunneling dielectric layer 520. Quality, which in turn increases product reliability.

此外,就製程流程而言,本發明之記憶元件的製造流程順序並不設限。舉例來說,本發明之記憶元件的製造方法可先形成高壓閘介電層510,再形成低壓閘介電層560,然後,再形成穿隧介電層520;又或者是先形成高壓閘介電層510,再形成穿隧介電層520,然後,再形成低壓閘介電層560。 In addition, the manufacturing process sequence of the memory element of the present invention is not limited in terms of the process flow. For example, the method for fabricating the memory device of the present invention may first form a high voltage gate dielectric layer 510, form a low voltage gate dielectric layer 560, and then form a tunnel dielectric layer 520; or form a high voltage gate dielectric first. The electrical layer 510 is further formed with a tunneling dielectric layer 520, and then a low voltage gate dielectric layer 560 is formed.

綜上所述,本發明之記憶元件的製造方法無須透過現行的氮植入製程,便可形成三重氧化層的記憶元件。因此,由於氮植入導致矽基底與氧化矽層之間的不良界面,降低此界面的離子遷移(Ion Mobility),進而延緩氧化矽的生成速率的問題便可迎刃而解。且本發明亦可相容於現有的高品質的濕式氧化製程,例如原位蒸汽生成法以及低壓自由基氧化法等,因此可增加高品質氧化矽的生成速率,提升整體記憶元件的製程速率,以降低生產成本。 In summary, the method of manufacturing the memory device of the present invention can form a memory element of a triple oxide layer without passing through the current nitrogen implantation process. Therefore, due to the poor interface between the ruthenium substrate and the ruthenium oxide layer due to nitrogen implantation, the problem of reducing the ion migration (Ion Mobility) at this interface and delaying the rate of yttrium oxide formation can be solved. Moreover, the present invention can also be compatible with existing high-quality wet oxidation processes, such as in-situ steam generation and low-pressure radical oxidation, thereby increasing the rate of formation of high-quality cerium oxide and increasing the processing rate of the overall memory device. To reduce production costs.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

400‧‧‧基底 400‧‧‧Base

410‧‧‧深井區 410‧‧‧Shenjing District

420‧‧‧第一井區 420‧‧‧First Well Area

430‧‧‧第一高壓井區 430‧‧‧First high pressure well area

440、442、444‧‧‧第二高壓井區 440, 442, 444‧‧‧ second high pressure well area

450‧‧‧第一低壓井區 450‧‧‧First low pressure well area

460‧‧‧第二低壓井區 460‧‧‧ second low pressure well area

490‧‧‧隔離結構 490‧‧‧Isolation structure

500‧‧‧晶胞區、第三區 500‧‧‧cell area, third zone

510‧‧‧高壓閘介電層 510‧‧‧High-voltage gate dielectric layer

520‧‧‧穿隧介電層 520‧‧‧Tunnel dielectric layer

530‧‧‧第一導體層 530‧‧‧First conductor layer

560‧‧‧低壓閘介電層 560‧‧‧Low-voltage gate dielectric layer

570‧‧‧第二導體層 570‧‧‧Second conductor layer

580‧‧‧第三導體層 580‧‧‧3rd conductor layer

590‧‧‧第二介電層 590‧‧‧Second dielectric layer

600‧‧‧周邊區 600‧‧‧ surrounding area

610‧‧‧高壓元件區、第一區 610‧‧‧High-voltage component area, first district

620‧‧‧低壓元件區、第二區 620‧‧‧Low-voltage component area, second zone

Claims (18)

一種記憶元件的製造方法,包括:提供一基底,該基底具有一第一區、一第二區以及一第三區;於該第一區的該基底上形成一第一閘介電層;於該第二區與該第三區的該基底上形成一第二閘介電層;於該基底上依序形成一第一導體層與一第一介電層;於該第一區與該第三區之間形成穿過該第一介電層且延伸至該基底中的一第一隔離結構;於該基底上形成一緩衝層;依序移除該第三區的該緩衝層、該第一介電層、該第一導體層以及該第二閘介電層,以暴露該基底的表面;於該第三區的該基底上形成一第三閘介電層;於該基底上依序形成一第二導體層以及一第二介電層;於該第三區的該第二介電層、該第二導體層、該第三閘介電層以及該基底中形成多數個溝渠;於該第三區的該基底上形成多數個第二隔離結構,且該些第二隔離結構填滿該些溝渠;以及移除該第一區與該第二區的該緩衝層。 A method of fabricating a memory device, comprising: providing a substrate having a first region, a second region, and a third region; forming a first gate dielectric layer on the substrate of the first region; a second gate dielectric layer is formed on the substrate of the second region and the third region; a first conductor layer and a first dielectric layer are sequentially formed on the substrate; and the first region and the first region Forming a first isolation structure between the three regions through the first dielectric layer and extending into the substrate; forming a buffer layer on the substrate; sequentially removing the buffer layer of the third region, the first a dielectric layer, the first conductor layer and the second gate dielectric layer to expose a surface of the substrate; forming a third gate dielectric layer on the substrate of the third region; sequentially on the substrate Forming a second conductor layer and a second dielectric layer; forming a plurality of trenches in the second dielectric layer, the second conductor layer, the third gate dielectric layer, and the substrate in the third region; a plurality of second isolation structures are formed on the substrate of the third region, and the second isolation structures fill the trenches; In addition to the buffer layer of the first region and the second region. 如申請專利範圍第1項所述的記憶元件的製造方法,其中該些第二隔離結構的材料包括旋塗式玻璃或高密度電漿氧化物。 The method of manufacturing a memory device according to claim 1, wherein the materials of the second isolation structures comprise spin-on glass or high-density plasma oxide. 如申請專利範圍第1項所述的記憶元件的製造方法,其中在形成該些第二隔離結構時更包括: 在該第一隔離結構一側形成一第三隔離結構,其中該第三隔離結構覆蓋部分該第一隔離結構,且該第三隔離結構的底部為階梯狀。 The method of manufacturing the memory device of claim 1, wherein the forming the second isolation structure further comprises: Forming a third isolation structure on a side of the first isolation structure, wherein the third isolation structure covers a portion of the first isolation structure, and a bottom portion of the third isolation structure is stepped. 如申請專利範圍第1項所述的記憶元件的製造方法,其中移除該緩衝層後更包括:移除該第一區與該第二區上的該第一介電層與該第三區上的該第二介電層;於該基底上依序形成一閘間介電層與一第三導體層;於該第一區的該第三導體層、該閘間介電層以及該第一導體層中形成一開口;於該基底上依序形成一第四導體層與一圖案化的硬罩幕層,以填滿該開口;以及進行一蝕刻製程,移除部分該第四導體層、該第三導體層、該閘間介電層以及該第一導體層,以在該第三區留下該閘間介電層並形成一控制閘,並在該第一區形成一閘極結構。 The method of manufacturing the memory device of claim 1, wherein the removing the buffer layer further comprises: removing the first dielectric layer and the first dielectric layer and the third region on the second region The second dielectric layer; a gate dielectric layer and a third conductor layer are sequentially formed on the substrate; the third conductor layer, the gate dielectric layer, and the first region of the first region Forming an opening in a conductor layer; sequentially forming a fourth conductor layer and a patterned hard mask layer on the substrate to fill the opening; and performing an etching process to remove a portion of the fourth conductor layer The third conductor layer, the inter-gate dielectric layer and the first conductor layer to leave the inter-gate dielectric layer in the third region and form a control gate, and form a gate in the first region structure. 如申請專利範圍第1項所述的記憶元件的製造方法,其中該緩衝層的材料包括氧化矽(SiO2)、碳化矽(SiC)、碳氮化矽(SiCN)、氮氧化矽(SiON)、碳氮氧化矽(SiCON)或其組合。 The method for manufacturing a memory device according to claim 1, wherein the buffer layer material comprises cerium oxide (SiO 2 ), cerium carbide (SiC), lanthanum carbonitride (SiCN), cerium oxynitride (SiON). , bismuth carbonitride (SiCON) or a combination thereof. 如申請專利範圍第1項所述的記憶元件的製造方法,其中該第二導體層的厚度大於該第一導體層的厚度。 The method of manufacturing a memory device according to claim 1, wherein the second conductor layer has a thickness greater than a thickness of the first conductor layer. 如申請專利範圍第1項所述的記憶元件的製造方法,其中該第一導體層與該第二導體層的材料包括摻雜多晶矽、非摻雜多 晶矽或其組合。 The method of manufacturing the memory device of claim 1, wherein the material of the first conductor layer and the second conductor layer comprises doped polysilicon, non-doped Crystalline or a combination thereof. 如申請專利範圍第1項所述的記憶元件的製造方法,其中該第一閘介電層的厚度、該第二閘介電層的厚度以及該第三閘介電層的厚度彼此不同。 The method of manufacturing a memory device according to claim 1, wherein the thickness of the first gate dielectric layer, the thickness of the second gate dielectric layer, and the thickness of the third gate dielectric layer are different from each other. 如申請專利範圍第1項所述的記憶元件的製造方法,其中該第三區的該第三閘介電層為穿隧介電層。 The method of fabricating a memory device according to claim 1, wherein the third gate dielectric layer of the third region is a tunneling dielectric layer. 一種記憶元件,包括:一基底,具有一第一區、一第二區以及一第三區;一第一閘極結構,位於該第一區的該基底上,其中該第一閘極結構包括:一第一閘介電層,位於該第一區的該基底上;以及一第一導體層,位於該第一閘介電層上;一第二閘極結構,位於該第二區的該基底上,其中該第二閘極結構包括:一第二閘介電層,位於該第二區的該基底上;以及一第二導體層,位於該第二閘介電層上;一第三導體層,位於該第三區的該基底上;一第三閘介電層,位於該第三區的該基底與該第三導體層之間,其中該第三導體層的厚度大於該第一導體層的厚度,且該第三導體層的厚度大於該第二導體層的厚度;一第一隔離結構,位於該第三區與該第一區之間的該基底中;多數個第二隔離結構,位於該第三區的該基底中;以及一第三隔離結構,覆蓋部分該第一隔離結構,且該第三隔離結構的底部為階梯狀。 A memory device comprising: a substrate having a first region, a second region, and a third region; a first gate structure on the substrate of the first region, wherein the first gate structure comprises a first gate dielectric layer on the substrate of the first region; and a first conductor layer on the first gate dielectric layer; and a second gate structure located in the second region On the substrate, wherein the second gate structure comprises: a second gate dielectric layer on the substrate of the second region; and a second conductor layer on the second gate dielectric layer; a conductor layer on the substrate of the third region; a third gate dielectric layer between the substrate and the third conductor layer of the third region, wherein the third conductor layer has a thickness greater than the first a thickness of the conductor layer, and a thickness of the third conductor layer is greater than a thickness of the second conductor layer; a first isolation structure in the substrate between the third region and the first region; a plurality of second isolation a structure located in the substrate of the third region; and a third isolation structure covering the portion Isolation structure, and the bottom of the third isolation structure is stepped. 如申請專利範圍第10項所述的記憶元件,更包括:一閘間介電層,位於該第三區的該第三導體層上、該第一區的該第一導體層上以及該第二區的該第二導體層上;以及一第四導體層,位於該閘間介電層上。 The memory device of claim 10, further comprising: a gate dielectric layer on the third conductor layer of the third region, the first conductor layer of the first region, and the first The second conductor layer of the second region; and a fourth conductor layer are disposed on the inter-gate dielectric layer. 一種記憶元件的製造方法,包括:提供一基底,該基底具有一第一區、一第二區以及一第三區;於該第一區的該基底上形成一第一閘介電層;於該第二區與該第三區的該基底上形成一第二閘介電層;於該基底上依序形成一第一導體層、一緩衝層以及一第一介電層;移除該第二區的部分該第一介電層、部分該緩衝層、部分該第一導體層以及部分該第二閘介電層,以暴露該第二區的部分該基底的表面;於該第二區的該基底上依序形成一第三閘介電層與一第二導體層;移除該緩衝層;於該基底上依序形成一第三導體層與一第二介電層;以及在該基底中形成多數個隔離結構,其中該些隔離結構穿過該第二介電層延伸至該基底中。 A method of fabricating a memory device, comprising: providing a substrate having a first region, a second region, and a third region; forming a first gate dielectric layer on the substrate of the first region; Forming a second gate dielectric layer on the substrate of the second region and the third region; forming a first conductor layer, a buffer layer and a first dielectric layer on the substrate; removing the first a portion of the first dielectric layer, a portion of the buffer layer, a portion of the first conductor layer, and a portion of the second gate dielectric layer of the second region to expose a portion of the surface of the second region; Forming a third gate dielectric layer and a second conductor layer on the substrate; removing the buffer layer; sequentially forming a third conductor layer and a second dielectric layer on the substrate; A plurality of isolation structures are formed in the substrate, wherein the isolation structures extend through the second dielectric layer into the substrate. 如申請專利範圍第12項所述的記憶元件的製造方法,其中在形成該第三閘介電層與該第二導體層時,同時在該第二區的該基底中形成一凹槽,且形成該些隔離結構之一的方法包括移除 該凹槽周圍的該基底、該第一導體層以及該凹槽上方的該第三導體層與該第二介電層,以形成一溝渠;以及於該溝渠中填入一隔離材料層。 The method of manufacturing the memory device of claim 12, wherein when the third gate dielectric layer and the second conductor layer are formed, a recess is simultaneously formed in the substrate of the second region, and A method of forming one of the isolation structures includes removing The substrate around the recess, the first conductor layer and the third conductor layer and the second dielectric layer above the recess to form a trench; and the trench is filled with a layer of insulating material. 如申請專利範圍第12項所述的記憶元件的製造方法,其中該第三區的該第二閘介電層為穿隧介電層。 The method of fabricating a memory device according to claim 12, wherein the second gate dielectric layer of the third region is a tunneling dielectric layer. 如申請專利範圍第12項所述的記憶元件的製造方法,其中在移除該第二區的部分該第一介電層、部分該緩衝層、部分該第一導體層以及部分該第二閘介電層的步驟中,更包括:移除該第三區的部分該第一介電層、部分該緩衝層、部分該第一導體層以及部分該第二閘介電層,以暴露該第三區的部分該基底的表面。 The method of manufacturing a memory device according to claim 12, wherein the first dielectric layer, a portion of the buffer layer, a portion of the first conductor layer, and a portion of the second gate are removed at a portion of the second region. The step of the dielectric layer further includes: removing a portion of the first dielectric layer, a portion of the buffer layer, a portion of the first conductive layer, and a portion of the second gate dielectric layer of the third region to expose the first portion The portion of the three regions is the surface of the substrate. 如申請專利範圍第15項所述的記憶元件的製造方法,其中在該第二區的該基底上依序形成該第三閘介電層與該第二導體層的步驟中,更包括:於該第三區的該基底上依序形成該第三閘介電層與該第二導體層。 The method of manufacturing the memory device of claim 15, wherein the step of sequentially forming the third gate dielectric layer and the second conductor layer on the substrate of the second region further comprises: The third gate dielectric layer and the second conductor layer are sequentially formed on the substrate of the third region. 如申請專利範圍第16項所述的記憶元件的製造方法,其中該第三區的該第三閘介電層為穿隧介電層。 The method of fabricating a memory device according to claim 16, wherein the third gate dielectric layer of the third region is a tunneling dielectric layer. 如申請專利範圍第16項所述的記憶元件的製造方法,其中在該第二區與該第三區的該基底上形成該第三閘介電層與該第二導體層時,同時在該第二區與該第三區的該基底中分別形成兩個凹槽,且形成該些隔離結構之一的方法包括移除該些凹槽周圍 的該基底、該第一導體層以及該些凹槽上方的該第三導體層與該第二介電層,以分別形成兩個溝渠;以及於該些溝渠中填入一隔離材料層。 The method of manufacturing the memory device of claim 16, wherein the third gate dielectric layer and the second conductor layer are formed on the substrate of the second region and the third region, Forming two recesses in the base of the second zone and the third zone, respectively, and forming a method of one of the isolation structures includes removing the grooves The substrate, the first conductor layer and the third conductor layer and the second dielectric layer above the recesses respectively form two trenches; and the trenches are filled with a layer of insulating material.
TW104107449A 2014-03-26 2015-03-09 Memory device and method for fabricating the same TWI539559B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104107449A TWI539559B (en) 2014-03-26 2015-03-09 Memory device and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW103111266 2014-03-26
TW104107449A TWI539559B (en) 2014-03-26 2015-03-09 Memory device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201537691A true TW201537691A (en) 2015-10-01
TWI539559B TWI539559B (en) 2016-06-21

Family

ID=54850978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104107449A TWI539559B (en) 2014-03-26 2015-03-09 Memory device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI539559B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612641B (en) * 2016-08-30 2018-01-21 華邦電子股份有限公司 Method for fabricating memory device
US10157930B2 (en) 2016-08-30 2018-12-18 Winbond Electronics Corp. Method for fabricating memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612641B (en) * 2016-08-30 2018-01-21 華邦電子股份有限公司 Method for fabricating memory device
US10157930B2 (en) 2016-08-30 2018-12-18 Winbond Electronics Corp. Method for fabricating memory device

Also Published As

Publication number Publication date
TWI539559B (en) 2016-06-21

Similar Documents

Publication Publication Date Title
US9136178B2 (en) Method for fabricating a finFET in a large scale integrated circuit
US20060017093A1 (en) Semiconductor devices with overlapping gate electrodes and methods of fabricating the same
TWI520275B (en) Memory device and method of manufacturing the same
CN102376538B (en) Method of forming a poly silicon resistor device and semiconductor device
CN102290378B (en) Semiconductor device and method for manufacturing the same
EP2455967B1 (en) A method for forming a buried dielectric layer underneath a semiconductor fin
CN109979880B (en) Semiconductor structure and forming method thereof
TWI527096B (en) Growth epi as interconnection layer on mos structure
CN113257921B (en) Semiconductor structure
TWI661540B (en) Method of manufacturing memory device
US20080032483A1 (en) Trench isolation methods of semiconductor device
US11348792B2 (en) Reduce well dopant loss in FinFETs through co-implantation
TW201712850A (en) Semiconductor device and method of forming the same
KR100809338B1 (en) Semiconductor device and method of fabricating the same
US20080160698A1 (en) Method for fabricating a semiconductor device
CN107799528B (en) Method for manufacturing memory element
TWI539559B (en) Memory device and method for fabricating the same
CN104952806B (en) Memory element and method for manufacturing the same
US20070026606A1 (en) Method and structure for fabricating non volatile memory arrays
CN109003899B (en) Semiconductor structure, forming method thereof and forming method of fin field effect transistor
KR20080046483A (en) Semiconductor device and method of forming the same
TW201933493A (en) Method of manufacturing semiconductor device
JP2013045953A (en) Semiconductor device and method of manufacturing the same
KR100480236B1 (en) Method for manufacturing semiconductor device
TWI612641B (en) Method for fabricating memory device