TW201537657A - Plasma processing chamber and platform thereof - Google Patents

Plasma processing chamber and platform thereof Download PDF

Info

Publication number
TW201537657A
TW201537657A TW103145978A TW103145978A TW201537657A TW 201537657 A TW201537657 A TW 201537657A TW 103145978 A TW103145978 A TW 103145978A TW 103145978 A TW103145978 A TW 103145978A TW 201537657 A TW201537657 A TW 201537657A
Authority
TW
Taiwan
Prior art keywords
base
processing chamber
plasma processing
substrate
layer
Prior art date
Application number
TW103145978A
Other languages
Chinese (zh)
Other versions
TWI623051B (en
Inventor
Di Wu
Tu-Ciang Ni
Original Assignee
Advanced Micro Fab Equip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Fab Equip Inc filed Critical Advanced Micro Fab Equip Inc
Publication of TW201537657A publication Critical patent/TW201537657A/en
Application granted granted Critical
Publication of TWI623051B publication Critical patent/TWI623051B/en

Links

Abstract

The present invention provides a plasma processing chamber and a platform thereof. In which, the platform comprises a base, in which a cooling liquid channel is configured; then upper structure of the base comprises: a second insulation layer, in which a heater is configured; and, a first insulation layer disposed directly on top of the second insulation layer, in which electrostatic electrodes are configured; wherein, a plurality of holes are configured between the plane where the upper surface of the cooling liquid channel of the base is located and the lower surface of the second insulation layer. The plasma processing chamber and the platform thereof provided by the present invention may greatly increase the temperature difference between the cooling liquid channel in the base of the platform and the heater embedded in the second insulation layer to meet the requirement of manufacturing process.

Description

一種用於等離子體處理腔室及其基台 A plasma processing chamber and a base thereof

本發明涉及半導體製造領域,尤其涉及一種等離子體處理腔室及其基台。 The present invention relates to the field of semiconductor manufacturing, and more particularly to a plasma processing chamber and a base thereof.

等離子處理腔室利用真空反應室的工作原理進行半導體基片和等離子平板的基片的加工。真空反應室的工作原理是在真空反應室中通入含有適當蝕刻源氣體的反應氣體,然後再對該真空反應室進行射頻能量輸入,以啟動反應氣體,來激發和維持等離子體,以便分別蝕刻基片表面上的材料層或在基片表面上沉積材料層,進而對半導體基片和等離子平板進行加工。 The plasma processing chamber processes the substrate of the semiconductor substrate and the plasma plate using the working principle of the vacuum reaction chamber. The working principle of the vacuum reaction chamber is to pass a reaction gas containing a suitable etching source gas into the vacuum reaction chamber, and then input RF energy into the vacuum reaction chamber to start the reaction gas to excite and sustain the plasma for etching separately. The material layer on the surface of the substrate or a layer of material is deposited on the surface of the substrate to process the semiconductor substrate and the plasma plate.

等離子體處理腔室中包括一腔體,腔體下方設置有一用於放置基片的基台,基台中設置有溫度調節裝置用於對系統以及基片的溫度進行控制。其中,所述溫度調節裝置包括設置於基體的冷卻液供應系統以及設置於基體以上的加熱器。在某些製程中,對溫度調節裝置的冷卻液供應系統和加熱器有明確的溫差要求,有時達到50攝氏度及以上。 The plasma processing chamber includes a cavity below which is disposed a base for placing the substrate, and a temperature adjustment device is disposed in the base for controlling the temperature of the system and the substrate. Wherein, the temperature adjustment device includes a coolant supply system disposed on the base body and a heater disposed above the base body. In some processes, there is a clear temperature difference requirement for the coolant supply system and heater of the thermostat, sometimes reaching 50 degrees Celsius and above.

因此,如何將基台中的冷卻液供應系統以及加熱器的溫度差維持在製程所需範圍,又能不浪費資源和能量,是業內急待解決的問題。 Therefore, how to maintain the temperature difference between the coolant supply system and the heater in the base station within the required range of the process without wasting resources and energy is an urgent problem to be solved in the industry.

針對背景技術中的上述問題,本發明提出了一種等離子體處理腔室及其基台。 In view of the above problems in the background art, the present invention proposes a plasma processing chamber and its base.

本發明第一方面提供了一種用於等離子體處理腔室的基台,其中,所述基台包括:基體,其中設置有冷卻液通道;基體的上層結構,包括:第二絕緣層,其中設置有加熱器;以及直接設置於該第二絕緣層之上的第一絕緣層,其中設置有靜電電極;其中,在所述基體的所述冷卻液通道上表面所在平面與所述第二絕緣層下表面之間的材料層中設置有若干空洞。 A first aspect of the present invention provides a base for a plasma processing chamber, wherein the base includes: a base body in which a coolant passage is disposed; and an upper structure of the base body, including: a second insulation layer, wherein the base a heater; and a first insulating layer disposed directly on the second insulating layer, wherein an electrostatic electrode is disposed; wherein a plane of the upper surface of the coolant channel of the substrate and the second insulating layer A plurality of voids are provided in the material layer between the lower surfaces.

進一步地,所述基體和所述第二絕緣層之間還包括一溫度隔離層,在該溫度隔離層中設置有若干空洞。 Further, a temperature isolation layer is further disposed between the substrate and the second insulating layer, and a plurality of voids are disposed in the temperature isolation layer.

進一步地,所述基體中位於所述冷卻液通道之上的區域設置有若干空洞。 Further, a region of the substrate above the coolant channel is provided with a plurality of voids.

進一步地,所述基體是由金屬鈦製成的。 Further, the substrate is made of titanium metal.

進一步地,所述基體中的至少冷卻液通道上表面以下的區域是由金屬鈦製成的。 Further, at least a region of the base body below the upper surface of the coolant passage is made of titanium metal.

進一步地,所述溫度隔離層的主體是由金屬鈦製成的。 Further, the body of the temperature isolating layer is made of titanium metal.

進一步地,所述溫度隔離層中至少不包括若干空洞的區域是由金屬鈦製成的。 Further, at least the region of the temperature isolating layer that does not include a plurality of voids is made of titanium metal.

進一步地,所述空洞的體積範圍占所述冷卻液通道上表面與所述第二絕緣層下表面之間的材料層總體積的30%到90%。 Further, the volume of the cavity ranges from 30% to 90% of the total volume of the material layer between the upper surface of the coolant channel and the lower surface of the second insulating layer.

進一步地,所述冷卻液通道還通過若干管道外接有一冷卻液循環裝置,所述冷卻液循環裝置用於循環提供冷卻液。 Further, the coolant channel is further connected with a coolant circulation device through a plurality of pipes, and the coolant circulation device is configured to circulate and supply the coolant.

進一步地,所述加熱器還外接有一電源裝置。 Further, the heater is further connected with a power supply device.

進一步地,所述直流電極還外接有一直流電源。 Further, the DC electrode is further connected with a DC power source.

本發明第二方面提供了一種等離子體處理腔室,其中,所述等離子體進一步地,所述基體是由金屬鈦製成的。 A second aspect of the invention provides a plasma processing chamber, wherein the plasma further, the substrate is made of titanium metal.

進一步地,所述基體中的至少冷卻液通道上表面以下的區域是由金屬鈦製成的。 Further, at least a region of the base body below the upper surface of the coolant passage is made of titanium metal.

進一步地,所述溫度隔離層的主體是由金屬鈦製成的。 Further, the body of the temperature isolating layer is made of titanium metal.

進一步地,所述溫度隔離層中至少其不包括若干空洞的區域是由金屬鈦製成的。 Further, at least the region of the temperature isolating layer that does not include a plurality of voids is made of titanium metal.

本發明提供的一種等離子體處理腔室及其基台能夠極大地增加基台中的基體中冷卻液通道和第二絕緣層中內嵌的加熱器之間的溫度差,以滿足製程所需。 The plasma processing chamber and the base thereof provided by the invention can greatly increase the temperature difference between the coolant channel in the substrate in the base and the heater embedded in the second insulation layer to meet the requirements of the process.

100‧‧‧等離子體處理腔室 100‧‧‧plasma processing chamber

102‧‧‧側壁 102‧‧‧ side wall

103‧‧‧氣體源 103‧‧‧ gas source

104‧‧‧射頻電源 104‧‧‧RF power supply

105‧‧‧真空泵 105‧‧‧vacuum pump

106‧‧‧基台 106‧‧‧Abutment

1061‧‧‧基體 1061‧‧‧ base

1062‧‧‧冷卻液通道 1062‧‧‧Solution channel

1063‧‧‧第一絕緣層 1063‧‧‧First insulation

1064‧‧‧靜電電極 1064‧‧‧Electrostatic electrodes

1065‧‧‧加熱器 1065‧‧‧heater

1066‧‧‧第二絕緣層 1066‧‧‧Second insulation

1067‧‧‧溫度隔離層 1067‧‧‧temperature isolation layer

107‧‧‧等離子體約束環 107‧‧‧plasma confinement ring

108‧‧‧電阻 108‧‧‧resistance

109‧‧‧氣體噴淋頭 109‧‧‧ gas sprinkler

G1‧‧‧空洞 G1‧‧‧ hollow

G2‧‧‧空洞 G2‧‧‧ hollow

W‧‧‧基片 W‧‧‧ substrates

P‧‧‧處理區域 P‧‧‧Processing area

圖1是等離子體處理腔室的結構示意圖。 Figure 1 is a schematic view of the structure of a plasma processing chamber.

圖2是根據本發明一個具體實施例的等離子體處理腔室的基台的結構示意圖。 2 is a schematic block diagram of a base of a plasma processing chamber in accordance with an embodiment of the present invention.

圖3是根據本發明一個具體實施例的等離子體處理腔室的基台的結構示意圖。 3 is a schematic block diagram of a base of a plasma processing chamber in accordance with an embodiment of the present invention.

以下結合附圖,對本發明的具體實施方式進行說明。要指出 的是,“半導體工藝件”、“晶圓”和“基片”這些詞在隨後的說明中將被經常互換使用,在本發明中,它們都指在處理反應室內被加工的工藝件,工藝件不限於晶圓、襯底、基片、大面積平板基板等。為了方便說明,本文在實施方式說明和圖示中將主要以“基片”為例來作示例性說明。 Specific embodiments of the present invention will be described below with reference to the accompanying drawings. To point out The terms "semiconductor process", "wafer" and "substrate" will be used interchangeably in the following description. In the present invention, they all refer to process parts that are processed in a process chamber. The member is not limited to a wafer, a substrate, a substrate, a large-area flat substrate, or the like. For convenience of description, the "substrate" will be mainly exemplified in the description and illustration of the embodiments herein.

圖1示出了等離子體處理腔室的結構示意圖。等離子體處理腔室100具有一個處理腔體(未示出),處理腔體基本上為柱形,且處理腔體側壁102基本上垂直,處理腔體內具有相互平行設置的上電極和下電極。通常,在上電極與下電極之間的區域為處理區域P,該處理區域P將形成高頻能量以點燃和維持等離子體。在基台106上方放置待要加工的基片W,該基片W可以是待要蝕刻或加工的半導體基片或者待要加工成平板顯示器的玻璃平板。其中,所述基台106上設置有靜電夾盤用於夾持基片W。反應氣體從氣體源103中被輸入至處理腔體內的氣體噴淋頭109,一個或多個射頻電源104可以被單獨地施加在下電極上或同時被分別地施加在上電極與下電極上,用以將射頻功率輸送到下電極上或上電極與下電極上,從而在處理腔體內部產生大的電場。大多數電場線被包含在上電極和下電極之間的處理區域P內,此電場對少量存在於處理腔體內部的電子進行加速,使之與輸入的反應氣體的氣體分子碰撞。這些碰撞導致反應氣體的離子化和等離子體的激發,從而在處理腔體內產生等離子體。反應氣體的中性氣體分子在經受這些強電場時失去了電子,留下帶正電的離子。帶正電的離子向著下電極方向加速,與被處理的基片中的中性物質結合,激發基片加工,即蝕刻、沉積等。在等離子體處理腔室100的合適的某個位置處設置有排氣區域,排氣區域與外置的排氣裝置(例如真空泵105)相連接,用以在處理過 程中將用過的反應氣體及副產品氣體抽出腔室。其中,等離子體約束環107用於將等離子體約束於處理區域P內。腔室側壁102上連接有接地端,其中設置有一電阻108。 Figure 1 shows a schematic view of the structure of a plasma processing chamber. The plasma processing chamber 100 has a processing chamber (not shown), the processing chamber is substantially cylindrical, and the processing chamber sidewall 102 is substantially vertical, and the processing chamber has upper and lower electrodes disposed in parallel with each other. Typically, the area between the upper and lower electrodes is the processing area P which will form high frequency energy to ignite and sustain the plasma. A substrate W to be processed is placed over the substrate 106, which may be a semiconductor substrate to be etched or processed or a glass plate to be processed into a flat panel display. The base 106 is provided with an electrostatic chuck for clamping the substrate W. The reaction gas is input from the gas source 103 to the gas shower head 109 in the processing chamber, and the one or more radio frequency power sources 104 may be separately applied to the lower electrode or simultaneously applied to the upper and lower electrodes, respectively. The RF power is delivered to the lower electrode or to the upper and lower electrodes to create a large electric field inside the processing chamber. Most of the electric field lines are contained in the processing region P between the upper electrode and the lower electrode, and this electric field accelerates a small amount of electrons existing inside the processing chamber to collide with gas molecules of the input reaction gas. These collisions result in ionization of the reactive gas and excitation of the plasma, thereby generating a plasma within the processing chamber. The neutral gas molecules of the reactive gas lose electrons when subjected to these strong electric fields, leaving positively charged ions. The positively charged ions accelerate toward the lower electrode and combine with the neutral species in the substrate being processed to excite substrate processing, i.e., etching, deposition, and the like. An exhaust region is provided at a suitable location of the plasma processing chamber 100, the exhaust region being coupled to an external exhaust device (eg, vacuum pump 105) for processing The used reaction gas and by-product gas are extracted from the chamber. Among them, the plasma confinement ring 107 is used to confine the plasma in the processing region P. A grounding end is connected to the side wall 102 of the chamber, and a resistor 108 is disposed therein.

圖2是根據本發明一個具體實施例的等離子體處理腔室的基台的結構示意圖。配合圖1所示,基台106包括一基體1061,在所述基體1061中設置有若干冷卻液通道1062用於降低基台106以及其上放置的基片W的溫度。其中,冷卻液通道1062下接一冷卻液循環裝置(未示出),冷卻液循環裝置用於循環向設置於基台主體1061中的冷卻液通道1062提供冷卻液體。基台106的最上層設置了一層第一絕緣層1063,其中內嵌有靜電電極1064。其中,所述靜電電極1064外接有一靜電電源(未示出),用於產生靜電吸附力從而將基片W夾持於第一絕緣層1063上方進行製程。在該第一絕緣層1063下方設置有第二絕緣層1066,其中內嵌有加熱器1065。加熱器1065由金屬製成,有可能是一整片式結構,也可以是若干基本處於同一平面上的小金屬薄片。加熱器1065外接電源裝置,從而在通電的情況下發熱使得基台106以及其上放置的基片W的溫度得到提升。因此,基台106的溫度調節裝置由冷卻液循環通道1062以及加熱器1065構成,前者用於降溫,後者用於升溫,兩者共同作用,協同控制基台106及其上放置的基片W的溫度。 2 is a schematic block diagram of a base of a plasma processing chamber in accordance with an embodiment of the present invention. As shown in FIG. 1, the base 106 includes a base 1061 in which a plurality of coolant passages 1062 are provided for reducing the temperature of the base 106 and the substrate W placed thereon. The coolant passage 1062 is connected to a coolant circulation device (not shown) for circulating cooling liquid to the coolant passage 1062 provided in the base body 1061. The uppermost layer of the base 106 is provided with a first insulating layer 1063 in which an electrostatic electrode 1064 is embedded. The electrostatic electrode 1064 is externally connected with an electrostatic power source (not shown) for generating an electrostatic adsorption force to clamp the substrate W over the first insulating layer 1063 for processing. A second insulating layer 1066 is disposed under the first insulating layer 1063 with a heater 1065 embedded therein. The heater 1065 is made of metal, possibly a one-piece structure, or a plurality of small metal foils that are substantially in the same plane. The heater 1065 is externally connected to the power supply unit so that heat is generated in the case of energization so that the temperature of the base 106 and the substrate W placed thereon is improved. Therefore, the temperature regulating device of the base 106 is composed of a coolant circulation passage 1062 for cooling, and the latter for temperature rise, and the two cooperate to control the base 106 and the substrate W placed thereon. temperature.

前文已述及,在某些特定製程中,製程需要基台106中的基體1061中冷卻液通道1062上表面所在平面和第二絕緣層1066中內嵌的加熱器1065下表面之間的溫度差達到一定數值,例如大於50℃。 As previously mentioned, in certain processes, the process requires a temperature difference between the plane of the upper surface of the coolant channel 1062 in the substrate 106 in the base 106 and the lower surface of the heater 1065 embedded in the second insulating layer 1066. A certain value is reached, for example greater than 50 °C.

熱量公式為: The heat formula is:

其中,Q為熱量,A為常數係數,K為熱導率,△x和基體1061中冷卻液通道1062和第二絕緣層1066中內嵌的加熱器1065之間的材料厚度有關,而△T則表示基體1061中冷卻液通道1062和第二絕緣層1066中內嵌的加熱器1065之間的溫度差。 Where Q is heat, A is a constant coefficient, K is thermal conductivity, and Δ x is related to the material thickness between the coolant channel 1062 in the substrate 1061 and the heater 1065 embedded in the second insulating layer 1066, and Δ T It then represents the temperature difference between the coolant channel 1062 in the substrate 1061 and the heater 1065 embedded in the second insulating layer 1066.

熱量Q不能改變,因為為了基體1061中冷卻液通道1062和第二絕緣層1066中內嵌的加熱器1065之間的溫度差而導致熱能消耗過高是得不償失的。因此,在熱量Q和A不變的情況下,能夠改變的只有△x和K。由於△x和基體1061中冷卻液通道1062和第二絕緣層1066中內嵌的加熱器1065之間的材料厚度有關,由於等離子體處理腔室內部的真空空間有限,因此不可能增加基體1061中冷卻液通道1062和第二絕緣層1066中內嵌的加熱器1065之間的材料厚度來增加△x,從而拉大△T。因此要提高基體1061中冷卻液通道1062和第二絕緣層1066中內嵌的加熱器1065之間的溫度差△T,只能改變熱導率K。 The heat Q cannot be changed because the excessive heat consumption due to the temperature difference between the coolant passage 1062 in the base 1061 and the heater 1065 embedded in the second insulating layer 1066 is not worth the loss. Therefore, in the case where the heats Q and A are constant, only Δ x and K can be changed. Since the material thickness between the △ x 1061 matrix and a coolant passage 1062 and the second insulating layer embedded in the heater 1066 about 1065, due to the limited space inside the vacuum plasma processing chamber, it is impossible to increase the 1061 base material thickness between the coolant passage 1062 and the second insulating layer 1066 embedded in the heater 1065 to increase △ x, thereby widening △ T. Therefore, the temperature difference Δ T between the coolant channel 1062 in the substrate 1061 and the heater 1065 embedded in the second insulating layer 1066 is increased, and only the thermal conductivity K can be changed.

其中,熱導率K其實是基體1061中冷卻液通道1062和第二絕緣層1066中內嵌的加熱器1065之間的材料的平均熱導率。傳統的等離子體處理腔室的基台106的基體1061一般是由鋁或者鋁合金製程的,它們的熱導率大概為167w/m-k。在熱量公式中其他參數皆不變的情況下,減小基體1061中冷卻液通道1062和第二絕緣層1066中內嵌的加熱器1065之間的材料的平均熱導率K,就能夠提高基體1061中冷卻液通道1062和第二絕緣層1066中內嵌的加熱器1065之間的溫度差△T。因此,可以將基台106的基體1061的材料替換成熱導率更低的材料,例如金屬鈦,其熱導率僅為15~25w/m-k,相較于原本熱導率大概為167w/m-k的鋁或者鋁合金製成的基體1061,基體1061 中冷卻液通道1062和第二絕緣層1066中內嵌的加熱器1065之間的溫度差△T得到了升高。 Wherein, the thermal conductivity K is actually the average thermal conductivity of the material between the coolant channel 1062 in the substrate 1061 and the heater 1065 embedded in the second insulating layer 1066. The base 1061 of the base 106 of a conventional plasma processing chamber is typically fabricated from aluminum or an aluminum alloy and has a thermal conductivity of approximately 167 w/mk. In the case where the other parameters in the heat formula are constant, the average thermal conductivity K of the material between the coolant channel 1062 in the substrate 1061 and the heater 1065 embedded in the second insulating layer 1066 can be reduced, thereby improving the substrate. The temperature difference Δ T between the coolant channel 1062 in 1061 and the heater 1065 embedded in the second insulating layer 1066. Therefore, the material of the base 1061 of the base 106 can be replaced by a material having a lower thermal conductivity, such as titanium metal, which has a thermal conductivity of only 15 to 25 w/mk, which is about 167 w/mk compared to the original thermal conductivity. substrate 1061 made of aluminum or an aluminum alloy, the temperature difference △ T between the base 1061 and the coolant passage 1062 in a second insulating layer 1066 embedded in the heater 1065 has been increased.

如圖2所示,為了進一步地升高基體1061中冷卻液通道1062和第二絕緣層1066中內嵌的加熱器1065之間的溫度差△T,本發明在所述基體1061的所述冷卻液通道1062上表面所在平面與所述第二絕緣層1066下表面之間的材料層中設置有若干空洞。由於空氣的熱導率僅為0.0257w/m-k,因此設置了若干空洞的基體1061的所述冷卻液通道1062與所述第二絕緣層1066之間的材料層的等效熱導率也得到了極大降低,使得基體1061的所述冷卻液通道1062與所述第二絕緣層1066之間溫度差△T得到非常大地提高,滿足了製程所需。 As shown, in order to further increase the temperature difference △ T between the base 1061 of the second coolant passage 1062 and insulating layer 1066 embedded in the heater 1065, the present invention is the cooling of the base body 2, 1061 A plurality of voids are provided in the material layer between the plane of the upper surface of the liquid channel 1062 and the lower surface of the second insulating layer 1066. Since the thermal conductivity of the air is only 0.0257 w/mk, the equivalent thermal conductivity of the material layer between the coolant channel 1062 and the second insulating layer 1066 of the substrate 1061 in which a plurality of voids are provided is also obtained. The temperature difference Δ T between the coolant channel 1062 of the substrate 1061 and the second insulating layer 1066 is greatly improved, which satisfies the requirements of the process.

需要說明的是,如圖2或3所示,上文提及的冷卻液通道1062並非佔據了機台基體1061的整個平面,從基台106橫切面來看,冷卻液通道1062是間隔設置的。然而,上文提及的基體1061的所述冷卻液通道1062的上表面所在的平面是指橫亙基台106的連續的平面。 It should be noted that, as shown in FIG. 2 or 3, the above-mentioned coolant passage 1062 does not occupy the entire plane of the machine base 1061, and the coolant passages 1062 are spaced apart from the cross-section of the base 106. . However, the plane in which the upper surface of the coolant passage 1062 of the base 1061 mentioned above is located refers to a continuous plane of the yoke base 106.

可選地,如圖2所示,所述基體1061和所述第二絕緣層1066之間還包括一溫度隔離層1067,在該溫度隔離層1067中設置有若干空洞G1。 Optionally, as shown in FIG. 2, a temperature isolation layer 1067 is further disposed between the substrate 1061 and the second insulating layer 1066, and a plurality of voids G1 are disposed in the temperature isolation layer 1067.

可選地,如圖3所示,所述基體1061中位於所述冷卻液通道1062之上的區域設置有若干空洞G2。 Optionally, as shown in FIG. 3, a region of the base 1061 above the coolant passage 1062 is provided with a plurality of voids G2.

典型地,所述基體1061是由金屬鈦製成的。優選地,所述基體1061中的至少冷卻液通道1062上表面以下的區域是由金屬鈦製成的。 Typically, the substrate 1061 is made of titanium metal. Preferably, at least a region of the base 1061 below the upper surface of the coolant passage 1062 is made of titanium metal.

可選地,所述溫度隔離層1067的主體是由金屬鈦製成的。 Optionally, the body of the temperature isolating layer 1067 is made of titanium metal.

需要說明的是,空洞設置於溫度隔離層1067中還是所述基體 1061中位於所述冷卻液通道1062之上的區域皆可實現本發明的發明目的,只要空洞位於所述基體1061中位於所述冷卻液通道1062之上的區域之間就可以。 It should be noted that whether the cavity is disposed in the temperature isolation layer 1067 or the substrate The region of the 1061 above the coolant passage 1062 can achieve the object of the present invention as long as a void is located between the regions of the base 1061 above the coolant passage 1062.

至於溫度隔離層1067還是基體1061的材料,其優選地為金屬鈦。然而,如果局部地將溫度隔離層1067或基體1061的材料替換成其他金屬也可實現本發明的發明目的,只要基體1061中冷卻液通道1062和第二絕緣層1066之間材料的等效熱導率低於金屬鈦的熱導率15~25w/m-k即可。 As for the temperature isolating layer 1067 or the material of the substrate 1061, it is preferably metallic titanium. However, the object of the present invention can be achieved if the material of the temperature isolating layer 1067 or the substrate 1061 is partially replaced with other metals, as long as the equivalent thermal conductivity of the material between the coolant channel 1062 and the second insulating layer 1066 in the substrate 1061 is achieved. The rate is lower than the thermal conductivity of titanium metal of 15~25w/mk.

典型地,所述空洞的體積範圍占所述冷卻液通道上表面與所述第二絕緣層下表面之間的材料層總體積的30%到70%,包括31%、33.5%、38%、45%、47.77%、50%、53%、55%、61%、64%、67%、85%、87.55%、88%等。 Typically, the volume of the void ranges from 30% to 70% of the total volume of the material layer between the upper surface of the coolant channel and the lower surface of the second insulating layer, including 31%, 33.5%, 38%, 45%, 47.77%, 50%, 53%, 55%, 61%, 64%, 67%, 85%, 87.55%, 88%, and the like.

本發明第二方面提供了一種等離子體處理腔室,其中,所述等離子體處理腔室包括本發明第一方面所述的基台106。 A second aspect of the invention provides a plasma processing chamber, wherein the plasma processing chamber comprises the base 106 of the first aspect of the invention.

可選地,如圖3所示,所述基體1061中位於所述冷卻液通道1062之上的區域設置有若干空洞G2。 Optionally, as shown in FIG. 3, a region of the base 1061 above the coolant passage 1062 is provided with a plurality of voids G2.

典型地,所述基體1061是由金屬鈦製成的。優選地,所述基體1061中的至少冷卻液通道1062上表面以下的區域是由金屬鈦製成的。 Typically, the substrate 1061 is made of titanium metal. Preferably, at least a region of the base 1061 below the upper surface of the coolant passage 1062 is made of titanium metal.

可選地,所述溫度隔離層1067的主體是由金屬鈦製成的。 Optionally, the body of the temperature isolating layer 1067 is made of titanium metal.

需要說明的是,空洞設置於溫度隔離層1067中還是所述基體1061中位於所述冷卻液通道1062之上的區域皆可實現本發明的發明目的,只要空洞位於所述基體1061中位於所述冷卻液通道1062之上的區域之間就可以。 It should be noted that whether the cavity is disposed in the temperature isolation layer 1067 or the region of the base 1061 above the coolant channel 1062 can achieve the object of the present invention, as long as the cavity is located in the base 1061. Between the areas above the coolant passage 1062 is possible.

至於溫度隔離層1067還是基體1061的材料,其優選地為金屬鈦。然而,如果局部地將溫度隔離層1067或基體1061的材料替換成其他金屬也可實現本發明的發明目的,只要基體1061中冷卻液通道1062和第二絕緣層1066之間材料的等效熱導率低於金屬鈦的熱導率15~25w/m-k即可。 As for the temperature isolating layer 1067 or the material of the substrate 1061, it is preferably metallic titanium. However, the object of the present invention can be achieved if the material of the temperature isolating layer 1067 or the substrate 1061 is partially replaced with other metals, as long as the equivalent thermal conductivity of the material between the coolant channel 1062 and the second insulating layer 1066 in the substrate 1061 is achieved. The rate is lower than the thermal conductivity of titanium metal of 15~25w/mk.

儘管本發明的內容已經通過上述優選實施例作了詳細介紹,但應當認識到上述的描述不應被認為是對本發明的限制。在本領域技術人員閱讀了上述內容後,對於本發明的多種修改和替代都將是顯而易見的。因此,本發明的保護範圍應由所附的權利要求來限定。此外,不應將權利要求中的任何附圖標記視為限制所涉及的權利要求;“包括”一詞不排除其它權利要求或說明書中未列出的裝置或步驟;“第一”、“第二”等詞語僅用來表示名稱,而並不表示任何特定的順序。 Although the present invention has been described in detail by the preferred embodiments thereof, it should be understood that the foregoing description should not be construed as limiting. Various modifications and alterations of the present invention will be apparent to those skilled in the art. Therefore, the scope of the invention should be defined by the appended claims. In addition, any reference signs in the claims should not be construed as limiting the claims; the word "comprising" does not exclude the means or steps that are not listed in the other claims or the description; "first", " Words such as "two" are used only to denote a name, and do not denote any particular order.

106‧‧‧基台 106‧‧‧Abutment

1061‧‧‧基體 1061‧‧‧ base

1062‧‧‧冷卻液通道 1062‧‧‧Solution channel

1063‧‧‧第一絕緣層 1063‧‧‧First insulation

1064‧‧‧靜電電極 1064‧‧‧Electrostatic electrodes

1065‧‧‧加熱器 1065‧‧‧heater

1066‧‧‧第二絕緣層 1066‧‧‧Second insulation

1067‧‧‧溫度隔離層 1067‧‧‧temperature isolation layer

G1‧‧‧空洞 G1‧‧‧ hollow

Claims (16)

一種用於等離子體處理腔室的基台,其中,所述基台包括:基體,其中設置有冷卻液通道;基體的上層結構,包括:第二絕緣層,其中設置有加熱器;以及直接設置於該第二絕緣層之上的第一絕緣層,其中設置有靜電電極;其中,在所述基體的所述冷卻液通道上表面所在平面與所述第二絕緣層下表面之間的材料層中設置有若干空洞。 A base for a plasma processing chamber, wherein the base includes: a base body in which a coolant passage is disposed; an upper structure of the base body, comprising: a second insulation layer in which a heater is disposed; and a direct setting a first insulating layer over the second insulating layer, wherein an electrostatic electrode is disposed; wherein a material layer between a plane of the upper surface of the coolant channel of the substrate and a lower surface of the second insulating layer There are several holes in the setting. 根據權利要求1所述的基台,其中,所述基體和所述第二絕緣層之間還包括一溫度隔離層,在該溫度隔離層中設置有若干空洞。 The abutment according to claim 1, wherein a temperature isolation layer is further disposed between the substrate and the second insulating layer, and a plurality of voids are disposed in the temperature isolation layer. 根據權利要求1所述的基台,其中,所述基體中位於所述冷卻液通道之上的區域設置有若干空洞。 The abutment according to claim 1, wherein a region of the base body above the coolant passage is provided with a plurality of cavities. 根據權利要求2或3所述的基台,其中,所述基體是由金屬鈦製成的。 The base according to claim 2 or 3, wherein the base body is made of titanium metal. 根據權利要求2或3所述的基台,其中,所述基體中的至少冷卻液通道上表面以下的區域是由金屬鈦製成的。 The abutment according to claim 2 or 3, wherein at least a region of the base body below the upper surface of the coolant passage is made of titanium metal. 根據權利要求2或3所述的基台,其中,所述溫度隔離層的主體是由金屬鈦製成的。 The base according to claim 2 or 3, wherein the body of the temperature isolating layer is made of titanium metal. 根據權利要求2或3所述的基台,其中,所述溫度隔離層中至少不包括若干空洞的區域是由金屬鈦製成的。 The abutment according to claim 2 or 3, wherein at least a region of the temperature separating layer not including a plurality of voids is made of titanium metal. 根據權利要求1所述的基台,其中,所述空洞的體積範圍占所述冷卻液通道上表面與所述第二絕緣層下表面之間的材料層總體積的30%到90%。 The abutment according to claim 1, wherein the void has a volume ranging from 30% to 90% of the total volume of the material layer between the upper surface of the coolant passage and the lower surface of the second insulating layer. 根據權利要求1所述的基台,其中,所述冷卻液通道還通過若干管道外接有一冷卻液循環裝置,所述冷卻液循環裝置用於循環提供冷卻液。 The abutment according to claim 1, wherein said coolant passage is further provided with a coolant circulation means via a plurality of pipes, said coolant circulation means for circulating the supply of the coolant. 根據權利要求9所述的基台,其中,所述加熱器還外接有一電源裝置。 The base according to claim 9, wherein said heater is further provided with a power supply unit. 根據權利要求10所述的基台,其中,所述直流電極還外界有一直流電源。 The base station according to claim 10, wherein said DC electrode further has a DC power source. 一種等離子體處理腔室,其中,所述等離子體處理腔室包括權利要求1至3、8至11中任一項所述的基台。 A plasma processing chamber, wherein the plasma processing chamber comprises the base of any one of claims 1 to 3, 8 to 11. 根據權利要求12所述的等離子體處理腔室,其中,所述基體是由金屬鈦製成的。 The plasma processing chamber of claim 12 wherein said substrate is made of titanium metal. 根據權利要求12所述的等離子體處理腔室,其中,所述基體中的至少冷卻液通道上表面以下的區域是由金屬鈦製成的。 The plasma processing chamber according to claim 12, wherein at least a region of the substrate below the upper surface of the coolant passage is made of titanium metal. 根據權利要求12所述的等離子體處理腔室,其中,所述溫度隔離層的主體是由金屬鈦製成的。 The plasma processing chamber of claim 12, wherein the body of the temperature isolating layer is made of titanium metal. 根據權利要求12所述的等離子體處理腔室,其中,所述溫度隔離層中至少不包括若干空洞的區域是由金屬鈦製成的。 The plasma processing chamber according to claim 12, wherein at least the region of the temperature isolating layer that does not include a plurality of voids is made of titanium metal.
TW103145978A 2014-03-25 2014-12-29 A plasma processing chamber and a base thereof TWI623051B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410113448.4A CN104952682A (en) 2014-03-25 2014-03-25 Plasma treatment chamber and base station thereof

Publications (2)

Publication Number Publication Date
TW201537657A true TW201537657A (en) 2015-10-01
TWI623051B TWI623051B (en) 2018-05-01

Family

ID=54167261

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103145978A TWI623051B (en) 2014-03-25 2014-12-29 A plasma processing chamber and a base thereof

Country Status (2)

Country Link
CN (1) CN104952682A (en)
TW (1) TWI623051B (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465312A (en) * 2007-12-18 2009-06-24 北京北方微电子基地设备工艺研究中心有限责任公司 Cartridge unit for fixing wafer and capable of controlling temperature with region
JP2009152475A (en) * 2007-12-21 2009-07-09 Shinko Electric Ind Co Ltd Substrate temperature adjusting-fixing device
CN201156132Y (en) * 2008-02-21 2008-11-26 北京京东方光电科技有限公司 Electrostatic absorption station
JP5224855B2 (en) * 2008-03-05 2013-07-03 東京エレクトロン株式会社 Electrode unit, substrate processing apparatus, and temperature control method for electrode unit
JP2011077452A (en) * 2009-10-01 2011-04-14 Tokyo Electron Ltd Temperature control method and temperature control system for substrate mounting table
US8637794B2 (en) * 2009-10-21 2014-01-28 Lam Research Corporation Heating plate with planar heating zones for semiconductor processing
JP6017781B2 (en) * 2011-12-07 2016-11-02 新光電気工業株式会社 Substrate temperature adjustment fixing device and manufacturing method thereof
CN103578900B (en) * 2012-08-06 2016-03-23 中微半导体设备(上海)有限公司 Apparatus for processing plasma and electrostatic chuck thereof
CN103578899B (en) * 2012-08-06 2016-08-24 中微半导体设备(上海)有限公司 Apparatus for processing plasma and electrostatic chuck thereof
CN103633003B (en) * 2012-08-28 2016-12-21 中微半导体设备(上海)有限公司 A kind of electrostatic chuck

Also Published As

Publication number Publication date
CN104952682A (en) 2015-09-30
TWI623051B (en) 2018-05-01

Similar Documents

Publication Publication Date Title
US11342167B2 (en) Plasma processing method including cleaning of inside of chamber main body of plasma processing apparatus
US11404281B2 (en) Method of etching silicon containing films selectively against each other
US10790120B2 (en) Showerhead having a detachable high resistivity gas distribution plate
TWI670783B (en) Methods and systems to enhance process uniformity
US10361070B2 (en) Method of processing target object
EP2991103A1 (en) Etching method
JP6283532B2 (en) Manufacturing method of electrostatic chuck
KR101799149B1 (en) Method for etching insulation film
TW201001530A (en) Electrode structure and substrate processing apparatus
JP6140539B2 (en) Vacuum processing equipment
JP2016115719A (en) Plasma etching method
TWI623051B (en) A plasma processing chamber and a base thereof
JP2016119338A (en) Plasma etching method
TWI600050B (en) A method of manufacturing a plasma processing chamber and its submount
TWI616925B (en) Plasma processing device, electrostatic chuck and electrostatic chuck manufacturing method
JP5953012B2 (en) Substrate holding device
KR20110083979A (en) Plasma processing apparatus
WO2016143263A1 (en) Aluminum oxide film-forming method and molding method, and sputtering apparatus
TW201545199A (en) Plasma processing chamber and composite component for DC electrode and heating device of the plasma processing chamber
JP2010219344A (en) Plasma processing apparatus