TW201534063A - 用於基地台收發器及移動收發器之波束形成裝置,方法及電腦程式 - Google Patents

用於基地台收發器及移動收發器之波束形成裝置,方法及電腦程式 Download PDF

Info

Publication number
TW201534063A
TW201534063A TW103139377A TW103139377A TW201534063A TW 201534063 A TW201534063 A TW 201534063A TW 103139377 A TW103139377 A TW 103139377A TW 103139377 A TW103139377 A TW 103139377A TW 201534063 A TW201534063 A TW 201534063A
Authority
TW
Taiwan
Prior art keywords
transceiver
beam pattern
operable
base station
signal
Prior art date
Application number
TW103139377A
Other languages
English (en)
Other versions
TWI587645B (zh
Inventor
Volker Braun
Cornelis Hoek
Federico Boccardi
Hardy Halbauer
Paolo Baracca
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Publication of TW201534063A publication Critical patent/TW201534063A/zh
Application granted granted Critical
Publication of TWI587645B publication Critical patent/TWI587645B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

實施例提供了用於基地台收發器及移動收發器之波束形成裝置、方法、及電腦程式。可在一行動通訊系統的一基地台收發器(100)中操作之一裝置(10)包含一收發器模組(12),該收發器模組(12)包含複數個天線(15)之介面。該收發器模組(12)可操作而執行下列步驟:將該複數個天線(15)細分為使用該等介面之複數個子群;以及使用一子群的一或多個天線形成一第一波束場型(16)。該裝置(10)進一步包含一控制模組(14),該控制模組(14)可操作而使用該收發器模組(12)及該第一波束場型(16)發射一同步信號。該控制模組(14)可進一步操作而執行下列步驟:在發射該同步信號之後,使用該收發器模組(12)自一移動收發器(200)接收一回應信號;以及根據來自該移動收發器(200)的該回應 信號決定一第二波束場型(18)。該控制模組(14)可進一步操作而使用該第二波束場型(18)及該收發器模組(12)將一信號發射到該移動收發器(200),該第二波束場型(18)具有比該第一波束場型(16)高的一天線增益。可在行動通訊系統的移動收發器(200)中操作之一裝置(20)包含一收發器模組(22),該收發器模組(22)包含複數個天線(25)的介面,且該裝置(20)包含一控制模組(24),該控制模組(24)可操作而執行下列步驟:根據該複數個天線(25)決定第一組波束場型(26);以及使用來自該第一組波束場型(26)的一第一波束場型且使用該收發器模組(22)自一基地台收發器(100)接收一信號。該控制模組(24)可進一步操作而執行下列步驟:根據該複數個天線(25)決定第二組波束場型(28),該第二組波束場型(28)包含比該第一組波束場型(26)多的波束場型;以及使用來自該第二組波束場型(28)的一第二波束場型且使用該收發器模組(22)將一信號發射到該基地台收發器(100)。

Description

用於基地台收發器及移動收發器之波束形成裝置,方法及電腦程式
各實施例係有關用於基地台收發器及移動收發器之波束形成(beamforming)裝置、方法、及電腦程式,尤係有關(但非唯一有關)行動通訊系統中之有效率的波束形成。
本節介紹可能有助於促進對本發明的較佳了解之一些觀點。因此,應從這個角度閱讀本節之陳述,且不應被理解為承認何者屬於先前技術或何者不屬於先前技術。
由於對資料服務之不斷增加的需求,所以無線系統傾向於使用越來越多的頻寬以及較高的載波頻率。例如,可預期第五代(5G)無線存取將包含毫米波(mm-Wave)頻率,以便提供通常在極微小細胞、超微細胞、都會細胞類型的部署中之多個每秒十億位元(Multi-Gbps)資料速率。自由空間傳播或路徑損耗(path loss)在較高頻率時 增加,且可利用天線指向性(antenna directivity)補償該路徑損耗。可使用高增益適應性波束形成(BeamForming;簡稱BF)解決方案實現上述之路徑損耗補償。可利用類比移相器,或諸如使每一天線設有全數位傳輸/接收路徑等的全數位方式,或利用諸如經由類比移相器而將每一數位傳輸/接收路徑連接到一組天線等的混合數位/類比解決方案,而實現適應性波束操控(beam-steering)。基地台天線陣列可包含8、16、32、64、或更多個天線元件(例如,微型號角天線(horn antenna)元件。
文件US 2013/0301454 A1說明了一種使用類比及數位混合波束形成之通訊方法及裝置。文件US 2013/0272263 A1揭示了:藉由在基地台的一無線傳輸區段(sector)之多個資料切片(slice)中傳輸同步信號,而選擇一基地台與一行動台間之通訊的時間、頻率、及空間處理參數。
在意圖突顯且介紹各實施例的某些觀點的下文之發明內容中,可能有某些簡化,但是此種簡化之用意並非限制本發明之範圍。下文各節將提供對適於對此項技術具有一般知識者製作及使用本發明的觀念的一較佳實施例之詳細說明。
各實施例提供了一種用於基地台收發器之裝置、方 法、及電腦程式、以及一種用於移動收發器之裝置、方法、及電腦程式。各實施例可提供一種建立特定用戶波束形成鏈路一基地台收發器擷取移動收發器的資料之有效率之觀念。各實施例可提供毫米波存取系統之有效率的擷取,由於在該擷取開始時可能只有有限的波束形成增益,因而此種有效率的擷取可被視為具有關鍵性。
各實施例提供了一種可在行動通訊系統的基地台收發器中操作之裝置。該裝置包含一收發器模組,該收發器模組包含複數個天線之介面,該複數個天線可對應於發射及/或接收天線。該收發器模組可操作而將該複數個天線細分為使用該等介面之複數個子群。該收發器模組可進一步操作而使用一子群的一或多個天線形成一第一波束場型(beam pattern)。該裝置進一步包含一控制模組,該控制模組可操作而使用該收發器模組及該第一波束場型發射一同步信號。該控制模組可進一步操作而在發射該同步信號之後使用該收發器模組自一移動收發器接收一回應信號。該控制模組可進一步操作而根據來自該移動收發器的該回應信號決定一第二波束場型,且該控制模組可進一步操作而使用該第二波束場型及該收發器模組將一信號發射到該移動收發器。該第二波束場型具有比該第一波束場型高的一天線增益。例如,該第二波束場型可使用比該第一波束場型多的天線。
各實施例可使一基地台收發器在自該移動收發器接收到對該同步信號的一回應之後增加波束形成增益。換言 之,一基地台收發器可使用較低的波束形成增益自該移動收發器接收一回應信號,且較高增益的波束形成係基於該回應。
在某些實施例中,一天線可使用覆蓋該基地台收發器的一區段之一個別的波束場型。該第一波束場型可對應於該區段的一子區段。該控制模組可操作而使用該天線的該個別的波束場型或該第一波束場型發射該同步信號。換言之,在某些實施例中,可在一區段中或該區段的一子區段中發射該同步信號。某些實施例可使用子區段化而將波束形成增益用於同步信號及/或來自移動收發器的同步信號之回應。某些實施例可將不同的同步信號用於不同的子區段,因而移動收發器可利用該同步信號區分不同的子區段。該移動收發器又可諸如在特定子區段無線電資源上發射一回應指示,而使用不同的回應信號,因而該基地台收發器可自載送該回應的無線電資源而決定哪一子區段的同步信號被該移動收發器接收。各實施例能夠執行有效率的子區段偵測。
在某些實施例中,該控制模組可操作而使用天線之個別的波束場型發射該同步信號,例如,可跨越整個區段而發射該同步信號。例如,各子區段可被用於自該移動收發器接收該回應信號,因而可實現該回應信號的至少某些波束形成增益。在某些實施例中,天線可使用覆蓋該基地台收發器的一區段之一個別的波束場型。該收發器模組可操作而形成包含覆蓋該區段的各子區段之第一組波束場型, 且該第一波束場型可對應於此種子區段。
在某些實施例中,該控制模組可操作而發射用於該區段的多個子區段之同步信號。額外地或替代地,該控制模組可操作而自該第一組波束場型決定將提供該移動收發器的該回應信號的最高接收信號品質之一子區段。該控制模組可操作而選擇具有最高接收信號品質的子區段作為該第一波束場型。換言之,該控制模組可掃描一組子區段,以便決定用於回應信號之具有最高接收信號品質的子區段,且然後可選擇該子區段作為第一波束場型。各實施例能夠執行有效率的子區段決定。
該控制模組可操作而使用該第一波束場型自移動收發器接收一隨機存取前置信號(random access preamble signal)。該控制模組可進一步操作而使用該第一波束場型將一隨機存取回應發射到該移動收發器,且自該移動收發器接收一導引信號(pilot signal)。該控制模組可進一步操作而根據該導引信號決定該第二波束場型,且使用該第二波束場型發射一後續信號。因此,在某些實施例中,被該移動收發器發射的且在該基地台接收的一導引或參考信號可被用於決定該第二波束場型。
在某些實施例中,該控制模組可操作而使用該第一波束場型自該移動收發器接收一或多個隨機存取前置信號。該控制模組可操作而根據該一或多個隨機存取前置信號決定該第二波束場型,且使用該第二波束場型將一隨機存取回應發射到該移動收發器。因此,在某些實施例中,被該 移動收發器發射的且在該基地台接收的一隨機存取前置信號可被用於決定該第二波束場型,且該第二波束場型然後可被用於將一隨機存取回應發射到該移動收發器。
在某些進一步的實施例中,該收發器模組可操作而使用類比BF形成該第一波束場型,且該控制模組可操作而使用數位BF形成該第二波束場型。各實施例可執行類比及數位BF之有效率的組合。在某些實施例中,該收發器模組可操作而使用類比BF形成該第一波束場型及該第二波束場型。該控制模組可操作而在該收發器模組上選擇一波束場型。各實施例因而能夠執行類比BF之有效率的利用。
該控制模組可操作而然後評估越來越窄的波束場型,而迭代地決定該第二波束場型。換言之,該控制模組可操作而先自一組較寬的波束場型選擇一較寬的波束場型,且然後可在該先前被選擇的較寬波束場型中選擇一較窄的波束場型。然後,該控制模組可在該較窄的波束場型內選擇一甚至更窄的波束場型,其他選擇步驟依此類推。各實施例能夠執行一階層式波束場型選擇及有效率的波束選擇。
在某些實施例中,該控制模組可操作而在與該同步信號相關的一第一預定時槽中使用該收發器模組自一移動收發器接收該同步信號的該回應信號。該控制模組可操作而在與該第一時槽不同的一第二預定時槽中使用該收發器模組發射該移動收發器專用的控制資料。各實施例能夠以一種時間多工之方式(例如,在一分時雙工系統中)執行有 效率的擷取。
各實施例進一步提供了一種可在行動通訊系統的移動收發器中操作之裝置。該移動收發器可操作而執行波束形成。該移動收發器裝置包含一收發器模組,該收發器模組包含複數個天線之介面,該複數個天線可對應於發射及/或接收天線。該移動收發器裝置包含一控制模組,該控制模組可操作而根據該複數個天線決定第一組波束場型。該控制模組可進一步操作而使用來自該第一組波束場型的一第一波束場型且使用該收發器模組自一基地台收發器接收一信號。該控制模組可進一步操作而根據該複數個天線決定第二組波束場型。該第二組波束場型包含比該第一組波束場型更多的波束場型。該控制模組可進一步操作而使用該第二波束場型且使用該收發器模組將一信號發射到該基地台收發器。各實施例能夠在一移動收發器上執行有效率的波束形成。
在某些實施例中,該控制模組可操作而自一基地台收發器接收形式為該信號之一同步信號,且根據該同步信號決定用於發射一隨機存取前置信號的與無線電資源有關之資訊。該控制模組可進一步操作而使用根據該同步信號決定之該等無線電資源將一隨機存取前置信號發射到該基地台收發器。
根據前文所述,在某些實施例中,該控制模組可操作而使用來自該第一組波束場型的該第一波束場型且使用該收發器模組自一基地台收發器接收形式為該信號之一同步 信號。該控制模組可進一步操作而使用該第二波束場型且使用該收發器模組將一隨機存取前置信號發射到該基地台收發器。在某些實施例中,該控制模組可操作而使用來自該第一組波束場型的該第一波束場型且使用該收發器模組自一基地台收發器接收形式為該信號之一同步信號,且使用該第一波束場型且使用該收發器模組將一隨機存取前置信號發射到該基地台收發器。該控制模組可進一步操作而使用該第一波束場型且使用該收發器模組接收一隨機存取回應,且使用該第二波束場型且使用該收發器模組發射一導引信號。
各實施例進一步提供了一種用於行動通訊系統的基地台收發器之方法。該方法包含下列步驟:將複數個天線細分為複數個子群;以及使用一子群的一或多個天線形成一第一波束場型。該方法進一步包含下列步驟:使用該第一波束場型發射一同步信號;以及在發射該同步信號之後使用收發器模組自一移動收發器接收一回應信號。該方法進一步包含下列步驟:根據來自該移動收發器的該回應信號決定一第二波束場型;以及使用該第二波束場型將一信號發射到該移動收發器。該第二波束場型具有比該第一波束場型高的一天線增益。
各實施例進一步提供了一種用於行動通訊系統的移動收發器之方法。該方法包含下列步驟:根據複數個發射及/或接收天線而決定第一組波束場型;以及使用來自該第一組波束場型的一第一波束場型自一基地台收發器接收一 信號。該方法進一步包含下列步驟:根據該複數個天線決定第二組波束場型。該第二組波束場型包含比該第一組波束場型多的波束場型。該方法進一步包含下列步驟:使用該第二波束場型將一信號發射到該基地台收發器。
各實施例進一步提供了一種具有程式碼之電腦程式,該電腦程式在一電腦、處理器、或可程式硬體組件上被執行時,執行前文所述的方法中之一或多個方法。一進一步之實施例是一種儲存了指令之電腦可讀取的儲存媒體,該等指令被一電腦、處理器、或可程式硬體組件執行時,使該電腦執行本發明所述的該等方法中之一方法。
100‧‧‧基地台收發器
10‧‧‧基地台收發器裝置
12,22‧‧‧收發器模組
15,25‧‧‧發射/接收天線
16,26‧‧‧第一波束場型
14,24‧‧‧控制模組
200‧‧‧移動收發器
18,28‧‧‧第二波束場型
300,350‧‧‧無線訊框
310‧‧‧擷取部分
320‧‧‧上行鏈路控制部分
330‧‧‧下行鏈路控制部分
340‧‧‧上行鏈路/下行鏈路資料部分
20‧‧‧移動收發器裝置
已參照各附圖而只以舉例之方式使用前文中之裝置、或方法、或電腦程式、或電腦程式產品的非限制性實施例說明了某些其他的特徵或觀點,在該等附圖中:第1圖示出一基地台收發器的一裝置的一實施例之一方塊圖;第2圖示出一基地台收發器的一毫米波波束形成器的一實施例之一方塊圖;第3圖示出一實施例之一下行鏈路時序圖;第4圖示出一實施例中之階層式子區段化;第5圖示出一移動收發器的一裝置的一實施例之一方塊圖;第6圖示出用於一基地台收發器的一方法的一實施例 的一流程圖之一方塊圖;以及第7圖示出用於一移動收發器的一方法的一實施例的一流程圖之一方塊圖。
現在將參閱示出某些實施例的各附圖而更完整地說明各實施例。在該等圖式中,可能為了清晰而放大線、層或區域的厚度。
因此,雖然各實施例能夠有各種修改及替代形式,但是該等圖式中以舉例方式示出本發明之各實施例,且將在本說明書中詳細地說明該等實施例。然而,我們應可了解:並無意圖將各實施例限於所揭示之特定形式,而是相反地,各實施例將涵蓋在本發明的範圍內之所有修改、等效物、及替代。在對該等圖式的所有說明中,相像的編號參照到相像的元件。
在本說明書的用法中,除非另有指示(例如,"否則"("or else")或"或在替代方案中"("or in the alternative"),術語"或"("or")意指非排他性。此外,在本說明書的用法中,除非另有指示,否則用於描述各元件間之關係的詞語應被廣泛地詮釋為包括直接關係或存在中間元件。例如,當一元件被稱為"被連接"或"被耦合"到另一元件時,該元件可被直接連接或耦合到該另一元件,或者可能存在中間元件。相比之下,當一元件被稱為"被直接連接"或"被直接耦合"到另一元件時,不存在任何中 間元件。同樣地,應以類似之方式詮釋諸如"在...之間"及"鄰接"等的詞語。
本說明書中使用的術語只是為了說明特定實施例,且並不意圖限制各實施例。在本說明書的用法中,除非前後文中另有清楚的指示,否則單數形式"一"("a"、"an")及"該"("the")將意圖也包括複數形式。我們進一步應可了解:術語"包含"("comprises")、"包含"("comprising")、"包括"("includes")、及"包括"("including")被用在本說明書中時,指定所陳述的特徵、整數、步驟、操作、元件、及/或組件之存在,但不排除一或多個其他特徵、整數、步驟、操作、元件、組件、及/或以上各項的群組之存在或加入。
除非另有定義,否則本說明書中使用的所有術語(包括技術及科學術語)具有與對各實施例所屬的技術具有一般知識者通常理解之意義相同的意義。我們應進一步可了解:諸如常用字典中定義的那些術語等的術語應被詮釋為具有與其在相關技術的上下文中之意義一致的意義,且除非在本說明書中另有明確地定義,否則將不以一種理想化的方式或過於正式之方式詮釋該等術語。
在下文的說明中,將說明用於基地台收發器及移動收發器的裝置、方法、及電腦程式之某些實施例。第1圖示出一基地台收發器100的一裝置10的一實施例之一方塊圖。換言之,裝置10可適應於一基地台收發器100或可在一基地台收發器100中操作;裝置10可在一基地台收 發器100中操作,或可被包含在一基地台收發器100中。各實施例亦可提供一種包含裝置10之基地台收發器100。第1圖進一步示出包含裝置10的一基地台收發器100之一實施例(虛線)。基地台收發器100可在一行動通訊系統中操作。換言之,基地台收發器100、該基地台收發器100之裝置10可被各別地調整成或可操作而或可被配置成符合該行動通訊系統。
該行動通訊系統可諸如對應於第三代行動通訊合作計劃(Third Generation Partnership Project;簡稱3GPP)標準化行動通訊網路中之一行動通訊網路,其中以與行動通訊網路同義的方式使用該術語行動通訊系統。該行動或無線通訊系統可諸如對應於長程演進計畫(Long Term Evolution;簡稱LTE)、先進長程演進計畫(LTE-Advanced;簡稱LTE-A)、高速封包存取(High Speed Packet Access;簡稱HSPA)、全球行動電信系統(Universal Mobile Telecommunication System;簡稱UMTS)或全球行動電信系統地面無線電存取網路(UMTS Terrestrial Radio Access Network;簡稱UTRAN)、演進型UTRAN(e-UTRAN)、全球行動通訊系統(Global System for Mobile communications;簡稱GSM)或全球行動通訊系統增強型數據速率演進技術(Enhanced Data rates for GSM Evolution;簡稱EDGE)網路、GSM/EDGE無線電存取網路(GSM/EDGE Radio Access Network;簡稱GERAN)、或具有諸如全球互通微 波接取(Worldwide Interoperability for Microwave Access;簡稱WiMAX)IEEE 802.16或無線區域網路(Wireless Local Area Network;簡稱WLAN)IEEE 802.11等的不同的標準之行動通訊網路、通常為正交分頻多工存取(Orthogonal Frequency Division Multiple Access;簡稱OFDMA)網路、分時多向近接(Time Division Multiple Access;簡稱TDMA)網路、分碼多重進接(Code Division Multiple Access;簡稱CDMA)網路、寬頻分碼多重進接(Wideband-CDMA;簡稱WCDMA)網路、分頻多向近接(Frequency Division Multiple Access;簡稱FDMA)網路、及空間分割多向近接(Spatial Division Multiple Access;簡稱SDMA)網路等的行動通訊系統。
一基地台收發器可操作而與一或多個現用移動收發器通訊,且一基地台收發器可被設置在或鄰近諸如巨細胞(macro cell)基地台收發器或小型細胞(small cell)基地台收發器等的另一基地台收發器之覆蓋區(coverage area)。因此,各實施例可提供一種包含一或多個移動收發器及一或多個基地台收發器之行動通訊系統,其中該等基地台收發器可建立諸如超微細胞、都會細胞、或極微小細胞(femto cell)等的巨細胞或小型細胞。移動收發器可對應於智慧型手機、細胞式電話、用戶設備、膝上型電腦、筆記型電腦、個人電腦、個人數位助理(Personal Digital Assistant;簡稱PDA)、通用序列匯流排 (Universal Serial Bus;簡稱USB)隨身裝置、或車輛等的裝置。在符合3GPP術語之情況下,移動收發器亦可被稱為用戶設備(User Equipment;簡稱UE)或行動裝置。
基地台收發器可被設置在該網路或系統的固定或不動部分。基地台收發器可對應於無線寬頻頭端設備(remote radio head)、傳輸點、存取點、巨細胞、小型細胞、微型細胞(micro cell)、都會細胞(metro cell)等的術語。基地台收發器可以是一有線網路的一無線介面,該無線介面能夠將無線電信號發射到一UE或移動收發器。該無線電信號可符合諸如被3GPP標準化的無線電信號,或一般性而言,符合前文中列出的系統中之一或多種系統。因此,基地台收發器可對應於NodeB、eNodeB、基地收發台(Base Transceiver Station;簡稱BTS)、存取點、無線寬頻頭端設備、及傳輸點等的術語,且基地台收發器可被進一步細分為一遠端單元及一中央單元。
可使一移動收發器與一基地台收發器或細胞相關聯,或可使一移動收發器駐留在一基地台收發器或細胞,或可使一移動收發器登錄到一基地台收發器或細胞。術語細胞意指諸如一NodeB(NB)、一eNodeB(eNB)、一無線寬頻頭端設備、一傳輸點等的一基地台收發器提供的無線電服務之一覆蓋區。一基地台收發器可操作一或多個頻率層上之一或多個細胞,而在某些實施例中,細胞可對應於區段。例如,可使用區段天線實現區段,該等區段天線提供了覆蓋一遠端單元或基地台收發器周圍的一角部分之特 性。在某些實施例中,一基地台收發器可諸如操作三個或六個細胞,該等細胞覆蓋120°(在三個細胞之情形中)或60°(在六個細胞之情形中)的區段。一基地台收發器可操作多個區段化天線。在下文中,一細胞可代表產生該細胞的一相應之基地台收發器,或同樣地,一基地台收發器可代表該基地台收發器產生的一細胞。
換言之,在各實施例中,該行動通訊系統可對應於一異質網路(HetNet),該HetNet利用不同的細胞類型(亦即,封閉型用戶群組(Closed Subscriber Group;簡稱CSG)細胞及開放型細胞(open cell))以及諸如巨細胞及小型細胞等的不同大小之細胞,其中小型細胞之覆蓋區小於巨細胞之覆蓋區。小型細胞可對應於都會細胞、微型細胞、超微細胞、或極微小細胞等的細胞。由基地台收發器建立此類細胞,且係由該等基地台收發器的傳輸功率及干擾狀況決定該等基地台收發器之覆蓋區。在某些實施例中,一小型細胞之覆蓋區可能至少部分地被另一基地台收發器建立的一巨細胞之覆蓋區圍繞。可部署該等小型細胞,以便延伸該網路的容量。都會細胞因而可被用於覆蓋比巨細胞小的區域,例如,一都會細胞可覆蓋一都會區中之一街道或一區段。一巨細胞之覆蓋區可具有大約一公里或幾公里的直徑,一微型細胞之覆蓋區可具有小於一公里的直徑,且一超微細胞之覆蓋區可具有小於100米的直徑。極微小細胞可能是最小的細胞,且極微小細胞可被用於覆蓋一家庭、或機場的登機門部分,亦即,極微小細胞 之覆蓋區可具有小於50米的直徑。因此,基地台收發器亦可被稱為細胞。
如第1圖所示,基地台收發器裝置10包含一收發器模組12,該收發器模組12進一步包含複數個天線之介面,該複數個天線可對應於發射及/或接收天線。第1圖中以被連接到收發器模組12的介面之一發射/接收天線陣列15示出該複數個天線。收發器模組12可對應於一或多個收發器裝置、一或多個收發器單元、用於收發(亦即,接收及/或發射)之任何裝置等的裝置,且收發器模組12可包含諸如一或多個低雜訊放大器(Low Noise Amplifier;簡稱LNA)、一或多個功率放大器(Power Amplifier;簡稱PA)、一或多個濾波器或濾波器電路、一或多個雙訊器(diplexer)、一或多個雙工器(duplexer)、一或多個類比至數位轉換器(Analog-to-Digital converter;簡稱A/D)、一或多個數位至類比轉換器(Digital-to-Analog converter;簡稱D/A)、一或多個調變器或解調器、以及一或多個混波器等的元件構成之群組中之一或多個元件等的一些典型接收器及發射器組件。
在第1圖所示之實施例中,收發器模組12可操作而將該複數個發射/接收天線15細分為使用該等介面之複數個子群。此外,收發器模組12可操作而使用一子群的一或多個發射/接收天線形成一第一波束場型16。基地台收發器裝置10進一步包含一控制模組14,該控制模組14被耦合到收發器模組12。控制模組14可操作而使用收發 器模組12及第一波束場型16發射一同步信號。控制模組14可進一步操作而在發射該同步信號之後使用收發器模組12自一移動收發器200接收一回應信號。此外,控制模組14可操作而根據來自移動收發器200的該回應信號決定一第二波束場型18。第二波束場型18具有比第一波束場型16高的一天線增益。例如,第二波束場型18可使用比第一波束場型16多的發射/接收天線。控制模組14可進一步操作而使用第二波束場型18及收發器模組12將一信號發射到移動收發器200。在第1圖中,示出了第一及第二波束場型16及18,且亦示出:第二波束場型18可提供比第一波束場型16高的天線增益或波束形成增益,且第二波束場型18可以比第一波束場型16窄。
在各實施例中,可使用一或多個控制單元、控制裝置、諸如處理器等的用於控制之任何裝置、可利用被相應地調整的軟體操作之電腦或可程式硬體組件實施控制模組14。換言之,也可以此時係在一或多個可程式硬體組件上執行之軟體實施控制模組14的該等上述功能。此類硬體組件可包含一般用途處理器、數位信號處理器(Digital Signal Processor;簡稱DSP)、及微控制器等的硬體組件。被用於連接到該複數個發射/接收天線15的收發器模組12之該等介面可對應於諸如使用同軸導線之高頻介面等的任何適當之介面,在其他實施例中,該複數個天線15中之至少某些天線可被設置在遠端位置,因而該等介面可對應於被設置在遠端的天線之光纖介面,且該等光纖 介面將仍然可執行前文所述之子群化及波束形成。
如前文所述,各實施例利用波束形成,而波束形成被理解為用於實現個別發射/接收天線發射的信號的被界定之或被控制之疊加的信號處理方式。例如,該複數個發射/接收天線15之幾何形狀可對應於線性天線陣列、圓形天線陣列、三角形天線陣列、任何二維天線陣列或天線場、或任意的天線陣列,只要該等天線元件間之幾何關係是已知的或受控制的即可。在某些實施例中,該複數個天線元件或發射/接收天線15可對應於一均勻的線性天線陣列,其中該等發射/接收天線被均勻地間隔開,且其中各天線元件間之距離可對應於諸如使用這些天線發射/接收的信號的載波頻率的波長之一半。如波束形成所習知的,藉由將相同信號的一些移相版本提供給不同的天線,可針對與這些天線有關之不同的角方向而實現該等被發射的信號之建設性及破壞性疊加。使用的天線越多,整體波束形成增益就越高,且可形成的波束就越窄。在各實施例中,發射/接收天線或發射/接收天線元件可使用覆蓋基地台收發器100的一區段或一細胞之個別的波束場型,例如,用於覆蓋一個120°區段或細胞之一90°半功率波束寬度(half power beam width)天線場型(antenna pattern)。
在各實施例中,第一波束場型16可對應於該區段的一子區段,且控制模組14可操作而使用該發射/接收天線的該個別的波束場型或第一波束場型16發射該同步信號。換言之,個別的波束可對應於具有某一波束寬度(例 如,具有90°或120°等的半功率波束寬度)的天線。發射/接收天線之個別的波束場型然後可影響波束形成以及第一波束場型16。例如,可使用兩個有120°的半功率波束寬度之天線元件形成第一波束場型16。控制模組14可操作而使用具有諸如120°的半功率波束寬度或可比全區段窄的第一波束場型16之一單一天線發射該同步信號。因此,在某些實施例中,第一波束場型16可對應於一區段之一子區段。
在某些實施例中,發射/接收天線可使用覆蓋基地台收發器100的一區段之一個別的波束場型。收發器模組12可操作而形成包含覆蓋該區段的一些子區段之第一組波束場型,且第一波束場型16可對應於一子區段。換言之,第一波束場型16可對應於一組子區段中之一子區段,其中該組子區段覆蓋基地台收發器100的一整個區段。
第2圖示出具有K個數位路徑的一混合類比/數位BF收發器之一方塊圖,其中每一數位路徑被連接到由L個天線元件構成之一(不相交的)子陣列。換言之,在第2圖所示之實施例中,複數個天線元件15被實施為由L×K個天線元件15構成之一場陣列。此外,該複數個天線元件15被細分為一些子群,其中該等子群中之每一子群也被稱為子陣列。在第2圖所示之實施例中,收發器模組12包含類比波束形成能力,其中可假定可在每一子陣列內施加獨立的類比BF,以供傳輸及接收信號。在本實施例 中,控制模組14執行數位BF,然後使用該等子陣列施加數位BF。在第2圖中,控制模組14包含每一子陣列1...K中之一數位至類比轉換器,且假定控制模組14在該等相應的路徑中施加被調整的複數權值(complex weight)wd1...wdK。請注意,控制模組14可進一步操作而在某種程度上控制收發器模組12上之類比BF。例如,控制模組14或另一控制實體可諸如利用該等K個數位控制介面而負責調整類比BF權值,其中每一數位控制介面具有m個位元;或者在將一類比巴特勒矩陣(Butler matrix)應用於類比BF之情形中選擇一或多個輸入埠。
收發器模組12施加類比BF,且可諸如利用類比移相器或巴特勒矩陣執行類比BF。換言之,在第2圖所示之實施例中,收發器模組在每一子陣列內應用各類比BF權值,而使用每一子陣列分別形成某一波束及一組波束。第2圖中示出該等權值wa11...waKL與各別信號的類比乘法之相應的類比權值之施加。在某些實施例中,可使用混合數位/類比BF,這是因為混合數位/類比BF可提供比全數位實施方式低的複雜性。
此外,第2圖示出基地台收發器裝置10,亦即,假定各別的觀念適用於基地台收發器100。第2圖進一步示出一個別的天線場型17,且假定個別的天線場型17覆蓋基地台收發器100的一區段。此外,如將於下文中詳細說明的,第2圖示出可使用該複數個天線15的一子群之第一波束場型16、以及可使用本實施例中之所有天線元件 的第二波束場型18的一例子。如第2圖所示,可在不同的子區段中使用不同的導引信號pilot1...pilotK。此外,可使用第二波束場型18將資料傳送到個別的移動收發器200。此外,在一實施例中,假定K=4且L=16。假定該等64個發射/接收天線元件中之每一發射/接收天線元件有7dBi的元件增益,亦即,個別的天線場型17之7dBi的區段增益。
使用所有64個發射/接收天線時,可由包含所有可用天線元件之上述混合類比/數位BF實現25dBi的筆形波束(pencil beam)。此外,假定所有的天線元件照射諸如一90°區段等的相同的區段。可利用數位BF實施進一步的子區段化,而類比波束形成則將一些預定之區段權值用於諸如第2圖所示之K個正交/鄰接子區段。在替代實施例中,可利用被提供給諸如收發器模組12中之各類比移相器之K乘以m個位元,而以類比方式形成這些子區段。
各實施例可考慮到:在此種高波束形成增益下,對移動收發器200的擷取程序變得各複雜,這是因為波束形成增益可能被限制在擷取程序開始時。各實施例因而可開始發射不使用所有發射/接收天線而具有較低波束形成增益之一同步信號,然後在自移動收發器200接收到至少一第一回應信號時,建立全波束形成增益,而執行擷取。此外,各實施例可採用下行鏈路及上行鏈路通訊之週期性擷取時槽。如將於下文中詳細說明的,可在涉及階層式子區 段化的多個步驟中執行該擷取。此外,各實施例可利用特定子區段之隨機存取前置信號。
在各實施例中,控制模組14可操作而發射用於該區段的多個子區段之同步信號。換言之,同步信號可以是特定子區段的,或是特定區段的。控制模組14可進一步操作而評估自移動收發器200接收的信號之品質,因而自該第一組的波束場型中決定一子區段。例如,控制模組14可自該第一組的波束場型中決定可提供移動收發器200的回應信號的最高接收信號品質之一子區段,且控制模組14可操作而選擇具有最高接收信號品質之該子區段作為第一波束場型16。換言之,如第2圖所示,第一波束場型16可對應於一組子區段中之一子區段。控制模組14可評估該組中之該等子區段,而決定且選擇具有最佳信號品質之子區段,且選擇該子區段作為第一波束場型16。在該擷取階段中,只可實現最高波束形成增益的一部分。然後將說明一例示擷取程序,而在例示擷取程序中假定移動收發器200上只有一單一天線。假定基地台收發器100於13dBi的天線增益下於每一子區段中週期性地發射一數位預先編碼之同步信號。如前文所述,或者可使用一較寬的波束,但是在相應較低的天線增益下,在一整個區段中發射一較強健的同步信號。
移動收發器200可接收一觸發事件或觸發信號,而執行後續的步驟。該觸發事件可對應於移動收發器200上之諸如資料將被發射或移動收發器200的用戶正在撥一號碼 等的一事件。另一觸發事件可以是移動收發器200接收的一呼叫信號。例如,對移動收發器200的一來話呼叫(incoming call)或資料將被發射到移動收發器200。可在諸如一呼叫通道(Paging CHannel;簡稱PCH)上自基地台收發器100接收一觸發事件,可自一不同的基地台收發器(例如,自一不同的系統)接收一觸發事件,且/或可在一不同頻率的載波上接收一觸發事件。例如,可在另一系統中或在另一頻率上啟動一跨系統交遞(inter-system handover)或跨頻率交遞(inter-frequency handover)。移動收發器200可進一步接收與應將哪些無線電資源或代碼資源或頻率載波等的資源用於接收一同步通道且/或回應或存取(例如,隨機存取資訊)該系統或基地台收發器100有關之組態資訊。例如,可在一廣播通道(Broadcast CHannel;簡稱BCH)上提供此種資訊。
移動收發器200然後搜尋該週期性同步信號,且建立與基地台收發器100間之下行鏈路同步。換言之,移動收發器200接收該同步信號,且決定隨後將被用於與基地台收發器100通訊的一無線訊框(radio frame)型樣之邊界。移動收發器200然後在預定之無線電資源上發射一隨機存取前置信號(Random Access Preamble;簡稱RAP)。在某些實施例中,根據區段或細胞而預定這些無線電資源,而在其他實施例中,可根據子區段而界定這些無線電資源。基地台收發器100在每一子區段中平行地掃描RAP。如果在一或多個子區段中偵測到RAP,則基地台 收發器100選擇具有最強RAP信號之子區段,且在該子區段中觸發/發射一隨機存取回應(Random Access Response;簡稱RAR)。請注意,在本實施例中,假定下行鏈路及上行鏈路子區段將是相同的。在某些其他實施例中,可假定下行鏈路及上行鏈路子區段也可以是不同的,然後可將任何開迴路(open loop)或閉迴路(closed loop)觀念用於將一移動收發器指定給上行鏈路及下行鏈路中之各別的區段/子區段。
該RAR可包括用於上行鏈路時序調整或用於指定一移動收發器識別碼之資訊。移動收發器200然後可偵測RAR,且可開始發射至少一導引信號。基地台收發器100可在被選擇的子區段上接收該導引信號,且然後可選擇用於類比BF之最佳權值。可諸如依次切換一子區段的四個類比波束,而連續地在該等四個類比波束中之每一類比波束上接收該導引信號,因而執行該選擇。可選擇一巴特勒矩陣之不同的輸入,或可使用一子陣列中之對應的移相器結構的不同的權值,且可包括由移動收發器200經由至少四個時間單位或時槽發射該導引信號,而實現此種切換。基地台收發器100一旦選擇了最佳類比波束場型(例如,具有19dBi天線增益的一場型)之後,可將該導引信號用於微調該等數位權值,以便得到一25dBi的筆形波束。換言之,在該實施例中,移動收發器200發射的該導引信號被用於微調波束場型,且可藉由發射該同步信號而使第一波束場型16對應於一區段或一子區段,其中然後 根據來自移動收發器200的被接收之導引信號而形成第二波束場型18。
換言之,在上述的實施例中,基地台收發器裝置10之控制模組14可操作而使用第一波束場型16自移動收發器200接收一RAP信號。控制模組14可進一步操作而使用第一波束場型16將一RAR發射到移動收發器200,且自移動收發器200接收一導引信號。控制模組14可進一步操作而根據該導引信號決定第二波束場型18,且使用第二波束場型18發射後續的信號。在另一實施例中,移動收發器200可重複RAP發射,直到基地台收發器100選擇了數位及類比波束形成的權值為止。基地台收發器100然後可在全波束形成增益下發射該RAR。
在一進一步的實施例中,界定子區段的RAP資源,且移動收發器200根據被接收的同步/導引信號而選擇最佳子區段。移動收發器200然後可發射特定子區段之RAP。換言之,控制模組14可操作而使用第一波束場型16自該移動收發器接收一或多個RAP信號。控制模組14可進一步操作而根據該一或多個RAP信號決定第二波束場型18。控制模組14然後可操作而使用第二波束場型18將一RAR發射到移動收發器200。換言之,在某些實施例中,可能已經實現了用於發射該RAR之全波束形成增益。
上述兩個實施例都可讓基地台收發器100在全波束形成增益下將資料及控制資訊發射到移動收發器200。同樣 地,基地台收發器100可在全波束形成增益下自移動收發器200接收資料及控制資訊。移動收發器200可持續發射某一上行鏈路導引信號,因而使基地台收發器100能夠更新波束形成權值。
例如,收發器模組12可操作而使用類比BF形成第一波束場型16。控制模組14然後可操作而使用數位BF形成第二波束場型18。在其他實施例中,收發器模組12可操作而使用類比BF形成第一波束場型16及第二波束場型18。控制模組14然後可操作而選擇收發器模組12上之一波束場型。換言之,收發器模組12可操作而諸如利用一巴特勒矩陣或利用類比移相器執行類比BF,其中可以數位方式提供對該移相器的調整之一輸入。收發器模組12然後可提供一些以類比方式形成的波束,以供控制模組14選擇。在某些實施例中,控制模組14可相應地操作而執行固定式波束切換,其中該等波束是固定的,且由收發器模組12提供該等波束。術語"固定"將意指:無法在諸如每一無線訊框或每一無線時槽等的短時間排程或訊框上調整波束形成,而是可在諸如1秒、2秒、或5秒等的較長時間尺度上調整波束形成。然後可諸如將調整後之數位權值提供給該等類比移相器,而執行此種調整。在其他實施例中,該等波束實際上可以是預定的且固定的。
在進一步的實施例中,控制模組14可操作而在與該同步信號相關的一第一預定時槽中使用收發器模組12自一移動收發器200接收該同步信號的該回應信號。控制模 組14可進一步操作而在與該第一時槽不同的一第二預定時槽中使用收發器模組12發射移動收發器200專用的控制資料。
第3圖示出可被用於一實施例之一時槽或訊框結構。第3圖示出具有週期性擷取時槽的一些下行鏈路時序圖。第3圖的上方示出一訊框結構之一第一實施例,其中無線訊框300包含一擷取部分310、一上行鏈路控制部分320、一下行鏈路控制部分330、以及上行鏈路/下行鏈路資料部分340。如第3圖所示,在一訊框中重複地發射上行鏈路/下行鏈路控制及資料部分320、330、及340,其中在該整個訊框的開始處串接擷取部分310。此外,如第3圖上方的例子所示,上行鏈路/下行鏈路資料及控制部分加上上行鏈路/下行鏈路資料部分中之一資料部分的持續時間等於T。第3圖的下方示出一實施例的另一例子。在第3圖的下方,示出另一無線訊框350,該無線訊框350亦包含一擷取部分310、一上行鏈路控制部分320、一下行鏈路控制部分330、以及上行鏈路/下行鏈路資料部分340,而在該實施例中,一資料部分被縮短,以便可發射擷取部分310。換言之,在第3圖下方的該第二實施例中,利用某一期間發射擷取部分310,且當擷取部分310被發射時,後續的資料部分被縮短,因而擷取部分310、上行鏈路控制部分320、下行鏈路控制部分330、以及縮短的資料部分340具有T的持續時間。
混合類比/數位BF可使用分時多工(Time Division Multiplexing;簡稱TDM)分離特定用戶控制及資料之擷取及傳輸。如第3圖所示,可使用下行鏈路及上行鏈路中之週期性擷取時槽310。在一實施例中,可使用第2圖所示之收發器,且在擷取時槽310期間,該類比BF可使用預定之區段權值,且可應用純粹的數位BF。第3圖示出用於(動態)TDM之一子訊框(sub-frame)結構,如第3圖所示,該子訊框結構包含上行鏈路控制部分320、下行鏈路控制部分330、以及上行鏈路/下行鏈路資料部分340,其中每一部分包含在時域中分離的一或多個符號。第3圖上方的實施例呈現由上行鏈路控制部分320、下行鏈路控制部分330、以及上行鏈路/下行鏈路資料部分340構成的一固定持續時間T。下行鏈路擷取部分310被週期性地插入。第3圖下方的例子呈現:下行鏈路擷取時槽310的週期是T的一整數倍,且係藉由縮短諸如在一下行鏈路擷取部分之後的第一上行鏈路/下行鏈路資料部分等的某些上行鏈路/下行鏈路資料部分340,而實現下行鏈路擷取時槽310的週期。
在某些實施例中,控制模組14可操作而然後評估越來越窄的波束,而迭代地決定第二波束場型18。這是一種亦可被稱為階層式BF的觀念。換言之,該控制模組可操作而先評估具有數量相當少的波束且具有較低增益的波束之一組波束,且然後評估具有較多數目的較高增益的波束之一組波束。例如,控制模組14可檢查覆蓋一區段的兩個波束,選擇該等兩個波束中之一波束,且然後評估覆 蓋該被選擇的波束之兩個較窄的波束,其他後續步驟依此類推。
第4圖示出使用可在控制模組14的某些實施例中執行的階層式波束搜尋之一實施例。選擇第4圖示出被細分為三個步驟41、42、及43的一波束搜尋序列。在第一步驟41中,評估兩個寬波束;且在第二步驟42中,評估步驟41中選擇的寬波束區域中之兩個較窄的波束,然後選擇該等兩個較窄波束中之一較窄波束。然後在步驟43中,重新評估該現在被選擇的波束,其中現在於步驟42中選擇的波束之區域中考慮甚至更窄的兩個波束。第4圖在三個後續時槽中示出該方法,可在三個步驟或三個時槽中選出步驟43所示的八個筆形波束中之最佳筆形波束。
如前文所述,該擷取階段可能不只是與建立一波束形成鏈路有關,而且在用戶移動或某些傳輸被堵塞的情形中也與調整BF權值有關。第4圖中也示出此種情形。在下列的實施例中,將考慮諸如具有十六個波束且使用一單一數位路徑之一純類比BF。在一實施例中,為了找出最佳波束,一種正向方式將是根據諸如前文所述的一用戶或移動收發器200的上行鏈路導引信號以一次掃描一個的方式掃描所有十六個波束。在該實施例中,可使用後續評估將十六個時槽用於找出最佳波束。在使用類似於類比巴特勒矩陣的一方法之某些實施例中,一次只能測量一個波束,這是因為只能使用一單一的數位路徑。
某些實施例可使用亦被稱為子區段化之較快速技術。 此類實施例中,控制模組14可以一次一個子區段之方式自四個子區段中選擇最佳的子區段,然後選擇每一子區段中最佳的波束。此種方式可將選擇時間減少到八個時槽。如第4圖所示且如前文所述,某些實施例使用的又更快速的技術可被稱為階層式子區段化。在一第一時槽41中,採用兩個區段,且選擇最佳的一區段。在一第二時槽42中,界定四個子區段,該等四個子區段中之兩個子區段位於步驟41中選擇出的該區段中。在可在後續步驟中自這兩個子區段中選擇最佳的子區段。第4圖中之步驟43例示了該等後續步驟中之一後續步驟,且先前步驟42的該被選擇之子區段被進一步細分為兩個更窄的子區段,現在選擇該等兩個更窄的子區段中之最佳的更窄的子區段。在最後一個時槽中,自一小子集的波束中選擇最佳的波束。在具有十六個波束的一例子中,該程序可以只需要四個時槽。
在各實施例中,亦配合混合數位/類比BF而應用類似的程序。例如,假定在第2圖所示的收發器100中,利用純數位BF界定K=4個子區段,亦即,可在上行鏈路中同時處理4個子區段,因而需要最少的一個時槽。一旦選擇了最佳子區段之後,可在該子區段內之四個波束中決定最佳的波束。以逐個波束之方式執行該最佳波束的決定,或者利用階層式子區段化執行該最佳波束的決定。同樣地配合純數位BF而使用階層式子區段化,且可比同時掃描大量波束之方式減少計算的複雜性。
在某些實施例中,可使用特定子區段之RAP。各實施例可以與前文中說明一致之方式利用子區段特定之同步或導引信號界定用於下行鏈路傳輸之子區段,此種方式能夠界定下行鏈路中之特定子區段之RAR及/或上行鏈路中之RAP。各實施例可提供下列優點:可增加擷取速度或效率,這是因為行動台200利用下行鏈路測量決定最佳子區段,且利用上行鏈路中之一特定子區段之RAP指示其選擇。各實施例可利用正交波束之SDMA而將RA的容量增強到諸如K倍。
在一進一步的實施例中,可在一下行鏈路擷取部分期間在整個區段中廣播載送一細胞身分之一主要同步信號,且可諸如利用數位波束形成而同時在K個子區段中發射用於載送子區段身分之K個輔助同步信號。移動收發器200然後可偵測該細胞身分,選擇最佳的被接收之子區段同步信號,且可根據該被選擇之子區段而發射來自針對該子區段界定之一組(例如,一組扎德奧夫-朱序列(Zadoff-Chu sequence))的一RAP。在某些實施例中,亦可在諸如寬頻分碼多重進接(WCDMA)等的傳統細胞式通訊系統中應用每一子區段之RA,而在該等通訊系統中,可自輔助攪亂碼(scrambling code)導出用於RA產生之攪亂碼。
第5圖示出可在一行動通訊系統的一移動收發器200操作的一裝置20之一實施例。換言之,裝置20可適應於一移動收發器200或可在一移動收發器200中操作;裝置20可在一移動收發器200中操作,或可被包含在一移動 收發器200中。各實施例亦可提供一種包含裝置20之移動收發器200。第5圖進一步示出包含裝置20的一移動收發器200之一實施例(虛線)。裝置20包含一收發器模組22。該收發器模組22可對應於前文所述之類似的收發器模組,但是適應於一移動收發器200,且收發器模組22包含前文所述之典型的收發器組件。在一類似之方式下,收發器模組22可被實施為一或多個收發器裝置、一或多個收發器單元、用於收發(亦即,接收及/或發射)之任何裝置等的裝置。收發器模組22包含複數個可對應於發射及/或接收天線25之天線25的介面。關於該等介面,也將參照前文所述之該等介面。收發器模組22被耦合到一控制模組24。控制模組24可操作而根據該複數個發射/接收天線25決定第一組波束場型26。控制模組24可操作而使用來自該第一組波束場型26之一第一波束場型且使用收發器模組22自一基地台收發器100接收一信號。控制模組24可進一步操作而根據該複數個發射/接收天線25決定第二組波束場型28。如第5圖所示,該第二組波束場型28包含比該第一組波束場型26多的波束場型。控制模組24可進一步操作而使用第二波束場型28且使用收發器模組22將一信號發射到基地台收發器100。
如前文所述,控制模組24可操作而自基地台收發器100接收形式為該信號之一同步信號,且根據該同步信號而決定與用於發射一RAP的無線電資源有關之資訊。控制模組24然後可操作而使用根據該同步信號決定的該等 無線電資源將一RAP發射到基地台收發器100。換言之,該同步信號可決定無論是在區段中發射的或在子區段中發射的無線電資源。在進一步的實施例中,控制模組24可操作而使用來自該第一組波束場型26的一第一波束場型且使用收發器模組22自基地台收發器100接收形式為該信號的一同步信號。控制模組24可進一步操作而使用來自該第二組波束場型28的第二波束場型且使用收發器模組22將一RAP發射到基地台收發器100。
換言之,移動收發器200可使用多個發射/接收天線25。當假定移動收發器200上與第2圖所示者類似而有四個數位路徑時,可針對小量的(預定)接收波束(例如,四個接收波束)平行地執行對同步信號之處理。該等四個波束然後可對應於該第一組波束場型26。如果已建立了下行鏈路同步,則移動收發器200可使用一較大組的(大於四個的)接收波束(亦即,第二組波束場型28)微調數位BF之權值。移動收發器200可週期性地執行該微調,以便保持時域/頻域/空間域中之同步。移動收發器200然後可將該等經過微調之BF權值用於發射及接收,以便諸如接收RAR以及發射RAP、上行鏈路導引信號等的信號。
在進一步的實施例中,控制模組24可操作而使用來自該第一組波束場型26的該第一波束場型且使用收發器模組22自基地台收發器100接收形式為該信號之一同步信號。控制模組24可進一步操作而使用該第一波束場型 且使用收發器模組22將一RAP發射到基地台收發器100。控制模組24然後可進一步操作而使用該第一波束場型且使用收發器模組22接收一RAR,且使用該第二波束場型且使用收發器模組22發射一導引信號。
第6圖示出一種用於行動通訊系統的基地台收發器的方法的一實施例之一方塊圖。該方法包含下列步驟:將複數個天線15細分30為複數個子群;以及使用形式為子群的一或多個天線形32成一第一波束場型16。該方法進一步包含下列步驟:使用第一波束場型16發射34一同步信號;以及在發射該同步信號之後自一移動收發器200接收36一回應信號。該方法進一步包含下列步驟:根據來自移動收發器200的該回應信號決定38一第二波束場型18;以及使用第二波束場型18將一信號發射40到移動收發器200。該第二波束場型18具有比該第一波束場型16高的一天線增益。
第7圖示出一種用於行動通訊系統的移動收發器200的方法的一實施例之一方塊圖。該方法包含下列步驟:根據複數個天線25而決定42第一組波束場型26。該方法進一步包含下列步驟:使用來自第一組波束場型26的一第一波束場型自一基地台收發器100接收44一信號。該方法進一步包含下列步驟:根據該複數個天線25決定46第二組波束場型28。該第二組波束場型28包含比該第一組波束場型26多的波束場型。該方法進一步包含下列步驟:使用來自該第二組波束場型28之該第二波束場型將 一信號發射48到基地台收發器100。
一進一步之實施例是一種儲存了指令之電腦可讀取的儲存媒體,該等指令被一電腦執行時,使該電腦執行本發明所述的該等方法中之一方法。其他實施例是一種具有程式碼之電腦程式或電腦程式產品,該電腦程式或電腦程式產品在一處理器、電腦、或可程式硬體上被執行時,執行前文所述的方法中之任一方法。
熟悉此項技術者將可易於了解:可由程控電腦執行前文所述之各種方法之步驟。因此,某些實施例也將涵蓋係為機器或電腦可讀取的且將機器可執行之或電腦可執行之指令程式編碼的程式儲存裝置(例如,數位資料儲存媒體),其中該等指令執行本發明所述的該等方法之某些或所有步驟。該等程式儲存裝置可以是諸如數位記憶體、諸如磁碟、磁帶、硬碟機等的磁性儲存媒體、或光學可讀取的數位資料儲存媒體。該等實施例也將涵蓋被編程為執行本發明所述的方法的該等步驟之電腦、或被編程為執行前文所述之該等方法的該等步驟之(現場)可程式邏輯陣列((Field)Programmable Logic Array;簡稱(F)PGA)或(現場)可程式閘陣列((Field)Programmable Gate Array;簡稱(F)PGA)。
本說明及各圖式只是例示了本發明的原理。因此,我們應可了解:熟悉此項技術者將能夠思及本說明書中雖然並未明確地說明或示出但是實施了本發明的原理且被包含在本發明的精神及範圍內之各種配置。此外,本說明書中 述及的所有例子主要是明確地只意圖作為教學之目的,以便協助讀者了解本發明之原理以及本案發明人對此項技術的推進所貢獻的觀念,且將被理解為不將本發明限制在這些被特別述及的例子及條件。此外,本說明書中述及本發明的各項原理、觀點、及實施例之所有陳述以及本發明之特定例子將包含其等效物。
被表示為"用於...之裝置"(執行某一功能)之功能方塊應被理解為包含分別適於執行或適合於執行某一功能的電路之功能方塊。因此,一種"用於某事之裝置"亦可被理解為一種"適於或適合於某事之裝置"。因此,適於執行某一功能之一裝置並不意味著該裝置必然(在一特定時刻)正在執行該功能。
可利用諸如"收發器"、"控制器/處理器"等的專用硬體以及與適當的軟體相關聯且能夠執行軟體的硬體而提供其中包括被標示為"裝置"、"收發裝置"、或"控制裝置"等的任何功能方塊的該等圖式中所示的各種元件之功能。此外,本說明書中被描述為"裝置"的任何實體可對應於或被實施為"一或多個模組"、"一或多個裝置"、"一或多個單元"等的術語。當以一處理器提供時,可以一單一專用的處理器、一單一共用的處理器、或複數個個別的處理器(該複數個處理器中之某些處理器可被共用)提供該等功能。此外,顯性地使用術語"處理器"或"控制器"時,不應被詮釋為唯一地參照到能夠執行軟體之硬體,且可隱性地在沒有限制之情形下包括數位信號處理器(Digital Signal Processor;簡稱DSP)硬體、網路處理器、特定應用積體電路(Application Specific Integrated Circuit;簡稱ASIC)、現場可程式閘陣列(Field Programmable Gate Array;簡稱FPGA)、用於儲存軟體之唯讀記憶體(Read Only Memory;簡稱ROM)、隨機存取記憶體(Random Access Memory;簡稱RAM)、以及非揮發性儲存器。亦可包括傳統的及/或訂製的其他硬體。可經由程式邏輯之操作、專用邏輯之操作、程式控制及專用邏輯的互動、或甚至以人工方式執行其功能,而如將於上下文中可更明確了解的,實施者可選擇特定的技術。
熟悉此項技術者應可了解:本說明書中之任何方塊圖代表了實施本發明的原理的例示電路之概念性圖式。同樣地,我們將可了解:任何流程圖、流程圖表、狀態轉變圖、及虛擬碼等的圖表代表可實質上以電腦可讀取的媒體之方式呈現且因而可被電腦或處理器(不論該電腦或處理器是否被明確地示出)執行之各種程序。
此外,最後的申請專利範圍因而被併入"實施方式",其中每一申請專利範圍可以一個別的實施例之形式獨立地存在。雖然每一申請專利範圍可以一個別的實施例之形式獨立地存在,但是請注意:雖然在申請專利範圍中之某一申請專利範圍附屬項可能參照到與一或多個其他實施例的一特定組合,但是其他實施例亦可包括該申請專利範圍附屬項與每一其他申請專利範圍附屬項的標的之一組合。除非陳述不意圖有某一特定組合,否則本說明書中將意圖有 此類組合。此外,某一申請專利範圍的特徵將也被包含在任何其他的申請專利範圍獨立項,縱然並未使該申請專利範圍直接作為該申請專利範圍獨立項的附屬項也是如此。
進一步請注意,本說明書或申請專利範圍中揭示的方法可被具有用於執行這些方法的每一各別步驟的機構之一裝置實施。
10‧‧‧基地台收發器裝置
12‧‧‧收發器模組
14‧‧‧控制模組
15‧‧‧發射/接收天線
16‧‧‧第一波束場型
18‧‧‧第二波束場型
100‧‧‧基地台收發器
200‧‧‧移動收發器

Claims (13)

  1. 一種可在行動通訊系統的基地台收發器(100)中操作之裝置(10),該裝置(10)包含:一收發器模組(12),該收發器模組(12)包含複數個天線(15)之介面,且可操作而執行下列步驟:將該複數個天線(15)細分為使用該等介面之複數個子群;使用一子群的一或多個天線形成一第一波束場型(16);以及一控制模組(14),該控制模組(14)可操作而執行下列步驟:使用該收發器模組(12)及該第一波束場型(16)發射一同步信號;使用該第一波束場型(16)自一移動收發器(200)接收一隨機存取前置信號;使用該第一波束場型(16)將一隨機存取回應發射到該移動收發器(200);在發射該同步信號之後使用該收發器模組(12)自該移動收發器(200)接收一導引信號作為一回應信號;根據來自該移動收發器(200)的該回應信號決定一第二波束場型(18),該第二波束場型(18)具有比該第一波束場型(16)高的一天線增益;以及使用該第二波束場型(18)及該收發器模組 (12)將一後續信號發射到該移動收發器(200)。
  2. 如申請專利範圍第1項之裝置(10),其中該第二波束場型(18)使用比該第一波束場型(16)多的天線。
  3. 如申請專利範圍第1項之裝置(10),其中一天線使用覆蓋該基地台收發器(100)的一區段之一個別的波束場型,其中該收發器模組(12)可操作而形成包含覆蓋該區段的一些子區段之第一組波束場型(16),且其中該第一波束場型(16)對應於一子區段,及/或其中該第一波束場型(16)對應於該區段之一子區段,且其中該控制模組(14)可操作而使用該天線之該個別的波束場型或該第一波束場型(16)發射該同步信號。
  4. 如申請專利範圍第3項之裝置(10),其中該控制模組(14)可操作而發射用於該區段的多個子區段之同步信號,且/或其中該控制模組可操作而自該第一組波束場型(16)決定提供了該移動收發器(200)的該回應信號的最高接收信號品質之一子區段,且其中該控制模組(14)可操作而選擇具有該最高接收信號品質之該子區段作為該第一波束場型(16)。
  5. 如申請專利範圍第1項之裝置(10),其中該控制模組(14)可操作而執行下列步驟:使用該第一波束場型(16)自該移動收發器(200)接收一或多個隨機存取前置信號;根據該一或多個隨機存取前置信號決定該第二波束場 型(18);以及使用該第二波束場型(18)將一隨機存取回應發射到該移動收發器(200)。
  6. 如申請專利範圍第1項之裝置(10),其中該收發器模組(12)可操作而使用類比波束形成以形成該第一波束場型(16),且其中該控制模組(14)可操作而使用數位波束形成以形成該第二波束場型(18),或其中該收發器模組(12)可操作而使用類比波束形成以形成該第一波束場型(16)及該第二波束場型(18),其中該控制模組(14)可操作而選擇該收發器模組(12)上之一波束場型。
  7. 如申請專利範圍第1項之裝置(10),其中該控制模組(14)可操作而然後評估越來越窄的波束場型,而迭代地決定該第二波束場型(18),且/或其中該控制模組(14)可操作而在與該同步信號相關的一第一預定時槽中使用該收發器模組(12)自一移動收發器(200)接收該同步信號的該回應信號,且其中該控制模組(14)可操作而在與該第一時槽不同的一第二預定時槽中使用該收發器模組發射該移動收發器(200)專用的控制資料。
  8. 一種可在行動通訊系統的移動收發器(200)中操作之裝置(20),該裝置(20)包含:一收發器模組(22),該收發器模組(22)包含複數個天線(25)之介面;以及一控制模組(24),該控制模組(24)可操作而執行 下列步驟:根據該複數個天線(25)決定第一組波束場型(26);使用來自該第一組波束場型(26)的一第一波束場型且使用該收發器模組(22)自一基地台收發器(100)接收一同步信號;根據該複數個天線(25)決定第二組波束場型(28),該第二組波束場型(28)包含比該第一組波束場型(26)多的波束場型;根據該同步信號決定與用於發射一隨機存取前置信號的無線電資源有關之資訊;以及使用來自該第二組波束場型(28)的一第二波束場型且使用該收發器模組(22)且使用根據該同步信號決定之該等無線電資源將一隨機存取前置信號發射到該基地台收發器(100)。
  9. 如申請專利範圍第8項之裝置(20),其中該控制模組(24)可操作而執行下列步驟:使用來自該第一組波束場型(26)的該第一波束場型且使用該收發器模組(22)自一基地台收發器(100)接收形式為該信號之一同步信號;以及使用該第二波束場型且使用該收發器模組(22)將一隨機存取前置信號發射到該基地台收發器(100)。
  10. 如申請專利範圍第8項之裝置(20),其中該控制模組(24)可操作而執行下列步驟: 使用來自該第一組波束場型(26)的該第一波束場型且使用該收發器模組(22)自一基地台收發器(100)接收形式為該信號之一同步信號;使用該第一波束場型且使用該收發器模組(22)將一隨機存取前置信號發射到該基地台收發器(100);以及使用該第一波束場型且使用該收發器模組(22)接收一隨機存取回應;以及使用該第二波束場型且使用該收發器模組(22)發射一導引信號。
  11. 一種用於行動通訊系統的基地台收發器(100)之方法,該方法包含下列步驟:將複數個天線(15)細分(30)為複數個子群;使用一子群的一或多個天線形成(32)一第一波束場型(16);使用該第一波束場型(16)發射(34)一同步信號;使用該第一波束場型(16)自一移動收發器(200)接收一隨機存取前置信號;使用該第一波束場型(16)將一隨機存取回應發射到該移動收發器(200);在發射該同步信號之後自該移動收發器(200)接收(36)一導引信號作為一回應信號;根據來自該移動收發器(200)的該回應信號決定(38)一第二波束場型(18);以及使用該第二波束場型(18)將一後續信號發射(40) 到該移動收發器(200),該第二波束場型(18)具有比該第一波束場型(16)高的一天線增益。
  12. 一種用於行動通訊系統的移動收發器(200)之方法,該方法包含下列步驟:根據複數個天線(25)而決定(42)第一組波束場型(26);使用來自該第一組波束場型(26)的一第一波束場型自一基地台收發器(100)接收(44)一同步信號;根據該複數個天線(25)決定(46)第二組波束場型(28),該第二組波束場型(28)包含比該第一組波束場型(26)多的波束場型;根據該同步信號決定與用於發射一隨機存取前置信號的無線電資源有關之資訊;以及使用來自該第二組波束場型(28)的一第二波束場型且使用根據該同步信號決定之該等無線電資源將一隨機存取前置信號發射(48)到該基地台收發器(100)。
  13. 一種具有程式碼之電腦程式,該電腦程式在一電腦、一處理器、或一可程式硬體組件上被執行時,執行申請專利範圍第11或12項的該等方法中之至少一方法。
TW103139377A 2013-12-18 2014-11-13 用於基地台收發器及移動收發器之波束形成裝置,方法及電腦程式 TWI587645B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13306767.8A EP2887561B1 (en) 2013-12-18 2013-12-18 Beamforming apparatuses, methods and computer programs for a base station transceiver and a mobile transceiver

Publications (2)

Publication Number Publication Date
TW201534063A true TW201534063A (zh) 2015-09-01
TWI587645B TWI587645B (zh) 2017-06-11

Family

ID=49955158

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103139376A TW201534062A (zh) 2013-12-18 2014-11-13 用於收發器之波束形成裝置,方法及電腦程式
TW103139377A TWI587645B (zh) 2013-12-18 2014-11-13 用於基地台收發器及移動收發器之波束形成裝置,方法及電腦程式

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW103139376A TW201534062A (zh) 2013-12-18 2014-11-13 用於收發器之波束形成裝置,方法及電腦程式

Country Status (7)

Country Link
US (1) US10117113B2 (zh)
EP (1) EP2887561B1 (zh)
JP (1) JP6487923B2 (zh)
KR (1) KR101888162B1 (zh)
CN (1) CN105830359B (zh)
TW (2) TW201534062A (zh)
WO (1) WO2015090829A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107332592A (zh) * 2016-03-18 2017-11-07 建汉科技股份有限公司 天线对准系统及方法
TWI626795B (zh) * 2016-08-10 2018-06-11 華碩電腦股份有限公司 傳輸裝置、無線網路傳輸系統與其方法
TWI648960B (zh) * 2016-10-13 2019-01-21 李學智 毫米波段無線通訊基地台天線的新式架構設計

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048851B1 (en) * 2015-01-26 2020-03-11 ASUSTek Computer Inc. Method and apparatus for beam detection in a wireless communication system
EP3253116B1 (en) * 2015-02-28 2019-07-17 Huawei Technologies Co., Ltd. Data transmission method and apparatus, user equipment and system
WO2016203290A1 (en) * 2015-06-15 2016-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Variable synchronization block format
US10075985B2 (en) * 2015-08-17 2018-09-11 Intel IP Corporation Uplink synchronization with assisted mmWAVE enhanced node B
WO2017113301A1 (zh) * 2015-12-31 2017-07-06 华为技术有限公司 一种波束赋形方法、接收机、发射机及系统
US10575338B2 (en) 2016-02-04 2020-02-25 Samsung Electronics Co., Ltd. Method and apparatus for UE signal transmission in 5G cellular communications
JP7102148B2 (ja) 2016-02-04 2022-07-19 株式会社Nttドコモ 端末、プリアンブル送信方法、基地局、及び通信システム
US20200305197A1 (en) * 2016-03-11 2020-09-24 Lg Electronics Inc. System information signal reception method, user equipment, system information signal transmitting method and base station
WO2017173051A1 (en) * 2016-03-30 2017-10-05 Idac Holdings, Inc. Method for initial access using signatures
WO2017180173A1 (en) * 2016-04-14 2017-10-19 Intel Corporation Hybrid sector-sweep-based initial acquisition procedures for mmwave cellular radio access networks
TWI667842B (zh) * 2016-04-15 2019-08-01 和碩聯合科技股份有限公司 天線系統及控制方法
US11218236B2 (en) 2016-06-01 2022-01-04 Qualcomm Incorporated Time division multiplexing of synchronization channels
US10498437B2 (en) 2016-06-01 2019-12-03 Qualcomm Incorporated Conveying hypotheses through resource selection of synchronization and broadcast channels
US10887035B2 (en) * 2016-06-01 2021-01-05 Qualcomm Incorporated Time division multiplexing of synchronization channels
US11563505B2 (en) 2016-06-01 2023-01-24 Qualcomm Incorporated Time division multiplexing of synchronization channels
US10615897B2 (en) 2016-06-01 2020-04-07 Qualcomm Incorporated Time division multiplexing of synchronization channels
CN109526245B (zh) * 2016-07-14 2021-01-15 杜塞尔多夫华为技术有限公司 具有主收发器和辅收发器的无线电收发设备和利用该设备提供初始接入的方法
EP3494648B1 (en) * 2016-08-05 2024-03-20 Nokia Technologies Oy 5g beam group discontinuous reception
WO2018029017A1 (en) * 2016-08-09 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for adaptive initial synchronization beam sweep
EP3473031B1 (en) * 2016-08-10 2020-05-06 Huawei Technologies Co., Ltd. Communication link acquisition and tracking in millimeter wave bands
US11743844B2 (en) * 2016-08-12 2023-08-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for network planning and operation of a beam-based communication system
CN108024260A (zh) 2016-11-03 2018-05-11 华为技术有限公司 接入网络的方法和设备
WO2018083208A1 (en) 2016-11-04 2018-05-11 Sony Mobile Communications Inc. Synchronizing devices in a wireless communication network
US11115983B2 (en) 2016-11-11 2021-09-07 Qualcomm Incorporated Data and control channels in synchronization bursts for millimeter wave new radio
US10193795B2 (en) * 2016-12-21 2019-01-29 Sony Corporation Robust data routing in wireless networks with directional transmissions
JP6920058B2 (ja) * 2016-12-26 2021-08-18 株式会社日立国際電気 無線通信システム及びビーム制御方法
US20180227024A1 (en) * 2017-02-03 2018-08-09 Futurewei Technologies, Inc. Method and Apparatus of Beam Recommendation in Communication Systems
CN108633100B (zh) 2017-03-24 2023-10-20 华为技术有限公司 随机接入响应的方法和设备以及随机接入的方法和设备
US10425148B2 (en) * 2017-04-02 2019-09-24 Parviz Jalali Wireless communications system for broadband access to aerial platforms
US10827530B2 (en) 2017-05-04 2020-11-03 Electronics And Telecommunications Research Institute Method for transmitting and receiving message for random access in multi beam system
CN108882365B (zh) * 2017-05-08 2020-06-30 上海朗帛通信技术有限公司 一种基站、用户设备中的用于无线通信的方法和装置
CN115225169A (zh) 2017-05-31 2022-10-21 弗劳恩霍夫应用研究促进协会 装置、用于测试装置的测量系统及其操作方法
WO2018227602A1 (zh) * 2017-06-16 2018-12-20 Oppo广东移动通信有限公司 发送随机接入前导的方法和终端设备
US10965360B2 (en) * 2017-08-23 2021-03-30 Qualcomm Incorporated Methods and apparatus related to beam refinement
EP3704506A1 (en) * 2017-11-01 2020-09-09 Koninklijke Philips N.V. Systems and methods for wireless communication in magnetic resonance imaging (mri) systems
TWI658707B (zh) 2017-12-14 2019-05-01 財團法人工業技術研究院 通訊系統及其運作方法
CN111656701A (zh) 2018-02-08 2020-09-11 三菱电机株式会社 无线基站、无线终端、无线通信系统和发送功率控制方法
CN108306662B (zh) * 2018-03-08 2020-08-28 电子科技大学 一种基于数据驱动的混合波束成形中的模拟波束选择方法
KR20200135385A (ko) 2018-03-21 2020-12-02 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 신호 전송을 위한 방법과 장치
US11710887B2 (en) * 2018-05-31 2023-07-25 Kymeta Corporation Satellite signal acquisition
US20220029290A1 (en) * 2018-12-18 2022-01-27 Commscope Technologies Llc Small cell wireless communication devices having enhanced beamsteering capability and methods of operating same
US20200309891A1 (en) * 2019-03-26 2020-10-01 Silicon Laboratories Inc. Optimization For Angle Of Arrival And Angle Of Departure Detection
US11152986B2 (en) * 2019-06-25 2021-10-19 The Boeing Company Fast spatial search using phased array antennas
CN110488281B (zh) * 2019-07-25 2021-07-09 中国科学院电子学研究所 一种大带宽dbf-sar色散校正方法
CN114902715B (zh) * 2019-12-17 2024-06-11 Tcl通讯有限公司 与波束成形的广播信号相关的接入程序
WO2021142374A1 (en) * 2020-01-09 2021-07-15 Viasat, Inc. Multi-beam phased array antenna with disjoint sets of subarrays
US11076372B1 (en) * 2020-02-24 2021-07-27 Gogo Business Aviation Llc Systems and methods for accessing an air-to-ground network
US11399403B1 (en) 2020-10-21 2022-07-26 Sprint Communications Company Lp Addition thresholds for wireless access nodes based on insertion loss
KR102301131B1 (ko) 2021-04-29 2021-09-10 세종대학교산학협력단 빔포밍을 위한 다중 안테나 채널 추정 장치 및 그 방법
US11616565B2 (en) 2021-06-30 2023-03-28 Gogo Business Aviation Llc Beam pointing fine tuning for vehicle-based antennas

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0020088D0 (en) 2000-08-15 2000-10-04 Fujitsu Ltd Adaptive beam forming
JP2008278076A (ja) 2007-04-26 2008-11-13 Kyocera Corp 無線通信装置
JP5588594B2 (ja) * 2007-12-26 2014-09-10 富士通株式会社 無線通信システムにおける通信方法並びに無線端末及び無線基地局
KR101803015B1 (ko) * 2010-02-10 2017-12-01 주식회사 골드피크이노베이션즈 다수의 요소 반송파를 운영하는 무선 통신 시스템에서 업링크 동기를 설정하는 방법 및 장치
WO2011106517A1 (en) 2010-02-24 2011-09-01 Interdigital Patent Holdings, Inc. Communication using directional antennas
CA2842160C (en) * 2011-07-21 2019-09-17 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving information for random access in wireless communication system
US9414371B2 (en) * 2012-04-16 2016-08-09 Samsung Electronics Co., Ltd. Hierarchical channel sounding and channel state information feedback in massive MIMO systems
KR20130127347A (ko) * 2012-05-10 2013-11-22 삼성전자주식회사 아날로그 및 디지털 하이브리드 빔포밍을 통한 통신 방법 및 장치
US9118108B2 (en) 2012-05-21 2015-08-25 Qualcomm Incorporated Antenna switching devices, methods, and systems
US20160261325A1 (en) * 2013-11-04 2016-09-08 Lg Electronics Inc. Method and apparatus for transmitting signal in wireless communication system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107332592A (zh) * 2016-03-18 2017-11-07 建汉科技股份有限公司 天线对准系统及方法
TWI626795B (zh) * 2016-08-10 2018-06-11 華碩電腦股份有限公司 傳輸裝置、無線網路傳輸系統與其方法
TWI648960B (zh) * 2016-10-13 2019-01-21 李學智 毫米波段無線通訊基地台天線的新式架構設計

Also Published As

Publication number Publication date
KR101888162B1 (ko) 2018-08-14
CN105830359B (zh) 2020-02-21
CN105830359A (zh) 2016-08-03
TWI587645B (zh) 2017-06-11
EP2887561B1 (en) 2019-07-03
TW201534062A (zh) 2015-09-01
WO2015090829A1 (en) 2015-06-25
KR20160098391A (ko) 2016-08-18
JP6487923B2 (ja) 2019-03-20
US10117113B2 (en) 2018-10-30
EP2887561A1 (en) 2015-06-24
JP2017505032A (ja) 2017-02-09
US20160323757A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
TWI587645B (zh) 用於基地台收發器及移動收發器之波束形成裝置,方法及電腦程式
CN110168958B (zh) 波束扫描配置
TWI674022B (zh) 增強型隨機存取方法及設備
US10135583B2 (en) Apparatuses, methods and computer programs for a base station transceiver and a mobile transceiver
KR102262312B1 (ko) 무선 통신 네트워크에서의 통신을 핸들링하기 위한 라디오 네트워크 노드들, 무선 디바이스 및 그들에서 수행되는 방법들
RU2641664C2 (ru) Сетевой узел, беспроводное устройство, способы, выполняемые в них для отправки и обнаружения соответственно сигнала синхронизации и связанной с ним информации
US20160315680A1 (en) Beamforming apparatus, method and computer program for a transceiver
US11632689B2 (en) Beam reporting in a beam failure recovery request or a beam failure recovery procedure
WO2017167532A1 (en) Beamforming device for forming different beams for control and data signal
EP3226437B1 (en) Apparatuses, methods, and computer programs for a base station transceiver and a mobile transceiver
CN113873528A (zh) 一种覆盖增强方法和装置
CN109478912B (zh) 确定预编码信息的装置、方法、中央单元和计算机程序

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees