TW201533921A - Silicon solar cells with epitaxial emitters - Google Patents

Silicon solar cells with epitaxial emitters Download PDF

Info

Publication number
TW201533921A
TW201533921A TW104106084A TW104106084A TW201533921A TW 201533921 A TW201533921 A TW 201533921A TW 104106084 A TW104106084 A TW 104106084A TW 104106084 A TW104106084 A TW 104106084A TW 201533921 A TW201533921 A TW 201533921A
Authority
TW
Taiwan
Prior art keywords
emitter
layer
solar cell
germanium
single crystal
Prior art date
Application number
TW104106084A
Other languages
Chinese (zh)
Inventor
James M Gee
John Renshaw
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2014/042333 external-priority patent/WO2015130334A1/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201533921A publication Critical patent/TW201533921A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Embodiments of the disclosure generally relate to forming solar cells having epitaxial emitters. The emitters of the solar cells, as well as the bases of the solar cells, are epitaxially grown in a process chamber using a template substrate to form an epitaxial substrate. During the formation process of the epitaxial substrate, dopants can be introduced into the process chamber to dope the emitters and the bases with desired dopant profiles and concentrations. In one example, the epitaxial material is silicon and the dopants are n-type and p-type dopants.

Description

具有磊晶射極之矽太陽能電池 Solar cell with epitaxial emitter

本發明的實施例大體係關於太陽能電池和形成方法。 Embodiments of the invention are large systems relating to solar cells and methods of formation.

利用太陽能電池將太陽能轉換成電子之流可產生電力。光電效應係指光的光子將電子激發到更高能態,使之做為電流的帶電載子。太陽能電池由太陽光產生直流電,以提供電源裝備或給電池充電。然目前太陽能電池效率通常不足,例如太陽能電池將不足夠的太陽能量轉換成電能。 The use of solar cells to convert solar energy into a stream of electrons produces electricity. Photoelectric effect means that a photon of light excites electrons to a higher energy state, making it a charged carrier of current. Solar cells generate direct current from sunlight to provide power supply or to charge the battery. However, solar cell efficiency is currently insufficient, for example, solar cells convert insufficient solar energy into electrical energy.

因此,需要更高效率的太陽能電池和形成方法。 Therefore, there is a need for a more efficient solar cell and method of formation.

本發明的實施例大體係關於形成具磊晶射極的太陽能電池。在處理腔室中,使用模板基板磊晶成長太陽能電池的射極和太陽能電池的基極,以形成磊晶基板。在磊晶基板形成製程期間,可引入摻質至處理腔室,以用所要摻質分布和濃度摻雜射極和基極。在一實例中,磊晶材料係矽,摻質係n型與p型摻質。 Embodiments of the invention are directed to forming solar cells with epitaxial emitters. In the processing chamber, the emitter of the solar cell and the base of the solar cell are epitaxially grown using a template substrate to form an epitaxial substrate. During the epitaxial substrate formation process, dopants may be introduced into the processing chamber to dope the emitter and base with the desired dopant distribution and concentration. In one example, the epitaxial material is tantalum, and the dopant is n-type and p-type dopants.

在一實施例中,形成太陽能電池的方法包含磊晶成 長包括p型或n型摻質的第一射極、磊晶成長基極至第一射極上,及磊晶成長包括p型或n型摻質的第二射極。織構第二射極,第一鈍化層施用於第一射極。第二鈍化層施用於第二射極,第一金屬觸點施用至第一射極上面,第二金屬觸點施用至第二射極上面。 In one embodiment, a method of forming a solar cell includes epitaxial formation The first emitter comprising a p-type or n-type dopant, the epitaxial growth base to the first emitter, and the epitaxial growth include a second emitter of a p-type or n-type dopant. The second emitter is textured, and the first passivation layer is applied to the first emitter. A second passivation layer is applied to the second emitter, the first metal contact being applied to the first emitter and the second metal contact being applied to the second emitter.

在另一實施例中,太陽能電池包含單晶矽基極、置於單晶矽基極的第一側邊的第一單晶矽射極,第一單晶矽射極的厚度為約5微米至約15微米、和置於單晶矽基極的第二側邊的第二單晶矽射極。第二單晶矽射極的厚度為約5微米至約15微米。太陽能電池進一步包含置於第一單晶矽射極上面的第一鈍化層、置於第一鈍化層上面的第一金屬層和置於第二鈍化層上面的第二金屬層。 In another embodiment, the solar cell comprises a single crystal germanium base, a first single crystal germanium emitter disposed on a first side of the single crystal germanium base, and the first single crystal germanium emitter has a thickness of about 5 micrometers. A second single crystal germanium emitter of about 15 microns and placed on the second side of the single crystal germanium base. The second single crystal germanium emitter has a thickness of from about 5 microns to about 15 microns. The solar cell further includes a first passivation layer disposed over the first single crystal germanium emitter, a first metal layer disposed over the first passivation layer, and a second metal layer disposed over the second passivation layer.

100‧‧‧腔室 100‧‧‧ chamber

102‧‧‧腔壁 102‧‧‧ cavity wall

104‧‧‧蓋子 104‧‧‧Cover

106‧‧‧底部 106‧‧‧ bottom

108‧‧‧處理區 108‧‧‧Processing area

110‧‧‧匣盒 110‧‧‧匣 box

112‧‧‧基座 112‧‧‧Base

114‧‧‧基板 114‧‧‧Substrate

114a‧‧‧磊晶基板 114a‧‧‧ epitaxial substrate

120‧‧‧頂蓋 120‧‧‧Top cover

122‧‧‧裝載區 122‧‧‧Loading area

124‧‧‧開口 124‧‧‧ openings

125‧‧‧燈具 125‧‧‧Lamps

127‧‧‧反射器 127‧‧‧ reflector

128‧‧‧冷卻通道 128‧‧‧cooling channel

129‧‧‧入口 129‧‧‧ entrance

130‧‧‧出口 130‧‧‧Export

131‧‧‧恆溫區 131‧‧‧Constant temperature zone

132‧‧‧加熱元件 132‧‧‧ heating element

133‧‧‧隔熱器 133‧‧‧Insulator

134‧‧‧氣體入口 134‧‧‧ gas inlet

135‧‧‧軸桿 135‧‧‧ shaft

136‧‧‧轉子 136‧‧‧Rotor

137‧‧‧定子 137‧‧‧ Stator

212‧‧‧電極 212‧‧‧ electrodes

214A‧‧‧磊晶層 214A‧‧‧ epitaxial layer

214‧‧‧基板 214‧‧‧Substrate

240‧‧‧多孔層 240‧‧‧Porous layer

241、243‧‧‧射極 241, 243‧‧ ‧ emitter

241a、241b‧‧‧摻雜區 241a, 241b‧‧‧ doped area

242‧‧‧基極 242‧‧‧ base

244、249‧‧‧表面 244, 249‧‧‧ surface

245‧‧‧接觸區 245‧‧‧Contact area

246、248‧‧‧鈍化層 246, 248‧‧‧ Passivation layer

247‧‧‧觸點 247‧‧‧Contacts

256‧‧‧操作 256‧‧‧ operation

270‧‧‧開口 270‧‧‧ openings

271‧‧‧金屬層 271‧‧‧metal layer

272‧‧‧太陽能電池 272‧‧‧ solar cells

350‧‧‧流程圖 350‧‧‧ Flowchart

351-353、355-364‧‧‧操作 351-353, 355-364‧‧‧ operations

414a‧‧‧磊晶基板 414a‧‧‧ epitaxial substrate

444、449‧‧‧表面 444, 449‧‧‧ surface

446、448‧‧‧鈍化層 446, 448‧‧‧ Passivation layer

447‧‧‧觸點 447‧‧‧Contacts

470‧‧‧通孔 470‧‧‧through hole

471‧‧‧金屬層 471‧‧‧metal layer

472‧‧‧太陽能電池 472‧‧‧ solar cells

490‧‧‧射極表面 490‧‧ ‧ emitter surface

491‧‧‧遮罩 491‧‧‧ mask

581-589‧‧‧操作 581-589‧‧‧ operation

614A‧‧‧磊晶基板 614A‧‧‧ epitaxial substrate

646‧‧‧鈍化層 646‧‧‧passivation layer

649‧‧‧非光接收面 649‧‧‧ Non-light receiving surface

691‧‧‧遮罩 691‧‧‧ mask

692‧‧‧多晶矽層 692‧‧‧ Polycrystalline layer

765‧‧‧流程圖 765‧‧‧flow chart

766-771‧‧‧操作 766-771‧‧‧ operation

814A、914A‧‧‧磊晶基板 814A, 914A‧‧‧ epitaxial substrate

949‧‧‧非光接收面 949‧‧‧ Non-light receiving surface

975‧‧‧流程圖 975‧‧‧flow chart

976-979‧‧‧操作 976-979‧‧‧ operation

993‧‧‧本質無定形矽層 993‧‧‧ Essential amorphous layer

994‧‧‧摻雜無定形矽層 994‧‧‧Doped amorphous layer

995‧‧‧導電氧化層 995‧‧‧conductive oxide layer

1101‧‧‧流程圖 1101‧‧‧Flowchart

1102-1108‧‧‧操作 1102-1108‧‧‧Operation

1214A‧‧‧磊晶基板 1214A‧‧‧ epitaxial substrate

1396‧‧‧氧化層 1396‧‧‧Oxide layer

1420‧‧‧流程圖 1420‧‧‧flow chart

1421-1427‧‧‧操作 1421-1427‧‧‧ operation

1449、1549‧‧‧非光接收面 1449, 1549‧‧‧ Non-light receiving surface

1571‧‧‧金屬層 1571‧‧‧metal layer

1572‧‧‧太陽能電池 1572‧‧‧Solar battery

1590‧‧‧背面場域 1590‧‧‧Back field

1671‧‧‧交錯背面接觸結構 1671‧‧‧Interlaced back contact structure

1671a、1671b‧‧‧觸點 1671a, 1671b‧‧ ‧ contacts

1672‧‧‧太陽能電池 1672‧‧‧Solar battery

為讓本發明的上述概要特徵更明顯易懂,可配合參考實施例說明,部分實施例乃圖示在附圖。然應注意所附圖式僅說明本發明典型實施例,故不宜視為限定本發明範圍,因為本發明可接納其他等效實施例。 In order to make the above summary of the present invention more obvious and understood, the description may be made in conjunction with the reference embodiments. It is to be understood that the appended claims are not intended to

第1圖係根據一實施例的腔室剖面透視圖。 Figure 1 is a perspective view of a chamber according to an embodiment.

第2A圖至第2L圖圖示根據一實施例的太陽能電池形成製程。 2A through 2L illustrate a solar cell forming process in accordance with an embodiment.

第3A圖至第3B圖圖示根據一實施例,形成太陽能電池的方法流程圖。 3A-3B illustrate a flow chart of a method of forming a solar cell, in accordance with an embodiment.

第4A圖至第4G圖圖示根據另一實施例的太陽能電池形成製程。 4A to 4G illustrate a solar cell forming process according to another embodiment.

第5圖圖示根據另一實施例,形成太陽能電池的方法流程圖。 Figure 5 illustrates a flow chart of a method of forming a solar cell, in accordance with another embodiment.

第6A圖至第6F圖圖示根據又一實施例的太陽能電池形成製程。 6A to 6F illustrate a solar cell forming process according to still another embodiment.

第7圖圖示根據又一實施例,形成太陽能電池的方法流程圖。 Figure 7 illustrates a flow chart of a method of forming a solar cell, in accordance with yet another embodiment.

第8A圖至第8D圖圖示根據再一實施例的太陽能電池形成製程。 8A to 8D illustrate a solar cell forming process according to still another embodiment.

第9圖圖示根據再一實施例,形成太陽能電池的方法流程圖。 Figure 9 illustrates a flow chart of a method of forming a solar cell, according to yet another embodiment.

第10A圖至第10G圖圖示根據另一實施例的太陽能電池形成製程。 10A through 10G illustrate solar cell formation processes in accordance with another embodiment.

第11圖圖示根據另一實施例,形成太陽能電池的方法流程圖。 Figure 11 illustrates a flow chart of a method of forming a solar cell, in accordance with another embodiment.

第12圖圖示根據本發明另一實施例的部分太陽能電池。 Figure 12 illustrates a partial solar cell in accordance with another embodiment of the present invention.

第13A圖至第13G圖圖示根據又一實施例的太陽能電池形成製程。 13A to 13G illustrate a solar cell forming process according to still another embodiment.

第14圖圖示根據又一實施例,形成太陽能電池的方法流程圖。 Figure 14 illustrates a flow chart of a method of forming a solar cell, according to yet another embodiment.

第15圖圖示根據另一實施例的太陽能電池。 Fig. 15 illustrates a solar cell according to another embodiment.

第16圖圖示根據又一實施例的太陽能電池。 Figure 16 illustrates a solar cell according to still another embodiment.

為助於理解,盡可能以相同的元件符號代表各圖中共同的相似元件。應理解某一實施例的元件和特徵結構當可 有益地併入其他實施例,在此不另外詳述。 To facilitate understanding, the same component symbols are used to represent common similar components in the various figures. It should be understood that the elements and features of an embodiment may be Other embodiments are beneficially incorporated and are not described in detail herein.

本發明的實施例大體係關於形成具磊晶射極的太陽能電池。在處理腔室中,使用模板基板磊晶成長太陽能電池的射極和太陽能電池的基極,以形成磊晶基板。在磊晶基板形成製程期間,可引入摻質至處理腔室,以用所要摻質分布和濃度摻雜射極和基極。在一實例中,磊晶材料係矽,摻質係n型與p型摻質。根據所述實施例形成的太陽能電池的轉換效率高於具固態擴散射極的太陽能電池,此至少部分係因為在磊晶成長期間形成射極。由於射極係在磊晶成長製程期間形成,故射極可有更大厚度,同時具較低摻質濃度。 Embodiments of the invention are directed to forming solar cells with epitaxial emitters. In the processing chamber, the emitter of the solar cell and the base of the solar cell are epitaxially grown using a template substrate to form an epitaxial substrate. During the epitaxial substrate formation process, dopants may be introduced into the processing chamber to dope the emitter and base with the desired dopant distribution and concentration. In one example, the epitaxial material is tantalum, and the dopant is n-type and p-type dopants. The solar cells formed according to the described embodiments have higher conversion efficiencies than solar cells with solid state diffused emitters, at least in part because of the formation of emitters during epitaxial growth. Since the emitter is formed during the epitaxial growth process, the emitter can have a greater thickness and a lower dopant concentration.

第1圖係根據一實施例,腔室100的剖面透視圖。腔室100具有腔壁102、蓋子104和底部106。腔壁102可呈圓柱形,且可由透明石英形成。腔壁102、蓋子104和底部106可界定處理區108,匣盒110置於處理區108內。匣盒110可包括複數個呈堆疊構造的基座112,每一基座112可支撐一或更多基板114於基座上表面。基座112可配置以支托基板114供單側沉積或兩側沉積。沉積製程期間,匣盒110可持續旋轉,以改善沉積均勻性。 1 is a cross-sectional perspective view of a chamber 100 in accordance with an embodiment. The chamber 100 has a chamber wall 102, a cover 104 and a bottom 106. The cavity wall 102 can be cylindrical and can be formed from transparent quartz. The chamber wall 102, the lid 104, and the bottom 106 can define a treatment zone 108 within which the cassette 110 is placed. The cassette 110 can include a plurality of pedestals 112 in a stacked configuration, each pedestal 112 can support one or more substrates 114 on the upper surface of the pedestal. The pedestal 112 can be configured to support the substrate 114 for deposition on one side or on both sides. During the deposition process, the cassette 110 is continuously rotated to improve deposition uniformity.

蓋子104上方為頂蓋120,裝載區122由頂蓋120界定。開口124可形成於頂蓋120中,以協助基板114進出裝載區122。裝載/卸載基板114期間,匣盒110經垂直致動到裝載區122中,及經由開口124裝載/卸載基板114。 Above the lid 104 is a top cover 120, which is defined by a top cover 120. Openings 124 may be formed in the top cover 120 to assist in the entry and exit of the substrate 114 into and out of the loading area 122. During loading/unloading of the substrate 114, the cassette 110 is vertically actuated into the loading area 122 and the substrate 114 is loaded/unloaded via the opening 124.

加熱元件(例如燈具125)設置鄰接腔壁102,以提 供處理區108熱能。加熱元件可為任何適合的加熱元件。在一實施例中,加熱元件包括複數個紅外線(IR)燈具圍繞匣盒110。在一實施例中,燈具125圍繞腔壁102。腔壁102的排列方式可視製程而定。在一實例中,燈具125呈圓形。燈具125可堆疊以提供軸向多區加熱。在另一實施例中,各燈具125為直線燈具,燈具125設置垂直基座112的支撐表面。在此實施例中,複數個直線燈具125排列圍繞腔壁102周圍。此外或或者,加熱元件可包括一或更多感應式加熱器。感應式加熱器可為盤繞匣盒110的鐵氧體磁心,例如圍繞腔壁102。一或更多金屬線可纏繞鐵氧體磁心,各金屬線可連接至電源而形成電路。 A heating element (eg, luminaire 125) is disposed adjacent to the cavity wall 102 to The processing zone 108 is thermally energized. The heating element can be any suitable heating element. In an embodiment, the heating element includes a plurality of infrared (IR) lamps surrounding the cassette 110. In an embodiment, the light fixture 125 surrounds the cavity wall 102. The arrangement of the walls 102 can be determined by the process. In one example, the luminaire 125 is circular. The luminaires 125 can be stacked to provide axial multi-zone heating. In another embodiment, each of the luminaires 125 is a linear luminaire, and the luminaire 125 is provided with a support surface for the vertical pedestal 112. In this embodiment, a plurality of linear luminaires 125 are arranged to surround the periphery of the cavity wall 102. Additionally or alternatively, the heating element can include one or more inductive heaters. The inductive heater can be a ferrite core that coils the cassette 110, such as around the chamber wall 102. One or more metal wires may be wound around the ferrite core, and each metal wire may be connected to a power source to form an electrical circuit.

選擇性反射器127圍繞燈具125,以更有效地控制加熱處理區108。反射器127包括複數個弧形圓環,各環外切各燈具125外圍。故燈具125產生的熱可導向處理區108。反射器127可具冷卻通道128設置於內。每一冷卻通道128具有入口129和出口130(圖示一個),可用冷卻劑冷卻反射器127,例如從入口129經由冷卻通道128流出出口130的水。腔室襯墊(未圖示)設在匣盒110與腔壁102之間。腔室襯墊的形狀可類似腔壁102,例如圓柱形,以提供熱均勻性及在處理區108內形成恆溫區131。腔室襯墊可由碳化矽塗覆石墨製成。 A selective reflector 127 surrounds the luminaire 125 to more effectively control the heat treatment zone 108. The reflector 127 includes a plurality of curved rings, each of which circumscribes the periphery of each of the lamps 125. Thus, the heat generated by the luminaire 125 can be directed to the processing zone 108. The reflector 127 can have a cooling passage 128 disposed therein. Each cooling passage 128 has an inlet 129 and an outlet 130 (one shown), and the reflector 127 can be cooled with a coolant, such as water flowing out of the outlet 130 from the inlet 129 via the cooling passage 128. A chamber liner (not shown) is disposed between the cassette 110 and the chamber wall 102. The shape of the chamber liner can be similar to chamber wall 102, such as cylindrical, to provide thermal uniformity and to form a constant temperature zone 131 within processing zone 108. The chamber liner can be made of tantalum carbide coated graphite.

除了燈具125之外,加熱元件132還可設在匣盒110上方及/或下方,以提供徑向多區加熱。加熱元件132可為任何適合的加熱元件。在一實施例中,加熱元件132係電阻式 加熱元件,電阻式加熱元件由固態碳化矽或碳化矽塗覆石墨製成。隔熱器133設在加熱元件132與蓋子104/底部106之間。 In addition to the luminaire 125, the heating element 132 can also be disposed above and/or below the cassette 110 to provide radial multi-zone heating. Heating element 132 can be any suitable heating element. In an embodiment, the heating element 132 is resistive The heating element, the resistive heating element is made of solid tantalum carbide or tantalum carbide coated graphite. A heat insulator 133 is disposed between the heating element 132 and the cover 104/bottom 106.

複數個氣體入口134設置穿過腔壁102上的燈具125。在一實施例中,氣體入口134實質垂直腔壁102。如第1圖所示,氣體入口134和燈具125為交錯配置。換言之,每一氣體入口134設在二相鄰燈具125之間。複數個淨化氣體管線(未圖示)可設在腔室襯墊與腔壁102之間。淨化氣體管線實質平行腔壁102。腔室100操作期間,可引入一或更多製程氣體至腔室100,以沉積材料至基板114上,例如磊晶層。沉積期間,基板114可加熱達所要溫度。可同時處理一或更多基板114。 A plurality of gas inlets 134 are provided through the luminaires 125 on the chamber wall 102. In an embodiment, the gas inlet 134 is substantially perpendicular to the cavity wall 102. As shown in Figure 1, the gas inlet 134 and the luminaire 125 are in a staggered configuration. In other words, each gas inlet 134 is disposed between two adjacent lamps 125. A plurality of purge gas lines (not shown) may be provided between the chamber liner and the chamber wall 102. The purge gas line is substantially parallel to the chamber wall 102. During operation of chamber 100, one or more process gases may be introduced into chamber 100 to deposit material onto substrate 114, such as an epitaxial layer. During deposition, the substrate 114 can be heated to the desired temperature. One or more substrates 114 can be processed simultaneously.

匣盒110的邊緣可耦接至複數個軸桿135,軸桿135耦接至轉子136。轉子136可耦接至定子137。在一實施例中,轉子136和定子137均為永久磁體,轉子136磁性耦接定子137。操作期間,匣盒110連續浮置及旋轉。在另一實施例中,轉子136和定子137為線性電弧馬達的零件,操作期間,線性電弧馬達連續轉動匣盒110。 The edge of the cassette 110 can be coupled to a plurality of shafts 135 that are coupled to the rotor 136. The rotor 136 can be coupled to the stator 137. In one embodiment, rotor 136 and stator 137 are both permanent magnets and rotor 136 is magnetically coupled to stator 137. The cassette 110 is continuously floated and rotated during operation. In another embodiment, the rotor 136 and the stator 137 are parts of a linear arc motor that is continuously rotated by the linear arc motor during operation.

第2A圖至第2L圖圖示根據一實施例的太陽能電池形成製程。第3A圖至第3B圖圖示根據一實施例,形成太陽能電池的方法流程圖350。為便於闡述本發明實施例,將配合說明第2A圖至第2L圖及第3A圖至第3B圖。 2A through 2L illustrate a solar cell forming process in accordance with an embodiment. 3A through 3B illustrate a flow chart 350 of a method of forming a solar cell, in accordance with an embodiment. In order to facilitate the description of the embodiments of the present invention, FIGS. 2A to 2L and FIGS. 3A to 3B will be described.

第2A圖圖示基板114,基板114放在支撐件上,例如電解槽(未圖示)內的電極212。在一實例中,基板可為單 晶矽組成的矽基板,基板用作磊晶成長模板。雖然為清楚起見,僅繪示單一基板114放在電極212上,但應理解多個基板114當可放在電極212上。 Figure 2A illustrates a substrate 114 that is placed on a support, such as electrode 212 in an electrolytic cell (not shown). In an example, the substrate can be a single A germanium substrate composed of wafers, and the substrate is used as a template for epitaxial growth. Although only a single substrate 114 is shown placed on electrode 212 for clarity, it should be understood that multiple substrates 114 can be placed on electrode 212.

在操作351中,如第2B圖所示,使基板114接觸包括氟化氫、異丙醇和去離子水的蝕刻液,以於基板114上形成多孔層240。可代替異丙醇或另使用乙醇、乙酸或其他化學試劑來調整表面張力。電流通過電解液和基板而陽極蝕刻表面。相同電解液可用於背面接觸、而非電極212。在一實例中,多孔層240為「雙多孔」層,例如內含一或更多孔隙度的層。例如,多孔層240可具有孔隙度較低且厚度約0.01微米至約2微米的上部和孔隙度較高且厚度約0.1微米至約1微米的下部。在一些製程中,如第2G圖所示,下層可當作釋放層,以助於釋放磊晶成長於基板114上的磊晶層214A。 In operation 351, as shown in FIG. 2B, the substrate 114 is brought into contact with an etching solution including hydrogen fluoride, isopropyl alcohol, and deionized water to form a porous layer 240 on the substrate 114. Surface tension can be adjusted by replacing isopropyl alcohol or by using ethanol, acetic acid or other chemical agents. Current is passed through the electrolyte and the substrate to anodically etch the surface. The same electrolyte can be used for back contact instead of electrode 212. In one example, porous layer 240 is a "double porous" layer, such as a layer containing one or more porosity. For example, the porous layer 240 can have an upper portion having a low porosity and a thickness of from about 0.01 micrometers to about 2 micrometers and a lower portion having a relatively high porosity and a thickness of from about 0.1 micrometers to about 1 micrometer. In some processes, as shown in FIG. 2G, the lower layer can serve as a release layer to assist in the release of the epitaxial layer 214A that is epitaxially grown on the substrate 114.

在操作352中,如第2C圖所示,熱處理(例如退火或結晶)具多孔層240的基板114,以於多孔層240上形成光滑矽表面。熱處理製程可在氫環境中進行,且可利用各種加熱方法施行,包括雷射或燈具照射。多孔層240的光滑度有助於形成高品質磊晶材料於上。 In operation 352, as shown in FIG. 2C, the substrate 114 having the porous layer 240 is heat treated (eg, annealed or crystallized) to form a smooth tantalum surface on the porous layer 240. The heat treatment process can be carried out in a hydrogen environment and can be performed using a variety of heating methods, including laser or luminaire illumination. The smoothness of the porous layer 240 helps to form a high quality epitaxial material thereon.

在操作353中,例如在腔室100中,於基板114的上表面上磊晶形成(例如成長)第一磊晶射極241。在存有摻質(例如n型摻質或p型摻質)下,透過含矽前驅物與還原劑(例如三氯矽烷與氫)反應,可以氣相磊晶製程形成第一磊晶射極241。然亦可使用其他含矽前驅物,例如二氯矽烷、四氯化矽、甲矽烷或二矽烷。適合的n型摻質氣體包括膦 (PH3)、三氯化磷醯(POCl3)或其他含磷、砷或銻化合物。適合的p型摻質包括硼烷或二硼烷、或其他含硼、鋁或鎵化合物。第一磊晶射極241的摻質濃度可為約1×1017至約1×1018個原子/立方公分(cm3),厚度可為約1微米至約15微米,例如約5微米至約10微米。磊晶形成製程可在溫度約1200℃或以下、壓力約1大氣壓或以下進行。 In operation 353, for example, in the chamber 100, a first epitaxial emitter 241 is epitaxially formed (eg, grown) on the upper surface of the substrate 114. The first epitaxial emitter can be formed by a vapor phase epitaxy process by reacting a ruthenium-containing precursor with a reducing agent (for example, trichloromethane and hydrogen) in the presence of a dopant (for example, an n-type dopant or a p-type dopant). 241. Other ruthenium containing precursors such as dichloromethane, ruthenium tetrachloride, decane or dioxane may also be used. Suitable n-type dopant gases include phosphine (PH 3 ), phosphorus oxychloride (POCl 3 ) or other phosphorus, arsenic or antimony compounds. Suitable p-type dopants include borane or diborane, or other boron, aluminum or gallium containing compounds. The first epitaxial emitter 241 may have a dopant concentration of from about 1 x 10 17 to about 1 x 10 18 atoms per cubic centimeter (cm 3 ) and may have a thickness of from about 1 micron to about 15 microns, such as about 5 microns. About 10 microns. The epitaxial formation process can be carried out at a temperature of about 1200 ° C or less and a pressure of about 1 atm or less.

在操作355中,如第2E圖所示,形成第一磊晶射極241後,於第一磊晶射極241上磊晶形成基極242。基極242通常是使用和第一磊晶射極241一樣的含矽前驅物與還原劑形成,例如三氯矽烷與氫。基極242的厚度可為約1微米至約200微米。在一實例中,第一磊晶射極241和基極242的形成係連續製程。在此製程中,在形成第一磊晶射極241後,可暫停流入摻質氣體、降低濃度或改成降低濃度的不同摻質,同時保持流入含矽前驅物與還原劑。基極的摻質濃度亦可呈漸變(例如隨厚度連續變化),以提供內部電場而助於收集光產生載子。雖然第2E圖係將第一磊晶射極241和基極242繪示成兩個不同層,但第一磊晶射極241和基極242當可為連續磊晶材料,而第一磊晶射極241和基極242各具不同摻質濃度及/或分布。 In operation 355, as shown in FIG. 2E, after the first epitaxial emitter 241 is formed, the base 242 is epitaxially formed on the first epitaxial emitter 241. Base 242 is typically formed using the same ruthenium containing precursor as the first epitaxial emitter 241 and a reducing agent, such as trichlorodecane and hydrogen. Base 242 may have a thickness of from about 1 micron to about 200 microns. In one example, the formation of the first epitaxial emitter 241 and the base 242 is a continuous process. In this process, after the first epitaxial emitter 241 is formed, different dopants that flow into the dopant gas, reduce the concentration, or change to a reduced concentration may be suspended while maintaining the inflow of the ruthenium-containing precursor and the reducing agent. The dopant concentration of the base can also be graded (eg, continuously varying with thickness) to provide an internal electric field to aid in collecting light to generate carriers. Although FIG. 2E depicts the first epitaxial emitter 241 and the base 242 as two different layers, the first epitaxial emitter 241 and the base 242 may be continuous epitaxial materials, and the first epitaxial layer The emitter 241 and the base 242 each have a different dopant concentration and/or distribution.

在操作356中,如第2F圖所示,於基極242上形成第二磊晶射極243。第二磊晶射極243的形成類似第一磊晶射極241;然第二磊晶射極243包括相反導電類型的摻質。例如,若第一磊晶射極241摻雜p型摻質,則第二磊晶射極243可摻雜n型摻質,反之亦然。可使用和基極242一樣的含矽 前驅物與還原劑,以連續方式由基極242形成第二磊晶射極243。第二磊晶射極243的摻質濃度可為約5×1016至約1×1018個原子/cm3,厚度可為約1微米至約15微米。射極241或243的摻質濃度可以連續方式改變,以形成內部電場而助於收集光產生載子。 In operation 356, a second epitaxial emitter 243 is formed on the base 242 as shown in FIG. 2F. The second epitaxial emitter 243 is formed similar to the first epitaxial emitter 241; however, the second epitaxial emitter 243 comprises a dopant of the opposite conductivity type. For example, if the first epitaxial emitter 241 is doped with a p-type dopant, the second epitaxial emitter 243 can be doped with an n-type dopant, and vice versa. The second epitaxial emitter 243 can be formed from the base 242 in a continuous manner using the same hafnium-containing precursor and reducing agent as the base 242. The second epitaxial emitter 243 may have a dopant concentration of from about 5 x 10 16 to about 1 x 10 18 atoms/cm 3 and a thickness of from about 1 micron to about 15 microns. The dopant concentration of the emitter 241 or 243 can be varied in a continuous manner to form an internal electric field to assist in collecting light to generate a carrier.

在操作357中,如第2G圖所示,自底下模板基板114移除第一磊晶射極241、基極242和第二磊晶射極243,第一磊晶射極241、基極242和第二磊晶射極243統稱磊晶層214A。可從基板214以機械、能量或化學方式劈開磊晶層214A。若有任何多孔層240仍留在磊晶層214A上,則可利用蝕刻、研光等移除存於磊晶層214A上的多孔層240。 In operation 357, as shown in FIG. 2G, the first epitaxial emitter 241, the base 242, and the second epitaxial emitter 243 are removed from the bottom template substrate 114, and the first epitaxial emitter 241 and the base 242 are removed. And the second epitaxial emitter 243 is collectively referred to as an epitaxial layer 214A. The epitaxial layer 214A can be cleaved mechanically, energetically or chemically from the substrate 214. If any of the porous layers 240 remain on the epitaxial layer 214A, the porous layer 240 deposited on the epitaxial layer 214A can be removed by etching, polishing, or the like.

在操作358中,例如接觸蝕刻劑(例氫氧化鉀)而織構磊晶基板的第一表面244(最終裝置的光接收面),以降低最終裝置的光反射品質。雖然第2H圖繪示第二磊晶射極243做為光接收面,但第一磊晶射極241當可在光接收面上。在此實施例中,織構操作亦可用於移除附著於磊晶層214A的任何殘餘多孔材料。故不需個別移除操作。 In operation 358, the first surface 244 of the epitaxial substrate (the light receiving surface of the final device) is textured, for example by contact with an etchant (eg, potassium hydroxide) to reduce the light reflection quality of the final device. Although FIG. 2H illustrates the second epitaxial emitter 243 as a light receiving surface, the first epitaxial emitter 241 can be on the light receiving surface. In this embodiment, the texturing operation can also be used to remove any residual porous material attached to the epitaxial layer 214A. Therefore, there is no need to remove the operation individually.

在操作359中,如第2I圖所示,對磊晶層214A的第一表面244進行選擇性射極製程。可使用遮蔽離子植入或摻質膏進行選擇性射極製程。在一實例中,摻質膏可印刷於表面上並曝照雷射或其他熱源,以將摻質驅入第二磊晶射極243中。離子植入引用的摻質可由高溫退火活化,高溫退火可在氧氣氛中進行。表面氧化有助於鈍化表面缺陷。選擇性射極製程可於第一表面244上形成摻質濃度高於第二磊晶射極 243的區域,例如n++或p++接觸區245,以助於歐姆接觸後來設在第一表面244上的金屬觸點或電極。接觸區245可依對應金屬觸點的圖案形成。在一實例中,n++或p++濃度可為約5×1019個原子/cm3或以上,例如約1×1020個原子/cm3或以上。 In operation 359, a selective emitter process is performed on the first surface 244 of the epitaxial layer 214A as shown in FIG. A selective emitter process can be performed using a masked ion implant or dopant paste. In one example, the dopant paste can be printed on the surface and exposed to a laser or other heat source to drive the dopant into the second epitaxial emitter 243. The dopants referred to by ion implantation can be activated by high temperature annealing, which can be carried out in an oxygen atmosphere. Surface oxidation helps to passivate surface defects. The selective emitter process can form a region on the first surface 244 having a higher dopant concentration than the second epitaxial emitter 243, such as an n++ or p++ contact region 245, to facilitate ohmic contact and subsequent placement on the first surface 244. Metal contacts or electrodes. Contact region 245 can be formed in accordance with a pattern of corresponding metal contacts. In one example, the n++ or p++ concentration can be about 5 x 10 19 atoms/cm 3 or more, such as about 1 x 10 20 atoms/cm 3 or more.

在操作360中,如第2J圖所示,沉積鈍化層246至第一表面244上,鈍化層例如二氧化矽、氮化矽或氧化鋁。鈍化層246可減少在光接收面的再結合(recombination)。可以化學氣相沉積、原子層沉積、電漿加強化學氣相沉積等及使用適當前驅氣體和還原或氧化劑沉積鈍化層。 In operation 360, passivation layer 246 is deposited onto first surface 244, such as hafnium oxide, tantalum nitride or aluminum oxide, as shown in FIG. 2J. The passivation layer 246 can reduce recombination at the light receiving surface. The passivation layer can be deposited by chemical vapor deposition, atomic layer deposition, plasma enhanced chemical vapor deposition, and the like using appropriate precursor gases and reducing or oxidizing agents.

在操作361中,如第2K圖所示,沉積鈍化層248至第二表面(例如背面或非光接收面)上。鈍化層248類似鈍化層246,且可以類似方式形成。在一實施例中,鈍化層246、248可同時或在同一工具內緊接著形成。 In operation 361, as shown in FIG. 2K, a passivation layer 248 is deposited onto the second surface (eg, the back or non-light receiving surface). Passivation layer 248 is similar to passivation layer 246 and can be formed in a similar manner. In an embodiment, the passivation layers 246, 248 may be formed simultaneously or within the same tool.

在操作362中,如第2L圖所示,金屬觸點247形成於磊晶層214A的第一表面244上。金屬觸點247可藉由網印一或更多導電膏至第一表面244,接著熱處理移除溶劑(「乾燥」)而施用。導電膏可包括一或更多金屬,例如聚合物基質內的銀或鋁。在操作363中,例如利用雷射劃線,於磊晶層214A的第二表面249中形成一或更多開口270穿過鈍化層248。開口270較佳只刻劃鈍化層248及露出磊晶射極241的表面。可設想開口270可在操作362前、但在操作361後形成。 In operation 362, as shown in FIG. 2L, metal contacts 247 are formed on first surface 244 of epitaxial layer 214A. The metal contacts 247 can be applied by screen printing one or more conductive pastes to the first surface 244 followed by heat treatment to remove the solvent ("dry"). The conductive paste can include one or more metals, such as silver or aluminum within the polymer matrix. In operation 363, one or more openings 270 are formed in the second surface 249 of the epitaxial layer 214A through the passivation layer 248, such as by laser scribing. Opening 270 preferably only scribes passivation layer 248 and exposes the surface of epitaxial emitter 241. It is contemplated that the opening 270 can be formed prior to operation 362 but after operation 361.

在操作364中,金屬層271形成在磊晶層214A的 第二表面249上面。金屬層271沉積於鈍化層248上和開口270內。金屬層271可包括一或更多導電材料,例如銀或鋁,且可利用網印、化學氣相沉積、原子層沉積、物理氣相沉積等形成。在一實例中,金屬層271包括鋁,沉積金屬層271後,熱處理或火燒金屬層271和金屬觸點247達高於矽與鋁共熔點的溫度,從而產生矽鋁合金。矽鋁合金形成重摻雜p++區,藉以促進鋁與矽間歐姆接觸。經由正面鈍化層246同時燒結金屬觸點247,以歐姆接觸第二磊晶射極243。第2L圖所示形成結構繪示根據所述實施例形成的太陽能電池272。 In operation 364, a metal layer 271 is formed on the epitaxial layer 214A. The second surface 249 is above. Metal layer 271 is deposited over passivation layer 248 and within opening 270. The metal layer 271 may include one or more conductive materials such as silver or aluminum, and may be formed using screen printing, chemical vapor deposition, atomic layer deposition, physical vapor deposition, or the like. In one example, the metal layer 271 includes aluminum. After depositing the metal layer 271, the heat-treated or fired metal layer 271 and the metal contact 247 reach a temperature higher than the eutectic point of bismuth and aluminum, thereby producing a bismuth aluminum alloy. The bismuth aluminum alloy forms a heavily doped p++ region to promote ohmic contact between the aluminum and the crucible. The metal contact 247 is simultaneously sintered via the front passivation layer 246 to ohmically contact the second epitaxial emitter 243. The structure shown in Fig. 2L shows a solar cell 272 formed in accordance with the embodiment.

第2A圖至第2L圖及第3A圖至第3B圖圖示形成太陽能電池272的實施例;然亦可思忖附加實施例。例如,操作363、364可在操作362之前進行。 2A to 2L and 3A to 3B illustrate an embodiment in which the solar cell 272 is formed; however, additional embodiments may be considered. For example, operations 363, 364 can be performed prior to operation 362.

第4A圖至第4G圖圖示根據另一實施例的太陽能電池形成製程。第5圖圖示根據另一實施例,形成太陽能電池的方法流程圖。為便於闡述,將配合說明第4A圖至第4G圖及第5圖。第4A圖至第4G圖及第5圖圖示形成太陽能電池的替代實施例,且可取代第2G圖至第2I圖和操作357-364。 4A to 4G illustrate a solar cell forming process according to another embodiment. Figure 5 illustrates a flow chart of a method of forming a solar cell, in accordance with another embodiment. For convenience of explanation, the descriptions of Figs. 4A to 4G and Fig. 5 will be made. 4A through 4G and 5 illustrate alternative embodiments for forming a solar cell, and may replace FIGS. 2G through 2I and operations 357-364.

在操作581中,此可在第3圖操作356之後進行,如第4A圖所示,於第二磊晶射極243上磊晶成長高摻雜射極表面490。高摻雜射極表面490的摻質類型(例如p型或n型)和第二磊晶射極243一樣,但摻質濃度較高。例如,高摻雜射極表面490可為n++或p++層,該層厚度為約2微米或以下,例如約0.1至約1微米。高摻雜射極表面490有助於歐姆接觸後續沉積於上的金屬觸點或網格。或者,高摻雜射極 表面可利用氣態擴散、離子植入或摻質膏形成在第二磊晶射極243上。 In operation 581, this may be performed after operation 356 of FIG. 3, as shown in FIG. 4A, epitaxially growing the highly doped emitter surface 490 on the second epitaxial emitter 243. The dopant type of the highly doped emitter surface 490 (e.g., p-type or n-type) is the same as the second epitaxial emitter 243, but with a higher dopant concentration. For example, the highly doped emitter surface 490 can be an n++ or p++ layer having a thickness of about 2 microns or less, such as from about 0.1 to about 1 micron. The highly doped emitter surface 490 facilitates ohmic contact with subsequent metal contacts or grids deposited thereon. Or, highly doped emitter The surface may be formed on the second epitaxial emitter 243 using a gaseous diffusion, ion implantation or dopant paste.

在操作582中,類似上述操作357,自模板基板114移除磊晶基板414a。第4B圖所示磊晶基板414a類似磊晶基板114a;然磊晶基板414a包括高摻雜射極表面490。在操作583中,如第4C圖所示,遮罩491置於高摻雜射極表面490的第一表面444上面。遮罩491可為溼蝕刻或乾蝕刻遮罩、可利用網印或噴墨印刷施用,且可包括聚合物。 In operation 582, the epitaxial substrate 414a is removed from the template substrate 114, similar to the operation 357 described above. The epitaxial substrate 414a shown in FIG. 4B is similar to the epitaxial substrate 114a; and the epitaxial substrate 414a includes a highly doped emitter surface 490. In operation 583, as shown in FIG. 4C, a mask 491 is placed over the first surface 444 of the highly doped emitter surface 490. Mask 491 can be a wet or dry etch mask, can be applied using screen printing or inkjet printing, and can include a polymer.

在操作584中,如第4D圖所示,使磊晶基板414a的第一表面444接觸蝕刻劑,例如溼蝕刻劑或乾蝕刻劑,以織構第一表面444。接觸蝕刻劑將移除高摻雜射極表面490的露出部分,進而織構第二磊晶射極243。高摻雜射極表面490的剩餘部分界定接觸區,金屬觸點隨後沉積於上。在操作585中,如第4E圖所示,移除遮罩491。或可在操作584的蝕刻製程期間,部分或完全移除遮罩。 In operation 584, as shown in FIG. 4D, the first surface 444 of the epitaxial substrate 414a is contacted with an etchant, such as a wet etchant or dry etchant, to texture the first surface 444. Contacting the etchant will remove the exposed portions of the highly doped emitter surface 490, thereby texturing the second epitaxial emitter 243. The remaining portion of the highly doped emitter surface 490 defines a contact area on which the metal contacts are subsequently deposited. In operation 585, as shown in FIG. 4E, the mask 491 is removed. Alternatively, the mask may be partially or completely removed during the etching process of operation 584.

在操作586中,如第4F圖所示,沉積鈍化層446、448至第一表面444和第二表面449。鈍化層446、448類似鈍化層246、248,且可以類似方式形成。在操作587中,金屬觸點447沉積於第一表面444而接觸高摻雜射極表面490的剩餘部分。在操作588中,如第4G圖所示,通孔470形成於磊晶基板414a的第二表面449,此類似上述操作363。在操作589中,如第4G圖所示,金屬層471沉積在磊晶基板414a的第二表面449上面而接觸鈍化層448並沉積至通孔470內。沉積金屬層471類似操作364所述沉積金屬層271,且將 形成太陽能電池472。 In operation 586, passivation layers 446, 448 are deposited to first surface 444 and second surface 449 as shown in FIG. 4F. Passivation layers 446, 448 are similar to passivation layers 246, 248 and may be formed in a similar manner. In operation 587, metal contacts 447 are deposited on first surface 444 to contact the remainder of highly doped emitter surface 490. In operation 588, as shown in FIG. 4G, a via 470 is formed in the second surface 449 of the epitaxial substrate 414a, which is similar to operation 363 described above. In operation 589, as shown in FIG. 4G, a metal layer 471 is deposited over the second surface 449 of the epitaxial substrate 414a to contact the passivation layer 448 and deposited into the via 470. Depositing a metal layer 471 to deposit a metal layer 271 as described in operation 364 and A solar cell 472 is formed.

利用所述實施例形成的太陽能電池效率高於具摻質膏形成射極、植入、擴散(例如固態擴散)射極的太陽能電池。如所述射極,磊晶成長製程期間形成的射極可形成具有更大深度或厚度的摻質材料且摻質濃度較低,此大體係摻質膏或氣態擴散射極無法達成的。例如,固態擴散形成射極的厚度或深度為小於1微米,例如約3000埃,又表面摻質濃度較高,例如1×1020至約3×1020個原子/cm3。反之,根據所述實施例,磊晶成長製程期間形成的射極具有較低摻質濃度,故可避免高摻質矽的許多不良品質,例如載子再結合、能隙窄化和晶體缺陷。 The solar cells formed using the described embodiments are more efficient than solar cells having a dopant paste forming, implanting, diffusing (e.g., solid state diffusing) emitter. As the emitter, the emitter formed during the epitaxial growth process can form a dopant material having a greater depth or thickness and a lower dopant concentration, which cannot be achieved by the large system dopant paste or gaseous diffusion emitter. For example, the solid diffusion forms an emitter having a thickness or depth of less than 1 micron, such as about 3,000 angstroms, and a surface dopant concentration, such as from 1 x 10 20 to about 3 x 10 20 atoms/cm 3 . On the contrary, according to the embodiment, the emitter formed during the epitaxial growth process has a lower dopant concentration, so that many undesirable qualities of the high dopant enthalpy, such as carrier recombination, energy gap narrowing, and crystal defects, can be avoided.

表1列出用磊晶射極和固態擴散射極形成的太陽能電池比較。磊晶射極太陽能電池包括厚度約5微米、摻質濃度約1×1017個原子/cm3的n+與p+射極。固態擴散射極太陽能電池包括厚度約3000埃、摻質濃度約3×1020個原子/cm3的n+與p+射極。如表1所示,根據所述實施例形成的太陽能電池具有更佳的短路電流密度、開路電壓和效率。此外,本發明實施例的太陽能電池具有合意的較低飽和電流密度。固態擴散射極太陽能電池具有約100飛安/平方公分(fA/cm2)或以上的飽和電流密度,根據所述實施例形成的太陽能電池具有約1至約10fA/cm2的飽和電流密度。 Table 1 lists a comparison of solar cells formed using epitaxial emitters and solid state diffused emitters. The epitaxial emitter solar cell comprises n+ and p+ emitters having a thickness of about 5 microns and a dopant concentration of about 1 x 10 17 atoms/cm 3 . The solid state diffused emitter solar cell comprises n+ and p+ emitters having a thickness of about 3000 angstroms and a dopant concentration of about 3 x 10 20 atoms/cm 3 . As shown in Table 1, the solar cell formed according to the embodiment has better short circuit current density, open circuit voltage, and efficiency. Furthermore, the solar cell of embodiments of the present invention has a desirable lower saturation current density. Solid state diffusion emitter solar cell having about 100 femtoamp / cm ^ (fA / cm 2) or greater saturation current density, having a saturation current density from about 1 to about 10fA / cm 2 solar cell formed in accordance with the embodiment.

實例1:先於模板基板上成長磊晶n+射極,以形成太陽能電池。磊晶n+射極係藉由使三氯矽烷與氫在存有POCl3下及在溫度低於約1200℃、壓力約1大氣壓下反應而形成。n+射極的形成厚度為約5微米,摻質濃度為約3×1017個原子/cm3。維持三氯矽烷與氫的流率,同時暫停流入n+摻質,以磊晶形成磊晶基極。基極的形成厚度為約100微米。接著,暫停流入p型摻質及開始流入n型摻質(例如二硼烷),以形成厚度約5微米、濃度約3×1017個原子/cm3的磊晶n型射極。接著進一步增加n型摻質的流量,以於n型射極上形成重摻雜(n++)表面,例如濃度約1×1020個原子/cm3或以上。接著自模板基板一起移除磊晶層。 Example 1: Epitaxial n+ emitter was grown on a template substrate to form a solar cell. The epitaxial n+ emitter is formed by reacting trichloromethane with hydrogen in the presence of POCl 3 and at a temperature of less than about 1200 ° C and a pressure of about 1 atm. The n+ emitter is formed to a thickness of about 5 μm and a dopant concentration of about 3 × 10 17 atoms/cm 3 . The flow rate of trichlorodecane and hydrogen is maintained while the inflow of n+ dopant is suspended to form an epitaxial base by epitaxy. The base is formed to a thickness of about 100 microns. Next, the inflow of the p-type dopant and the inflow of the n-type dopant (for example, diborane) are suspended to form an epitaxial n-type emitter having a thickness of about 5 μm and a concentration of about 3 × 10 17 atoms/cm 3 . The flow rate of the n-type dopant is then further increased to form a heavily doped (n++) surface on the n-type emitter, for example at a concentration of about 1 x 10 20 atoms/cm 3 or more. The epitaxial layer is then removed from the template substrate.

接著圖案化及蝕刻n型射極、施用鈍化層,及將銀接觸層設置於上而接觸n++射極表面。同樣地,施用鈍化層於p+射極、刻劃通孔,及施用鋁層至背面鈍化層的p+射極上面和通孔內。太陽能電池經火燒形成矽鋁共熔層。注意亦可涵蓋其他實例和實施例。 The n-type emitter is then patterned and etched, a passivation layer is applied, and a silver contact layer is placed over the n++ emitter surface. Similarly, a passivation layer is applied to the p+ emitter, the via is scribed, and an aluminum layer is applied over the p+ emitter and through the via of the back passivation layer. The solar cell is fired to form a yttrium aluminum eutectic layer. Note that other examples and embodiments may also be covered.

第6A圖至第6F圖圖示根據又一實施例的太陽能電池形成製程。第7圖圖示根據又一實施例,形成太陽能電池的方法流程圖。為便於闡述,將配合說明第6A圖至第6D圖及第7圖。第6A圖至第6D圖及第7圖圖示形成太陽能電池的替代實施例,且可取代第2H圖至第2K圖和操作358-362。 6A to 6F illustrate a solar cell forming process according to still another embodiment. Figure 7 illustrates a flow chart of a method of forming a solar cell, in accordance with yet another embodiment. For ease of explanation, the descriptions of Figs. 6A to 6D and Fig. 7 will be made. 6A to 6D and 7 illustrate an alternative embodiment of forming a solar cell, and may replace FIGS. 2H-2K and 358-362.

在流程圖765的操作766中,沉積多晶矽層692至磊晶層214A的上或光接收面上,以形成磊晶基板614A。多 晶矽層692可在和用於形成第一磊晶射極241、基極242與第二磊晶射極243一樣的處理腔室中沉積。處理腔室當可透過調整一或更多製程參數,例如沉積溫度、製程氣體流率和製程氣體組成,而適於進行磊晶與多晶矽形成。在一實例中,矽烷可用於形成多晶矽層692。多晶矽層692的沉積厚度可為約0.1微米或以上,例如約0.3微米或以上。 In operation 766 of flowchart 765, polysilicon layer 692 is deposited onto the upper or light receiving side of epitaxial layer 214A to form epitaxial substrate 614A. many The germanium layer 692 can be deposited in the same processing chamber as used to form the first epitaxial emitter 241, the base 242, and the second epitaxial emitter 243. The processing chamber is adapted to perform epitaxial and polycrystalline formations by adjusting one or more process parameters, such as deposition temperature, process gas flow rate, and process gas composition. In one example, decane can be used to form polysilicon layer 692. The polysilicon layer 692 can be deposited to a thickness of about 0.1 microns or greater, such as about 0.3 microns or greater.

包含多晶矽層692有助於形成鈍化觸點,進而減少在金屬觸點界面的再結合損失,金屬觸點於後續沉積以電氣接觸磊晶基板614A。包含多晶矽層692能修改能隙而選擇性只讓單一載子類型通過。在一實例中,多晶矽層692為重摻雜多晶矽層,例如n++或p++多晶矽層。在此實施例中,在多晶矽形成製程期間,可偕同矽源氣體(例如矽烷或三氯矽烷)加入摻質氣體(例如p型或n型摻質氣體),以助於形成具所要摻質分布與濃度的摻雜多晶矽層。 The inclusion of polysilicon layer 692 helps to form passivated contacts, thereby reducing recombination losses at the metal contact interface, which is subsequently deposited to electrically contact epitaxial substrate 614A. The inclusion of polycrystalline germanium layer 692 can modify the energy gap and selectively pass only a single carrier type. In one example, the polysilicon layer 692 is a heavily doped polysilicon layer, such as an n++ or p++ polysilicon layer. In this embodiment, during the polysilicon formation process, a dopant gas (eg, a p-type or an n-type dopant gas) may be added to the source gas (eg, decane or trichloromethane) to help form the desired dopant distribution. Doped polysilicon layer with concentration.

多晶矽與單晶矽表面間的薄氧化物有助於改善電性能。此界面氧化層可在磊晶射極沉積後及多晶矽沉積前、於同一工具中形成。或者,界面氧化物生成(化學或熱氧化)和多晶矽沉積可在磊晶矽沉積後、於不同工具中進行。 The thin oxide between the polycrystalline germanium and the surface of the single crystal germanium contributes to improved electrical properties. The interfacial oxide layer can be formed in the same tool after epitaxial emitter deposition and before polycrystalline germanium deposition. Alternatively, interfacial oxide formation (chemical or thermal oxidation) and polycrystalline germanium deposition can be performed in different tools after epitaxial deposition.

在操作767中,如第6B圖所示,蝕刻光阻遮罩691施用於多晶矽層692的表面,以助於選擇性移除部分多晶矽層692。蝕刻光阻遮罩691可為溼蝕刻或乾蝕刻遮罩、可利用網印或噴墨印刷施用,且可包括聚合物。在操作768中,進行織構操作。織構操作768類似操作358,但不織構多晶矽層692和第二磊晶射極243的遮蔽部分。在操作768中,如第 6C圖所示,選擇織構劑和暴露程度,以移除多晶矽層692的非所要部分及適當織構第二磊晶射極243的表面。視情況而定,可於操作358期間蝕刻遮罩而移除蝕刻光阻遮罩691,或者可以個別移除製程移除遮罩691。 In operation 767, as shown in FIG. 6B, an etch photoresist mask 691 is applied to the surface of the polysilicon layer 692 to facilitate selective removal of portions of the polysilicon layer 692. Etched photoresist mask 691 can be a wet or dry etch mask, can be applied using screen printing or inkjet printing, and can include a polymer. In operation 768, a texturing operation is performed. Texture operation 768 operates similarly to 358, but does not texture the masking portions of polysilicon layer 692 and second epitaxial emitter 243. In operation 768, as in the first As shown in Figure 6C, the texturing agent and degree of exposure are selected to remove the undesirable portions of the polysilicon layer 692 and properly texture the surface of the second epitaxial emitter 243. Optionally, the mask may be etched to remove the etched photoresist mask 691 during operation 358, or the process removal mask 691 may be removed separately.

在操作769中,如第6D圖所示,移除蝕刻光阻遮罩691(若先前未移除)。在操作770中,如第6E圖所示,鈍化層646施用於第二磊晶射極243和多晶矽層692上面。在操作771中,如第6F圖所示,沉積金屬觸點247至多晶矽層692剩餘部分上面的鈍化層646表面上。儘管僅圖示單一金屬觸點247,但當可形成多個金屬觸點247且包括如格線及/或突指。在操作771後,背面或非光接收面649經第3A圖至第3B圖所示操作363、364處理。接著經由鈍化層646固化、火燒金屬觸點247。 In operation 769, as shown in FIG. 6D, the etched photoresist mask 691 is removed (if not previously removed). In operation 770, as shown in FIG. 6E, a passivation layer 646 is applied over the second epitaxial emitter 243 and the polysilicon layer 692. In operation 771, as shown in FIG. 6F, a metal contact 247 is deposited on the surface of the passivation layer 646 over the remaining portion of the polysilicon layer 692. Although only a single metal contact 247 is illustrated, a plurality of metal contacts 247 can be formed and include, for example, grid lines and/or fingers. After operation 771, the back or non-light receiving surface 649 is processed by operations 363, 364 shown in Figures 3A through 3B. Metal contact 247 is then cured and fired via passivation layer 646.

第8A圖至第8D圖圖示根據再一實施例的太陽能電池形成製程。第9圖圖示根據再一實施例,形成太陽能電池的方法流程圖。為便於闡述,將配合說明第8A圖至第8D圖及第9圖。第8A圖至第8D圖及第9圖圖示形成太陽能電池的替代實施例,且可取代第2I圖至第2K圖和操作358-362。 8A to 8D illustrate a solar cell forming process according to still another embodiment. Figure 9 illustrates a flow chart of a method of forming a solar cell, according to yet another embodiment. For ease of explanation, explanations 8A to 8D and 9 will be incorporated. 8A to 8D and 9 illustrate an alternative embodiment of forming a solar cell, and may replace FIGS. 2I-2K and 358-362.

在流程圖975的操作976中,如第8A圖所示,沉積本質無定形矽層993至磊晶層214A的上或光接收面上,以形成磊晶基板914A。本質無定形矽層993可利用電漿加強化學氣相沉積(PECVD)形成,且可在不同於形成第一磊晶射極241、基極242與第二磊晶射極243的腔室中進行。在一實例中,含矽源氣體(例如矽烷)可有助於形成本質無定形矽 層993。在操作977中,如第8B圖所示,摻雜無定形矽層994沉積在本質無定形矽層993上。摻雜無定形矽層994可使用含矽源氣體(例如矽烷)與含摻質源氣體及利用PECVD沉積而得。摻雜無定形矽層994可為p型或n型摻雜,例如p+或n+層,該層的摻質濃度為約1×1018至約1×1020個原子/cm3,例如約1×1019個原子/cm3In operation 976 of flowchart 975, as shown in FIG. 8A, an intrinsically amorphous germanium layer 993 is deposited onto the upper or light receiving surface of epitaxial layer 214A to form epitaxial substrate 914A. The intrinsically amorphous layer 993 can be formed using plasma enhanced chemical vapor deposition (PECVD) and can be performed in a chamber other than the first epitaxial emitter 241, the base 242, and the second epitaxial emitter 243. . In one example, a helium-containing gas (eg, decane) can contribute to the formation of an intrinsically amorphous layer 993. In operation 977, as shown in FIG. 8B, a doped amorphous germanium layer 994 is deposited on the intrinsically amorphous germanium layer 993. The doped amorphous germanium layer 994 can be obtained by using a germanium-containing gas (for example, germane) and a dopant-containing gas and depositing it by PECVD. The doped amorphous germanium layer 994 can be p-type or n-type doped, such as a p+ or n+ layer, the layer having a dopant concentration of from about 1 x 10 18 to about 1 x 10 20 atoms/cm 3 , for example about 1 ×10 19 atoms/cm 3 .

在操作978中,如第8C圖所示,導電氧化層995沉積在摻雜無定形矽層994上。導電氧化層995可在和本質無定形矽層993與摻雜無定形矽層994一樣的PECVD腔室中形成。導電氧化層995可例如為氧化鋁鋅(AlZnO)、氧化銦錫(ITO)、氟摻雜氧化錫(FTO)和摻雜氧化鋅。本質無定形矽層993、摻雜無定形矽層994和導電氧化層995各自的厚度可為約3至約50奈米,例如約5至15奈米,例如約10奈米。 In operation 978, as shown in FIG. 8C, a conductive oxide layer 995 is deposited on the doped amorphous germanium layer 994. The conductive oxide layer 995 can be formed in the same PECVD chamber as the amorphous amorphous layer 993 and the doped amorphous layer 994. The conductive oxide layer 995 can be, for example, aluminum zinc oxide (AlZnO), indium tin oxide (ITO), fluorine-doped tin oxide (FTO), and doped zinc oxide. The intrinsically amorphous layer 993, the doped amorphous layer 994, and the conductive oxide layer 995 can each have a thickness of from about 3 to about 50 nanometers, such as from about 5 to 15 nanometers, such as about 10 nanometers.

在操作979中,如第8D圖所示,金屬觸點247沉積在導電氧化層995上。金屬觸點247可視情況於操作979中固化或在後來操中作固化。視情況而定,在操作979前,背面或非光接收面949可歷經本質與摻雜無定形矽層、透明導電氧化物沉積和金屬沉積。摻雜無定形矽層可使用和背面上磊晶射極一樣的導電類型。前面與後面的無定形矽層可在相同工具中沉積。同樣地,透明導電氧化層可在相同工具中沉積。金屬層和觸點可於沉積後固化。 In operation 979, as shown in FIG. 8D, metal contacts 247 are deposited on conductive oxide layer 995. The metal contacts 247 may optionally be cured in operation 979 or cured in later operation. As the case may be, prior to operation 979, the back or non-light receiving surface 949 may undergo an essential and doped amorphous layer, transparent conductive oxide deposition, and metal deposition. The doped amorphous layer can be of the same conductivity type as the epitaxial emitter on the back side. The front and back amorphous layers can be deposited in the same tool. Likewise, a transparent conductive oxide layer can be deposited in the same tool. The metal layer and contacts can be cured after deposition.

包含本質無定形矽層993、摻雜無定形矽層994和導電氧化層995有助於形成鈍化觸點,以減少在金屬觸點與 磊晶基板814A間的位置處的再結合。故本質無定形矽層993、摻雜無定形矽層994和導電氧化層995共同功能將類似第6圖的多晶矽層692。再者,可歸因于第二磊晶射極243的側向導電帶電載子容許較薄的本質無定形矽層993、摻雜無定形矽層994和導電氧化層995形成,例如小於50奈米,例如約10奈米。本質無定形矽層993、摻雜無定形矽層994和導電氧化層995旁無磊晶形成射極的基板需要更厚及/或摻雜的本質無定形矽層993、摻雜無定形矽層994和導電氧化層995,此將負責大部分的載子遷移率。然減小厚度及/或減少摻雜本質無定形矽層993、摻雜無定形矽層994和導電氧化層995容許更多太陽光穿透本質無定形矽層993、摻雜無定形矽層994和導電氧化層995,從而提高完成裝置產生的能量。再者,最終裝置存有本質無定形矽層993有助於增強鈍化光接收面。 The inclusion of an intrinsically amorphous tantalum layer 993, a doped amorphous tantalum layer 994 and a conductive oxide layer 995 help form passivated contacts to reduce Recombination at the location between the epitaxial substrate 814A. Therefore, the intrinsically amorphous layer 993, the doped amorphous layer 994 and the conductive oxide layer 995 will function similarly to the polysilicon layer 692 of FIG. Furthermore, the lateral conductive strip carriers attributable to the second epitaxial emitter 243 allow for the formation of a thinner intrinsic amorphous germanium layer 993, a doped amorphous germanium layer 994 and a conductive oxide layer 995, for example less than 50 nanometers. Meters, for example about 10 nm. The amorphous amorphous layer 993, the doped amorphous germanium layer 994, and the conductive oxide layer 995 without epitaxially forming the emitter substrate require a thicker and/or doped intrinsic amorphous layer 993, doped amorphous layer 994 and conductive oxide layer 995, which will be responsible for most of the carrier mobility. However, reducing the thickness and/or reducing the doping of the amorphous amorphous layer 993, the doped amorphous layer 994 and the conductive oxide layer 995 allow more sunlight to penetrate the intrinsically amorphous layer 993, doped amorphous layer 994 And a conductive oxide layer 995 to increase the energy produced by the completed device. Furthermore, the presence of an intrinsically amorphous layer 993 in the final device helps to enhance the passivation light receiving surface.

第10A圖至第10G圖圖示根據另一實施例的太陽能電池形成製程。第11圖圖示根據另一實施例,形成太陽能電池的方法流程圖。為便於闡述,將配合說明第10A圖至第10G圖及第11圖。第10A圖至第10G圖及第11圖圖示形成太陽能電池的替代實施例,且可取代第2H圖至第2K圖和操作358-362。第11圖實施例類似第9圖實施例,然本質無定形矽層993、摻雜無定形矽層994和導電氧化層995經蝕刻移除金屬觸點間的部分。 10A through 10G illustrate solar cell formation processes in accordance with another embodiment. Figure 11 illustrates a flow chart of a method of forming a solar cell, in accordance with another embodiment. For ease of explanation, the 10A to 10G and 11th drawings will be explained. FIGS. 10A through 10G and 11 illustrate alternative embodiments of forming a solar cell, and may replace FIGS. 2H-2K and 358-362. The embodiment of Fig. 11 is similar to the embodiment of Fig. 9, but the amorphous amorphous layer 993, the doped amorphous layer 994 and the conductive oxide layer 995 are etched to remove portions between the metal contacts.

流程圖1101始於操作1102,其中如第10A圖所示且類似第9圖操作976所述,本質無定形矽層993沉積在磊 晶層214A上。在操作1103中,如第10B圖所示且類似第9圖操作977所述,摻雜無定形矽層994沉積在本質無定形矽層993上。在操作1104中,如第10C圖所示且類似第9圖操作978所述,導電氧化層995沉積在摻雜無定形矽層994上。 Flowchart 1101 begins at operation 1102, in which an amorphous amorphous layer 993 is deposited on the lei as shown in FIG. 10A and similar to operation 976 of FIG. On the layer 214A. In operation 1103, as described in FIG. 10B and similar to operation 977 of FIG. 9, a doped amorphous germanium layer 994 is deposited on the intrinsically amorphous germanium layer 993. In operation 1104, as shown in FIG. 10C and similar to operation 978 of FIG. 9, a conductive oxide layer 995 is deposited over the doped amorphous germanium layer 994.

在操作1105中,如第10D圖所示,利用雷射(未圖示)圖案化本質無定形矽層993、摻雜無定形矽層994和導電氧化層995,以選擇性移除部分無定形矽層993、994和導電氧化層995。雷射可配置以移除摻雜無定形矽層994與導電氧化層995的選定部分,同時不移除本質無定形矽層993。在另一實施例中,可用蝕刻劑和一或更多遮罩代替雷射來移除摻雜無定形矽層994與導電氧化層995的選定部分。 In operation 1105, as shown in FIG. 10D, an intrinsic amorphous germanium layer 993, an doped amorphous germanium layer 994, and a conductive oxide layer 995 are patterned using a laser (not shown) to selectively remove portions of the amorphous The layers 993, 994 and the conductive oxide layer 995. The laser can be configured to remove selected portions of doped amorphous germanium layer 994 and conductive oxide layer 995 while not removing essential amorphous germanium layer 993. In another embodiment, the etchant and one or more masks may be used in place of the laser to remove selected portions of the doped amorphous germanium layer 994 and the conductive oxide layer 995.

在操作1106中,如第10E圖所示,進行織構操作,以織構磊晶射極層243。織構操作1106類似織構操作768。雖未圖示,但遮罩可置於摻雜無定形矽層994與導電氧化層995的剩餘部分上面,以防止或減少織構摻雜無定形矽層994和導電氧化層995。在操作1107中,如第10F圖所示,金屬觸點247沉積在導電氧化層995上。金屬觸點247可視情況於操作1107中固化或在後來操作固化。在操作1107中,如第10G圖所示,鈍化層246選擇性沉積在已織構的本質無定形矽層993上面。 In operation 1106, as shown in FIG. 10E, a texturing operation is performed to texture the epitaxial emitter layer 243. Texture operation 1106 is similar to texture operation 768. Although not shown, a mask can be placed over the remainder of the doped amorphous germanium layer 994 and conductive oxide layer 995 to prevent or reduce the texture doping of the amorphous germanium layer 994 and the conductive oxide layer 995. In operation 1107, as shown in FIG. 10F, metal contacts 247 are deposited on conductive oxide layer 995. The metal contacts 247 may optionally be cured in operation 1107 or subsequently cured. In operation 1107, as shown in FIG. 10G, passivation layer 246 is selectively deposited over the textured essentially amorphous layer 993.

在操作1108後,背面或非光接收面949經第3A圖至第3B圖所示操作363、364處理。此外,磊晶基板814A當可包括類似第2K圖所示鈍化層248的鈍化層於第二表面或背面(如操作361所形成),此可在操作363前進行。金屬層 和觸點可於沉積後固化。 After operation 1108, the back or non-light receiving surface 949 is processed by operations 363, 364 shown in Figures 3A through 3B. In addition, the epitaxial substrate 814A can include a passivation layer similar to the passivation layer 248 shown in FIG. 2K on the second surface or back side (as formed by operation 361), which can be performed prior to operation 363. Metal layer And the contacts can be cured after deposition.

第12圖圖示根據本發明另一實施例的磊晶基板。第12圖的磊晶基板1214A類似第10G圖所示磊晶基板;然磊晶基板1214A的本質無定形矽層993與摻雜無定形矽層994和導電氧化層995同時在操作1105中圖案化。故鈍化層246沉積在第二磊晶射極243上。圖案化本質無定形矽層993容許更多太陽輻射抵達第一磊晶射極241、基極242及/或第二磊晶射極243,從而增加完成裝置產生的電量。 Figure 12 illustrates an epitaxial substrate in accordance with another embodiment of the present invention. The epitaxial substrate 1214A of FIG. 12 is similar to the epitaxial substrate shown in FIG. 10G; however, the essentially amorphous germanium layer 993 of the epitaxial substrate 1214A is patterned simultaneously with the doped amorphous germanium layer 994 and the conductive oxide layer 995 in operation 1105. . Therefore, the passivation layer 246 is deposited on the second epitaxial emitter 243. The patterned intrinsic amorphous layer 993 allows more solar radiation to reach the first epitaxial emitter 241, the base 242, and/or the second epitaxial emitter 243, thereby increasing the amount of power produced by the device.

第13A圖至第13G圖圖示根據又一實施例的太陽能電池形成製程。第14圖圖示根據又一實施例,形成太陽能電池的方法流程圖。為便於闡述,將配合說明第13A圖至第13G圖及第14圖。第13A圖至第13G圖及第14圖圖示形成太陽能電池的替代實施例,且可取代第2H圖至第2K圖和操作358-362。 13A to 13G illustrate a solar cell forming process according to still another embodiment. Figure 14 illustrates a flow chart of a method of forming a solar cell, according to yet another embodiment. For ease of explanation, the descriptions of Figures 13A through 13G and Figure 14 will be used. FIGS. 13A-13G and 14 illustrate an alternate embodiment of forming a solar cell, and may replace FIGS. 2H-2K and 358-362.

流程圖1420始於操作1421,其中如第13A圖所示,氧化層1396(例如氧化矽層)沉積在磊晶層214A上。在一實例中,氧化層1396可為厚度小於約10奈米的穿隧氧化層,例如小於約3奈米。可利用原子層沉積或其他適合的形成方法,例如在低於約500℃的溫度下熱氧化,沉積氧化層1396至磊晶射極243的上表面。在操作1422中,如第13B圖所示,摻雜多晶矽層692沉積在氧化層1396上。摻雜多晶矽層692類似第6圖所述摻雜多晶矽層692,且可以類似方式形成。 Flowchart 1420 begins at operation 1421 where an oxide layer 1396 (eg, a hafnium oxide layer) is deposited on epitaxial layer 214A as shown in FIG. 13A. In one example, oxide layer 1396 can be a tunneling oxide layer having a thickness of less than about 10 nanometers, such as less than about 3 nanometers. The oxide layer 1396 can be deposited to the upper surface of the epitaxial emitter 243 by atomic layer deposition or other suitable formation methods, such as thermal oxidation at temperatures below about 500 °C. In operation 1422, as shown in FIG. 13B, a doped polysilicon layer 692 is deposited over oxide layer 1396. The doped polysilicon layer 692 is similar to the doped polysilicon layer 692 described in FIG. 6 and can be formed in a similar manner.

在操作1423中,如第13C圖所示,蝕刻光阻遮罩691沉積在摻雜多晶矽層692上。摻雜多晶矽層692有助於選 擇性圖案化氧化層1396和摻雜多晶矽層692。在操作1424中,如第13D圖所示,圖案化氧化層1396和摻雜多晶矽層692。氧化層1396和摻雜多晶矽層692例如可藉由接觸蝕刻液、乾蝕刻或使用雷射圖案化,以移除氧化層1396和摻雜多晶矽層692的區域。在操作1425中,如第13E圖所示,進行織構蝕刻,以織構第二磊晶射極243及視情況移除遮罩691。遮罩691當可在不同操作中移除、而不與織構第二磊晶射極243同時。 In operation 1423, an etched photoresist mask 691 is deposited over the doped polysilicon layer 692 as shown in FIG. 13C. Doped polysilicon layer 692 is helpful for selection The oxide layer 1396 and the doped polysilicon layer 692 are selectively patterned. In operation 1424, as shown in FIG. 13D, oxide layer 1396 and doped polysilicon layer 692 are patterned. Oxide layer 1396 and doped polysilicon layer 692 can be removed, for example, by contact etchant, dry etching, or using laser patterning to remove regions of oxide layer 1396 and doped polysilicon layer 692. In operation 1425, as shown in FIG. 13E, a texture etch is performed to texture the second epitaxial emitter 243 and optionally remove the mask 691. The mask 691 can be removed in different operations without being simultaneously textured with the second epitaxial emitter 243.

在操作1426中,如第13F圖所示,鈍化層246沉積在第二磊晶射極243上。隨後,在操作1427中,於多晶矽層692上形成金屬觸點247,以助於電氣連接完成裝置。在操作1427後,背面或非光接收面1449經第3A圖至第3B圖所示操作363、364處理。此外,在操作363前,鈍化層(例如第2K圖所示鈍化層248)當可施用於非光接收面1449。金屬層和觸點可於沉積後固化。 In operation 1426, a passivation layer 246 is deposited on the second epitaxial emitter 243 as shown in FIG. 13F. Subsequently, in operation 1427, a metal contact 247 is formed over the polysilicon layer 692 to facilitate electrical connection to complete the device. After operation 1427, the back or non-light receiving surface 1449 is processed by operations 363, 364 shown in Figures 3A through 3B. Moreover, prior to operation 363, a passivation layer (eg, passivation layer 248 shown in FIG. 2K) can be applied to the non-light receiving surface 1449. The metal layer and contacts can be cured after deposition.

在一實例中,以多晶矽取代無定形矽來形成鈍化觸點有助於降低處理成本。在一實例中,在金屬觸點固化製程期間,多晶矽可經歷800℃、900℃或以上的溫度,且多晶矽不會轉化成結晶矽。故可使用便宜的金屬膏來形成金屬觸點,而不需使用昂貴的低溫替代品。 In one example, replacing the amorphous germanium with a polysilicon to form a passivated contact helps reduce processing costs. In one example, during the metal contact curing process, the polysilicon can undergo temperatures of 800 ° C, 900 ° C or above, and the polysilicon is not converted to crystalline germanium. Therefore, inexpensive metal pastes can be used to form metal contacts without the use of expensive low temperature alternatives.

第15圖圖示根據另一實施例的太陽能電池1572。太陽能電池1572類似第2L圖所示太陽能電池272;然太陽能電池係鈍化射極背面接觸(perc)太陽能電池。在此實施例中,太陽能電池272的磊晶成長可從基極242開始,以排除第一 磊晶射極241,如此可降低製造成本。太陽能電池1572的形成可繼續進行成長第二磊晶射極243。 Figure 15 illustrates a solar cell 1572 in accordance with another embodiment. The solar cell 1572 is similar to the solar cell 272 shown in FIG. 2L; however, the solar cell is a passivated emitter back contact (perc) solar cell. In this embodiment, the epitaxial growth of solar cell 272 can begin at base 242 to exclude the first The epitaxial emitter 241 can reduce manufacturing costs. The formation of the solar cell 1572 can continue to grow the second epitaxial emitter 243.

不像太陽能電池272,太陽能電池1572於太陽能電池1572的非光接收面並無磊晶射極,故需電氣連接至背面場域1590,以經由摻雜金屬層1571移除電流。特別地,沉積鈍化層248及形成貫穿開口270後,沉積摻雜金屬層1571至鈍化層248上和開口270內。隨後,具摻雜金屬層1571於上的太陽能電池1572經退火操作處理,使摻雜金屬層1571內的金屬與背面場域1590處的基極242間變成合金,例如摻雜金屬層1571與基極242間的界面。在一實例中,合金係矽鋁共熔合金。摻雜金屬層1571的摻質可具有和第二磊晶射極243的摻質相反的導電類型。例如,若第二磊晶射極243包括n型摻質,則摻雜金屬層1571可包括p型摻質。形成太陽能電池1572時,可在第3B圖所示操作364後進行退火操作。 Unlike the solar cell 272, the solar cell 1572 has no epitaxial emitter on the non-light receiving face of the solar cell 1572 and is therefore electrically connected to the back surface field 1590 to remove current through the doped metal layer 1571. In particular, after the passivation layer 248 is deposited and the through opening 270 is formed, the doped metal layer 1571 is deposited onto the passivation layer 248 and within the opening 270. Subsequently, the solar cell 1572 having the doped metal layer 1571 is subjected to an annealing operation to cause an alloy between the metal in the doped metal layer 1571 and the base 242 at the back surface field 1590, such as a doped metal layer 1571 and a base. Extremely 242 interface. In one example, the alloy is a yttrium aluminum eutectic alloy. The dopant of the doped metal layer 1571 may have a conductivity type opposite that of the dopant of the second epitaxial emitter 243. For example, if the second epitaxial emitter 243 includes an n-type dopant, the doped metal layer 1571 can include a p-type dopant. When the solar cell 1572 is formed, the annealing operation can be performed after the operation 364 shown in FIG. 3B.

太陽能電池1572可利用類似上述流程圖350形成。然利用流程圖350形成太陽能電池1572時,可排除操作353。此外,如上所述,可在操作364後進行退火或火燒操作,以助於在摻雜金屬層1571與開口270內的基極242間的界面形成共熔材料。 Solar cell 1572 can be formed using a flow diagram 350 similar to that described above. When solar cell 1572 is formed using flow diagram 350, operation 353 can be eliminated. Additionally, as described above, an anneal or fire operation may be performed after operation 364 to help form a eutectic material at the interface between the doped metal layer 1571 and the base 242 within the opening 270.

雖然所述實施例大致描述磊晶射極與基極係自多孔模板基板成長,但亦應理解一或更多磊晶射極可直接自磊晶基板成長,例如基極242,而不使用模板基板114。在此實施例中,將排除基板114。磊晶射極241及/或243直接在基極242上成長。例如,基極242可置於支撐件上,以助於在基極 242的第一側邊成長磊晶射極241,接著可翻轉基極242,以於基極242的第二側邊成長第二磊晶射極243。此實施例容許在其他時間或地點成長或製備基極242,是以可提供製程彈性,又不使用基板114,故可降低材料成本。 While the embodiments generally describe the growth of epitaxial emitters and bases from a porous template substrate, it should also be understood that one or more epitaxial emitters can be grown directly from the epitaxial substrate, such as base 242, without the use of a template. Substrate 114. In this embodiment, the substrate 114 will be excluded. The epitaxial emitters 241 and/or 243 grow directly on the base 242. For example, the base 242 can be placed on the support to assist in the base The first side of the 242 grows the epitaxial emitter 241, and then the base 242 is flipped to grow the second epitaxial emitter 243 on the second side of the base 242. This embodiment allows the base 242 to be grown or prepared at other times or locations to provide process flexibility without the use of the substrate 114, thereby reducing material costs.

第16圖圖示根據又一實施例的太陽能電池1672。太陽能電池1672類似太陽能電池272,然太陽能電池1672包括交錯背面接觸結構1671。交錯背面接觸結構1671包括觸點1671a,觸點1671a電氣連接第一磊晶射極241的摻雜區241a。摻雜區241a摻雜第一導電類型摻質。交錯背面接觸結構1671亦包括與括觸點1671a交錯的觸點1671b。觸點1671b電氣連接第一磊晶射極241的摻雜區241b。摻雜區241b摻雜與第一導電類型相反的第二導電類型摻質,以助於自太陽能電池1672移除電流。觸點1671a、1671b彼此電氣隔離。由於觸點1671a、1671b鄰接太陽能電池1672的第二表面249,故不需於太陽能電池1672的正面(例如基極242的反面)形成射極。然採取利用射極-纏繞-穿透或射極-纏繞-環繞技術的交錯背面接觸太陽能電池時,太陽能電池1672當可包括第二射極,例如第2L圖所示第二磊晶射極243。 Figure 16 illustrates a solar cell 1672 in accordance with yet another embodiment. Solar cell 1672 is similar to solar cell 272, although solar cell 1672 includes a staggered back contact structure 1671. The staggered back contact structure 1671 includes a contact 1671a that electrically connects the doped region 241a of the first epitaxial emitter 241. The doped region 241a is doped with a first conductivity type dopant. The staggered back contact structure 1671 also includes a contact 1671b that is interleaved with the contact 1671a. The contact 1671b is electrically connected to the doped region 241b of the first epitaxial emitter 241. The doped region 241b is doped with a second conductivity type dopant opposite the first conductivity type to assist in removing current from the solar cell 1672. The contacts 1671a, 1671b are electrically isolated from each other. Since the contacts 1671a, 1671b abut the second surface 249 of the solar cell 1672, it is not necessary to form an emitter on the front side of the solar cell 1672 (e.g., the reverse side of the base 242). When a staggered back contact solar cell utilizing an emitter-winding-through or emitter-winding-surrounding technique is employed, the solar cell 1672 may include a second emitter, such as the second epitaxial emitter 243 shown in FIG. 2L. .

太陽能電池1672可利用類似第3A圖及第3B圖所示流程圖形成。然形成太陽能電池1672時,可排除操作256。此外,在操作359期間,對太陽能電池1672的第二表面249進行選擇性射極植入。選擇性射極植入可用於將相反導電類型的摻質分別植入摻雜區241a、241b。雖未圖示,然應理解摻雜區241a、241b可由未摻雜區隔開。 The solar cell 1672 can be formed using a flow chart similar to that shown in FIGS. 3A and 3B. When solar cell 1672 is formed, operation 256 can be eliminated. Additionally, during operation 359, the second surface 249 of the solar cell 1672 is selectively implanted. Selective emitter implantation can be used to implant dopants of opposite conductivity types into doped regions 241a, 241b, respectively. Although not shown, it should be understood that the doped regions 241a, 241b may be separated by undoped regions.

此外,形成太陽能電池1672時,亦可省略操作362,因為觸點1671a、1671b均位於太陽能電池1672的非光接收面。在操作364中,不沉積毯覆金屬層至第二表面249來覆蓋鈍化層,而是依所要交錯接觸圖案,網印一或更多金屬膏。金屬膏可沉積在鈍化層248上面和開口270內,以電氣接觸各摻雜區241a、241b。 Further, when the solar cell 1672 is formed, the operation 362 may be omitted because the contacts 1671a and 1671b are both located on the non-light receiving surface of the solar cell 1672. In operation 364, the blanket metal layer is not deposited to the second surface 249 to cover the passivation layer, but one or more metal pastes are screen printed in accordance with the desired staggered contact pattern. A metal paste can be deposited over the passivation layer 248 and within the opening 270 to electrically contact the doped regions 241a, 241b.

相較於先前已知太陽能電池,所述太陽能電池的優點大體包括提高效率。 The advantages of the solar cell generally include increased efficiency compared to previously known solar cells.

雖然以上係針對本發明實施例說明,但在不脫離本發明基本範圍的情況下,當可策劃本發明的其他和進一步實施例,因此本發明範圍視後附申請專利範圍所界定者為準。 While the above is directed to the embodiments of the present invention, the scope of the present invention is defined by the scope of the appended claims.

241、243‧‧‧射極 241, 243‧‧ ‧ emitter

242‧‧‧基極 242‧‧‧ base

246、248‧‧‧鈍化層 246, 248‧‧‧ Passivation layer

247‧‧‧觸點 247‧‧‧Contacts

249‧‧‧表面 249‧‧‧ surface

270‧‧‧開口 270‧‧‧ openings

271‧‧‧金屬層 271‧‧‧metal layer

272‧‧‧太陽能電池 272‧‧‧ solar cells

Claims (33)

一種形成一太陽能電池的方法,包含下列步驟:磊晶成長包括一p型或n型摻質的一第一射極;磊晶成長一基極至該第一射極上;磊晶成長包括一p型或n型摻質的一第二射極;形成一導電類型和該第二射極一樣的一重摻雜區至該第二射極上,該重摻雜區的一表面濃度高於該第二射極;織構該第二射極;施用一第一鈍化層於該第一射極;施用一第二鈍化層於該第二射極;施用一第一金屬觸點至該第一射極上面;及施用一第二金屬觸點至該第二射極上面,該第二金屬觸點對準該重摻雜區。 A method of forming a solar cell, comprising the steps of: epitaxial growth comprising a first emitter of a p-type or n-type dopant; epitaxial growth of a base to the first emitter; epitaxial growth comprising a p a second emitter of a type or n-type dopant; forming a heavily doped region of the same conductivity type as the second emitter to the second emitter, a surface concentration of the heavily doped region being higher than the second An emitter; a second emitter is applied; a first passivation layer is applied to the first emitter; a second passivation layer is applied to the second emitter; and a first metal contact is applied to the first emitter And applying a second metal contact to the second emitter, the second metal contact being aligned with the heavily doped region. 如請求項1所述之方法,其中該重摻雜區於一表面具有約1×1020個原子/cm3或以上的一摻質濃度。 The method of claim 1, wherein the heavily doped region has a dopant concentration of about 1 x 10 20 atoms/cm 3 or more on a surface. 如請求項2所述之方法,其中該織構步驟係一選擇性織構步驟,並且在形成該重摻雜區之後進行。 The method of claim 2, wherein the texturing step is a selective texturing step and is performed after forming the heavily doped region. 如請求項3所述之方法,其中該選擇性織構步驟包含施用一遮罩於該第二射極的一表面,接著蝕刻該第二射極的該表面。 The method of claim 3, wherein the selectively texturing step comprises applying a mask to a surface of the second emitter, followed by etching the surface of the second emitter. 如請求項3所述之方法,其中該重摻雜區為磊晶成長而成且遍布一均勻濃度。 The method of claim 3, wherein the heavily doped region is epitaxially grown and spreads over a uniform concentration. 如請求項3所述之方法,進一步包含在織構該第二射極前,利用氣態擴散、離子植入或沉積摻質源並擴散,以於該第二射極上形成該重摻雜射極表面。 The method of claim 3, further comprising forming the heavily doped emitter on the second emitter by vapor diffusion, ion implantation or deposition of a dopant source and diffusion prior to texture of the second emitter surface. 如請求項2所述之方法,進一步包含在形成該重摻雜區前,蝕刻該第二射極。 The method of claim 2, further comprising etching the second emitter before forming the heavily doped region. 如請求項7所述之方法,其中該重摻雜區係藉由施用一摻質膏於該第二射極或利用一遮蔽離子植入該第二射極而形成,其中該太陽能電池包含磊晶矽。 The method of claim 7, wherein the heavily doped region is formed by applying a dopant paste to the second emitter or implanting the second emitter with a masking ion, wherein the solar cell comprises a beam Crystal. 如請求項1所述之方法,其中該第一射極、該基極和該第二射極係在一模板基板上成長,其中該第一射極、該基極和該第二射極自該模板基板移除。 The method of claim 1, wherein the first emitter, the base, and the second emitter are grown on a template substrate, wherein the first emitter, the base, and the second emitter are The template substrate is removed. 如請求項1所述之方法,其中該第一射極係n型摻雜或p型摻雜,該第二射極係不同於該第一射極的n型摻雜或p型摻雜的另一者。 The method of claim 1, wherein the first emitter is n-doped or p-doped, and the second emitter is different from the first emitter of n-doped or p-doped The other. 一種太陽能電池,係根據如請求項1之方法製作。 A solar cell produced according to the method of claim 1. 一種形成一太陽能電池的方法,包含下列步驟:磊晶成長包括一p型或n型摻質的一第一射極至一n型或p型基板上;磊晶成長包括一p型或n型摻質的一第二射極至該基板的一相對表面;形成一導電類型和該第二射極一樣的一重摻雜區至該第二射極上,該重摻雜區的一表面濃度高於該第二射極;織構該第二射極;施用一第一鈍化層於該第一射極;施用一第二鈍化層於該第二射極;施用一第一金屬觸點至該第一射極上面;及施用一第二金屬觸點至該第二射極上面,該第二金屬觸點對準該重摻雜區。 A method of forming a solar cell, comprising the steps of: epitaxial growth comprising a p-type or n-type dopant on a first emitter to an n-type or p-type substrate; epitaxial growth comprising a p-type or n-type a second emitter of the dopant to an opposite surface of the substrate; forming a heavily doped region of the same conductivity type as the second emitter to the second emitter, a surface concentration of the heavily doped region is higher than The second emitter; the second emitter is patterned; a first passivation layer is applied to the first emitter; a second passivation layer is applied to the second emitter; and a first metal contact is applied to the first And an application of a second metal contact to the second emitter, the second metal contact being aligned with the heavily doped region. 如請求項12所述之方法,其中該重摻雜區於一表面具有約5×1019個原子/cm3或以上的一摻質濃度。 The method of claim 12, wherein the heavily doped region has a dopant concentration of about 5 x 10 19 atoms/cm 3 or more on a surface. 如請求項13所述之方法,其中該織構步驟係一選擇性織構步驟,並且在形成該重摻雜區之後進行。 The method of claim 13, wherein the texturing step is a selective texturing step and is performed after forming the heavily doped region. 如請求項14所述之方法,其中該選擇性織構步驟包含施用一遮罩於該第二射極的一表面,接著蝕刻該第二射極的該表面。 The method of claim 14, wherein the selectively texturing step comprises applying a mask to a surface of the second emitter, followed by etching the surface of the second emitter. 如請求項14所述之方法,其中該重摻雜區為磊晶成長而成且遍布一均勻濃度。 The method of claim 14, wherein the heavily doped region is epitaxially grown and spreads over a uniform concentration. 如請求項14所述之方法,其中該重摻雜區係藉由施用一摻質膏於該第二射極或利用一遮蔽離子植入該第二射極而形成。 The method of claim 14, wherein the heavily doped region is formed by applying a dopant paste to the second emitter or implanting the second emitter with a masking ion. 如請求項13所述之方法,其中該第二射極係在形成該重摻雜區前織構。 The method of claim 13, wherein the second emitter is textured prior to forming the heavily doped region. 如請求項18所述之方法,其中該重摻雜區係藉由印刷一摻質膏或利用一遮蔽離子植入而形成。 The method of claim 18, wherein the heavily doped region is formed by printing a dopant paste or by implanting a masking ion. 如請求項12所述之方法,其中該第一射極、該第二射極和該基板各自包含矽。 The method of claim 12, wherein the first emitter, the second emitter, and the substrate each comprise germanium. 如請求項12所述之方法,其中該第一射極係n型摻雜或p型摻雜,該第二射極係不同於該第一射極的n型摻雜或p型摻雜的另一者。 The method of claim 12, wherein the first emitter is n-doped or p-doped, the second emitter being different from the first emitter of n-doped or p-doped The other. 如請求項12所述之方法,其中該重摻雜區係藉由施用一摻質膏於該第二射極而形成。 The method of claim 12, wherein the heavily doped region is formed by applying a dopant paste to the second emitter. 一種太陽能電池,包含: 一單晶矽基極;一第一單晶矽射極,該第一單晶矽射極置於該單晶矽基極的一第一側邊,該第一單晶矽射極的一厚度為約5微米至約15微米;一第二單晶矽射極,該第二單晶矽射極置於該單晶矽基極的一第二側邊,該第二單晶矽射極的一厚度為約5微米至約15微米;一第一鈍化層,該第一鈍化層置於該第一單晶矽射極上面;一第二鈍化層,該第二鈍化層置於該第二單晶矽射極上面;一第一金屬層,該第一金屬層置於該第一鈍化層上面;及一第二金屬層,該第二金屬層置於該第二鈍化層上面。 A solar cell comprising: a single crystal germanium base; a first single crystal germanium emitter, the first single crystal germanium emitter being disposed on a first side of the single crystal germanium base, a thickness of the first single crystal germanium emitter From about 5 micrometers to about 15 micrometers; a second single crystal germanium emitter, the second single crystal germanium emitter is disposed on a second side of the single crystal germanium base, the second single crystal germanium emitter a thickness of from about 5 microns to about 15 microns; a first passivation layer disposed on the first single crystal germanium emitter; a second passivation layer, the second passivation layer being disposed on the second a single crystal germanium emitter; a first metal layer disposed on the first passivation layer; and a second metal layer disposed on the second passivation layer. 如請求項23所述之太陽能電池,其中該第一單晶矽射極和該第二單晶矽射極包括一摻質,該摻質的一濃度為約1×1017至約1×1019個原子/cm3The solar cell of claim 23, wherein the first single crystal germanium emitter and the second single crystal germanium emitter comprise a dopant having a concentration of about 1×10 17 to about 1×10. 19 atoms/cm 3 . 如請求項23所述之太陽能電池,其中該第一單晶矽射極包括一重摻雜區,該重摻雜區具有約5×1019個原子/cm3或以上的一摻質濃度,其中該第一金屬層對準該重摻雜區。 The solar cell of claim 23, wherein the first single crystal germanium emitter comprises a heavily doped region having a dopant concentration of about 5 x 10 19 atoms/cm 3 or more, wherein The first metal layer is aligned with the heavily doped region. 如請求項23所述之太陽能電池,進一步包含一摻雜多晶 矽層,該摻雜多晶矽層置於該第二單晶矽射極與該第二金屬層之間。 The solar cell of claim 23, further comprising a doped polycrystal And a doped polysilicon layer disposed between the second single crystal germanium emitter and the second metal layer. 如請求項26所述之太陽能電池,進一步包含一穿隧氧化層,該穿隧氧化層置於該摻雜多晶矽層與該第二金屬層之間。 The solar cell of claim 26, further comprising a tunneling oxide layer disposed between the doped polysilicon layer and the second metal layer. 如請求項23所述之太陽能電池,進一步包含:一本質無定形矽層,該本質無定形矽層沉積在該第一單晶矽射極上;一摻雜無定形矽層,該摻雜無定形矽層沉積在該本質無定形矽層上;及一導電氧化層,該導電氧化層沉積在該摻雜無定形矽層上。 The solar cell of claim 23, further comprising: an intrinsically amorphous layer of germanium deposited on the first single crystal germanium emitter; a doped amorphous layer, the doped amorphous A germanium layer is deposited on the intrinsically amorphous germanium layer; and a conductive oxide layer is deposited on the doped amorphous germanium layer. 如請求項23所述之太陽能電池,進一步包含:一本質無定形矽層,該本質無定形矽層沉積在該第二單晶矽射極上;一摻雜無定形矽層,該摻雜無定形矽層沉積在該本質無定形矽層上;及一導電氧化層,該導電氧化層沉積在該摻雜無定形矽層上。 The solar cell of claim 23, further comprising: an intrinsically amorphous germanium layer deposited on the second single crystal germanium emitter; a doped amorphous germanium layer, the doped amorphous A germanium layer is deposited on the intrinsically amorphous germanium layer; and a conductive oxide layer is deposited on the doped amorphous germanium layer. 如請求項23所述之太陽能電池,進一步包含:一本質無定形矽層,該本質無定形矽層沉積在該第一單 晶矽射極上面;一摻雜無定形矽層,該摻雜無定形矽層沉積在該本質無定形矽層上;及一導電氧化層,該導電氧化層沉積在該摻雜無定形矽層上。 The solar cell of claim 23, further comprising: an intrinsically amorphous layer of germanium deposited on the first sheet a doped amorphous germanium layer, the doped amorphous germanium layer deposited on the intrinsically amorphous germanium layer; and a conductive oxide layer deposited on the doped amorphous germanium layer on. 如請求項23所述之太陽能電池,進一步包含:一本質無定形矽層,該本質無定形矽層沉積在該第二單晶矽射極上面;一摻雜無定形矽層,該摻雜無定形矽層沉積在該本質無定形矽層上;及一導電氧化層,該導電氧化層沉積在該摻雜無定形矽層上。 The solar cell of claim 23, further comprising: an intrinsically amorphous layer of germanium deposited on the second single crystal germanium emitter; a doped amorphous layer, the doping A shaped ruthenium layer is deposited on the essentially amorphous ruthenium layer; and a conductive oxide layer is deposited on the doped amorphous ruthenium layer. 一種形成一太陽能電池的方法,包含下列步驟:磊晶成長包括一p型或n型摻質的一第一射極至一n型或p型基板上;形成一導電類型和該第一射極一樣的一重摻雜區至該第一射極上,該重摻雜區的一表面濃度高於該第一射極;施用一第一鈍化層於該第一射極;及施用一第一金屬觸點至該第一射極上面。 A method of forming a solar cell, comprising the steps of: epitaxial growth comprising a p-type or n-type dopant on a first emitter to an n-type or p-type substrate; forming a conductivity type and the first emitter a same heavily doped region to the first emitter, a surface concentration of the heavily doped region is higher than the first emitter; applying a first passivation layer to the first emitter; and applying a first metal touch Point to the top of the first emitter. 如請求項32所述之方法,進一步包含織構該第一射極。 The method of claim 32, further comprising fabricating the first emitter.
TW104106084A 2014-02-28 2015-02-25 Silicon solar cells with epitaxial emitters TW201533921A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461946666P 2014-02-28 2014-02-28
PCT/US2014/042333 WO2015130334A1 (en) 2014-02-28 2014-06-13 Silicon solar cells with epitaxial emitters
US201562106116P 2015-01-21 2015-01-21

Publications (1)

Publication Number Publication Date
TW201533921A true TW201533921A (en) 2015-09-01

Family

ID=54009547

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104106084A TW201533921A (en) 2014-02-28 2015-02-25 Silicon solar cells with epitaxial emitters

Country Status (2)

Country Link
TW (1) TW201533921A (en)
WO (1) WO2015130672A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753084B (en) * 2018-01-15 2022-01-21 財團法人工業技術研究院 Solar cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007972A1 (en) * 2015-07-07 2017-01-12 Crystal Solar, Inc. High efficiency single crystal silicon solar cell with epitaxially deposited silicon layers with deep junction(s)
NL2017872B1 (en) * 2016-11-25 2018-06-08 Stichting Energieonderzoek Centrum Nederland Photovoltaic cell with passivating contact
CN113629162A (en) * 2021-08-31 2021-11-09 晶澳(扬州)太阳能科技有限公司 Silicon-based solar cell unit and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537032B2 (en) * 2009-06-02 2017-01-03 Solarcity Corporation Low-cost high-efficiency solar module using epitaxial Si thin-film absorber and double-sided heterojunction solar cell with integrated module fabrication
US8779280B2 (en) * 2009-08-18 2014-07-15 Lg Electronics Inc. Solar cell and method of manufacturing the same
US20120318340A1 (en) * 2010-05-04 2012-12-20 Silevo, Inc. Back junction solar cell with tunnel oxide
US8853524B2 (en) * 2011-10-05 2014-10-07 International Business Machines Corporation Silicon solar cell with back surface field
KR101860919B1 (en) * 2011-12-16 2018-06-29 엘지전자 주식회사 Solar cell and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753084B (en) * 2018-01-15 2022-01-21 財團法人工業技術研究院 Solar cell

Also Published As

Publication number Publication date
WO2015130672A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP6746854B2 (en) Solar cell having emitter region containing wide bandgap semiconductor material
US7923368B2 (en) Junction formation on wafer substrates using group IV nanoparticles
JP6552011B2 (en) Fabrication of the emitter region of solar cells using ion implantation.
TWI474494B (en) Patterned doping for polysilicon emitter solar cells
EP2619806B1 (en) Method of fabricating an emitter region of a solar cell
JP6139599B2 (en) Solar cell and manufacturing method thereof
CN108963005B (en) Novel composite-structure full-back-face heterojunction solar cell and preparation method
US20150263200A1 (en) Method of fabricating a solar cell with a tunnel dielectric layer
EP2283514A1 (en) Junction formation on wafer substrates using group iv nanoparticles
TWI542028B (en) Method for forming patterns of differently doped regions
JP6199727B2 (en) Manufacturing method of solar cell
KR101085382B1 (en) Method for fabricating solar cell comprising selective emitter
TW201806173A (en) Solar cell with doped polysilicon surface areas and method for manufacturing thereof
WO2010046284A1 (en) Semiconductor device manufacturing method, semiconductor device and semiconductor device manufacturing installation
TW201533921A (en) Silicon solar cells with epitaxial emitters
WO2015130334A1 (en) Silicon solar cells with epitaxial emitters
CN116864548A (en) P-type back junction TOPCON battery and preparation method thereof
JP2002261305A (en) Thin-film polycrystalline silicon solar cell and manufacturing method therefor
CN107002277A (en) Using the solar cell for simplifying depositing operation manufacture
KR101048165B1 (en) Method for fabricating solar cell
TWI490922B (en) Method for forming polysilicon film and polysilicon film thereof
CN115623833A (en) Method for manufacturing a laminated photovoltaic cell