TW201531156A - Low cost LED driver with improved serial bus - Google Patents
Low cost LED driver with improved serial bus Download PDFInfo
- Publication number
- TW201531156A TW201531156A TW104113781A TW104113781A TW201531156A TW 201531156 A TW201531156 A TW 201531156A TW 104113781 A TW104113781 A TW 104113781A TW 104113781 A TW104113781 A TW 104113781A TW 201531156 A TW201531156 A TW 201531156A
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- channel
- led
- register
- function
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/347—Dynamic headroom control [DHC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/44—Receiver circuitry for the reception of television signals according to analogue transmission standards
- H04N5/57—Control of contrast or brightness
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/40—Details of LED load circuits
- H05B45/44—Details of LED load circuits with an active control inside an LED matrix
- H05B45/48—Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/18—Controlling the light source by remote control via data-bus transmission
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/31—Phase-control circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/32—Pulse-control circuits
- H05B45/325—Pulse-width modulation [PWM]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/395—Linear regulators
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Led Devices (AREA)
Abstract
Description
本發明係關於半導體裝置及電路以及用於驅動照明及顯示應用中之LED之方法。 This invention relates to semiconductor devices and circuits and methods for driving LEDs in lighting and display applications.
本申請案主張於2011年10月24日申請之臨時申請案第61/550,539號之優先權。 The present application claims priority to Provisional Application No. 61/550,539, filed on October 24, 2011.
本申請案係關於下列申請案,該等案之各者之全部內容以引用的方式併入本文中:2012年1月9日申請之題為「Low Cost LED Driver with Integral Dimming Capability」之申請案第346,625號;2012年1月9日申請之題為「Serial Lighting Interface With Embedded Feedback」之申請案第13/346,659號。 This application is related to the following applications, the entire contents of each of which are hereby incorporated by reference: Application No. 346, 625, filed on Jan. 9, 2012, entitled "Serial Lighting Interface With Embedded Feedback", No. 13/346,659.
LED日益用於取代照明應用中之燈及燈泡,該照明應用包含提供白光作為彩色液晶顯示器(LCD)及高清晰度電視(HDTV)中之一背光。當LED可用於均勻照明整個顯示器時,藉由使用一個以上的LED串且驅動各串至對應於特定LED串照亮之該顯示器之部分之一不同亮度而改良效能、對比度、可靠性及功率效率。「區域調光」意指背光系統能進行此非均勻背光亮度。相較於使用均勻背光之LCD,此等系統節省之功率可高達50%。使用區域調光,LCD對比率可接近電漿TV之對比率。 LEDs are increasingly being used to replace lamps and light bulbs in lighting applications that include white light as one of the backlights in color liquid crystal displays (LCDs) and high definition televisions (HDTVs). When the LED can be used to evenly illuminate the entire display, performance, contrast, reliability, and power efficiency are improved by using more than one LED string and driving each string to a different brightness corresponding to one of the portions of the display illuminated by the particular LED string . "Regular dimming" means that the backlight system can perform this non-uniform backlight brightness. These systems can save up to 50% in power compared to LCDs with uniform backlighting. Using area dimming, the LCD contrast ratio can be close to the contrast ratio of the plasma TV.
為控制自各LED串發射之光之亮度及均勻性,必須使用特定電子 驅動器電路以精確控制LED電流及電壓。例如,「m」個LED串聯連接之一LED串需要等於約3.1至3.5(通常為3.3)乘以「m」之一電壓以進行持續操作。供應此必要電壓至一LED串一般需要稱為一DC至DC轉換器或切換模式電源供應器(SMPS)之一升壓或降壓電壓轉換器及調節器。當數個LED串係由一單一SMPS供電時,該電源供應器之輸出電壓必須超過該等LED串之任意者所需之最高電壓。由於無法預先知道所需之最高正向電壓,所以LED驅動器IC必須具有足夠的智慧型功能以使用回饋來動態調整該電源供應器電壓。 In order to control the brightness and uniformity of light emitted from each LED string, specific electronics must be used. The driver circuit precisely controls the LED current and voltage. For example, one of the "m" LEDs connected in series requires an LED string equal to about 3.1 to 3.5 (typically 3.3) times the "m" for continuous operation. Supplying this necessary voltage to a LED string typically requires a step-up or step-down voltage converter and regulator called a DC to DC converter or a switched mode power supply (SMPS). When several LED strings are powered by a single SMPS, the output voltage of the power supply must exceed the highest voltage required by any of the LED strings. Since the highest forward voltage required is not known in advance, the LED driver IC must have sufficient intelligent functionality to dynamically adjust the power supply voltage using feedback.
除了提供適當電壓至LED串之外,背光驅動器IC必須將在各串中傳導之電流精確地控制在±2%之一公差範圍內。準確的電流控制是必要的,此係因為一LED之亮度與流經其之電流成比例,及任意實質串至串電流失配將因LCD之亮度變化而變得明顯。除了控制該電流之外,區域調光需要在時序及持續時間兩方面對LED照明進行精確脈衝控制,以使各背光區域、區帶或區塊之亮度與LCD螢幕中之對應影像同步。 In addition to providing the appropriate voltage to the LED string, the backlight driver IC must accurately control the current conducted in each string within a tolerance of ±2%. Accurate current control is necessary because the brightness of an LED is proportional to the current flowing through it, and any substantial string-to-string current mismatch will become apparent due to changes in the brightness of the LCD. In addition to controlling this current, regional dimming requires precise pulse control of the LED illumination in both timing and duration to synchronize the brightness of each backlight region, zone or block with the corresponding image in the LCD screen.
先前技術對區域調光之需要之解決方案限制顯示亮度且係昂貴的。例如,早期試圖將LED驅動器電路與高電壓電流槽電晶體之多個通道整合係有問題的,此係因為該等LED串之正向電壓之失配導致過多的功率消耗及過熱。藉由降低該等LED中之電流且限制一串中被證實為不經濟之LED之數量(為更好的通道至通道電壓匹配)而試圖使功率消耗最小化,需要更多的LED串及更大量之LED驅動之通道。因此,LED背光驅動器系統之全整合方法已限於小型顯示面板或非常昂貴之「高檔」HDTV。 The prior art solution to the need for regional dimming limits display brightness and is expensive. For example, early attempts to integrate LED driver circuits with multiple channels of high voltage current sink transistors were problematic because of the mismatch in the forward voltage of the LED strings resulting in excessive power consumption and overheating. Attempts to minimize power consumption by reducing the current in these LEDs and limiting the number of LEDs that are proven to be uneconomical in a string (for better channel-to-channel voltage matching) require more LED strings and more A large number of LED drive channels. Therefore, the fully integrated approach to LED backlight driver systems has been limited to small display panels or very expensive "upscale" HDTVs.
後續藉由使用多晶片方法而試圖減少整體顯示器背光成本卻犧牲掉必要特徵、功能性及甚至安全性。 Subsequent attempts to reduce overall display backlighting costs by using multi-wafer methods have sacrificed the necessary features, functionality, and even security.
例如,圖1中所展示之用於驅動LED之先前技術多晶片系統包括 驅動多個離散電流槽電晶體4A至4Q及高電壓保護裝置3A至3Q之背光控制器IC 6。該背光包括16個LED串2A至2Q(統稱為LED串2)。LED串2A至2Q之各者包含「m」個串聯連接之LED。在實踐中,各串中之LED之數量可在2個至60個之範圍內。各LED串之電流分別透過離散電流槽MOSFET 4A至4Q之一者控制。背光控制器IC 6回應於來自一背光微控制器μC 7之指令而設定各LED串中之電流,該等指令透過一高速昂貴的序列周邊介面(SPI)匯流排12而傳達。微控制器μC 7自一純量IC 8接收視訊及影像資訊以判定LED串2A至2Q之各者所需之適當照明度。 For example, the prior art multi-chip system for driving LEDs shown in Figure 1 includes The backlight controller IC 6 of the plurality of discrete current slot transistors 4A to 4Q and the high voltage protection devices 3A to 3Q is driven. The backlight includes 16 LED strings 2A to 2Q (collectively referred to as LED strings 2). Each of the LED strings 2A to 2Q includes "m" LEDs connected in series. In practice, the number of LEDs in each string can range from 2 to 60. The current of each LED string is controlled by one of the discrete current slot MOSFETs 4A to 4Q, respectively. The backlight controller IC 6 sets the current in each of the LED strings in response to an instruction from a backlight microcontroller μC 7, which is communicated through a high speed, expensive sequence peripheral interface (SPI) bus bar 12. The microcontroller μC 7 receives video and video information from a scalar IC 8 to determine the appropriate illumination required for each of the LED strings 2A through 2Q.
LED串2A至2Q係由一共同LED電源供應軌11而供電,該共同LED電源供應軌11由切換模式電源供應器(SMPS)9以一電壓+VLED偏置。電壓+VLED係回應於來自控制IC 6之一電流感測回饋信號(CSFB)10而產生。供應電壓隨著串聯連接之LED之數量「m」而變更且可在自用於10個LED之串之35伏特高達至用於40個LED之串之150伏特之範圍內。離散保護裝置3A至3Q(通常為高電壓離散MOSFET)視情況尤其對於以較高電壓(例如,高於100V)之操作,用於箝制跨電流槽電晶體4存在之最大電壓。 The LED strings 2A through 2Q are powered by a common LED power supply rail 11 that is biased by a switched mode power supply (SMPS) 9 with a voltage + V LED . The voltage +V LED is generated in response to a current sense feedback signal (CSFB) 10 from one of the control ICs 6. The supply voltage varies with the number "m" of LEDs connected in series and can range from 35 volts for a string of 10 LEDs up to 150 volts for a string of 40 LEDs. Discrete protection devices 3A through 3Q (typically high voltage discrete MOSFETs) are used to clamp the maximum voltage present across the current slot transistor 4, particularly for operation at higher voltages (eg, above 100V).
在圖1中所展示之系統中,各組件為單獨封裝之一離散裝置,僅需要各組件之取放操作以將其定位且安裝於其印刷電路板上。 In the system shown in Figure 1, the components are discrete devices in a single package, requiring only the pick and place operations of the components to position and mount them on their printed circuit boards.
對於一「n」通道驅動器解決方案,各組離散組件連同對應LED串被重複「n」次。例如,除了SMPS 9之外,圖1中所展示之16通道背光系統需要34個組件(即,微控制器7、一高接針數背光控制器IC 6、16個電流槽電晶體4及16個保護裝置3)以回應於由純量IC 8產生之視訊資訊而促進區域調光。此解決方案既複雜且昂貴。 For an "n" channel driver solution, each set of discrete components is repeated "n" times along with the corresponding LED string. For example, in addition to the SMPS 9, the 16-channel backlight system shown in Figure 1 requires 34 components (ie, microcontroller 7, a high-pin count backlight controller IC 6, 16 current-slot transistors 4 and 16). The protection device 3) facilitates regional dimming in response to video information generated by the scalar IC 8. This solution is both complicated and expensive.
除了需要裝配大量離散組件(亦即,一高建造材料(BOM)數)之外,高接針數封裝6之封裝成本亦相當多。此大量接針之需要繪示於 圖2之電路圖中,圖2繪示圖1中所展示之LED驅動器系統之通道之更詳細一者。如展示,各通道包含一「m」個串聯連接之LED之串21、具有一積體高電壓電路二極體23之一保護疊接箝制MOSFET 22、一電流槽MOSFET 24及一電流感測I精確閘極驅動器電路25。 In addition to the need to assemble a large number of discrete components (i.e., a high build-up material (BOM) number), the package cost of the high pin count package 6 is also considerable. The need for this large number of pins is shown in In the circuit diagram of FIG. 2, FIG. 2 illustrates a more detailed one of the channels of the LED driver system shown in FIG. 1. As shown, each channel includes a "m" series of LEDs 21 connected in series, one of the integrated high voltage circuit diodes 23, a protective MOSFET 22, a current sink MOSFET 24, and a current sense I. Precision gate driver circuit 25.
實施為受控於介面IC 6之一離散組件之主動電流槽MOSFET 24包括具有閘極、源極及汲極連接之一功率MOSFET,較佳為一垂直DMOSFET。I精確閘極驅動器電路25感測電流槽MOSFET 24中之電流且為該感測電流槽MOSFET 24提供必要閘極驅動電壓以傳導一精確電流量。在正常操作中,電流槽MOSFET 24以其飽和操作模式操作以獨立於其汲極至源極電壓之電流控制一恆定位準。由於同時存在一源極-汲極電壓及電流,所以在MOSFET 24中消耗功率。為偵測短路LED及促進至切換模式電源供應器(SMPS)9之回饋之兩個目的,需要連續量測電流槽MOSFET 24之汲極電壓。一短路LED之存在被記錄於一LED故障電路27中,及至SMPS 9之回饋由一電流感測回饋(CSFB)電路26實行。 Active current tank MOSFET 24 implemented as a discrete component controlled by interface IC 6 includes a power MOSFET having a gate, source and drain connection, preferably a vertical DMOSFET. The I precision gate driver circuit 25 senses the current in the current tank MOSFET 24 and provides the necessary gate drive voltage for the sense current tank MOSFET 24 to conduct a precise amount of current. In normal operation, current sink MOSFET 24 operates in its saturation mode of operation to control a constant level independently of its drain to source voltage. Power is consumed in MOSFET 24 due to the simultaneous presence of a source-drain voltage and current. In order to detect shorted LEDs and facilitate feedback to the switched mode power supply (SMPS) 9, the drain voltage of the current sink MOSFET 24 needs to be continuously measured. The presence of a shorted LED is recorded in an LED fault circuit 27, and the feedback to the SMPS 9 is performed by a current sense feedback (CSFB) circuit 26.
總而言之,電流槽MOSFET 24需要三個至控制IC 6之連接,具體言之,用於電流量測之一源極連接、用於偏置裝置以控制該裝置之電流之一閘極連接及用於故障及回饋感測之一汲極連接。於圖2A中將每電流槽MOSFET(及因此每個通道)之此等三個連接描繪為橫跨離散裝置與一控制IC之間之一介面28。甚至在圖2B之示意性電路圖中,其中消除疊接箝制MOSFET 22及電流槽MOSFET 24必須維持高電壓(藉由「HV」積體二極體23繪示),各通道仍需要每通道橫跨介面28之三個接針。此每通道3接針之要求解釋圖1中所展示之高接針數封裝6之需要。對於一16通道驅動器,每通道3個接針需要48個接針用於控制IC上之輸出接針。考慮到SPI匯流排介面、類比功能、電源供應及更多,一昂貴的64或72接針封裝係必要的。更糟的是,許多TV印刷 電路板總成公司無法以稍微小於0.8mm或1.27mm的一接針節距焊接封裝。具有一0.8mm接針節距之一72接針封裝需要一14mm×14mm塑膠主體以提供適配全部接針所需之周邊線性邊緣。 In summary, the current-slot MOSFET 24 requires three connections to the control IC 6, in particular one of the source connections for current measurement, one for the biasing device to control the current of the device, and for One of the fault and feedback sensing is connected to the drain. These three connections per current-slot MOSFET (and thus each channel) are depicted in Figure 2A as spanning one interface 28 between the discrete device and a control IC. Even in the schematic circuit diagram of FIG. 2B, in which the spliced clamp MOSFET 22 and the current sink MOSFET 24 must be maintained at a high voltage (illustrated by the "HV" integrated body 23), each channel still needs to be traversed per channel. Three pins of interface 28. This requirement for 3 pins per channel explains the need for the high pin count package 6 shown in FIG. For a 16-channel driver, 48 pins per channel require 48 pins for controlling the output pins on the IC. Considering the SPI bus interface, analog function, power supply and more, an expensive 64 or 72 pin package is necessary. Worse, many TV prints The board assembly company was unable to solder the package with a pin pitch of slightly less than 0.8 mm or 1.27 mm. One of the 72 pin packages with a 0.8 mm pin pitch requires a 14 mm x 14 mm plastic body to provide the peripheral linear edge required to fit all the pins.
圖1中所展示之多晶片系統之一個明顯問題在於,在介面IC 6中感測之溫度僅可偵測該IC之溫度,其中並未發生明顯的功率消耗。不幸地是,在離散電流槽DMOSFET 4中產生熱,其中卻無法進行溫度感測。在沒有區域溫度感測之情況下,電流槽MOSFET 4A至4Q之任意者可能過熱而系統卻無法偵測或修復該狀態。 One significant problem with the multi-wafer system shown in Figure 1 is that the temperature sensed in interface IC 6 can only detect the temperature of the IC, with no significant power consumption occurring. Unfortunately, heat is generated in the discrete current sink DMOSFET 4, but temperature sensing is not possible. In the absence of zone temperature sensing, any of the current sink MOSFETs 4A through 4Q may overheat and the system may not detect or repair this state.
總而言之,如今具有區域調光能力之LCD面板之LED背光之實施方案受到關於成本、效能、特徵及安全性之眾多基本限制。 In summary, today's implementations of LED backlights for LCD panels with regional dimming capabilities are subject to numerous fundamental limitations regarding cost, performance, features, and security.
高度整合之LED驅動器解決方案需要以昂貴的高接針數封裝所封裝的昂貴大面積晶粒,且將熱集中在一單一封裝中。由於由電流槽MOSFET之線性操作所引起之功率消耗而將該驅動器限於較低電流,及由於由LED正向電壓失配所引起之功率消耗(在更大量串聯連接之LED中惡化之一問題)而將該驅動器限於較低電壓。 The highly integrated LED driver solution requires expensive, large-area dies that are packaged in expensive high-pin packages and concentrates heat in a single package. The driver is limited to lower currents due to power consumption caused by linear operation of the current-slot MOSFET, and power consumption due to LED forward voltage mismatch (one of the problems in a larger number of series-connected LEDs) The driver is limited to a lower voltage.
組合一LED控制器與離散功率MOSFET之多晶片解決方案需要高BOM數及甚至較高接針數封裝。由於具有完全整合之LED驅動器之接針數之近三倍,一16通道解決方法可需要33至49個組件及一個14mm×14mm大之72接針封裝。此外,離散MOSFET對於過熱並沒有任何熱感測或保護。 Multi-chip solutions that combine an LED controller with discrete power MOSFETs require high BOM counts and even higher pin count packages. With nearly three times the number of pins with fully integrated LED drivers, a 16-channel solution can require 33 to 49 components and a 14mm x 14mm 72-pin package. In addition, discrete MOSFETs do not have any thermal sensing or protection for overheating.
所需要的是一種用於具有區域調光之TV之一符合成本效益及可靠的背光系統。此需要一新的半導體晶片組,其消除離散MOSFET、提供較低整體封裝成本、最小化任意組件內之熱集中、促進超溫偵測及熱保護、保護低電壓組件不受高電壓及短路LED之影響、彈性縮放以容納不同數量之通道及不同大小之顯示器而不需要訂製的積體電路、且維持LED電流及亮度之精確控制。 What is needed is a cost effective and reliable backlight system for a TV with regional dimming. This requires a new semiconductor chipset that eliminates discrete MOSFETs, provides lower overall package cost, minimizes thermal concentration within any component, facilitates overtemperature detection and thermal protection, protects low voltage components from high voltage and shorts LEDs The effect, elastic scaling to accommodate different numbers of channels and different sized displays without the need for custom integrated circuits, and to maintain precise control of LED current and brightness.
在理想情況下,一彈性解決方案可縮放尺寸以容納不同數量之通道及不同大小之顯示面板而不需要訂製的積體電路。 Ideally, an elastic solution can be sized to accommodate different numbers of channels and different sized display panels without the need for custom integrated circuits.
根據本發明之一LED驅動器系統符合上述準則。一LED驅動器IC包括一功能鎖存器及一序列照明介面(SLI)匯流排,該序列照明介面匯流排自身包括一首碼暫存器及一資料暫存器。該首碼暫存器與該資料暫存器串聯連接。該LED驅動器IC驅動一外部LED串。 An LED driver system in accordance with the present invention meets the above criteria. An LED driver IC includes a function latch and a sequence of illumination interface (SLI) bus bars. The sequence illumination interface bus itself includes a first code register and a data register. The first code register is connected in series with the data register. The LED driver IC drives an external LED string.
將識別功能鎖存器之資料載入至首碼暫存器中,及將識別該LED驅動器IC中之一功能狀態之資料連續載入至資料暫存器中(通常在連續時脈脈衝上)。回應於首碼暫存器中之資料,在功能鎖存器與資料暫存器之間形成一連接,及通常在發生一同步脈衝時,將資料暫存器中之資料傳送至功能鎖存器。 Loading the data of the identification function latch into the first code register, and continuously loading data identifying a functional state of the LED driver IC into the data register (usually on a continuous clock pulse) . Responding to the data in the first code register, forming a connection between the function latch and the data register, and generally transmitting the data in the data register to the function latch when a synchronization pulse occurs .
在一實施例中,將數個LED驅動器IC配置成用於控制複數個LED串之一LED驅動器系統。各自LED驅動器IC中之SLI匯流排串聯連接以形成一系統SLI匯流排。將資料連續載入至該系統SLI匯流排中使得各LED驅動器IC中之首碼暫存器及資料暫存器包含識別及控制該LED驅動器IC內之一功能鎖存器所需之資料。 In an embodiment, a plurality of LED driver ICs are configured to control one of a plurality of LED strings and one LED driver system. The SLI busbars in the respective LED driver ICs are connected in series to form a system SLI busbar. The data is continuously loaded into the system SLI bus such that the first code register and the data register in each LED driver IC contain the information needed to identify and control one of the function latches in the LED driver IC.
在一個群組之實施例中,各LED驅動器IC進一步包括一預負載鎖存器,及在兩個階段中將來自資料暫存器之資料移至功能鎖存器中:首先自資料暫存器至預負載鎖存器,及接著自該預負載鎖存器至功能鎖存器。可同時執行全部LED驅動器IC中之自預負載鎖存器至功能鎖存器之資料之傳送,使得同時更新各種LED驅動器IC中之功能鎖存器。例如,當受控於LED驅動器IC之LED串係用於一平板顯示器中時,此特徵幫助消除「閃爍」。 In a group embodiment, each LED driver IC further includes a preload latch and moves data from the data buffer to the function latch in two stages: first from the data register To the preload latch, and then from the preload latch to the function latch. The transfer of data from the preload latch to the function latch in all of the LED driver ICs can be performed simultaneously, so that the function latches in the various LED driver ICs are simultaneously updated. For example, this feature helps eliminate "flicker" when the LED string controlled by the LED driver IC is used in a flat panel display.
該等LED驅動器IC之各者可包含複數個「通道」,各通道係由一外部LED串及控制外部LED串中之電流之一內部電流槽MOSFET表 示。此外,數個功能鎖存器可與各通道相關聯,該等功能鎖存器可用於控制(例如)電流槽MOSFET之接通時間、該電流槽MOSFET中之電流之大小、與該電流槽MOSFET相關聯之一相位延遲、及界定與該通道相關聯之LED串何時經歷一故障狀態之設定。 Each of the LED driver ICs can include a plurality of "channels", each channel being an external LED string and controlling one of the currents in the external LED string. Show. In addition, a plurality of functional latches can be associated with each of the channels, and the functional latches can be used to control, for example, the on-time of the current-slot MOSFET, the magnitude of the current in the current-slot MOSFET, and the current-slot MOSFET Associate one of the phase delays and define when the LED string associated with the channel experiences a fault condition.
在一些實施例中,LED驅動器IC包括保存待傳送至SLI匯流排中之資料暫存器之資料之一鎖存器。此鎖存器中之資料可指示LED串或驅動器IC所經歷之故障類型,例如一短路LED、一斷路LED串或一超溫狀態。在此資料已被傳送至SLI匯流排中之資料暫存器之後,隨著下一資料序列被載入至該SLI匯流排中,該資料被送回一外部介面IC。與系統之其他元件(例如,一微控制器)結合之介面IC可接著採取補救行動,諸如,斷開LED串。 In some embodiments, the LED driver IC includes one of a latch that holds data to be transferred to a data register in the SLI bus. The data in this latch can indicate the type of fault experienced by the LED string or driver IC, such as a shorted LED, a broken LED string, or an over temperature condition. After the data has been transferred to the data register in the SLI bus, the data is sent back to an external interface IC as the next data sequence is loaded into the SLI bus. The interface IC in combination with other components of the system (e.g., a microcontroller) can then take remedial action, such as disconnecting the LED string.
在一些實施例中,首碼暫存器又分成一通道首碼暫存器及一功能首碼暫存器,前者保存識別LED驅動器IC內之一通道之資料,及後者保存識別該通道內之一功能鎖存器之資料。 In some embodiments, the first code register is further divided into a channel first code register and a function first code register, the former saves data identifying one channel in the LED driver IC, and the latter saves and identifies the channel. A function of the function latch.
本發明之SLI匯流排及LED驅動器IC可進行高度尺寸縮放且使用遠比先前技術系統更小之半導體面積。例如,一8位元通道首碼暫存器、一8位元功能首碼暫存器及一16位元資料暫存器在理論上可用於在256個通道之各者中以65,536個控制位準控制256個功能鎖存器,不過在許多實施例中未使用大量此等位元。 The SLI bus and LED driver ICs of the present invention are capable of high dimensional scaling and use semiconductor areas that are much smaller than prior art systems. For example, an 8-bit channel first code register, an 8-bit function first code register, and a 16-bit data register are theoretically available for 65,536 control bits in each of 256 channels. 256 function latches are controlled in principle, although a large number of such bits are not used in many embodiments.
1‧‧‧多晶粒LED驅動器系統 1‧‧‧Multi-die LED driver system
2‧‧‧LED串 2‧‧‧LED string
2A‧‧‧LED串 2A‧‧‧LED string
2B‧‧‧LED串 2B‧‧‧LED string
2C‧‧‧LED串 2C‧‧‧LED string
2D‧‧‧LED串 2D‧‧‧LED string
2E‧‧‧LED串 2E‧‧‧LED string
2F‧‧‧LED串 2F‧‧‧LED string
2G‧‧‧LED串 2G‧‧‧LED string
2H‧‧‧LED串 2H‧‧‧LED string
2I‧‧‧LED串 2I‧‧‧LED string
2J‧‧‧LED串 2J‧‧‧LED string
2K‧‧‧LED串 2K‧‧‧LED string
2L‧‧‧LED串 2L‧‧‧LED string
2M‧‧‧LED串 2M‧‧‧LED string
2N‧‧‧LED串 2N‧‧‧LED string
2P‧‧‧LED串 2P‧‧‧LED string
2Q‧‧‧LED串 2Q‧‧‧LED string
3‧‧‧保護裝置 3‧‧‧protection device
3A‧‧‧高電壓保護裝置 3A‧‧‧High voltage protection device
3B‧‧‧高電壓保護裝置 3B‧‧‧High voltage protection device
3C‧‧‧高電壓保護裝置 3C‧‧‧High voltage protection device
3D‧‧‧高電壓保護裝置 3D‧‧‧High voltage protection device
3E‧‧‧高電壓保護裝置 3E‧‧‧High voltage protection device
3F‧‧‧高電壓保護裝置 3F‧‧‧High voltage protection device
3G‧‧‧高電壓保護裝置 3G‧‧‧High voltage protection device
3H‧‧‧高電壓保護裝置 3H‧‧‧High voltage protection device
3I‧‧‧高電壓保護裝置 3I‧‧‧High voltage protection device
3J‧‧‧高電壓保護裝置 3J‧‧‧High voltage protection device
3K‧‧‧高電壓保護裝置 3K‧‧‧High voltage protection device
3L‧‧‧高電壓保護裝置 3L‧‧‧High voltage protection device
3M‧‧‧高電壓保護裝置 3M‧‧‧High voltage protection device
3N‧‧‧高電壓保護裝置 3N‧‧‧High voltage protection device
3P‧‧‧高電壓保護裝置 3P‧‧‧High voltage protection device
3Q‧‧‧高電壓保護裝置 3Q‧‧‧High voltage protection device
4‧‧‧電流槽電晶體 4‧‧‧current slot transistor
4A‧‧‧電流槽電晶體 4A‧‧‧current slot transistor
4B‧‧‧電流槽電晶體 4B‧‧‧current slot transistor
4C‧‧‧電流槽電晶體 4C‧‧‧current slot transistor
4D‧‧‧電流槽電晶體 4D‧‧‧current slot transistor
4E‧‧‧電流槽電晶體 4E‧‧‧current slot transistor
4F‧‧‧電流槽電晶體 4F‧‧‧current slot transistor
4G‧‧‧電流槽電晶體 4G‧‧‧current slot transistor
4H‧‧‧電流槽電晶體 4H‧‧‧current slot transistor
4I‧‧‧電流槽電晶體 4I‧‧‧current slot transistor
4J‧‧‧電流槽電晶體 4J‧‧‧current slot transistor
4K‧‧‧電流槽電晶體 4K‧‧‧current slot transistor
4L‧‧‧電流槽電晶體 4L‧‧‧current slot transistor
4M‧‧‧電流槽電晶體 4M‧‧‧current slot transistor
4N‧‧‧電流槽電晶體 4N‧‧‧current slot transistor
4P‧‧‧電流槽電晶體 4P‧‧‧current slot transistor
4Q‧‧‧電流槽電晶體 4Q‧‧‧current slot transistor
6‧‧‧背光控制器積體電路 6‧‧‧Backlight controller integrated circuit
7‧‧‧背光微控制器 7‧‧‧Backlight Microcontroller
8‧‧‧純量積體電路 8‧‧‧ scalar integrated circuit
9‧‧‧切換模式電源供應器 9‧‧‧Switch mode power supply
10‧‧‧電流感測回饋信號 10‧‧‧ Current sensing feedback signal
11‧‧‧共同LED電源供應軌 11‧‧‧Common LED power supply rail
12‧‧‧序列周邊介面(SPI)匯流排 12‧‧‧Sequence Peripheral Interface (SPI) Busbars
21‧‧‧LED串 21‧‧‧LED string
22‧‧‧保護疊接箝制MOSFET 22‧‧‧Protect laminated MOSFETs
23‧‧‧積體高電壓電路二極體 23‧‧‧Integrated high voltage circuit diode
24‧‧‧電流槽MOSFET 24‧‧‧ Current Slot MOSFET
25‧‧‧電流感測I精確閘極驅動器電路 25‧‧‧ Current Sensing I Precision Gate Driver Circuit
26‧‧‧電流感測回饋電路 26‧‧‧ Current sensing feedback circuit
27‧‧‧LED故障電路 27‧‧‧LED fault circuit
28‧‧‧介面 28‧‧‧ interface
50‧‧‧LED驅動器 50‧‧‧LED driver
51‧‧‧LED驅動器IC 51‧‧‧LED Driver IC
52A‧‧‧LED串 52A‧‧‧LED string
52B‧‧‧LED串 52B‧‧‧LED string
53‧‧‧濾波電容器 53‧‧‧Filter capacitor
54‧‧‧Iset電阻器 54‧‧‧Iset resistor
55A‧‧‧電流槽DMOSFET 55A‧‧‧ Current Slot DMOSFET
55B‧‧‧電流槽DMOSFET 55B‧‧‧ Current Slot DMOSFET
56A‧‧‧I精確閘極驅動器電路/I精確電路 56A‧‧‧I Precision Gate Driver Circuit / I Precision Circuit
56B‧‧‧I精確閘極驅動器電路/I精確電路 56B‧‧‧I Precision Gate Driver Circuit / I Precision Circuit
57A‧‧‧疊接箝制DMOSFET 57A‧‧‧Drawing clamped DMOSFET
57B‧‧‧疊接箝制DMOSFET 57B‧‧‧Drawing clamped DMOSFET
58A‧‧‧積體高電壓二極體/PN二極體 58A‧‧‧Integrated high voltage diode/PN diode
58B‧‧‧積體高電壓二極體/PN二極體 58B‧‧‧Integrated high voltage diode/PN diode
59‧‧‧數位控制及時序電路 59‧‧‧Digital control and sequential circuits
60‧‧‧類比控制及感測電路 60‧‧‧ analog control and sensing circuit
61‧‧‧SLI(序列照明介面)匯流排位移暫存器 61‧‧‧SLI (Sequence Lighting Interface) Bus Displacement Register
62‧‧‧偏壓電路/偏壓供應及調節器 62‧‧‧Biasing Circuit / Bias Supply and Regulator
80‧‧‧LED驅動器 80‧‧‧LED driver
81‧‧‧LED驅動器IC 81‧‧‧LED Driver IC
81A‧‧‧LED驅動器IC 81A‧‧‧LED Driver IC
81H‧‧‧LED驅動器IC 81H‧‧‧LED Driver IC
82‧‧‧Iset電阻器 82‧‧‧Iset resistor
83A‧‧‧LED串 83A‧‧‧LED string
83B‧‧‧LED串 83B‧‧‧LED string
83C‧‧‧LED串 83C‧‧‧LED string
83D‧‧‧LED串 83D‧‧‧LED string
83E‧‧‧LED串 83E‧‧‧LED string
83F‧‧‧LED串 83F‧‧‧LED string
83G‧‧‧LED串 83G‧‧‧LED string
83H‧‧‧LED串 83H‧‧‧LED string
83I‧‧‧LED串 83I‧‧‧LED string
83J‧‧‧LED串 83J‧‧‧LED string
83K‧‧‧LED串 83K‧‧‧LED string
83L‧‧‧LED串 83L‧‧‧LED string
83M‧‧‧LED串 83M‧‧‧LED string
83N‧‧‧LED串 83N‧‧‧LED string
83P‧‧‧LED串 83P‧‧‧LED string
83Q‧‧‧LED串 83Q‧‧‧LED string
84‧‧‧偏壓供應及調節器/偏壓電路 84‧‧‧Pressure supply and regulator/bias circuit
85‧‧‧類比控制及感測電路 85‧‧‧ analog control and sensing circuit
85A‧‧‧類比控制及感測電路 85A‧‧‧ analog control and sensing circuit
85H‧‧‧類比控制及感測電路 85H‧‧‧ analog control and sensing circuit
86A‧‧‧I精確閘極驅動器電路 86A‧‧‧I Precision Gate Driver Circuit
86B‧‧‧I精確閘極驅動器電路 86B‧‧‧I Precision Gate Driver Circuit
86P‧‧‧I精確閘極驅動器電路 86P‧‧‧I Precision Gate Driver Circuit
86Q‧‧‧I精確閘極驅動器電路 86Q‧‧‧I Precision Gate Driver Circuit
87A‧‧‧電流槽DMOSFET 87A‧‧‧ Current Slot DMOSFET
87B‧‧‧電流槽DMOSFET 87B‧‧‧ Current Slot DMOSFET
87P‧‧‧電流槽DMOSFET 87P‧‧‧ Current Slot DMOSFET
87Q‧‧‧電流槽DMOSFET 87Q‧‧‧ Current Slot DMOSFET
88A‧‧‧積體HV二極體 88A‧‧‧Integrated HV diode
88B‧‧‧積體HV二極體 88B‧‧‧Integrated HV diode
88P‧‧‧積體HV二極體 88P‧‧‧Integrated HV diode
88Q‧‧‧積體HV二極體 88Q‧‧‧Integrated HV diode
89‧‧‧數位控制及時序電路 89‧‧‧Digital control and sequential circuits
89A‧‧‧數位控制及時序電路 89A‧‧‧Digital Control and Timing Circuit
89H‧‧‧數位控制及時序電路 89H‧‧‧Digital Control and Sequencing Circuit
90‧‧‧序列照明介面匯流排 90‧‧‧Sequence lighting interface bus
90A‧‧‧序列照明介面匯流排/SLI匯流排位移暫存器 90A‧‧‧Sequence Lighting Interface Bus/SLI Bus Displacement Register
90H‧‧‧序列照明介面匯流排 90H‧‧‧Sequence lighting interface bus
100‧‧‧分散式多通道LED背光驅動器系統 100‧‧‧Distributed multi-channel LED backlight driver system
101‧‧‧介面積體電路(IC) 101‧‧‧Intermediate area circuit (IC)
102‧‧‧電容器 102‧‧‧ capacitor
107‧‧‧共同信號線 107‧‧‧Common signal line
108‧‧‧切換模式電源供應器 108‧‧‧Switch mode power supply
109‧‧‧線 109‧‧‧ line
110‧‧‧固定+24V供應軌 110‧‧‧Fixed +24V supply rail
111‧‧‧電流回饋信號 111‧‧‧ Current feedback signal
112A‧‧‧CSFB線 112A‧‧‧CSFB line
112B‧‧‧CSFB線 112B‧‧‧CSFB line
112C‧‧‧CSFB線 112C‧‧‧CSFB line
112D‧‧‧CSFB線 112D‧‧‧CSFB line
112E‧‧‧CSFB線 112E‧‧‧CSFB line
112F‧‧‧CSFB線 112F‧‧‧CSFB line
112G‧‧‧CSFB線 112G‧‧‧CSFB line
112H‧‧‧CSFB線 112H‧‧‧CSFB line
112I‧‧‧CSFB線 112I‧‧‧CSFB line
113A‧‧‧信號線 113A‧‧‧ signal line
113B‧‧‧信號線 113B‧‧‧ signal line
113C‧‧‧信號線 113C‧‧‧ signal line
113D‧‧‧信號線 113D‧‧‧ signal line
113E‧‧‧信號線 113E‧‧‧ signal line
113F‧‧‧信號線 113F‧‧‧ signal line
113G‧‧‧信號線 113G‧‧‧ signal line
113H‧‧‧信號線 113H‧‧‧ signal line
113I‧‧‧信號線 113I‧‧‧ signal line
122‧‧‧序列周邊介面匯流排 122‧‧‧Sequence peripheral interface bus
123‧‧‧序列照明介面單元/序列照明介面匯流排電路 123‧‧‧Sequence illumination interface unit/sequence illumination interface busbar circuit
124‧‧‧時序及控制單元 124‧‧‧Sequence and Control Unit
125‧‧‧電壓參考源 125‧‧‧Voltage Reference Source
126‧‧‧偏壓供應單元 126‧‧‧ bias supply unit
127‧‧‧運算跨導放大器 127‧‧‧Operation transconductance amplifier
152‧‧‧主機μC 152‧‧‧Host μC
153‧‧‧純量積體電路 153‧‧‧ scalar integrated circuit
204‧‧‧電阻器 204‧‧‧Resistors
210A‧‧‧鎖存器及計數器A電路 210A‧‧‧Latch and counter A circuit
210B‧‧‧鎖存器及計數器B電路 210B‧‧‧Latch and Counter B Circuit
211A‧‧‧D鎖存器 211A‧‧‧D latch
211B‧‧‧D鎖存器 211B‧‧‧D latch
212A‧‧‧Φ鎖存器 212A‧‧‧Φ latch
212B‧‧‧Φ鎖存器 212B‧‧‧Φ latch
213A‧‧‧D/A轉換器 213A‧‧D/A converter
213B‧‧‧D/A轉換器 213B‧‧D/A converter
214‧‧‧故障鎖存電路 214‧‧‧Fault latch circuit
215‧‧‧LED故障偵測電路 215‧‧‧LED fault detection circuit
216‧‧‧溫度偵測電路 216‧‧‧ Temperature detection circuit
217‧‧‧參考電流源 217‧‧‧Reference current source
218‧‧‧電流感測回饋電路 218‧‧‧ Current sensing feedback circuit
219‧‧‧MOSFET 219‧‧‧MOSFET
220A‧‧‧PWM A暫存器 220A‧‧‧PWM A register
220B‧‧‧PWM B暫存器 220B‧‧‧PWM B register
221A‧‧‧相位A暫存器 221A‧‧‧ Phase A register
221B‧‧‧相位B暫存器 221B‧‧‧ Phase B register
222A‧‧‧像點A暫存器 222A‧‧‧Spot A register
222B‧‧‧像點B暫存器 222B‧‧‧like point B register
224‧‧‧故障設定暫存器 224‧‧‧Fault setting register
225‧‧‧故障狀態暫存器 225‧‧‧ Fault Status Register
250‧‧‧LED驅動器系統 250‧‧‧LED Driver System
251A‧‧‧LED驅動器IC 251A‧‧‧LED Driver IC
251B‧‧‧LED驅動器IC 251B‧‧‧LED Driver IC
251C‧‧‧LED驅動器IC 251C‧‧‧LED Driver IC
251D‧‧‧LED驅動器IC 251D‧‧‧LED Driver IC
251E‧‧‧LED驅動器IC 251E‧‧‧LED Driver IC
251F‧‧‧LED驅動器IC 251F‧‧‧LED Driver IC
251G‧‧‧LED驅動器IC 251G‧‧‧LED Driver IC
251H‧‧‧LED驅動器IC 251H‧‧‧LED Driver IC
252‧‧‧介面IC 252‧‧‧Interface IC
253‧‧‧資料序列 253‧‧‧ data sequence
301‧‧‧LED驅動器IC 301‧‧‧LED Driver IC
302‧‧‧電流設定電阻器 302‧‧‧ Current setting resistor
303A‧‧‧LED串 303A‧‧‧LED string
303B‧‧‧LED串 303B‧‧‧LED string
303C‧‧‧LED串 303C‧‧‧LED string
303D‧‧‧LED串 303D‧‧‧LED string
304‧‧‧偏壓供應 304‧‧‧ bias supply
306A‧‧‧I精確閘極驅動器電路 306A‧‧‧I Precision Gate Driver Circuit
306B‧‧‧I精確閘極驅動器電路 306B‧‧‧I Precision Gate Driver Circuit
306C‧‧‧I精確閘極驅動器電路 306C‧‧‧I Precision Gate Driver Circuit
306D‧‧‧I精確閘極驅動器電路 306D‧‧‧I Precision Gate Driver Circuit
307A‧‧‧電流槽DMOSFET 307A‧‧‧ Current Slot DMOSFET
307B‧‧‧電流槽DMOSFET 307B‧‧‧ Current Slot DMOSFET
307C‧‧‧電流槽DMOSFET 307C‧‧‧ Current Slot DMOSFET
307D‧‧‧電流槽DMOSFET 307D‧‧‧ Current Slot DMOSFET
308A‧‧‧高電壓二極體 308A‧‧‧High Voltage Diode
308B‧‧‧高電壓二極體 308B‧‧‧High Voltage Diode
308C‧‧‧高電壓二極體 308C‧‧‧High Voltage Diode
308D‧‧‧高電壓二極體 308D‧‧‧High Voltage Diode
309‧‧‧數位控制及時序電路 309‧‧‧Digital control and sequential circuits
310‧‧‧類比控制及感測電路 310‧‧‧ analog control and sensing circuit
311‧‧‧SLI匯流排位移暫存器 311‧‧‧SLI busbar displacement register
312‧‧‧首碼暫存器 312‧‧‧first code register
312C‧‧‧首碼暫存器/通道首碼暫存器 312C‧‧‧First Code Scratchpad/Channel First Code Scratchpad
312F‧‧‧首碼暫存器/功能首碼暫存器 312F‧‧‧first code register/function first code register
313‧‧‧資料暫存器 313‧‧‧data register
354‧‧‧故障狀態暫存器 354‧‧‧ Fault Status Register
355‧‧‧故障狀態暫存器 355‧‧‧ Fault Status Register
402‧‧‧數位控制及時序電路 402‧‧‧Digital Control and Sequential Circuits
403‧‧‧類比控制及感測電流 403‧‧‧ analog control and sensing current
410‧‧‧SLI匯流排 410‧‧‧SLI busbar
410A‧‧‧鎖存器及計數器A電路 410A‧‧‧Latch and counter A circuit
410B‧‧‧鎖存器及計數器B電路 410B‧‧‧Latch and Counter B Circuit
411A‧‧‧D鎖存器 411A‧‧‧D latch
411B‧‧‧D鎖存器 411B‧‧‧D latch
412A‧‧‧Φ鎖存器 412A‧‧‧Φ latch
412B‧‧‧Φ鎖存器 412B‧‧‧Φ latch
413A‧‧‧D/A轉換器 413A‧‧D/A converter
413B‧‧‧D/A轉換器 413B‧‧D/A converter
414‧‧‧故障鎖存電路 414‧‧‧Fault latch circuit
419‧‧‧首碼解碼器及多工器電路 419‧‧‧first code decoder and multiplexer circuit
451‧‧‧首碼解碼器 451‧‧‧first code decoder
452‧‧‧功能選擇輸出 452‧‧‧ function selection output
453‧‧‧通道選擇輸出 453‧‧‧Channel selection output
454‧‧‧多工器電路 454‧‧‧Multiplexer Circuit
455‧‧‧鎖存器 455‧‧‧Latch
456‧‧‧類比或數位功能 456‧‧‧ analog or digital function
457‧‧‧通道 457‧‧‧ channel
491‧‧‧解碼器 491‧‧‧Decoder
492‧‧‧多工器 492‧‧‧Multiplexer
501‧‧‧四通道LED驅動器IC 501‧‧‧4-channel LED driver IC
503A‧‧‧LED串 503A‧‧‧LED string
503B‧‧‧LED串 503B‧‧‧LED string
503C‧‧‧LED串 503C‧‧‧LED string
503D‧‧‧LED串 503D‧‧‧LED string
506A‧‧‧I精確閘極驅動器電路 506A‧‧‧I Precision Gate Driver Circuit
506B‧‧‧I精確閘極驅動器電路 506B‧‧‧I Precision Gate Driver Circuit
506C‧‧‧I精確閘極驅動器電路 506C‧‧‧I Precision Gate Driver Circuit
506D‧‧‧I精確閘極驅動器電路 506D‧‧‧I Precision Gate Driver Circuit
507A‧‧‧電流槽DMOSFET 507A‧‧‧ Current Slot DMOSFET
507B‧‧‧電流槽DMOSFET 507B‧‧‧ Current Slot DMOSFET
507C‧‧‧電流槽DMOSFET 507C‧‧‧ Current Slot DMOSFET
507D‧‧‧電流槽DMOSFET 507D‧‧‧ Current Slot DMOSFET
509‧‧‧數位控制及時序電路 509‧‧‧Digital control and sequential circuits
510‧‧‧類比控制及感測電路 510‧‧‧ analog control and sensing circuit
511‧‧‧多工器 511‧‧‧Multiplexer
512‧‧‧SLI匯流排位移暫存器/SLI匯流排介面 512‧‧‧SLI Bus Displacement Register/SLI Bus Interface
513‧‧‧解碼器 513‧‧‧Decoder
531‧‧‧LED驅動器IC 531‧‧‧LED Driver IC
539‧‧‧數位控制及時序電路 539‧‧‧Digital control and sequential circuits
540‧‧‧類比控制及感測電路 540‧‧‧ analog control and sensing circuit
541‧‧‧雙通道多工器 541‧‧‧Double-channel multiplexer
542A‧‧‧SLI匯流排位移暫存器 542A‧‧‧SLI busbar displacement register
542B‧‧‧SLI匯流排位移暫存器 542B‧‧‧SLI Bus Displacement Register
543A‧‧‧解碼器 543A‧‧‧Decoder
543B‧‧‧解碼器 543B‧‧‧Decoder
601‧‧‧解碼器 601‧‧‧Decoder
602C‧‧‧量值比較器 602C‧‧‧ magnitude comparator
602F‧‧‧量值比較器 602F‧‧‧ magnitude comparator
603‧‧‧數位邏輯閘 603‧‧‧Digital Logic Gate
604‧‧‧多工器 604‧‧‧Multiplexer
605C‧‧‧解碼鍵/通道選擇碼鍵 605C‧‧‧Decoding key/channel selection code key
605F‧‧‧解碼鍵/功能選擇碼鍵 605F‧‧‧Decode/Function Code Key
606‧‧‧功能鎖存器 606‧‧‧ function latch
607‧‧‧功能鎖存器庫 607‧‧‧Function Latch Library
611‧‧‧解碼器 611‧‧‧Decoder
612C‧‧‧量值比較器 612C‧‧‧ magnitude comparator
612F‧‧‧量值比較器 612F‧‧‧ magnitude comparator
613‧‧‧AND閘 613‧‧‧AND gate
614‧‧‧多工器 614‧‧‧Multiplexer
615C‧‧‧暫存器 615C‧‧‧ register
615F‧‧‧暫存器 615F‧‧‧ register
616‧‧‧功能鎖存器 616‧‧‧ function latch
621‧‧‧解碼器 621‧‧‧Decoder
622C‧‧‧量值比較器 622C‧‧‧Quantity Comparator
622F‧‧‧量值比較器 622F‧‧‧ magnitude comparator
623‧‧‧AND閘 623‧‧‧AND gate
624‧‧‧多工器 624‧‧‧Multiplexer
625C‧‧‧暫存器 625C‧‧‧ register
625F‧‧‧暫存器 625F‧‧‧ register
626‧‧‧功能鎖存器 626‧‧‧ function latch
626A‧‧‧功能鎖存器 626A‧‧‧ function latch
626B‧‧‧功能鎖存器 626B‧‧‧ function latch
631‧‧‧量值比較器 631‧‧‧Value comparator
632‧‧‧NOR閘/XNOR閘 632‧‧‧NOR gate/XNOR gate
633‧‧‧NOR閘/XNOR閘 633‧‧‧NOR gate/XNOR gate
634‧‧‧NOR閘 634‧‧‧NOR gate
635‧‧‧AND閘 635‧‧‧AND gate
636‧‧‧通道或功能碼鍵 636‧‧‧channel or function code key
637‧‧‧多通道量值比較器閘 637‧‧‧Multi-channel magnitude comparator gate
641A‧‧‧量值比較器 641A‧‧‧ magnitude comparator
641B‧‧‧量值比較器 641B‧‧‧Value comparator
641D‧‧‧量值比較器 641D‧‧‧ magnitude comparator
642A‧‧‧量值比較器 642A‧‧‧Value comparator
642B‧‧‧量值比較器 642B‧‧‧ magnitude comparator
642H‧‧‧量值比較器 642H‧‧‧ magnitude comparator
643A1‧‧‧邏輯AND閘 643A1‧‧‧Logical AND gate
643B1‧‧‧邏輯AND閘 643B1‧‧‧Logical AND gate
643A2‧‧‧邏輯AND閘 643A2‧‧‧Logical AND gate
643D8‧‧‧邏輯AND閘 643D8‧‧‧Logical AND gate
644A‧‧‧反相器 644A‧‧‧Inverter
644B‧‧‧反相器 644B‧‧‧Inverter
645A‧‧‧P通道MOSFET 645A‧‧‧P channel MOSFET
645L‧‧‧P通道MOSFET 645L‧‧‧P channel MOSFET
646A‧‧‧P通道MOSFET 646A‧‧‧P channel MOSFET
646H‧‧‧P通道MOSFET 646H‧‧‧P channel MOSFET
647‧‧‧經解碼之通道匯流排/四通道匯流排線 647‧‧‧Decoded channel bus/four channel bus
648‧‧‧經解碼之功能匯流排/八功能匯流排線 648‧‧‧Decoded function bus/eight function bus
649‧‧‧資料匯流排 649‧‧‧ data bus
655‧‧‧預負載鎖存器 655‧‧‧Preloaded latches
656‧‧‧主動功能鎖存器 656‧‧‧Active function latch
657‧‧‧控制功能 657‧‧‧Control function
701A‧‧‧LED驅動器IC 701A‧‧‧LED Driver IC
701B‧‧‧LED驅動器IC 701B‧‧‧LED Driver IC
701C‧‧‧LED驅動器IC 701C‧‧‧LED Driver IC
701D‧‧‧LED驅動器IC 701D‧‧‧LED Driver IC
701E‧‧‧LED驅動器IC 701E‧‧‧LED Driver IC
701F‧‧‧LED驅動器IC 701F‧‧‧LED Driver IC
701G‧‧‧LED驅動器IC 701G‧‧‧LED Driver IC
701H‧‧‧LED驅動器IC 701H‧‧‧LED Driver IC
771‧‧‧序列時脈SCK信號 771‧‧‧Sequence clock SCK signal
773‧‧‧預負載鎖存器 773‧‧‧Preloaded latches
774‧‧‧持續時間 774‧‧‧ Duration
801‧‧‧時序波形/SCK脈衝 801‧‧‧Timed Waveform/SCK Pulse
802‧‧‧時序波形/Vsync脈衝 802‧‧‧Timed Waveform/Vsync Pulse
803A‧‧‧SCK叢發 803A‧‧‧SCK Crowd
803B‧‧‧SCK叢發 803B‧‧‧SCK Crowd
803C‧‧‧SCK叢發 803C‧‧‧SCK Crowd
803D‧‧‧SCK叢發 803D‧‧‧SCK bursts
803E‧‧‧SCK叢發 803E‧‧‧SCK Crowd
803F‧‧‧SCK叢發 803F‧‧‧SCK
803G‧‧‧SCK叢發 803G‧‧‧SCK bursts
803H‧‧‧SCK叢發 803H‧‧‧SCK bursts
851‧‧‧資料序列 851‧‧‧ data sequence
852‧‧‧資料序列 852‧‧‧ data sequence
891‧‧‧廣播序列 891‧‧‧Broadcast sequence
b1、b8、b12‧‧‧匯流排位元 b 1 , b 8 , b 12 ‧ ‧ bus bar
CSFBI‧‧‧輸入接針 CSFBI‧‧‧ input pin
CSFBO‧‧‧輸出接針 CSFBO‧‧‧ output pin
DB‧‧‧資料 D B ‧‧‧Information
DD‧‧‧資料 D D ‧‧‧Information
DF‧‧‧資料 D F ‧‧‧Information
DH‧‧‧資料 D H ‧‧‧Information
DJ‧‧‧資料 D J ‧‧‧Information
DL‧‧‧資料 D L ‧‧‧Information
DN‧‧‧資料 D N ‧‧‧Information
DQ‧‧‧資料 D Q ‧‧‧Information
FLT‧‧‧數位故障線/故障中斷線 FLT‧‧‧Digital Fault Line/Fault Interrupt Line
GSC‧‧‧灰階時脈 GSC‧‧‧ Grayscale Clock
SC‧‧‧序列時脈 SC‧‧‧Sequence Clock
SCK‧‧‧數位時脈線/序列時脈 SCK‧‧‧Digital Clock/Sequence Clock
SI‧‧‧序列輸入 SI‧‧‧Sequence input
SO‧‧‧序列輸出 SO‧‧‧Sequence output
tlatch‧‧‧持續時間 t latch ‧ ‧ duration
Vcc‧‧‧電源 Vcc‧‧‧ power supply
Vref‧‧‧參考電壓 Vref‧‧‧reference voltage
Vsync‧‧‧數位時脈線/脈衝 Vsync‧‧‧ digit clock/pulse
圖1繪示使用離散DMOSFET作為整合電流槽及保護電壓箝制之用於LCD背光之一先前技術多通道LED驅動系統之一圖式。 1 illustrates a diagram of a prior art multi-channel LED drive system for a LCD backlight using discrete DMOSFETs as integrated current sinks and protection voltage clamps.
圖2A係使用一離散DMOSFET作為具有一保護高電壓疊接箝制DMOSFET之一電流槽之一個別LED驅動通道之一示意電路圖。 2A is a schematic circuit diagram of an individual LED drive channel using one discrete DMOSFET as one of the current slots of a DMOSFET with a protection high voltage splicing clamp.
圖2B係使用一離散高電壓DMOSFET作為不具有一疊接箝制之一電流槽之一個別LED驅動通道之一示意電路圖。 2B is a schematic circuit diagram of a discrete high voltage DMOSFET as one of the individual LED drive channels without one of the stacking current slots.
圖3A係具有序列匯流排控制及一保護高電壓疊接箝制DMOSFET之一雙通道高電壓智慧型LED驅動器之一示意電路圖。 Figure 3A is a schematic circuit diagram of a dual channel high voltage smart LED driver with serial bus control and a protection high voltage spliced clamp DMOSFET.
圖3B係具有序列匯流排控制及一高電壓電流槽MOSFET而無一疊接箝制MOSFET之一雙通道高電壓智慧型LED驅動器之一示意電路圖。 Figure 3B is a schematic circuit diagram of a dual-channel high-voltage smart LED driver with serial bus control and a high-voltage current-slot MOSFET without a stacked clamp MOSFET.
圖4係包括具有一電流感測回饋(CSFB)系統及一SLI序列匯流排之智慧型LED驅動器之一多通道LED背光系統之一示意電路圖。 4 is a schematic circuit diagram of a multi-channel LED backlight system including a smart LED driver having a current sense feedback (CSFB) system and an SLI sequence bus.
圖5係圖4中所展示之系統之一簡化示意圖,其繪示可使用具有SLI序列匯流排控制及一低接針數介面IC封裝之智慧型LED驅動器而達成之明顯減少之建造材料(BOM)。 Figure 5 is a simplified schematic diagram of one of the systems shown in Figure 4, showing a significantly reduced construction material (BOM) that can be achieved using smart LED drivers with SLI sequence bus control and a low pin count interface IC package. ).
圖6係一雙通道智慧型LED驅動器中具有一對應數位控制及時序(DC&T)及類比控制及感測(AC&S)之「複雜型」SLI匯流排暫存器之一方塊圖。 Figure 6 is a block diagram of a "complex" SLI bus register with a corresponding digital control and timing (DC&T) and analog control and sensing (AC&S) in a dual channel smart LED driver.
圖7係控制多個LED驅動器之一SLI匯流排之一時序圖。 Figure 7 is a timing diagram of one of the SLI bus bars controlling a plurality of LED drivers.
圖8係具有一SLI匯流排及高電壓電流槽MOSFET而無疊接箝制MOSFET之之一四通道高電壓智慧型LED驅動器之一示意電路圖。 Figure 8 is a schematic circuit diagram of one of four-channel high-voltage smart LED drivers with an SLI bus and high voltage current-slot MOSFET and no stacked clamp MOSFET.
圖9係一四通道LED驅動器IC之一「複雜型」SLI匯流排之一繪示。 Figure 9 is a diagram of one of the "complex" SLI busbars of a four-channel LED driver IC.
圖10係繪示一雙通道智慧型LED驅動器中具有一對應數位控制及時序(DC&T)及類比控制及感測(AC&S)之一首碼多工SLI匯流排暫存器之一方塊圖。 FIG. 10 is a block diagram showing a dual-channel smart LED driver having a corresponding digital control and timing (DC&T) and analog control and sensing (AC&S) one of the first code multiplexed SLI bus registers.
圖11係包含通道及功能解碼之一首碼多工SLI匯流排之一方塊圖。 Figure 11 is a block diagram of one of the first code multiplexed SLI bus bars including channel and function decoding.
圖12A係具有首碼多工SLI匯流排控制及一單一多工器之一雙通道高電壓智慧型LED驅動器之一示意電路圖。 Figure 12A is a schematic circuit diagram of one of the dual-channel high voltage smart LED drivers with first code multiplexed SLI bus control and a single multiplexer.
圖12B係具有首碼多工SLI匯流排控制及一單一多工器之一四通 道高電壓智慧型LED驅動器之一示意電路圖。 Figure 12B is a first code multiplex SLI bus control and a single multiplexer One of the high-voltage smart LED drivers is a schematic circuit diagram.
圖12C係具有首碼多工SLI匯流排控制及一雙多工器之一四通道高電壓智慧型LED驅動器之一示意電路圖。 Figure 12C is a schematic circuit diagram of one of the four-channel high voltage smart LED drivers with first code multiplexed SLI bus control and one dual multiplexer.
圖13A展示包括一4通道8功能SLI匯流排解碼器及一多工器之一LED驅動器IC之實施例。 Figure 13A shows an embodiment of a LED driver IC including a 4-channel 8-function SLI bus decoder and a multiplexer.
圖13B展示包括一4通道4功能SLI匯流排解碼器及一多工器之一LED驅動器IC之實施例。 Figure 13B shows an embodiment of a LED driver IC including a 4-channel 4-function SLI bus decoder and a multiplexer.
圖13C展示包括一2通道4功能SLI匯流排解碼器及一多工器之一LED驅動器IC之實施例。 Figure 13C shows an embodiment of a LED driver IC including a 2-channel 4-function SLI bus decoder and a multiplexer.
圖13D展示一量值比較器之一實例。 Figure 13D shows an example of a magnitude comparator.
圖13E展示使用AND閘及一多工器之一功能及通道解碼器之一實例。 Figure 13E shows an example of a function and channel decoder using an AND gate and a multiplexer.
圖14係繪示具有包含預負載鎖存器及主動鎖存器之三階層暫存器-鎖存器架構之一首碼多工SLI匯流排暫存器之一方塊圖。 14 is a block diagram showing one of the three-level register-latch architectures including a pre-loaded latch and an active latch, a first-code multiplexed SLI bus register.
圖15繪示包括具有四個獨立功能之八個LED驅動器IC之一16通道系統之一SLI匯流排資料序列。 Figure 15 illustrates an SLI bus data sequence including one of the six channel driver ICs having four independent functions.
圖16A係展示用於具有多個功能暫存器之一SLI匯流排之初始化及暫存器更新演算法之一流程圖。 Figure 16A shows a flow diagram of an initialization and scratchpad update algorithm for an SLI bus with one of a plurality of function registers.
圖16B係繪示同步寫入至多個預負載鎖存器之程序之一流程圖。 Figure 16B is a flow chart showing one of the procedures for synchronously writing to a plurality of preload latches.
圖16C繪示具有8個LED驅動器IC之一16通道4功能系統之一資料序列。 Figure 16C shows a data sequence of one of the 16 channel 4 functional systems with one of the eight LED driver ICs.
圖17A繪示用於僅更新一16通道系統中之PWM鎖存器之一資料序列。 Figure 17A illustrates a sequence of data for updating only one of the PWM latches in a 16 channel system.
圖17B繪示用於使用一「隨意」首碼狀態而選擇性更新通道之一資料序列。 Figure 17B illustrates a sequence of data for selectively updating a channel using a "casual" first code state.
圖17C繪示一單一SLI匯流排廣播中之通道、功能及隨意指令之 一混合之一資料序列。 17C illustrates channels, functions, and arbitrary commands in a single SLI bus broadcast. A mix of one data sequence.
如背景段落中所描述,TV及大螢幕LCD之現有背光解決方案係複雜、昂貴及沒有彈性。為減少具有區域調光之LCD之背光系統之成本而不犧牲安全及可靠操作顯然需要一全新架構,其至少消除離散MOSFET、最小化任意組件內之熱集中、促進超溫偵測及熱保護且保護低電壓組件不受高電壓影響。儘管滿足此等目的可能尚不足以達成能滿足家用電子產品市場錙銖必較之成本目標之一真正符合成本效益之解決方案,然此一改良係朝向實現低成本區域調光之此一目的之一必要第一步驟。 As described in the background paragraph, existing backlight solutions for TV and large screen LCDs are complex, expensive, and inelastic. To reduce the cost of backlighting systems with regional dimming LCDs without sacrificing safety and reliable operation, a new architecture is needed that eliminates at least discrete MOSFETs, minimizes thermal concentration within any component, facilitates overtemperature detection, and thermal protection. Protect low voltage components from high voltages. While meeting these objectives may not be sufficient to achieve a cost-effective solution that meets one of the cost targets of the home electronics market, this improvement is one of the goals of achieving low-cost regional dimming. The first step is necessary.
本文所描述之本發明使得新的符合成本效益及可縮放架構能夠實現具有節能區域調光能力之大螢幕LCD及TV之安全及經濟上可行之LED背光解決方案。此新的LED驅動系統、功能分配及架構克服上述成本、功能性問題及高接針數封裝之需要。該新架構基於某些基本前提,其包含: The invention described herein enables a new cost effective and scalable architecture to enable safe and economically viable LED backlighting solutions for large screen LCDs and TVs with energy efficient regional dimming capabilities. This new LED driver system, feature distribution and architecture overcomes these cost, functional issues and the need for high pin count packages. The new architecture is based on some basic premises, including:
1.電流槽MOSFET之類比控制、感測及保護在功能上應與電流槽MOSFET本身一起整合在相同IC中,而非分離成另一IC。 1. The analog control, sensing and protection of the current-slot MOSFET should be functionally integrated with the current-slot MOSFET itself in the same IC rather than being separated into another IC.
2.基本調光、相位延遲功能、LED電流控制及通道特定功能在功能上應與電流槽MOSFET一起整合在相同IC中,而非分離成另一IC。 2. Basic dimming, phase delay, LED current control, and channel-specific functions should be functionally integrated with the current-slot MOSFET in the same IC rather than being separated into another IC.
3.系統時序、系統μC主機協商及並非一特定通道獨有之其他全域參數及功能在功能上不應與電流槽MOSFET一起整合在相同IC中。 3. System timing, system μC host negotiation, and other global parameters and functions not unique to a particular channel should not be functionally integrated with the current slot MOSFET in the same IC.
4.一裝置封裝中之通道(亦即,電流槽MOSFET)之數量應經設計用於熱管理(亦即,避免過熱),同時滿足指定LED電流、供應電壓及LED正向電壓失配要求。 4. The number of channels (ie, current-slot MOSFETs) in a device package should be designed for thermal management (ie, avoiding overheating) while meeting specified LED current, supply voltage, and LED forward voltage mismatch requirements.
5.多通道LED驅動器IC之通信及控制應採用一低接針數封裝, 理想上,在中央介面IC以及各驅動器IC上需要總共不多於三個封裝接針。通信電路應僅佔據驅動器IC之晶粒面積及成本之一小部分。 5. The communication and control of the multi-channel LED driver IC should be packaged in a low pin count. Ideally, no more than three package pins are required on the central interface IC and each driver IC. The communication circuit should occupy only a small portion of the die area and cost of the driver IC.
6.介面IC及LED驅動器IC之功能整合之位準應經平衡以促進使用與單一層PCB總成相容之低成本及低接針數封裝。 6. The functional integration of the interface IC and LED driver IC should be balanced to facilitate the use of low cost and low pin count packages that are compatible with a single layer PCB assembly.
7.在理想上,該系統應彈性縮放至任意數量之通道而不需要該等IC之明顯重新設計。 7. Ideally, the system should be flexibly scaled to any number of channels without the need for significant redesign of such ICs.
圖1之習知架構(亦即,驅動數個離散功率MOSFET之一集中控制器)未能滿足上述目的之甚至一者,此主要係因為其需要控制之一中央點或「命令中心」用於所有數位及類比資訊處理。必要地,該命令中心IC必須與其μC主機通信以及直接感測及驅動每個電流槽MOSFET。此高度組件連通性需要大量輸入及輸出線,使高接針數封裝成為必要。 The conventional architecture of Figure 1 (i.e., a centralized controller that drives several discrete power MOSFETs) fails to meet even one of the above objectives, primarily because it requires control of a central point or "command center" for All digital and analog information processing. Necessarily, the command center IC must communicate with its μC master and directly sense and drive each current sink MOSFET. This high component connectivity requires a large number of input and output lines, making high pin count packages necessary.
先前技術系統之問題之解決方案為一「分散式」系統,缺少中央控制的分散式系統。在本文所描述之分散式系統中,一介面IC將自主機μC獲得之資訊轉譯成一簡單序列通信協定,在一序列匯流排上以數位方式將指令發送至任意數量之「智慧型」衛星LED驅動器IC。滿足上述準則之一LED驅動器之實施方案係描述於上文所引用之申請案第13/346,625號中。為簡潔之故,不在本文重複與本申請案之標的相關之本申請案之主要概念,包含介面及LED驅動器IC之描述、及「序列照明介面」(或SLI)匯流排(包含與控制LED照明具體相關之參數之一協定)之操作。 The solution to the problem of prior art systems is a "decentralized" system, lacking a centrally controlled, decentralized system. In the decentralized system described herein, an interface IC translates information obtained from the host μC into a simple sequence communication protocol that digitally routes instructions to any number of "smart" satellite LED drivers on a sequence of busses. IC. An embodiment of an LED driver that satisfies one of the above criteria is described in the above-cited application Serial No. 13/346,625. For the sake of brevity, the main concepts of this application, which are related to the subject matter of this application, are repeated in this document, including the description of the interface and LED driver IC, and the "Sequence Lighting Interface" (or SLI) bus (including and controlling LED lighting). The operation of one of the specific related parameters is agreed.
在一較佳實施例中,SLI匯流排除了促進LED驅動器之控制之外,亦以「菊鏈方式」連接返回至介面IC,使得在驅動器IC之任意者中發生之故障狀態(諸如,一斷路LED、一短路LED或一超溫故障)可傳達返回至該介面IC且最終傳達至主機μC。各驅動器IC回應於其SLI 匯流排數位指令,在沒有介面IC之協助下,局部執行所有必要的LED驅動器功能,諸如,動態精確LED電流控制、PWM亮度控制、相位延遲及故障偵測。 In a preferred embodiment, the SLI sink eliminates the control of the LED driver and also returns to the interface IC in a "daisy chain" connection, causing a fault condition (such as an open circuit) to occur in any of the driver ICs. The LED, a shorted LED or an overtemperature fault can be communicated back to the interface IC and ultimately to the host μC. Each driver IC responds to its SLI Bus digital instructions, with the help of interface ICs, perform all necessary LED driver functions, such as dynamic precision LED current control, PWM brightness control, phase delay and fault detection.
各LED驅動器IC亦包含用於一類比電流感測回饋(CSFB)信號之輸入及輸出接針。CSFB線將LED驅動IC與介面IC連接成一第二菊鏈以容許該介面IC提供一回饋信號至高電壓切換模式電源供應器(SMPS),其動態調節給LED串供電之電壓。在此架構下,一雙通道LED驅動器IC可輕易適配於一標準SOP 16封裝或任意類似引線封裝中。 Each LED driver IC also includes input and output pins for a similar current sense feedback (CSFB) signal. The CSFB line connects the LED driver IC to the interface IC to form a second daisy chain to allow the interface IC to provide a feedback signal to a high voltage switched mode power supply (SMPS) that dynamically regulates the voltage supplied to the LED string. Under this architecture, a dual channel LED driver IC can be easily adapted to a standard SOP 16 package or any similar lead package.
在介面IC之SPI匯流排至SLI匯流排轉譯責任以外,介面IC還供應一參考電壓至確保良好電流匹配所需之所有LED驅動器IC、產生Vsync及灰階時脈GSC脈衝以使其等操作同步,及監測每個LED驅動器IC的可能故障。其亦促進使用一晶片上運算跨導放大器或OTA將CSFB信號至ICSFB信號的電壓至電流轉譯。介面IC即使具有所有上述功能性,亦可輕易適配於一SOP 16封裝中。 In addition to the SPI bus-to-SLI bus translation responsibility of the interface IC, the interface IC also supplies a reference voltage to all LED driver ICs required to ensure good current matching, generating Vsync and gray-scale clock GSC pulses to synchronize their operation. And monitor for possible failures of each LED driver IC. It also facilitates voltage-to-current translation of the CSFB signal to the ICSFB signal using an on-wafer transconductance amplifier or OTA. Even with all of the above features, the interface IC can be easily adapted to an SOP 16 package.
本申請案描述一種改良序列通信協定及減小與SLI匯流排之實體介面相關聯之電路之大小之方法。此等改良明確表達於下文的標題「經改良之SLI匯流排介面及協定」下。然而,一開始,有用的係描述受序列匯流排控制之LED驅動器之基本架構、視訊系統介面IC及第一代「複雜型」SLI匯流排協定。 This application describes an improved sequence communication protocol and method of reducing the size of circuitry associated with the physical interface of the SLI bus. These improvements are expressly expressed in the heading "Improved SLI Bus Interfaces and Agreements" below. However, in the beginning, useful descriptions describe the basic architecture of LED drivers controlled by serial bus, video system interface ICs, and the first generation of "complex" SLI bus protocol.
在圖3A中展示形成於一LED驅動器IC 51中之根據本發明之一LED驅動器50之一實施例。整合於一LED驅動器IC 51中之LED驅動器50為一雙通道驅動器,其包括整合電流槽DMOSFET 55A及55B、具有積體高電壓二極體58A及58B之疊接箝制DMOSFET 57A及57B、用於準確電流控制之I精確閘極驅動器電路56A及56B、一類比控制及感 測電路60及一數位控制及時序電路59。一晶片上偏壓供應及調節器62給該IC供電。 One embodiment of an LED driver 50 in accordance with the present invention formed in an LED driver IC 51 is shown in FIG. 3A. The LED driver 50 integrated in an LED driver IC 51 is a dual channel driver including integrated current tank DMOSFETs 55A and 55B, and stacked clamped DMOSFETs 57A and 57B having integrated high voltage diodes 58A and 58B for Accurate current controlled I precision gate driver circuits 56A and 56B, analog control and sense The circuit 60 and a digital control and timing circuit 59 are provided. A chip bias supply and regulator 62 supplies power to the IC.
該等通道之一者包含電流槽DMOSFET 55A、疊接箝制DMOSFET 57A及I精確閘極驅動器電路56A,其等一起驅動一LED串52A。另一通道包含電流槽DMOSFET 55B、疊接箝制DMOSFET 57B及I精確閘極驅動器電路56B,其等一起驅動一LED串52B。 One of the channels includes a current sink DMOSFET 55A, a stacked clamp DMOSFET 57A, and an I precision gate driver circuit 56A that together drive an LED string 52A. The other channel includes a current sink DMOSFET 55B, a stacked clamp DMOSFET 57B, and an I precision gate driver circuit 56B that together drive an LED string 52B.
LED驅動器50提供具有150V電路能力及±2%絕對電流準確度之250mA LED驅動之兩個通道之完全控制、12位元之PWM亮度控制、12位元之PWM相位控制、8位元之電流控制、LED斷路及短路狀態之故障偵測及超溫偵測,所有皆透過一高速序列照明介面(SLI)匯流排位移暫存器61而控制,且使用一共同Vsync及灰階時脈(GSC)信號而同步於其他驅動器。在一實施例中,疊接箝制DMOSFET 57A及57B具有150V之額定電路能力,不過在其他實施例中,此等裝置可經調整大小以在100V至300V之範圍內操作。藉由封裝之功率消耗及兩個LED串52A及52B中之正向電壓之失配而設定250mA之額定電流。 LED driver 50 provides full control of two channels of 250mA LED drive with 150V circuit capability and ±2% absolute current accuracy, 12-bit PWM brightness control, 12-bit PWM phase control, 8-bit current control , LED open and short-circuit fault detection and over-temperature detection, all controlled by a high-speed sequential illumination interface (SLI) bus displacement register 61, and using a common Vsync and gray-scale clock (GSC) Signals are synchronized to other drives. In one embodiment, the stacked clamp DMOSFETs 57A and 57B have a nominal circuit capability of 150V, although in other embodiments, such devices can be sized to operate in the range of 100V to 300V. The rated current of 250 mA is set by the power consumption of the package and the mismatch of the forward voltages in the two LED strings 52A and 52B.
在操作中,LED驅動器50在其序列輸入SI接針上接收一資料流,其饋入至SLI匯流排位移暫存器61之輸入中。該資料係以由介面IC(圖3A中未展示)供應之一序列時脈信號SCK設定之一速率而計時。用於該資料之最大時脈速率取決於用於實施位移暫存器61之CMOS技術,但即使使用0.5μm線寬程序及晶圓廠,亦可達成10MHz操作。只要SCK信號繼續運行,資料將移至SLI匯流排位移暫存器61中,且最終在其至序列菊鏈中之下一LED驅動器(圖3A中未展示)之路徑上離開序列輸出接針SO。 In operation, LED driver 50 receives a data stream on its serial input SI pin that is fed into the input of SLI bus bar register register 61. The data is clocked at a rate set by one of the sequence clock signals SCK supplied by the interface IC (not shown in Figure 3A). The maximum clock rate for this data depends on the CMOS technology used to implement the shift register 61, but even with a 0.5 μm line width program and fab, a 10 MHz operation can be achieved. As long as the SCK signal continues to run, the data will be moved to the SLI bus shift register 61 and eventually exit the sequence output pin SO on its path to the next LED driver (not shown in Figure 3A) in the sequence daisy chain. .
在對應於特定LED驅動器IC之資料到達SLI匯流排位移暫存器61中之後,介面IC即刻停止發送SCK信號。隨後,一Vsync脈衝將來自該SLI匯流排位移暫存器61之資料鎖存至包含於數位控制及時序電路 59以及類比控制及感測電路60內之資料鎖存器中,該等鎖存器通常包括正反器或靜態RAM。亦在該Vsync脈衝時,先前被寫入至包含於類比控制及感測電路60內之故障鎖存器中之任意資料將被複製至SLI匯流排位移暫存器61之適當位元中。 After the data corresponding to the particular LED driver IC reaches the SLI bus shift register 61, the interface IC stops transmitting the SCK signal. Subsequently, a Vsync pulse latches the data from the SLI bus shift register 61 into the digital control and sequential circuitry. In the data latches of 59 and analog control and sense circuit 60, the latches typically include a flip-flop or a static RAM. Also at this Vsync pulse, any data previously written to the fault latch contained in the analog control and sense circuit 60 will be copied into the appropriate bits of the SLI bus shift register 61.
當介面IC恢復發送序列時脈SCK信號時,將儲存於SLI匯流排位移暫存器61內之讀取及寫入位元移動至菊鏈中之下一驅動器IC。在一較佳實施例中,該菊鏈形成連接返回至該介面IC之一環路。發送新資料至該菊鏈中最終推動駐存於SLI匯流排位移暫存器中之現有資料通過該環路且最終返回至該介面IC。以此方式,介面IC可與個別LED驅動器IC通信、設定LED串亮度及時序,及該等個別LED驅動器IC可將個別故障狀態傳達返回至該介面IC。 When the interface IC resumes transmitting the sequence clock SCK signal, the read and write bits stored in the SLI bus shift register 61 are moved to the lower driver IC in the daisy chain. In a preferred embodiment, the daisy chain forms a connection back to one of the loops of the interface IC. Sending new data to the daisy chain ultimately pushes existing data residing in the SLI busbar shift register through the loop and ultimately back to the interface IC. In this manner, the interface IC can communicate with individual LED driver ICs, set LED string brightness and timing, and the individual LED driver ICs can communicate individual fault conditions back to the interface IC.
使用此計時方案,資料可以一高速位移通過大量驅動器IC而不影響LED電流或引起閃爍,此係因為控制電流槽DMOSFET 55A及55B之電流及時序僅在各新Vsync脈衝出現時變更。Vsync可隨著灰階時脈頻率成比例地縮放(通常為4096乘以Vsync頻率)而在自60Hz至960Hz之範圍內變更。由於Vsync為較慢(低於1kHz),當相較於驅動SLI匯流排位移暫存器之SCK信號之頻率時,介面IC可執行額外功能(若需要)以(例如)修改及重新發送該資料,或在一給定Vsync脈衝持續時間內查詢故障鎖存器多次。 Using this timing scheme, the data can be shifted through a large number of driver ICs at high speed without affecting the LED current or causing flicker, since the current and timing of the control current tank DMOSFETs 55A and 55B are only changed when each new Vsync pulse occurs. Vsync can be scaled proportionally to the grayscale clock frequency (typically 4096 times the Vsync frequency) and varied from 60 Hz to 960 Hz. Since Vsync is slower (less than 1 kHz), the interface IC can perform additional functions (if needed) to, for example, modify and resend the data when compared to the frequency of the SCK signal that drives the SLI busbar shift register. , or query the fault latch multiple times for the duration of a given Vsync pulse.
始於Vsync脈衝,數位控制及時序電路59產生兩個PWM脈衝以在適當相位延遲之後及適當脈衝寬度持續時間(或作用時間因數D)內切換I精確閘極驅動器電路56A及56B之輸出為開啟及關閉。I精確閘極驅動器電路56A及56B分別感測電流槽DMOSFET 55A及55B中之電流且提供適當閘極驅動電壓以在I精確閘極驅動器電路56A及56B由來自數位控制及時序電路59之PWM脈衝啟用之時間期間維持一目標電流。I精確閘極驅動器電路56A及56B之操作因此類似於一「選通」放大器 之操作,進行數位脈衝開啟及關閉但提供一控制功能。 Starting at the Vsync pulse, the digital control and timing circuit 59 generates two PWM pulses to switch the output of the I precision gate driver circuits 56A and 56B to be turned on after the appropriate phase delay and the appropriate pulse width duration (or duration of action factor D). And closed. I precision gate driver circuits 56A and 56B sense the currents in current sink DMOSFETs 55A and 55B, respectively, and provide appropriate gate drive voltages for PWM pulses from digital control and timing circuit 59 at I precision gate driver circuits 56A and 56B. A target current is maintained during the time period of activation. The operation of I precision gate driver circuits 56A and 56B is thus similar to a "strobe" amplifier The operation is performed by turning on and off the digital pulse but providing a control function.
藉由Vref信號及藉由Iset電阻器54之值在所有LED驅動器中全域設定峰值電流。在一較佳實施例中,由介面IC產生該Vref信號。替代地,該Vref信號可由一離散電壓參考IC供應或作為來自AC/DC轉換器模組之一輔助輸出。 The peak current is globally set across all LED drivers by the Vref signal and by the value of the Iset resistor 54. In a preferred embodiment, the Vref signal is generated by the interface IC. Alternatively, the Vref signal can be supplied by a discrete voltage reference IC or as an auxiliary output from an AC/DC converter module.
任意LED串中之特定電流可進一步使用調整電流槽DMOSFET之電流至峰值電流值之0%至100%之範圍內之一百分比之一8至12位元字組透過SLI匯流排暫存器而受控於像點(Dot)暫存器。以此方式,可使用此架構對LED電流進行精確的數位控制,其仿效一電流模式數位轉類比轉換器或「電流DAC」之功能。在LCD背光應用中,此特徵可用於校準背光亮度、用於改良背光均勻性或用於在3D模式中操作。在其他情況中,該等LED驅動器可用於驅動標牌中之LED串及「LED牆」顯示器(一般包括紅色LED、綠色LED及藍色LED之一混合)。在標牌應用中,該等LED形成影像使得不需要LCD。 The specific current in any of the LED strings can be further adjusted by adjusting the current of the current sink DMOSFET to one of the range of 0% to 100% of the peak current value. The 8 to 12-bit block is received by the SLI bus register. Controlled by the dot (Dot) register. In this way, the LED current can be accurately digitally controlled using this architecture, emulating a current mode digital to analog converter or "current DAC" function. In LCD backlight applications, this feature can be used to calibrate backlight brightness, to improve backlight uniformity, or for operation in 3D mode. In other cases, the LED drivers can be used to drive LED strings in a sign and "LED wall" displays (generally including a mix of red, green, and blue LEDs). In signage applications, the LEDs form an image such that an LCD is not required.
參考圖3A,流經LED串52A之電流受控於電流槽DMOSFET 55A及對應I精確閘極驅動器電路56A。類似地,流經LED串52B之電流受控於電流槽DMOSFET 55B及對應I精確閘極驅動器電路56B。施加於電流槽DMOSFET 55A及55B之最大電壓分別受限於疊接箝制DMOSFET 57A及57B。只要LED之數量「m」不是太大,則電壓+VLED將不超過PN二極體58A及58B之崩潰電壓,及電流槽DMOSFET 55A及55B上之最大電壓將受限於10V左右,低於閘極偏壓之一臨限電壓(在此實施例中為12V)係藉由偏壓電路62而施加於疊接箝制DMOSFET 57A及57B上。偏壓電路62亦由24V VIN輸入產生一5V電源電壓以使用一線性電壓調節器及一濾波電容器53而操作其內部電路。 Referring to Figure 3A, the current flowing through LED string 52A is controlled by current sink DMOSFET 55A and corresponding I precision gate driver circuit 56A. Similarly, the current flowing through LED string 52B is controlled by current sink DMOSFET 55B and corresponding I precision gate driver circuit 56B. The maximum voltages applied to the current sink DMOSFETs 55A and 55B are limited by the stacked clamp DMOSFETs 57A and 57B, respectively. As long as the number of LEDs "m" is not too large, the voltage +V LED will not exceed the breakdown voltage of the PN diodes 58A and 58B, and the maximum voltage on the current sink DMOSFETs 55A and 55B will be limited to about 10V, below One threshold voltage of the gate bias (12V in this embodiment) is applied to the stacked clamp DMOSFETs 57A and 57B by the bias circuit 62. Bias circuit 62 also generates a 5V supply voltage from the 24V VIN input to operate its internal circuitry using a linear voltage regulator and a filter capacitor 53.
電流槽DMOSFET 55A及55B上之汲極電壓亦藉由類比控制及感 測電路60而監測且與儲存於類比控制及感測電路60內之一鎖存器中之一過電壓值進行比較。該過電壓值係由SLI匯流排位移暫存器61供應。若電流槽DMOSFET 55A及55B之汲極電壓低於程式化值,則LED串52A及52B正常操作。然而,若電流槽DMOSFET 55A或電流槽DMOSFET 55B之汲極電壓上升至約程式化值,則LED串52A及52B之一或多個短路,及偵測及記錄特定通道之一故障。同樣地,若I精確閘極驅動器電路56A或I精確閘極驅動器電路56B無法維持LED串52A或52B之一者中之所需電流(亦即,LED串在「電流不足」的情況下操作),此意謂串52A或52B之一者中之一LED未開啟並失去電路連續性。接著關閉對應通道,忽略對應通道之CSFB信號,及報告該故障。可藉由監測I精確電路56A及56B內之閘極緩衝器裝置之輸出飽和與否而執行感測此「電流不足」。此狀態意謂該緩衝器正在儘可能地驅動對應電流槽DMOSFET之閘極為「完全接通」。替代地,可藉由監測橫跨I精確電路之輸入端子之電壓降而偵測一電流不足狀態。當至I精確電路56A及56B之輸入電壓下降太低時,發生電流不足狀態及指示一斷路LED故障。 The drain voltage on current sink DMOSFETs 55A and 55B is also controlled by analogy The measurement circuit 60 monitors and compares one of the overvoltage values stored in one of the latches in the analog control and sense circuit 60. This overvoltage value is supplied by the SLI bus displacement register 61. If the drain voltages of current sink DMOSFETs 55A and 55B are below the programmed value, LED strings 52A and 52B operate normally. However, if the drain voltage of the current sink DMOSFET 55A or the current sink DMOSFET 55B rises to about a programmed value, one or more of the LED strings 52A and 52B are shorted, and one of the specific channels is detected and recorded. Similarly, if the I precision gate driver circuit 56A or the I precision gate driver circuit 56B is unable to maintain the desired current in one of the LED strings 52A or 52B (i.e., the LED string operates under "out of current") This means that one of the LEDs in one of the strings 52A or 52B is not turned on and loses circuit continuity. Then close the corresponding channel, ignore the CSFB signal of the corresponding channel, and report the fault. Sensing "under current" can be performed by monitoring the saturation of the output of the gate buffer device in I precision circuits 56A and 56B. This state means that the buffer is driving the gate of the corresponding current sink DMOSFET as much as possible to "completely turn on". Alternatively, an undercurrent condition can be detected by monitoring the voltage drop across the input terminals of the I precision circuit. When the input voltage drop to I precision circuits 56A and 56B is too low, an undercurrent condition occurs and an open LED fault is indicated.
若偵測一超溫狀態,則報告故障及使通道保持接通且傳導,除非介面IC發送一命令以關閉該通道。然而,若該溫度繼續升高至危險位準,則類比控制及感測電路60將獨立停用該通道且報告該故障。無論一故障之本質為何(一短路LED、一斷路LED或一超溫狀態),只要發生故障,類比控制及感測電路60內之一開放汲極MOSFET將啟動FLT接針及將FLT接針拉至低位準,將已發生一故障狀態之情形發信號至介面IC且視情況發信號至主機μC。該FLT接針為在LED驅動器IC之一或多者中發生故障時告知系統IC之一系統中斷信號。通常,該線被保持為高位準,亦即,透過一高值電阻器而偏置至Vcc。任意LED驅動器無論何時經歷一故障狀態(一短路LED、一斷路LED或一超溫 狀態之任一者),特定LED驅動器IC藉由啟用一接地N通道MOSFET(諸如,圖6中之MOSFET 219)而將該線拉至低位準。 If an over-temperature condition is detected, the fault is reported and the channel remains on and conducted unless the interface IC sends a command to close the channel. However, if the temperature continues to rise to a dangerous level, the analog control and sensing circuit 60 will independently deactivate the channel and report the fault. Regardless of the nature of a fault (a shorted LED, a broken LED, or an overtemperature condition), as soon as a fault occurs, an open buck MOSFET in the analog control and sense circuit 60 will activate the FLT pin and pull the FLT pin At the low level, a situation in which a fault condition has occurred is signaled to the interface IC and signaled to the host μC as appropriate. The FLT pin informs the system IC of a system interrupt signal when a fault occurs in one or more of the LED driver ICs. Typically, the line is held at a high level, that is, biased to Vcc through a high value resistor. Any LED driver experiences a fault condition (a shorted LED, a broken LED or an over temperature) In either state, the particular LED driver IC pulls the line to a low level by enabling a grounded N-channel MOSFET (such as MOSFET 219 in Figure 6).
在FLT被拉至低位準之後,介面IC可透過SLI匯流排介面61查詢LED驅動器IC以確定哪個LED驅動器IC正在經歷一故障狀態及已發生何種故障。介面IC接著透過SPI匯流排介面將此訊息傳達返回至主機微控制器,讓系統關於回應於故障發生而應採取何種行動(若存在)作出決策。由於每個LED驅動器IC上之FLT線使用一開放汲極MOSFET以在一故障發生時主動地將該線拉至低位準,所以在無一故障存在時,藉由一高值內部電阻器將該線拉至高位準。因而,至圖4中之介面IC 101之FLT輸入可與系統μC之中斷輸入接針並聯,在該情況中,由LED驅動器IC產生之任意故障不僅告知介面IC 101發生故障狀態,亦可在該μC中產生一中斷信號,將該狀態警告給該μC。因此,使用該FLT線提供一LED驅動器IC中之一故障發生之一即時指示,同時SLI匯流排及SPI匯流排係用於在決定採取何種行動之前收集額外資訊。以此方式,能夠進行全故障管理而無需一完全整合的驅動器IC。 After the FLT is pulled to the low level, the interface IC can query the LED driver IC through the SLI bus interface 61 to determine which LED driver IC is experiencing a fault condition and what has occurred. The interface IC then communicates this message back to the host microcontroller via the SPI bus interface, allowing the system to make a decision as to what action, if any, should be taken in response to the failure. Since the FLT line on each LED driver IC uses an open MOSFET to actively pull the line to a low level when a fault occurs, the high value internal resistor will be used in the absence of a fault. Pull the line to a high level. Thus, the FLT input to the interface IC 101 of FIG. 4 can be connected in parallel with the interrupt input pin of the system μC, in which case any fault generated by the LED driver IC not only informs the interface IC 101 of a fault condition, but also An interrupt signal is generated in μC, and the state is warned to the μC. Thus, the FLT line is used to provide an immediate indication of one of the failures in an LED driver IC, while the SLI bus and SPI bus are used to collect additional information before deciding what action to take. In this way, full fault management can be performed without a fully integrated driver IC.
類比控制及感測電路60亦包含一類比電流感測回饋(CSFB)信號,其等於兩個電流槽DMOSFET 55A及55B之汲極電壓與該CSFBI輸入接針處之電壓之中之最低電壓。該CSFB信號被傳遞至CSFBO輸出接針。以此方式,LED串52A及52B中之最低電流槽電壓被傳遞至下一個LED驅動器之輸入及最終返回至系統SMPS以給+VLED供應軌供電。 The analog control and sense circuit 60 also includes an analog current sense feedback (CSFB) signal equal to the lowest voltage of the drain voltages of the two current sink DMOSFETs 55A and 55B and the voltage at the CSFBI input pin. The CSFB signal is passed to the CSFBO output pin. In this manner, the lowest current slot voltage in LED strings 52A and 52B is passed to the input of the next LED driver and ultimately back to system SMPS to power the +V LED supply rail.
以所描述之方式,實現具有整合調光及故障偵測能力之LED驅動器50而無需一中央控制器IC。 In the manner described, an LED driver 50 with integrated dimming and fault detection capabilities is implemented without the need for a central controller IC.
在圖3B中展示滿足上述準則之一LED驅動器80之一替代實施方案。整合於一LED驅動器IC 81中之LED驅動器80為具有整合電流槽DMOSFET 87A及87B但不具有疊接箝制MOSFET之一雙通道驅動器。 替代地,DMOSFET 87A及87B包含經設計以在DMOSFET 87A及87B處於一關閉狀態時維持高電壓之積體高電壓二極體88A及88B。通常,此一設計最適用於低於100V之操作,但若需要,其可擴大至150V。如在圖3A之LED驅動器IC 50中,I精確閘極驅動器電路86A及86B促進由一類比控制及感測電路85及一數位控制及時序電路89控制的準確電流控制。在此情況中,一晶片上偏壓供應及調節器84自Vcc而非如驅動器IC 51中自24V輸入給LED驅動器IC 81供電。除了缺少疊接箝制DMOSFET之外,驅動器IC 80類似於驅動器IC 50而操作,透過其SLI匯流排90而控制。 An alternate embodiment of LED driver 80 that satisfies one of the above criteria is shown in FIG. 3B. The LED driver 80 integrated in an LED driver IC 81 is a dual channel driver having integrated current slot DMOSFETs 87A and 87B but without a stacked clamp MOSFET. Alternatively, DMOSFETs 87A and 87B include integrated high voltage diodes 88A and 88B that are designed to maintain a high voltage when DMOSFETs 87A and 87B are in a closed state. Typically, this design is best suited for operations below 100V, but can be extended to 150V if desired. As in the LED driver IC 50 of FIG. 3A, the I precision gate driver circuits 86A and 86B facilitate accurate current control controlled by an analog control and sense circuit 85 and a digital control and timing circuit 89. In this case, a on-wafer bias supply and regulator 84 is powered from Vcc rather than from the 24V input to the LED driver IC 81 as in the driver IC 51. In addition to the lack of a stacked clamp DMOSFET, the driver IC 80 operates similar to the driver IC 50, controlled through its SLI bus bar 90.
圖4繪示根據本發明之一分散式多通道LED背光驅動器系統100。展示用於驅動由一共同切換模式電源供應器(SMPS)108供電之一系列LED驅動器IC 81A至81H之一介面IC 101。儘管圖4中僅展示LED驅動器IC 81A及81H,然應理解,類似驅動器IC 81B至81G位於驅動器IC 81A與81H之間。LED驅動器IC 81A至81H之各者具有整合調光及故障偵測能力,且類似於圖3B中所展示之LED驅動器80。LED驅動器IC 81A至81H在本文有時被統稱為LED驅動器IC 81或個別稱為LED驅動器IC 81。 4 illustrates a decentralized multi-channel LED backlight driver system 100 in accordance with the present invention. An interface IC 101 for driving a series of LED driver ICs 81A through 81H powered by a common switched mode power supply (SMPS) 108 is shown. Although only the LED driver ICs 81A and 81H are shown in FIG. 4, it should be understood that similar driver ICs 81B to 81G are located between the driver ICs 81A and 81H. Each of the LED driver ICs 81A through 81H has integrated dimming and fault detection capabilities, and is similar to the LED driver 80 shown in Figure 3B. LED driver ICs 81A through 81H are sometimes referred to herein collectively as LED driver ICs 81 or individually as LED driver ICs 81.
包括三個數位時脈線(SCK、GSC及Vsync)、一個數位故障線(FLT)及一個類比參考電壓線(Vref)之五個共同信號線107連接介面IC 101與LED驅動器IC 81A至81H。一時序及控制單元124與自一主機μC(未展示)經由序列周邊介面(SPI)匯流排122接收之資料同時產生Vsync及GSC信號。時序及控制單元124亦監測故障中斷線FLT以即時偵測LED串81A至81Q之一者中之一可能問題。一電壓參考源125在Vref線上全域提供一電壓參考至系統以確保良好的通道至通道電流匹配。一偏壓供應單元126透過連接至由SMPS 108供應之一固定+24V 供應軌110之一VIN線而給介面IC 101供電。偏壓電路126亦產生經調節之供應Vcc(較佳為5V)以給LED驅動器IC 81A至81H供電。該Vcc供應藉由一電容器102而濾波。 Five common signal lines 107 including three digital clock lines (SCK, GSC, and Vsync), one digital fault line (FLT), and one analog reference voltage line (Vref) are connected to the interface IC 101 and the LED driver ICs 81A to 81H. A timing and control unit 124 simultaneously generates Vsync and GSC signals from data received from a host μC (not shown) via a serial peripheral interface (SPI) bus 122. The timing and control unit 124 also monitors the fault interrupt line FLT to instantly detect one of the LED strings 81A through 81Q. A voltage reference source 125 provides a voltage reference across the Vref line to the system to ensure good channel-to-channel current matching. A bias supply unit 126 is fixed to +24V by being connected to one of the SMPS 108 supplies. The interface IC 101 is powered by supplying one of the VIN lines of the rail 110. Bias circuit 126 also produces a regulated supply Vcc (preferably 5V) to power LED driver ICs 81A through 81H. The Vcc supply is filtered by a capacitor 102.
在此實施例中,LED驅動器IC 81A至81H之各者包括兩個通道之高電壓電流控制,包含具有積體HV二極體88A至88Q之電流槽DMOSFET 87A至87Q、I精確閘極驅動器電路86A至86Q、數位控制及時序(DC&T)電路89A至89H、類比控制及感測(AC&S)電路85A至85H及序列照明介面(SLI)匯流排90A至90H。如圖3B中所展示之LED驅動器IC 81,該等LED驅動器IC 81A至81H缺少一疊接箝制。然而系統100亦可用類似於圖3A中所展示之LED驅動器IC 51之LED驅動器IC而製作,除了在該情況中,將使用24V VIN供應而非Vcc給該等LED驅動器IC供電且偏置疊接箝制DMOSFET之閘極。 In this embodiment, each of the LED driver ICs 81A through 81H includes two channels of high voltage current control, including current sink DMOSFETs 87A through 87Q with integrated HV diodes 88A through 88Q, and an accurate gate driver circuit. 86A to 86Q, digital control and timing (DC&T) circuits 89A through 89H, analog control and sense (AC&S) circuits 85A through 85H, and sequential illumination interface (SLI) bus bars 90A through 90H. As shown in Figure 3B, LED driver ICs 81 lack a stack of clamps. However, system 100 can also be fabricated with an LED driver IC similar to LED driver IC 51 shown in Figure 3A, except that in this case, 24V VIN supply, rather than Vcc, will be used to power and bias the LED driver ICs. Clamp the gate of the DMOSFET.
包括信號線113A至113I之一SLI匯流排113將LED驅動器IC 81A至81H一起連結成一菊鏈。在圖4中所展示之實施例中,SLI單元123之序列輸出端子(介面IC 101之SO接針)經由一信號線113A而連接至LED驅動器IC 81A之SI輸入,LED驅動器IC 81A之SO輸出經由一信號線113B而連接至LED驅動器IC 81B(未展示)之SI輸入,以此類推。在該菊鏈之末端處,LED驅動器IC 81H之SO輸出經由一信號線113I而連接至SLI單元123之序列輸入端子(介面IC 101之SI接針)。以此方式,SLI匯流排113形成一完整環路:源於介面IC 101、運行通過LED驅動器IC 81A至81H之各者且返回至介面IC 101。因此,將資料移出介面IC 101之SO接針之同時將一相等長度之位元串傳回至介面IC 101之SI接針。 The SLI bus bar 113, which includes one of the signal lines 113A to 113I, connects the LED driver ICs 81A to 81H together into a daisy chain. In the embodiment shown in FIG. 4, the serial output terminal of the SLI unit 123 (the SO pin of the interface IC 101) is connected to the SI input of the LED driver IC 81A via a signal line 113A, and the SO output of the LED driver IC 81A. It is connected to the SI input of the LED driver IC 81B (not shown) via a signal line 113B, and so on. At the end of the daisy chain, the SO output of the LED driver IC 81H is connected to the serial input terminal of the SLI unit 123 (the SI pin of the interface IC 101) via a signal line 113I. In this manner, the SLI bus bar 113 forms a complete loop: originating from the interface IC 101, running through each of the LED driver ICs 81A through 81H, and returning to the interface IC 101. Therefore, the data is removed from the SO pin of the interface IC 101 while a string of equal lengths is transmitted back to the SI pin of the interface IC 101.
如需要,SLI電路123亦產生SLI匯流排時脈信號SCK。由於LED驅動器IC 81A至81H不具有位址,所以透過SLI匯流排計時之位元數必須對應於被驅動之裝置之數量,其中各SCK脈衝前進一個位元。被 驅動之裝置之數量可透過軟體程式化SPI匯流排122中之資料交換或藉由對介面IC 101之硬體修改而調整。以此方式,系統100內之通道數量可彈性變更以匹配顯示器之大小。 The SLI circuit 123 also generates an SLI bus timing signal SCK, if desired. Since the LED driver ICs 81A through 81H do not have an address, the number of bits through the SLI bus timing must correspond to the number of devices being driven, with each SCK pulse advancing by one bit. Be The number of devices driven can be adjusted by software exchange in the software-programmed SPI bus 122 or by hardware modification of the interface IC 101. In this manner, the number of channels within system 100 can be flexibly altered to match the size of the display.
修改SLI匯流排電路123中之暫存器以移出更少或更多位元儘管相對簡單,但在製造介面IC 101時仍需要一修改。一替代方法涉及利用一可程式化介面,其使用軟體調整驅動器以在菊鏈中容納更少或更多之LED驅動器IC。 Modifying the scratchpad in the SLI bus circuit 123 to remove fewer or more bits, while relatively simple, requires a modification in the fabrication of the interface IC 101. An alternative approach involves the use of a programmable interface that uses a software adjustment driver to accommodate fewer or more LED driver ICs in the daisy chain.
至SMPS 108之電流感測回饋仰賴於一類比菊鏈。LED驅動器IC 81H之CSFBI輸入接針經由CSFB線112I接連至Vcc,CSFB線112H將LED驅動器IC 81H之CSFBO輸出接針連接至LED驅動器IC 81G之CSFBI輸入接針,以此類推。最後,CSFB線112A將LED驅動器IC 81A之CSFBO輸出接針連接至介面IC 101之CSFBI輸入接針。CSFB信號之電壓位準在通過驅動一相關聯LED串83A至83Q之LED驅動器IC 81A至81H之一者時下降,該相關聯LED串83A至83Q具有比與該CSFB信號先前已通過之LED驅動器相關聯之LED串更高之正向電壓Vf。由於LED驅動器IC 81A至81H被配置成一菊鏈,所以CSFB信號隨著自LED驅動器IC 81H傳遞至LED驅動器IC 81A逐步減少。最後CSFB線112A中之CSFB信號表示在整個LED陣列中具有最高Vf之LED串83A至83Q之正向電壓Vf。運算跨導放大器(QTA)127將CSFB線112A中之CSFB信號轉換成一電流回饋信號ICSFB 111,驅動SMPS 108之輸出處之線109上之電壓+VLED為用於無閃爍照明且無過度消耗功率之最佳電壓。CSFB線112A至112I在本文有時被統稱為CSFB線112。 Current sensing feedback to SMPS 108 relies on a daisy chain. The CSFBI input pin of the LED driver IC 81H is connected to Vcc via the CSFB line 112I, the CSFBO output pin of the LED driver IC 81H is connected to the CSFBI input pin of the LED driver IC 81G, and so on. Finally, CSFB line 112A connects the CSFBO output pin of LED driver IC 81A to the CSFBI input pin of interface IC 101. The voltage level of the CSFB signal is decreased by driving one of the LED driver ICs 81A to 81H of an associated LED string 83A to 83Q having an LED driver that has previously passed the CSFB signal. The associated LED string has a higher forward voltage Vf. Since the LED driver ICs 81A to 81H are configured in a daisy chain, the CSFB signal is gradually reduced as it is transferred from the LED driver IC 81H to the LED driver IC 81A. The CSFB signal in the last CSFB line 112A represents the forward voltage Vf of the LED strings 83A to 83Q having the highest Vf throughout the LED array. The operational transconductance amplifier (QTA) 127 converts the CSFB signal in the CSFB line 112A into a current feedback signal ICSFB 111 that drives the voltage on the line 109 at the output of the SMPS 108 +V LED for flicker free illumination without excessive power consumption. The best voltage. CSFB lines 112A through 112I are sometimes referred to herein collectively as CSFB lines 112.
圖5之簡化示意圖中所展示之所得系統僅使用八個小型LED驅動器IC 81A至81H而達成16個LED串83A至83Q之獨立控制及恆定電流驅動,該等LED驅動器IC 81A至81H皆回應於一主機μC 152及一純量IC 153而透過SLI匯流排113(包含信號線113A至113I)受控於介面IC 101。 在該系統中僅呈現兩個類比信號:線107上之一共同參考電壓Vref及控制SMPS 108以在線109上產生+VLED輸出之ICSFB信號111。如上文所描述,該ICSFB信號111係在介面IC 101中由線112A至112H上之CSFB信號所產生。在較少之類比信號且無高阻抗輸入之離散DMOSFET之情況下,LED驅動器系統100亦具有相對較高之抗雜訊能力。 The resulting system shown in the simplified schematic of Figure 5 uses only eight small LED driver ICs 81A through 81H to achieve independent control and constant current drive of 16 LED strings 83A through 83Q, all of which are responsive to A host μC 152 and a scalar IC 153 are controlled by the interface IC 101 through the SLI bus bar 113 (including the signal lines 113A to 113I). Only two analog signals are presented in the system: one common reference voltage Vref on line 107 and the ICSFB signal 111 that controls SMPS 108 to produce a +V LED output on line 109. As described above, the ICSFB signal 111 is generated in the interface IC 101 by the CSFB signals on lines 112A through 112H. In the case of discrete analog DMOSFETs with less analog signals and no high impedance inputs, the LED driver system 100 also has relatively high noise immunity.
如圖5中所展示,LED驅動器系統100可僅使用九個SOP 16 IC封裝(一個介面IC及八個LED驅動器IC)以驅動16個LED串而製作。相比於圖1之多晶片LED驅動器系統(其使用32個離散MOSFET及一72接針控制器IC),此新架構大幅減少了製作成本。藉由顯著較少之組件,亦增強系統可靠性。系統100亦易於部署,此係因為僅在介面IC 101與衛星LED驅動器IC 81A至81H之間使用專屬SLI匯流排協定。該μC 152經由SPI匯流排與該介面IC 101及該純量IC 153通信。 As shown in FIG. 5, LED driver system 100 can be fabricated using only nine SOP 16 IC packages (one interface IC and eight LED driver ICs) to drive 16 LED strings. Compared to the multi-wafer LED driver system of Figure 1, which uses 32 discrete MOSFETs and a 72-pin controller IC, this new architecture significantly reduces manufacturing costs. System reliability is also enhanced by significantly fewer components. System 100 is also easy to deploy because only the dedicated SLI bus protocol is used between interface IC 101 and satellite LED driver ICs 81A through 81H. The μC 152 communicates with the interface IC 101 and the scalar IC 153 via an SPI bus.
在沒有疊接箝制DMOSFET之情況下,圖5中之LED驅動器IC 81A至81H僅需要一5V Vcc輸入。因此,介面IC 101可執行24V至5V電壓轉換及分佈其5V供應軌Vcc至LED驅動器IC 81A至81H。藉由消除該等LED驅動器IC 81A至81H中之降壓調節之需要,可將LED驅動器IC 81A至81H製作得更小且可消除一外部濾波電容器之需要,節省一個封裝接針。 The LED driver ICs 81A through 81H of Figure 5 require only a 5V Vcc input without a stacked clamp DMOSFET. Therefore, the interface IC 101 can perform 24V to 5V voltage conversion and distribute its 5V supply rail Vcc to the LED driver ICs 81A to 81H. By eliminating the need for buck regulation in the LED driver ICs 81A through 81H, the LED driver ICs 81A through 81H can be made smaller and eliminate the need for an external filter capacitor, saving one package pin.
為消除高接針數封裝之必要性,吾人在本文中揭示經具體設計用於驅動背光及顯示應用中之LED之一新序列通信匯流排及協定。「序列照明介面」匯流排或SLI匯流排使用包括具有一序列輸入及輸出之一計時位移暫存器及控制資料傳送之時序及速率之一時脈之一序列通信方法。 To eliminate the need for high pin count packages, we have disclosed herein a new serial communication bus and protocol specifically designed to drive LEDs in backlighting and display applications. The "Sequence Lighting Interface" bus or SLI bus uses a one-sequence communication method that includes one of a sequence of input and output timing shift registers and a timing and rate of control data transfer.
在圖6中繪示SLI匯流排之操作,其亦提供圖4中所展示之SLI匯 流排位移暫存器90A、數位控制及時序(DC&T)電路89A以及類比控制及感測(AC&S)電路85A之例示性實施例之建構及操作之更多細節。應理解,類似電路係用於圖4中所展示之SLI匯流排位移暫存器90B至90H、數位控制及時序電路89B至89H以及類比控制及感測電路85B至85H。(SLI匯流排位移暫存器90A至90H有時被統稱為SLI匯流排90)。圖6展示一雙通道LED驅動器IC,其包括電流槽DMOSFET 87A及87B以及I精確閘極驅動器電路86A及86B,但控制不同數量之通道之LED驅動器IC可以一類似方式而實施。 The operation of the SLI bus bar is illustrated in Figure 6, which also provides the SLI sink shown in Figure 4. More details of the construction and operation of the exemplary embodiment of the stream displacement register 90A, the digital control and timing (DC&T) circuit 89A, and the analog control and sense (AC&S) circuit 85A. It should be understood that similar circuits are used for the SLI busbar shift registers 90B through 90H, the digital control and timing circuits 89B through 89H, and the analog control and sense circuits 85B through 85H shown in FIG. (SLI busbar shift registers 90A through 90H are sometimes collectively referred to as SLI bus bars 90). 6 shows a dual channel LED driver IC including current sink DMOSFETs 87A and 87B and I precision gate driver circuits 86A and 86B, but LED driver ICs that control a different number of channels can be implemented in a similar manner.
圖6中所展示之電路為結合數位信號及類比信號兩者之混合信號。SLI匯流排位移暫存器90A係藉由若干並列資料匯流排(通常為12位元寬)而連接至DC&T電路89A,且亦係藉由自4位元寬至12位元寬之範圍內之多種並列資料匯流排而連接至AC&S電路85A。 The circuit shown in Figure 6 is a mixed signal combining both digital signals and analog signals. The SLI bus displacement register 90A is connected to the DC&T circuit 89A by a number of parallel data busses (typically 12-bit wide), and is also within the range of 4 bits wide to 12 bits wide. A plurality of parallel data busses are connected to the AC&S circuit 85A.
DC&T電路89A之輸出用藉由Vsync信號及灰階時脈(GSK)信號而同步之精確時序使I精確閘極驅動器電路86A及86B以及電流槽DMOSFET 87A及87B數位切換成開啟及關閉。該等電流槽DMOSFET 87A及87B回應於來自AC&S電路85A之類比信號而控制兩個LED串(未展示)中之電流,該等類比信號控制I精確電路86A及86B及因此控制電流槽DMOSFET 87A及87B的閘極驅動信號。該等驅動閘極信號為類比,及具有回饋之一放大器係用於確保電流槽DMOSFET 87A及87B之各者中之電流分別為亦由AC&S電路85A供應之參考電流IrefA及IrefB之一固定倍數。 The output of the DC&T circuit 89A switches the I precision gate driver circuits 86A and 86B and the current slot DMOSFETs 87A and 87B to on and off using precise timing synchronized by the Vsync signal and the gray scale clock (GSK) signal. The current sink DMOSFETs 87A and 87B control the current in the two LED strings (not shown) in response to analog signals from the AC&S circuit 85A, which control the precision circuits 86A and 86B and thus the current sink DMOSFET 87A and Gate drive signal for 87B. The drive gate signals are analogous, and one of the feedback amplifiers is used to ensure that the currents in each of the current sink DMOSFETs 87A and 87B are respectively fixed by one of the reference currents Iref A and Iref B also supplied by the AC&S circuit 85A. multiple.
儘管圖6僅繪示電流槽DMOSFET 87A及87B,然而所展示之電路與圖3A中所展示之疊接箝制LED驅動器50或圖3B中所展示之高電壓LED驅動器80相容。為實施疊接箝制版本,兩個高電壓N通道DMOSFET將與電流槽DMOSFET 87A及87B串聯連接,其中該等高電壓N通道DMOSFET之源極端子被接連至該等電流槽DMOSFET 87A及 87B之汲極端子,及其中該等高電壓N通道DMOSFET之汲極端子被接連至被驅動之各自LED串之陽極。 Although FIG. 6 depicts only current slot DMOSFETs 87A and 87B, the circuit shown is compatible with the stacked clamp LED driver 50 shown in FIG. 3A or the high voltage LED driver 80 shown in FIG. 3B. To implement the spliced clamp version, two high voltage N-channel DMOSFETs will be connected in series with current sink DMOSFETs 87A and 87B, wherein the source terminals of the high voltage N-channel DMOSFETs are connected to the current sink DMOSFETs 87A and The 汲 terminal of 87B, and the 汲 terminal of the high voltage N-channel DMOSFET are connected to the anode of the respective LED string being driven.
在操作中,以SCK時脈信號之速率透過序列輸入接針SI將資料計時進入SLI匯流排位移暫存器90A中。此包含進入用於通道A及通道B之暫存器220A及220B中之關於時間資料之12位元PWM、進入用於通道A及通道B之暫存器221A及221B中之12位元相位延遲資料、進入用於通道A及通道B之暫存器222A及222B中之12位元「像點」電流資料以及12個位元故障資訊(包括進入故障設定暫存器224中之8個位元及進入故障狀態暫存器225中之4個位元)。隨著新資料計時進入,此等暫存器內之資料被計時送出該SO接針。暫停該SCK信號將資料靜態保存在該等位移暫存器內。術語「通道A」及「通道B」為任意的且僅用於識別SLI資料串中之輸出及其等對應資料。 In operation, the data is clocked into the SLI bus shift register 90A through the sequence input pin SI at the rate of the SCK clock signal. This includes 12-bit PWM with respect to time data entered into registers A and 220B for Channel A and Channel B, and 12-bit phase delay into registers 221A and 221B for Channel A and Channel B. Data, 12-bit "pixel" current data in registers 222A and 222B for channel A and channel B, and 12 bit error information (including 8 bits in the fault setting register 224) And enter the 4 bits in the fault state register 225). As new data is clocked in, the data in these registers is clocked out of the SO pin. Suspending the SCK signal statically stores the data in the displacement registers. The terms "channel A" and "channel B" are arbitrary and are only used to identify the output in the SLI data string and its corresponding data.
在接收一Vsync脈衝之後,來自PWM A暫存器220A之資料被載入至D鎖存器211A中,及來自相位A暫存器221A之資料被載入至鎖存器&計數器A電路210A之Φ鎖存器212A中。同時,來自PWM B暫存器220B之資料被載入至D鎖存器211B中,及來自相位B暫存器221B之資料被載入至鎖存器&計數器B電路210B之Φ鎖存器212B中。在接收GSC灰階時脈之後續時脈信號之後,鎖存器&計數器210A及210B計算其等Φ鎖存器212A及212B中之脈衝數,及其後使電流分別在I精確電路86A及86B中流動,照亮通道A或B中之相關聯LED串。該等通道保持啟用且導通達分別儲存於D鎖存器211A及211B中之脈衝數之持續時間。其後,將輸出切換成關閉且等待下一個Vsync脈衝以重複該程序。DC&T電路89A因此根據SLI匯流排位移暫存器90A中之資料而合成兩個PWM脈衝至DMOSFET 87A及87B之閘極。 After receiving a Vsync pulse, the data from the PWM A register 220A is loaded into the D latch 211A, and the data from the phase A register 221A is loaded into the latch & counter A circuit 210A. Φ latch 212A. At the same time, the data from the PWM B register 220B is loaded into the D latch 211B, and the data from the phase B register 221B is loaded into the Φ latch 212B of the latch & counter B circuit 210B. in. After receiving the subsequent clock signals of the GSC gray-scale clock, the latch & counters 210A and 210B calculate the number of pulses in their Φ latches 212A and 212B, and then cause the currents to be in the I-precision circuits 86A and 86B, respectively. Flowing in, illuminating the associated LED string in channel A or B. The channels remain enabled and conduct for the duration of the number of pulses stored in D latches 211A and 211B, respectively. Thereafter, the output is switched off and the next Vsync pulse is awaited to repeat the process. The DC&T circuit 89A thus synthesizes two PWM pulses to the gates of the DMOSFETs 87A and 87B based on the data in the SLI bus shift register 90A.
亦與Vsync脈衝同步,儲存於像點A暫存器222A及像點B暫存器222B中之資料被複製至D/A轉換器213A及213B中,設定DMOSFET 87A及87B中之電流。該等D/A轉換器213A及213B為提供Iref之一精確部分以設定相關聯LED串中之電流之離散電路。替代地,在一較佳實施例中,DMOSFET 87A及87B具有使用二進制加權而分成各種區段之閘極寬度,及給此等閘極區段之適當組合充電以設定所要之最大電流之部分。表示最大通道電流之參考電流Iref係藉由Rset電阻器204及Vref輸入而設定至一參考電流源217。 Also synchronized with the Vsync pulse, the data stored in the image point A register 222A and the image point B register 222B is copied to the D/A converters 213A and 213B to set the DMOSFET. Current in 87A and 87B. The D/A converters 213A and 213B are discrete circuits that provide an accurate portion of Iref to set the current in the associated LED string. Alternatively, in a preferred embodiment, DMOSFETs 87A and 87B have gate widths that are divided into various segments using binary weighting, and charge the appropriate combination of the gate segments to set the portion of the desired maximum current. The reference current Iref indicating the maximum channel current is set to a reference current source 217 by the Rset resistor 204 and the Vref input.
故障偵測電路包含LED故障偵測電路215,其比較電流槽DMOSFET 87A及87B之源電壓與儲存於故障鎖存電路214中之值。故障鎖存電路214中之資料係在各Vsync脈衝自故障設定暫存器224複製。溫度偵測電路216監測LED驅動器IC 81中之溫度,其中包含圖6中所展示之電路。一故障之偵測立即觸發開放汲極故障旗標MOSFET 219為接通且將FLT線拉至低位準,產生一中斷。故障鎖存電路214中之資料在接下來的Vsync脈衝上被寫入至故障狀態暫存器225中。 The fault detection circuit includes an LED fault detection circuit 215 that compares the source voltages of the current sink DMOSFETs 87A and 87B with the values stored in the fault latch circuit 214. The data in the fault latch circuit 214 is copied from the fault setting register 224 at each Vsync pulse. Temperature detection circuit 216 monitors the temperature in LED driver IC 81, which includes the circuitry shown in FIG. A fault detection immediately triggers the open drain fault flag MOSFET 219 to turn "on" and pull the FLT line to a low level, generating an interrupt. The data in the fault latch circuit 214 is written to the fault state register 225 on the next Vsync pulse.
像點功能及數位轉類比轉換之實施方案進一步詳細描述於上文所引用的申請案第13/346,625號中。該申請案亦包含故障鎖存電路214及LED故障偵測電路215、參考電流源217及電流感測回饋(CSFB)電路218之詳細電路實施方案實例。 Embodiments of the pixel function and the digital to analog conversion are described in further detail in the above-cited application Serial No. 13/346,625. The application also includes an example of a detailed circuit implementation of fault latch circuit 214 and LED fault detection circuit 215, reference current source 217, and current sense feedback (CSFB) circuit 218.
以所描述之方式,一序列資料匯流排係用於控制數個LED串之電流、時序及持續時間,以及偵測且報告該等LED串中之故障狀態之發生。SLI協定為彈性的,僅需要透過SLI匯流排位移暫存器90A發送之資料匹配於被控制之硬體,具體言之,每個驅動器IC發送之位元數匹配於各驅動器IC所需之位元,及一個Vsync週期內發送之位元總數匹配於每個驅動器IC發送之位元數乘以驅動器IC之數量。 In the manner described, a sequence of data busses is used to control the current, timing, and duration of several LED strings, as well as to detect and report the occurrence of fault conditions in the LED strings. The SLI protocol is flexible, and only the data sent through the SLI bus displacement register 90A is matched to the controlled hardware. Specifically, the number of bits transmitted by each driver IC matches the required position of each driver IC. The number of bits, and the number of bits sent in a Vsync cycle, matches the number of bits sent by each driver IC multiplied by the number of driver ICs.
例如,在圖6之電路中,包含像點校正、故障設定及故障報告之協定包括每雙通道驅動器IC有88個位元,亦即,每通道或LED串有44個位元。若控制16個LED串之八個雙通道驅動器IC係連接至一單一 SLI匯流排環路中,則移出介面IC且在各Vsync週期通過SLI匯流排之位元之總數為8乘以88個或704個位元,小於千位元。若SLI匯流排以10MHz計時,則整個資料流可計時在70.4微秒內通過每個驅動器IC且到達每個通道,或每通道4.4微秒。 For example, in the circuit of Figure 6, the agreement including pixel correction, fault setting, and fault reporting includes 88 bits per dual channel driver IC, i.e., 44 bits per channel or LED string. If the eight dual-channel driver ICs that control 16 LED strings are connected to a single In the SLI bus loop, the total number of bits that move out of the interface IC and pass through the SLI bus in each Vsync cycle is 8 times 88 or 704 bits, less than kilobits. If the SLI bus is clocked at 10 MHz, the entire data stream can pass through each driver IC in 70.4 microseconds and reach each channel, or 4.4 microseconds per channel.
儘管序列資料匯流排以「電子」資料速率(亦即,使用用於控制變更之MHz時脈及每秒Mbit資料速率、Vsync或「圖框」速率)通信,然而LCD顯示面板上之影像以一更慢速度發生,此係因為人眼無法快速感知變更之影像。儘管大多數人無法察覺到60Hz圖框速率(亦即,每秒60個影像圖框)之閃爍,然而在A對B之比較中,對於許多人,120Hz TV影像比60Hz TV影像看起來更「清晰」,但僅使用直接比較。在甚至更高的Vsync速率(例如,240Hz及以上)時,僅「遊戲玩家」及視訊顯示「專家」聲稱看到任意改良,主要表現為運動模糊減少。電子資料速率與相對較慢之視訊圖框速率之間之大比率使得至背光LED驅動器的序列匯流排通信成為可能。 Although the sequence data bus communicates at an "electronic" data rate (ie, using a MHz clock for controlling changes and a Mbit data rate per second, Vsync or "frame rate"), the image on the LCD display panel is Slower speed occurs because the human eye cannot quickly perceive the changed image. Although most people are not aware of the 60Hz frame rate (ie, 60 image frames per second), in the comparison of A to B, for many people, 120Hz TV images look more than 60Hz TV images. Clear, but only use direct comparison. At even higher Vsync rates (eg, 240 Hz and above), only "game players" and video display "experts" claim to see any improvement, mainly due to reduced motion blur. The large ratio between the electronic data rate and the relatively slow video frame rate makes it possible to serial bus communication to the backlit LED driver.
例如,在60Hz時,各Vsync週期費時16.7毫秒,數量級長於發送所有資料至所有驅動器IC所需之時間。甚至在用一8X掃描速率及以3D模式運行之最先進TV中,在960Hz時,各Vsync週期亦費時1.04毫秒,意謂可實時控制高達236個通道。此通道數量大大超過了用於甚至最大的HDTV之驅動器要求。 For example, at 60 Hz, each Vsync cycle takes 16.7 milliseconds, which is orders of magnitude longer than the time required to send all data to all of the driver ICs. Even in the most advanced TVs operating at an 8X scan rate and in 3D mode, each Vsync cycle takes 1.04 milliseconds at 960 Hz, meaning up to 236 channels can be controlled in real time. This number of channels greatly exceeds the drive requirements for even the largest HDTV.
用於圖6之SLI匯流排位移暫存器90A中之每雙通道88位元複雜型「協定」使介面IC能夠在每個Vsync週期期間寫入或讀取每個通道之每個暫存器內之所有資料。術語「複雜型」係指用於控制各通道之數位字組之內容。即使先前資料封包未發生任何變更,該複雜型協定也需要在自介面IC 101傳輸至驅動器IC 81A至81H之一者之各資料封包中指定每個變數及暫存器。 Each dual-channel 88-bit complex "contract" used in the SLI bus shift register 90A of Figure 6 enables the interface IC to write or read each register of each channel during each Vsync cycle. All the information inside. The term "complex" refers to the content used to control the digits of each channel. Even if no changes have been made to the previous data packet, the complex protocol requires that each variable and register be specified in each data packet transmitted by the self-interface IC 101 to one of the driver ICs 81A through 81H.
若使用一減少資料協定(亦即,每通道需要更少位元之一協定), 則發送資料至每通道花費甚至更少的時間。因為該複雜型協定由於相對較慢之Vsync重新整理速率而不具有時序限制,所以沒有資料速率益處。然而,在序列通信協定中使用更少之位元的確減少了驅動器IC中之數位位移暫存器及資料鎖存器之大小,因而減少晶片面積及降低整個系統成本。 If a reduced data agreement is used (ie, each channel requires less than one of the bits), Sending data to each channel takes even less time. Because this complex protocol does not have timing constraints due to the relatively slow Vsync refresh rate, there is no data rate benefit. However, the use of fewer bits in a serial communication protocol does reduce the size of the bit shift registers and data latches in the driver IC, thereby reducing die area and overall system cost.
例如,在圖7之LED驅動器系統250中展示使用64個位元而非88個位元之一SLI匯流排之一替代資料協定,該LED驅動器250包含LED驅動器IC 251A至251H及一介面IC 252。如藉由資料序列253所展示,該協定仍使用12位元PWM亮度作用時間因數、12位元相位延遲、8位元故障設定及4位元故障狀態,但其省略12位元像點校正資料。因此,各LED串之個別通道電流設定及亮度校準在此實施方案中無法使用。 For example, one of the SLI busbars using 64 bits instead of 88 bits is shown in the LED driver system 250 of FIG. 7, which includes LED driver ICs 251A through 251H and an interface IC 252. . As shown by data sequence 253, the protocol still uses a 12-bit PWM luminance action time factor, a 12-bit phase delay, an 8-bit fault setting, and a 4-bit fault state, but omits the 12-bit pixel correction data. . Therefore, individual channel current settings and brightness calibration for each LED string are not available in this embodiment.
在LCD面板製造中,許多製造商認為電子校準一顯示器之均勻亮度為太昂貴且因此在商業上為不可行。仍可藉由調整一面板之電流設定電阻器(諸如,圖6中所展示之設定電阻器204)之值而校準全域顯示亮度,但無法透過微控制器或介面IC控制背光亮度之均勻性。替代地,面板製造商將其等LED供應手動「分類」成具有類似亮度及色彩溫度之LED之分箱。 In the manufacture of LCD panels, many manufacturers believe that the uniform brightness of an electronically calibrated display is too expensive and therefore not commercially viable. The global display brightness can still be calibrated by adjusting the value of a panel current setting resistor (such as the set resistor 204 shown in Figure 6), but the uniformity of the backlight brightness cannot be controlled by the microcontroller or interface IC. Alternatively, panel manufacturers manually "classify" their LED supplies into bins of LEDs with similar brightness and color temperatures.
應注意,自SLI匯流排協定移除像點資料並不防礙整體顯示亮度控制或校準。調整系統之全域參考電壓Vref可仍執行全域調光及全域電流控制。例如,在圖6中所展示之系統中,調整Vref之值影響由參考電流源217所產生之參考電流Iref之值。若該參考電壓Vref為所有驅動器IC所共用,則調整Vref將獨立於PWM調光控制,均勻地影響每個驅動器IC及因此影響面板之整體亮度。 It should be noted that removing pixel data from the SLI busbar protocol does not prevent overall display brightness control or calibration. Adjusting the system's global reference voltage, Vref, can still perform global dimming and global current control. For example, in the system shown in FIG. 6, the value of the adjusted Vref affects the value of the reference current Iref generated by the reference current source 217. If the reference voltage Vref is common to all driver ICs, then adjusting Vref will be independent of the PWM dimming control, affecting each driver IC evenly and thus affecting the overall brightness of the panel.
返回圖7,系統250繪示自一共同系統介面IC 252至八個驅動器IC 251A至251H之一串聯連接串之SLI匯流排資料通信。如展示,介面IC 252之SLI匯流排序列輸出SO產生一序列脈衝且同步於序列時脈接針 SC上之時脈脈衝將該等脈衝饋送至驅動器IC 251A之輸入接針。驅動器IC 251A之SLI匯流排序列輸出繼而將其內部位移暫存器資料發送出驅動器IC 251A之SO接針且發送至驅動器IC 251B之SI輸入接針中。類似地,驅動器IC 251B之SO輸出連接至驅動器IC 251C之輸入接針,以此類推,共同形成一「數位」菊鏈。該菊鏈中之最後驅動器IC 251H自其SO接針發送其SLI匯流排資料返回至介面IC 252之SI接針以完成環路。 Returning to Figure 7, system 250 depicts SLI bus data communication from a common system interface IC 252 to one of the eight driver ICs 251A through 251H. As shown, the SLI bus sequence output SO of the interface IC 252 generates a sequence of pulses and is synchronized to the sequence clock pin. The clock pulses on the SC feed the pulses to the input pins of the driver IC 251A. The SLI bus sequence output of the driver IC 251A then sends its internal shift register data out of the SO pin of the driver IC 251A and to the SI input pin of the driver IC 251B. Similarly, the SO output of driver IC 251B is coupled to the input pins of driver IC 251C, and so on, to form a "digital" daisy chain. The last driver IC 251H in the daisy chain sends its SLI bus data from its SO pin back to the SI pin of the interface IC 252 to complete the loop.
在系統250之操作中,介面IC 252回應於在介面IC 252之SPI匯流排介面上接收之指令而將資料自介面IC 252之SO接針向外發送至系統之純量或視訊IC。用於每個驅動器IC及LED串之資料自介面IC 252之SO輸出依序計時至每個驅動器IC 251A至251H。所有資料必須在一個單一Vsync週期內被發送至所有驅動器IC。由於SLI匯流排為一序列協定,所以自介面IC 252發送出之第一資料表示用於控制驅動器IC 251H之位元。在64個時脈脈衝之後,在驅動器IC 251A之SLI匯流排位移暫存器中出現經指定用於驅動器IC 251H之資料。介面IC 252接著在其SO接針上輸出同步於SC時脈接針上之另外64個脈衝之用於驅動器IC 251G之資料。在此等64個時脈脈衝期間,用於驅動器IC 251H之資料自驅動器IC 251A內之SLI匯流排位移暫存器移動且暫時移動至驅動器IC 251B內之SLI匯流排位移暫存器中。重複此程序直至最後,在介面IC 252之SO接針上輸出同步於SC時脈上之最後64個脈衝之用於驅動器IC 251A之資料。 In operation of system 250, interface IC 252 sends data from the interface of IC 252 to the scalar or video IC of the system in response to instructions received on the SPI bus interface of interface IC 252. The SO output for each driver IC and LED string is sequentially clocked to each of the driver ICs 251A through 251H. All data must be sent to all drive ICs in a single Vsync cycle. Since the SLI bus is a sequence agreement, the first data sent from the interface IC 252 represents the bit used to control the driver IC 251H. After 64 clock pulses, the data designated for the driver IC 251H appears in the SLI bus shift register of the driver IC 251A. The interface IC 252 then outputs the data for the driver IC 251G synchronized to the other 64 pulses on the SC clock pin on its SO pin. During these 64 clock pulses, the data for the driver IC 251H is moved from the SLI busbar shift register in the driver IC 251A and temporarily moved into the SLI busbar shift register in the driver IC 251B. This procedure is repeated until finally, and the data for the driver IC 251A synchronized to the last 64 pulses on the SC clock is output on the SO pin of the interface IC 252.
在一給定之Vsync週期之最後64位元「寫入循環」中,用於驅動器IC 251A之資料自SO接針輸出且被載入至驅動器IC 251A內之SLI匯流排位移暫存器中,用於驅動器IC 251B之資料自驅動器IC 251A內之SLI匯流排位移暫存器移動且移動至驅動器IC 251B內之SLI匯流排位移暫存器中,以此類推。類似地,在寫入循環之此最後64個位元期 間,用於驅動器IC 251H之資料自驅動器IC 251G內之SLI匯流排位移暫存器移動至驅動器IC 251H內之SLI匯流排位移暫存器中。因此,在SC接針上之8×64個時脈脈衝或512個脈衝之後,所有資料皆已被載入至對應驅動器IC之SLI匯流排位移暫存器中。儘管如此,此資料尚未控制LED串之操作。 In the last 64-bit "write cycle" of a given Vsync cycle, the data for the driver IC 251A is output from the SO pin and loaded into the SLI bus shift register in the driver IC 251A. The data in the driver IC 251B is moved from the SLI busbar shift register in the driver IC 251A and moved to the SLI busbar shift register in the driver IC 251B, and so on. Similarly, in the last 64 bit periods of the write cycle The data for the driver IC 251H is moved from the SLI busbar shift register in the driver IC 251G to the SLI busbar shift register in the driver IC 251H. Therefore, after 8 x 64 clock pulses or 512 pulses on the SC pin, all data has been loaded into the SLI bus shift register of the corresponding driver IC. However, this information has not yet controlled the operation of the LED string.
僅在下一個Vsync脈衝被供應至驅動器IC之後,此新載入之資料才自SLI匯流排位移暫存器複製並複製至其等對應驅動器IC之主動鎖存器中,用於控制LED亮度、時序及故障管理。具體言之,驅動器IC 251A內之SLI匯流排暫存器中之資料被複製至影響受控於通道A及B之LED串之操作之主動鎖存器中,驅動器IC 251B內之SLI匯流排位移暫存器中的資料被複製至影響受控於通道C及D之LED串之操作之主動鎖存器中,以此類推。其後,該等SLI匯流排位移暫存器已準備被重新寫入用於下一個Vsync週期之新資料。對於目前Vsync週期之剩餘部分,將根據在最後Vsync脈衝之前接收之資料控制LED串。 Only after the next Vsync pulse is supplied to the driver IC, this newly loaded data is copied from the SLI bus shift register and copied to the active latch of its corresponding driver IC for controlling LED brightness and timing. And fault management. Specifically, the data in the SLI bus register in the driver IC 251A is copied to the active latch that affects the operation of the LED strings controlled by channels A and B, and the SLI busbar displacement in the driver IC 251B The data in the scratchpad is copied to the active latch that affects the operation of the LED string controlled by channels C and D, and so on. Thereafter, the SLI bus displacement registers are ready to be rewritten for new data for the next Vsync cycle. For the remainder of the current Vsync cycle, the LED string will be controlled based on the data received prior to the last Vsync pulse.
以此方式,SLI匯流排資料通信時序及時脈與系統之Vsync週期及開始各Vsync週期之Vsync脈衝不同步。即,可透過SLI匯流排而將來自介面IC 252之資料更快或更慢地發送至驅動器IC 251A至251H,讓顯示器之觀看者在下一個Vsync出現之前察覺不到正在進行之多晶片互動或變更的LED設定。唯一時序要求在於,介面IC 252能經由其之SPI匯流排輸入自視訊控制器或純量IC接收其之指令、解譯該等指令且在一單一Vsync週期內在其SLI匯流排之SO接針上輸出用於每個驅動器IC之通道特定資訊。如先前所描述,由於接收此等指令所需之時間大大短於Vsync週期,所以此時序要求對顯示器之操作不會造成任何限制。 In this way, the SLI bus data communication timing and timing are not synchronized with the Vsync period of the system and the Vsync pulse that starts each Vsync period. That is, the data from the interface IC 252 can be sent to the driver ICs 251A through 251H faster or slower through the SLI bus, allowing the viewer of the display to not perceive the ongoing multi-chip interaction or change until the next Vsync occurs. LED settings. The only timing requirement is that the interface IC 252 can receive its instructions from the video controller or the scalar IC via its SPI bus input, interpret the instructions, and on the SO pins of its SLI bus in a single Vsync cycle. Output channel specific information for each driver IC. As previously described, since the time required to receive such instructions is much shorter than the Vsync period, this timing requirement does not impose any restrictions on the operation of the display.
圖7亦繪示,故障集資料暫存器可包括各種種類之資料,其包含用於調整用於偵測一短路LED之電壓(SLED集碼)、設定用於忽略自一 短路LED偵測輸出之故障(短路LED故障消隱)之一時間週期、設定用於忽略自斷路LED偵測輸出之故障(斷路LED故障消隱)之一時間週期及清除先前所報告之斷路及短路LED故障暫存器(斷路CLR及短路CLR)之資料。該SLI匯流排協定不限於實施特定故障相關之功能或特徵。 FIG. 7 also illustrates that the fault set data register may include various types of data including a voltage for adjusting a short-circuit LED (SLED code set), and is set to ignore one. One time period of the short-circuit LED detection output fault (short-circuit LED fault blanking), one time period for ignoring the fault of the self-breaking LED detection output (breaking LED fault blanking) and clearing the previously reported disconnection and Short-circuit LED fault register (open circuit CLR and short circuit CLR). The SLI bus bar protocol is not limited to implementing a particular fault related function or feature.
系統250亦繪示藉由將菊鏈中之最後驅動器IC(驅動器IC 251H)之SO輸出與介面IC 252之SI輸入連接而實施SLI匯流排作為一環路之故障讀回能力。當將來自介面IC 252之資料寫入至驅動器IC 251A至251H時,駐存於SLI匯流排位移暫存器內之資料隨著各SC時脈脈衝前進通過該菊鏈。若SLI匯流排位移暫存器內之資料包含藉由驅動器IC 251A至251H之一者寫入之故障偵測資料,則計時該資料通過該環路且返回介面IC 252促進驅動器IC 251A至251H之一者中之一特定故障狀態藉以報告返回至該介面IC 252且通過SPI匯流排至該系統之其他組件的辦法。介面IC 252對故障資訊做何處置取決於其設計且不受SLI匯流排協定或硬體之限制。 System 250 also illustrates the implementation of the SLI bus as a loop fault readback capability by connecting the SO output of the last driver IC (driver IC 251H) in the daisy chain to the SI input of interface IC 252. When data from the interface IC 252 is written to the driver ICs 251A through 251H, the data resident in the SLI bus displacement register advances through the daisy chain with each SC clock pulse. If the data in the SLI bus displacement register contains fault detection data written by one of the driver ICs 251A to 251H, the data is clocked through the loop and the return interface IC 252 facilitates the driver ICs 251A to 251H. One of the specific fault states is used to report back to the interface IC 252 and route through the SPI to other components of the system. What the interface IC 252 does for fault information depends on its design and is not limited by the SLI bus protocol or hardware.
儘管所展示之實例描述雙通道驅動器IC,然而所揭示之驅動器概念及架構可擴大至更大數量之整合通道而沒有限制,除了驅動器IC、封裝及印刷電路板設計之功率消耗及溫度約束之外。 Although the example shown describes a dual channel driver IC, the disclosed driver concept and architecture can be extended to a larger number of integrated channels without limitation, except for power consumption and temperature constraints of driver IC, package and printed circuit board design. .
在圖8中繪示與所揭示之架構一致之一多通道LED驅動器之一實例。類似於圖3B之雙通道驅動器,四元LED驅動器IC 301分別整合高電壓電流槽DMOSFET 307A至307D之四個通道與高電壓二極體308A至308D。該等電流槽DMOSFET 307A至307D受控於I精確閘極驅動器電路306A至306D以控制LED串303A至303D中與一電流設定電阻器302校準之電流。驅動器IC 301(如該系統中之其他驅動器IC)包含一偏壓供應304、一類比控制及感測(AC&S)電路310以及一數位控制及時 序(DC&T)電路309。 One example of a multi-channel LED driver consistent with the disclosed architecture is illustrated in FIG. Similar to the dual channel driver of FIG. 3B, the quaternary LED driver IC 301 integrates the four channels of the high voltage current sink DMOSFETs 307A through 307D with the high voltage diodes 308A through 308D, respectively. The current sink DMOSFETs 307A through 307D are controlled by I precision gate driver circuits 306A through 306D to control the currents in LED strings 303A through 303D that are calibrated to a current setting resistor 302. Driver IC 301 (such as other driver ICs in the system) includes a bias supply 304, an analog control and sense (AC&S) circuit 310, and a digital control in time Order (DC&T) circuit 309.
除了使雙通道版本中之I精確閘極驅動器電路及電流槽DMOSFET之數量加倍之外,四元LED驅動器301亦需要AC&S電路310及DC&T電路309中之額外鎖存器及電路以支援額外通道。當每個驅動器IC一個溫度保護電路為足夠時,溫度保護電路無需加倍。一顯著面積亦專用於SLI匯流排暫存器311,其必須在尺寸上加倍以支援四個通道而非兩個通道。 In addition to doubling the number of I-precision gate driver circuits and current-slot DMOSFETs in the dual-channel version, the quaternary LED driver 301 also requires additional latches and circuitry in the AC&S circuit 310 and DC&T circuit 309 to support additional channels. When a temperature protection circuit is sufficient for each driver IC, the temperature protection circuit does not need to be doubled. A significant area is also dedicated to the SLI bus register 311, which must be doubled in size to support four channels instead of two.
在圖9中展示四通道SLI匯流排位移暫存器311之一實施例。四通道SLI匯流排位移暫存器311包含176個位元,為圖6之雙通道系統之SLI匯流排位移暫存器90A之資料儲存容量之兩倍。因此,包含PWM資料、相位資料位及像點資料及故障資料之整個資料流在長度上亦為兩倍,但無需變更SLI匯流排協定。複製該故障資料之一些(諸如,儲存於四位元故障狀態暫存器354及355中之溫度故障資料),但藉由消除多餘位元所節省之晶粒面積通常不值得變更協定所引起之複雜性。 One embodiment of a four-channel SLI bus displacement register 311 is shown in FIG. The four-channel SLI bus displacement register 311 contains 176 bits, which is twice the data storage capacity of the SLI bus displacement register 90A of the dual channel system of FIG. Therefore, the entire data stream containing PWM data, phase data bits, and image data and fault data is twice as long, but there is no need to change the SLI bus protocol. Copying some of the fault data (such as temperature fault data stored in the four-bit fault state registers 354 and 355), but the area of the die saved by eliminating redundant bits is generally not worthy of the change agreement. Complexity.
因此,藉由利用發送所有資料用於菊鏈中之每個暫存器之「複雜型」SLI匯流排協定,將各時間資料自介面IC 101寫入至LED驅動器IC 81A至81H,可僅藉由按比列擴展SLI匯流排位移暫存器90A至90H以容納適當數量之整合通道而擴大整合至一LED驅動器IC中之通道數量。 Therefore, by using the "complex" SLI bus protocol for transmitting all the data for each register in the daisy chain, each time data is written from the interface IC 101 to the LED driver ICs 81A to 81H, and only The number of channels integrated into an LED driver IC is expanded by expanding the SLI busbar shift registers 90A through 90H in a ratio to accommodate an appropriate number of integrated channels.
然而,該複雜型SLI匯流排協定具有若干缺點。具體言之,即使當一些資料未變更時,介面IC 101仍保持繁重工作以在SLI匯流排113上重複移出該資料至所有驅動器IC 81A至81H。此外,多通道LED驅動器IC 81A至81H中之位移暫存器90A至90H相對較大,及其等佔據顯著晶粒面積。 However, this complex SLI busbar protocol has several drawbacks. In particular, even when some of the material has not changed, the interface IC 101 remains cumbersome to repeatedly remove the data onto all of the driver ICs 81A to 81H on the SLI bus 113. Further, the displacement registers 90A to 90H of the multi-channel LED driver ICs 81A to 81H are relatively large, and they occupy a significant grain area.
可以減少被發送之資料之大小之一SLI匯流排協定克服此等缺點,使得僅需要重新寫入在視訊圖框之間變更之鎖存器資料。 One of the disadvantages of reducing the size of the data being sent is that the SLI bus protocol overcomes these shortcomings, so that only the latch data that is changed between the video frames needs to be rewritten.
例如,在圖6中所展示之LED驅動器IC 81中,即使未發生任何變更,載入至位移暫存器90A中之資料亦在每個Vsync週期被分別寫入鎖存器及計數器210A及210B之鎖存器211A、212A、211B及212B、D/A轉換器213A及213B及故障鎖存電路214或從中讀取至少一次。未變更之資料之重複發送及重新發送為低效、麻煩且可能很昂貴、浪費匯流排帶寬、以瑣碎工作佔據系統及以過大的位移暫存器耗費矽面積。 For example, in the LED driver IC 81 shown in FIG. 6, the data loaded into the shift register 90A is written to the latch and counters 210A and 210B, respectively, every Vsync cycle, even if no changes have occurred. The latches 211A, 212A, 211B, and 212B, the D/A converters 213A and 213B, and the fault latch circuit 214 are read from or read at least once. Repeated transmission and retransmission of unaltered data is inefficient, cumbersome and potentially expensive, wastes busbar bandwidth, occupies the system with trivial work, and consumes an area with excessive displacement registers.
可藉由添加一「鎖存位址」或「首碼」至序列照明介面匯流排協定且將其嵌入於每個SLI匯流排通信中,防止在一序列匯流排上發送較長數位字組或指令之限制及缺點。當與電路結合以解碼及多工SLI匯流排資料時,該所嵌入之首碼資訊使資料僅路由至特定目標鎖存器。 Preventing the transmission of longer digits on a sequence of busses by adding a "latch address" or "first code" to the sequence illumination interface bus protocol and embedding it in each SLI bus communication Limitations and shortcomings of the instructions. When combined with circuitry to decode and multiplex SLI bus data, the embedded first code information causes the data to be routed only to specific target latches.
藉由將資料僅具體發送至需要更新之鎖存器,「首碼多工」或「精簡型」SLI匯流排架構避免重複及不必要地重新發送數位資料之需要,尤其係重新發送保持恆定或極少變更之多餘資料。在操作中,在一初始設定之後,僅需要變更之鎖存器被重新寫入。 By sending the data only to the latches that need to be updated, the "first code multiplex" or "thin" SLI bus architecture avoids the need to repeat and unnecessarily resend digital data, especially if the resend remains constant or Extra information that is rarely changed. In operation, after an initial setting, only the latches that need to be changed are rewritten.
包含固定資料之鎖存器僅在第一次初始化系統時被寫入一次,及其後無需透過SLI匯流排與系統IC進行後續通信。由於僅更新變更之鎖存器,所以橫跨SLI匯流排發送之資料量大幅減少。此方法提供明顯優於「複雜型」SLI匯流排方法之若干優點,即: The latch containing the fixed data is written only once when the system is first initialized, and then does not need to communicate with the system IC via the SLI bus. Since only the changed latches are updated, the amount of data sent across the SLI bus is greatly reduced. This approach offers several advantages over the "complex" SLI busbar approach, namely:
●尤其在較小(例如,兩通道)LED驅動器IC中,整合一SLI匯流排位移暫存器所需之位元數大幅減少,節省了晶粒面積且降低了成本 ● Especially in small (for example, two-channel) LED driver ICs, the number of bits required to integrate an SLI busbar shift register is greatly reduced, saving die area and reducing cost.
●增加SLI匯流排在任意給定時脈速率之有效帶寬,此係因為未重複發送多餘資料 ● Increase the effective bandwidth of the SLI bus at any given timing rate, because the redundant data is not sent repeatedly.
●SLI匯流排協定可用固定字組長度及功能標準化卻不失多功能 性 ●SLI bus bar protocol can be standardized with fixed block length and function without losing function Sex
在圖10之示意電路圖中所展示之LED驅動器IC 81之實施例中展示一首碼多工SLI匯流排之一實例。除了替代性LED驅動器IC 81之外,圖10亦展示包含一16位元首碼暫存器312及一16位元資料暫存器313之一SLI匯流排410,及一首碼解碼器及多工器(mux)電路419。資料暫存器313中之資料被分別路由至鎖存器及計數器A 410A及鎖存器及計數器B 410B中之D鎖存器411A及411B以及Φ鎖存器412A及412B、至數位控制及時序(DC&T)電路402中之D/A轉換器413A及413B之一者,或至類比控制及感測(AC&S)電路403中之一故障鎖存電路414。首碼解碼器及多工器電路419根據包含於首碼暫存器312中之路由方向進行此等資料傳送。因此,首碼解碼器及多工器電路419解碼儲存於首碼暫存器312中之16位元字組及將儲存於資料暫存器313中之資料多工至DC&T電路402及AC&S電路403中之適當D、Φ或像點鎖存器中。 An example of a first code multiplexed SLI bus is shown in the embodiment of LED driver IC 81 shown in the schematic circuit diagram of FIG. In addition to the alternative LED driver IC 81, FIG. 10 also shows an SLI bus 410 including a 16-bit first code register 312 and a 16-bit data register 313, and a first code decoder and multiplexing. (mux) circuit 419. The data in data buffer 313 is routed to latches and counters A 410A and D latches 411A and 411B and Φ latches 412A and 412B in latch and counter B 410B, respectively, to digital control and timing. One of the D/A converters 413A and 413B in the (DC&T) circuit 402, or one of the analog latching and sensing (AC&S) circuits 403. The first code decoder and multiplexer circuit 419 performs such data transfer in accordance with the routing direction included in the first code register 312. Therefore, the first code decoder and multiplexer circuit 419 decodes the 16-bit block stored in the first code register 312 and multiplexes the data stored in the data register 313 to the DC&T circuit 402 and the AC&S circuit 403. In the appropriate D, Φ or pixel latches.
在故障鎖存電路414之情況中,多工器419雙向操作,容許將儲存於資料暫存器313中之資料寫入至故障鎖存電路414中,或相反,容許將儲存於故障鎖存電路414中之資料寫入至資料暫存器313中。 In the case of the fault latch circuit 414, the multiplexer 419 operates bi-directionally, allowing the data stored in the data register 313 to be written into the fault latch circuit 414 or, conversely, to be stored in the fault latch circuit. The data in 414 is written to data register 313.
在圖10中所繪示之實施例中,該首碼多工SLI匯流排協定使用一32位元字組,即,儲存於首碼暫存器312中之字組之長度為16位元,及儲存於資料暫存器313中之字組之長度亦為16位元,促進具有高達65,536個組合之一變數唯一地寫入至65,536個不同鎖存器之一者或從中讀取。此提供定址大量鎖存器及維持一短字組長度之彈性與小型SLI匯流排暫存器大小之間之一良好平衡折衷且提供彈性及擴展性兩者。 In the embodiment illustrated in FIG. 10, the first code multiplexed SLI bus protocol uses a 32-bit block, that is, the block stored in the first code register 312 has a length of 16 bits. The length of the block stored in data register 313 is also 16 bits, facilitating the reading of one of up to 65,536 different latches with one of up to 65,536 combinations being uniquely written to or read from. This provides a well-balanced compromise between addressing a large number of latches and maintaining the flexibility of a short block length and the size of a small SLI bus register and providing both flexibility and scalability.
儘管促進了大量之組合,然並非需要使用SLI匯流排410中之全部資料。若LED驅動器IC 81包含較少之功能鎖存器及通道,則需要 解碼小於16個位元之首碼字組。同樣地,若要求較低精度,則需要將小於16個位元之資料字組傳送至目標鎖存器中。例如,若包含於資料暫存器313中之資料為PWM亮度作用時間因數,則12個位元資料可經多工且被載入至D鎖存器411A中,而若暫存器313中之資料為LED電流「像點」設定,則與D/A轉換器413A相關聯之像點暫存器僅需要8個位元。 Although a large number of combinations are promoted, it is not necessary to use all of the data in the SLI bus. If LED driver IC 81 contains fewer function latches and channels, then The first codeword group of less than 16 bits is decoded. Similarly, if lower precision is required, a data block of less than 16 bits needs to be transferred to the target latch. For example, if the data contained in the data register 313 is a PWM brightness action time factor, then 12 bit data can be multiplexed and loaded into the D latch 411A, and if the register 313 is present. The data is set for the LED current "image point", and the pixel register associated with the D/A converter 413A requires only 8 bits.
因此在首碼多工SLI匯流排中,藉由介面IC 101以序列方式將資料一次一個位元地重複寫入至資料暫存器313中,且接著將資料多工至DC&T電路402及AC&S電路403中之若干功能鎖存器之一者中。在圖10之實施例中,資料暫存器313中之資料散佈至具有不同功能角色之七個不同功能鎖存器中。 Therefore, in the first code multiplexed SLI bus, the data is repeatedly written into the data register 313 one by one by the interface IC 101, and then the data is multiplexed to the DC&T circuit 402 and the AC&S circuit. One of several function latches in 403. In the embodiment of FIG. 10, the data in data register 313 is spread among seven different functional latches having different functional roles.
圖10在所展示之「精簡型」首碼多工SLI匯流排410與圖6中所展示之「複雜型」SLI匯流排90A形成鮮明對比,其中SLI匯流排位移暫存器90A中之各暫存器與LED驅動器IC 81中之一功能鎖存器具有一對一對應關係,例如,PWM A暫存器220A傳送資料至D鎖存器211A中,相位A暫存器221A傳送資料至Φ鎖存器212A中,以此類推。此一對一對應關係使縮放該複雜型SLI匯流排架構至較大通道數驅動器IC既成問題且又昂貴。 The "simplified" first code multiplexed SLI bus bar 410 shown in FIG. 10 is in sharp contrast to the "complex" SLI bus bar 90A shown in FIG. 6, wherein each of the SLI bus bar shift registers 90A is temporarily placed. The memory has a one-to-one correspondence with one of the function latches of the LED driver IC 81. For example, the PWM A register 220A transfers the data to the D latch 211A, and the phase A register 221A transfers the data to the Φ latch. In the device 212A, and so on. This one-to-one correspondence makes scaling the complex SLI busbar architecture to a larger channel number driver IC both problematic and expensive.
該首碼多工SLI匯流排之散佈能力因此比複雜型SLI匯流排協定提供一更多功能、更低成本之方法來實施一多通道LED驅動器IC。對於下文所考慮之此原因及其他原因,該首碼多工SLI匯流排表示一經改良之序列照明介面匯流排協定、架構及實體介面。 The ability to spread the first-code multiplexed SLI busbar thus provides a more functional, lower-cost way to implement a multi-channel LED driver IC than the complex SLI busbar protocol. For the reasons considered below and for other reasons, the first code multiplexed SLI bus represents an improved sequence illumination interface bus protocol, architecture and physical interface.
在圖11中繪示首碼多工SLI匯流排方法之一進一步改良。在此實例中,SLI匯流排311中之16位元首碼暫存器又分成兩個8位元首碼暫存器312C及312F,其分別儲存通道及功能首碼資訊。資料暫存器313保持不變。如展示,一首碼解碼器451具有兩個輸出,選擇控制哪個 LED通道之一通道選擇輸出453,及選擇詢問哪個功能鎖存器(亦即,寫入至哪個功能鎖存器或從中讀取)之一功能選擇輸出452。 A further improvement of one of the first code multiplexed SLI busbar methods is illustrated in FIG. In this example, the 16-bit first code register in the SLI bus 311 is further divided into two 8-bit first code registers 312C and 312F, which respectively store channel and function first code information. The data register 313 remains unchanged. As shown, a first code decoder 451 has two outputs, which one to control One of the LED channels selects output 453 and selects one of the function latches (i.e., which function latch is written to or read from) the function select output 452.
首碼解碼器451以輸出453中之一通道選擇信號選擇諸多通道457之一者;首碼解碼器451接著以輸出452中之一功能選擇信號選定待控制之功能(例如,PWM或相位)。一多工器電路454接著將來自資料暫存器313之資料寫入至控制經選擇之特定通道457中之類比或數位功能456之一鎖存器455中。 The first code decoder 451 selects one of the plurality of channels 457 with one of the channel select signals in the output 453; the first code decoder 451 then selects a function (e.g., PWM or phase) to be controlled with one of the function selection signals in the output 452. A multiplexer circuit 454 then writes the data from the data register 313 into a latch 455 that controls one of the analog or digital functions 456 in the particular channel 457 selected.
以此方式,可實時獨立控制一LED驅動器IC內之任意數量之通道(亦即,任意數量之LED串),透過一共用SLI匯流排311促進各控制功能之精確調整,而無需一較大位移暫存器或較長數位字組。 In this way, any number of channels (ie, any number of LED strings) within an LED driver IC can be independently controlled in real time, and a common SLI bus bar 311 facilitates precise adjustment of each control function without requiring a large displacement. A scratchpad or a longer digit block.
在本發明之較佳實施例中,SLI匯流排311內之首碼(ch)暫存器、首碼(fcn)暫存器及資料暫存器儲存包含16個位元資料之一32位元字組(亦即,16個位元未使用)。該字組因此能定址256個通道之任一者中之256個不同功能之一者。由於可能組合之數量大大超過了一單一LED驅動器IC中所需之通道及功能之數量,所以經改良之SLI匯流排協定不限於本文所描述之LED驅動器實例。然而,在一單一LED驅動器IC中,可藉由僅解碼可能的數位鎖存位址之一子集、將相關聯電路之大小減小至一最小值而限制組合之數量。由於各LED驅動器IC僅需要一個32位元位移暫存器,所以較佳32位元SLI匯流排協定中之額外未使用位元並未浪費顯著的晶粒面積。 In a preferred embodiment of the present invention, the first code (ch) register, the first code (fcn) register, and the data register in the SLI bus 311 store 32 bits of one of 16 bit data. The block (ie, 16 bits are unused). The block can therefore address one of the 256 different functions of any of the 256 channels. Since the number of possible combinations greatly exceeds the number of channels and functions required in a single LED driver IC, the improved SLI bus protocol is not limited to the LED driver examples described herein. However, in a single LED driver IC, the number of combinations can be limited by decoding only a subset of the possible digital latch addresses, reducing the size of the associated circuitry to a minimum. Since each LED driver IC requires only one 32-bit displacement register, the additional unused bits in the preferred 32-bit SLI busbar protocol do not waste significant grain area.
作為減少經解碼之位元之數量之一實例,解碼通道首碼暫存器312C之兩個最低有效位元(LSB)及功能首碼暫存器312F之兩個LSB輕易容納圖8之僅具有一32位元位移暫存器之四元LED驅動器301,遠小於複雜型SLI匯流排協定所需之176位元位移暫存器311,如圖9中所展示。在下列表中描述4通道LED驅動器解碼作為一種可能實施方案。 As an example of reducing the number of decoded bits, the two least significant bits (LSBs) of the decoding channel first code register 312C and the two LSBs of the function first code register 312F are easily accommodated in FIG. The quaternary LED driver 301 of a 32-bit displacement register is much smaller than the 176-bit displacement register 311 required for the complex SLI busbar protocol, as shown in FIG. The 4-channel LED driver decoding is described in the following list as a possible implementation.
圖12A繪示圖10中所展示之LED驅動器IC 81之實施例之一變化,在圖12A之實施例中,首碼解碼器及多工器419已被分成一解碼器491及一多工器492。 12A illustrates a variation of the embodiment of the LED driver IC 81 shown in FIG. 10. In the embodiment of FIG. 12A, the first code decoder and multiplexer 419 have been divided into a decoder 491 and a multiplexer. 492.
圖12A中所展示之LED驅動器IC 81提供具有150V電路能力及±2%絕對電流準確度之250mA LED驅動之兩個通道之完全控制、12個位元之PWM亮度控制、12個位元之相位控制、8個位元之電流控制、LED斷路及LED短路狀態之故障偵測、以及超溫偵測,所有皆透過高速SLI匯流排410而控制且藉由一共同Vsync及灰階時脈(GSC)信號而同步於其他驅動器。儘管圖12A中所展示之電流槽DMOSFET 87A及87B具有150V之額定能力,此等裝置如需要可經調整大小以在自100V至300V之範圍內操作。藉由驅動器IC 81之功率消耗及LED串83A及83B中之正向電壓之失配而設定DMOSFET 87A及87B之250mA額定電流。高於額定之100V時,有利的是整合與電流槽DMOSFET 87A及87B串聯之高電壓疊接箝制DMOSFET,藉此電流槽DMOSFET 87A及87B不會操作高於由疊接箝制DMOSFET提供之箝制電壓(亦 即,高於如上文結合圖3A所描述之12V)。 The LED driver IC 81 shown in Figure 12A provides full control of two channels, 12-bit PWM brightness control, and 12-bit phase with 250V LED drive with 150V circuit capability and ±2% absolute current accuracy. Control, 8 bit current control, LED open and LED short circuit fault detection, and over temperature detection, all controlled by high speed SLI bus 410 and with a common Vsync and grayscale clock (GSC) ) The signal is synchronized with other drives. Although the current sink DMOSFETs 87A and 87B shown in Figure 12A have a nominal capability of 150V, such devices can be sized as needed to operate from 100V to 300V. The 250 mA rated current of the DMOSFETs 87A and 87B is set by the power consumption of the driver IC 81 and the mismatch of the forward voltages in the LED strings 83A and 83B. Above 100V rated, it is advantageous to integrate the high voltage cascode clamped DMOSFETs in series with current sink DMOSFETs 87A and 87B, whereby current sink DMOSFETs 87A and 87B do not operate above the clamp voltage provided by the stacked clamp DMOSFETs ( also That is, higher than 12V as described above in connection with FIG. 3A).
在操作中,圖12A中所展示之LED驅動器IC 81在其序列輸入(SI)接針上接收饋送至SLI匯流排位移暫存器410中之一資料串。該資料係以由介面IC 101(未展示)供應之序列時脈(SCK)信號設定之一速率而計時。用於該資料之最大時序速率取決於用於實施SLI匯流排位移暫存器410之CMOS技術,但即使使用0.5μm線寬程序及晶圓廠,亦可達成10MHz操作。只要SCK信號繼續運行,資料將移至SLI匯流排位移暫存器410中,且最終在其至序列菊鏈中之下一LED驅動器IC之路徑上離開序列輸出(SO)接針。 In operation, the LED driver IC 81 shown in FIG. 12A receives a data string fed to the SLI bus shift register 410 on its serial input (SI) header. The data is clocked at a rate set by a sequence clock (SCK) signal supplied by interface IC 101 (not shown). The maximum timing rate for this data depends on the CMOS technology used to implement the SLI bus shift register 410, but even with a 0.5 μm line width program and fab, a 10 MHz operation can be achieved. As long as the SCK signal continues to run, the data will move into the SLI bus shift register 410 and eventually exit the sequence output (SO) pin on its path to the next LED driver IC in the sequence daisy chain.
在對應於特定LED驅動器IC之資料到達SLI匯流排位移暫存器410中之後,介面IC 101即刻停止SCK信號。自該SLI匯流排位移暫存器410中之資料,解碼器491判定待控制之DC&T電路402或AC&S電路403內之通道及鎖存器,且指示多工器492將該SLI匯流排位移暫存器410內之資料暫存器連接至該鎖存器。自該SLI匯流排位移暫存器410中之資料暫存器至DC&T電路402或AC&S電路403內之目標鎖存器之資料之傳送在下一個Vsync脈衝時發生。DC&T電路402或AC&S電路403中之資料鎖存器可包括正反器或靜態RAM。如果解碼器491指示該SLI匯流排詢問AC&S電路403內之故障鎖存器之情況中,則在Vsync脈衝時,將先前寫入至AC&S電路403內之故障鎖存器中之任意資料複製至SLI匯流排位移暫存器410之適當位元中。 After the data corresponding to the particular LED driver IC reaches the SLI bus shift register 410, the interface IC 101 immediately stops the SCK signal. From the data in the SLI bus displacement register 410, the decoder 491 determines the channel and latch in the DC&T circuit 402 or AC&S circuit 403 to be controlled, and instructs the multiplexer 492 to temporarily store the SLI bus displacement. A data register in device 410 is coupled to the latch. The transfer of data from the data register in the SLI bus shift register 410 to the target latch in the DC&T circuit 402 or the AC&S circuit 403 occurs at the next Vsync pulse. The data latches in the DC&T circuit 402 or AC&S circuit 403 may include flip-flops or static RAM. If the decoder 491 indicates that the SLI bus is interrogating the fault latch in the AC&S circuit 403, then any data previously written to the fault latch in the AC&S circuit 403 is copied to the SLI at the Vsync pulse. The bus shift register 410 is in the appropriate bit.
SCK信號之恢復將SLI匯流排位移暫存器410內之讀取及寫入位元移動至菊鏈中之下一LED驅動器IC。在一較佳實施例中,該菊鏈形成連接返回至介面IC之一環路。發送新資料至該菊鏈中最終推動駐存於SLI匯流排位移暫存器中之現有資料通過該環路且最終返回至該介面IC 101。以此方式,介面IC 101可與個別LED驅動器IC通信、設定LED串亮度及時序,及該等個別LED驅動器IC可將個別故障狀態傳達 返回至該介面IC。 The recovery of the SCK signal moves the read and write bits in the SLI bus shift register 410 to the lower LED driver IC in the daisy chain. In a preferred embodiment, the daisy chain forms a connection back to one of the loops of the interface IC. Sending new data to the daisy chain ultimately pushes existing data residing in the SLI busbar shift register through the loop and ultimately back to the interface IC 101. In this manner, the interface IC 101 can communicate with individual LED driver ICs, set LED string brightness and timing, and the individual LED driver ICs can communicate individual fault conditions. Return to the interface IC.
SLI匯流排資料透過菊鏈所連接之位移暫存器之位移在每SCK脈衝中前進一個位元。在32個SCK脈衝之後,用於最後LED驅動器IC之32位元資料或「字組」已被移出介面IC且移至該菊鏈中之第一個LED驅動器IC,但尚未駐存於預定之LED驅動器IC中。在64個SCK脈衝之後,第一個32位元字組自第一個LED驅動器IC移動至第二個LED驅動器IC中,及下一個32位元字組自介面IC移動至該菊鏈中之第一個LED驅動器IC中。在此步驟時,該等SLI匯流排字組仍未駐存於其等適當驅動器IC中。在一菊鏈中包含「n」個SLI匯流排暫存器之該菊鏈中,僅在「n」乘以32個序列時脈脈衝SCK之後,將資料最後移至適當LED驅動器IC中。中斷該等SCK脈衝將來自SLI匯流排位移暫存器之資料複製至預負載鎖存器中,如下文結合圖14所描述。在下一個Vsync脈衝時,將資料自該等預負載鎖存器複製至主動鎖存器中,且LED驅動器之變更生效。在此之前,LED驅動器IC之操作保持不受影響。 The SLI bus data advances by one bit per SCK pulse through the displacement of the displacement register connected to the daisy chain. After 32 SCK pulses, the 32-bit data or "word" used for the last LED driver IC has been removed from the interface IC and moved to the first LED driver IC in the daisy chain, but has not yet resided in the predetermined LED driver IC. After 64 SCK pulses, the first 32-bit block moves from the first LED driver IC to the second LED driver IC, and the next 32-bit block is moved from the interface IC to the daisy chain. The first LED driver IC. At this step, the SLI bus blocks are still not resident in their appropriate driver ICs. In the daisy chain containing "n" SLI bus registers in a daisy chain, the data is finally moved to the appropriate LED driver IC only after "n" is multiplied by 32 sequence clock pulses SCK. Interrupting the SCK pulses copies the data from the SLI bus shift register to the preload latch, as described below in connection with FIG. At the next Vsync pulse, data is copied from the preload latches to the active latch and the LED driver changes take effect. Prior to this, the operation of the LED driver IC remained unaffected.
由於兩階段鎖存器架構,亦即,一預負載鎖存器與一第二階段主動鎖存器之組合(下文結合圖14描述),首碼多工SLI匯流排通信協定及介面為相對穩健且不受錯誤指示LED驅動器IC之影響。例如,若SCK脈衝流在經位移之資料駐存於其等目標SLI匯流排位移暫存器及對應LED驅動器IC中之前即刻停止,則該資料將自該等SLI匯流排位移暫存器複製至預負載鎖存器中,但在Vsync脈衝發生前將不變更主動鎖存器資料。只要SCK脈衝在Vsync脈衝發生之前恢復操作及完成位移程序,將不會因偶發之SCK脈衝發生任何錯誤。 Due to the two-stage latch architecture, that is, a combination of a pre-loaded latch and a second-stage active latch (described below in connection with Figure 14), the first-code multiplexed SLI bus protocol and interface are relatively robust. It is not affected by the error indicating the LED driver IC. For example, if the SCK pulse stream is stopped immediately before the displaced data resides in its target SLI busbar displacement register and the corresponding LED driver IC, the data will be copied from the SLI busbar shift register to In the preload latch, the active latch data will not be changed until the Vsync pulse occurs. As long as the SCK pulse resumes operation and the shift procedure is completed before the Vsync pulse occurs, no errors will occur due to the sporadic SCK pulse.
在一LED驅動器IC包括兩個或兩個以上LED通道之情況中,在Vsync脈衝使變更成為有效之前,位移程序必須發生多次。例如,可首先載入所有奇數編號之通道之預負載鎖存器,接著載入偶數編號之 通道之所有資料。對每一功能重複此程序直至所有預負載鎖存器已被載入至少一次。在所有預負載鎖存器被載入之後,Vsync脈衝藉由將預負載鎖存器資料複製至主動鎖存器中而初始化LED驅動器IC操作中之變更,藉此變更該LED驅動器IC之操作。稍後在本申請案中進一步詳細描述使用首碼多工SLI匯流排協定載入資料至多通道LED驅動器IC中。 In the case where an LED driver IC includes two or more LED channels, the shift procedure must occur multiple times before the Vsync pulse makes the change active. For example, you can load the preload latches of all odd-numbered channels first, followed by the even-numbered All information on the channel. Repeat this procedure for each function until all preload latches have been loaded at least once. After all of the preload latches are loaded, the Vsync pulse initiates a change in the operation of the LED driver IC by copying the preload latch data into the active latch, thereby altering the operation of the LED driver IC. The loading of data into the multi-channel LED driver IC using the first code multiplexed SLI bus protocol is described in further detail later in this application.
使用此計時方案,可使資料以一高速位移通過大量驅動器IC而不影響LED電流或引起閃爍,此係因為控制電流槽DMOSFET 87A及87B之電流及時序僅在各新Vsync脈衝之後變更。Vsync脈衝之頻率可在自60Hz至960Hz之範圍內改變,其中灰階時脈(GSC)信號之頻率按比例縮放(通常為4096乘以Vsync信號之頻率)。由於當相較於SLI匯流排時脈SCK頻率時,Vsync為較慢(低於1kHz),所以控制器具有修改且重新發送資料的彈性,或在一給定垂直同步脈衝持續時間內查詢故障鎖存器多次。 Using this timing scheme, data can be shifted through a large number of driver ICs at high speed without affecting LED current or causing flicker because the current and timing of the control current tank DMOSFETs 87A and 87B are only changed after each new Vsync pulse. The frequency of the Vsync pulse can vary from 60 Hz to 960 Hz, with the frequency of the gray scale clock (GSC) signal being scaled (typically 4096 times the frequency of the Vsync signal). Since Vsync is slower (less than 1 kHz) when compared to the SLI bus time SCK frequency, the controller has the flexibility to modify and resend the data, or to query for a fault lock for the duration of a given vertical sync pulse. Save the device multiple times.
由於在精簡型SLI匯流排協定中,SLI匯流排410中之資料暫存器不夠大以自一單一SLI匯流排字組或資料封包寫入至DC&T電路402及AC&S電路403內之所有功能鎖存器,所以介面IC 101必須發送多個SLI匯流排封包至該等驅動器IC以載入所有該等功能鎖存器。此狀況發生於啟動時,即當需要填充所有鎖存器時,或必須同時變更一個以上鎖存器中之資料時。若容許在若干Vsync週期內以多個步驟逐漸變更控制I精確閘極驅動器電路86A及86B之資料(例如,首先變更Φ鎖存器,接著變更D鎖存器,再變更像點鎖存器等),則一觀看者能隨著視訊影像中之閃爍或雜訊看出步驟變更。以下在標題「同時載入多個功能鎖存器」下揭示此可能問題之若干解決方案。 Since in the reduced SLI bus protocol, the data registers in the SLI bus 410 are not large enough to be written to all of the functional latches in the DC&T circuit 402 and the AC&S circuit 403 from a single SLI bus block or data packet. Therefore, the interface IC 101 must send multiple SLI bus packets to the driver ICs to load all of the functional latches. This condition occurs at startup, when all latches need to be filled, or when data in more than one latch must be changed at the same time. If it is allowed to gradually change the data of the control I precision gate driver circuits 86A and 86B in a plurality of steps in a plurality of Vsync cycles (for example, first changing the Φ latch, then changing the D latch, and then changing the pixel latch, etc.) ), then a viewer can see the step change as the blinking or noise in the video image. Several solutions to this possible problem are disclosed below under the heading "Loading Multiple Function Latches Simultaneously".
在載入暫存器資料之後,始於下一個Vsync脈衝,DC&T電路402產生兩個PWM脈衝以在適當相位延遲之後及適當脈衝寬度持續時間 (或作用時間因數D)內切換I精確閘極驅動器電路86A及86B之輸出為開啟及關閉。I精確閘極驅動器電路86A及86B分別感測電流槽DMOSFET 87A及87B中之電流且提供適當閘極驅動電壓以在I精確閘極驅動器電路86A及86B被DC&T電路402之PWM脈衝啟用之時間期間維持一目標電流。I精確閘極驅動器電路因此以類似於一「選通」放大器之方式操作,進行數位脈衝開啟及關閉但控制LED中之電流作為一類比參數。 After loading the scratchpad data, starting with the next Vsync pulse, DC&T circuit 402 generates two PWM pulses after the appropriate phase delay and the appropriate pulse width duration. The output of the I-precision gate driver circuits 86A and 86B is switched on and off (or during the time factor D). I precision gate driver circuits 86A and 86B sense currents in current sink DMOSFETs 87A and 87B, respectively, and provide appropriate gate drive voltages during the time when I precision gate driver circuits 86A and 86B are enabled by the PWM pulses of DC&T circuit 402. Maintain a target current. The I precision gate driver circuit thus operates in a manner similar to a "strobe" amplifier that performs digital pulse on and off but controls the current in the LED as an analog parameter.
藉由Vref信號及藉由Iset電阻器82之值全域設定所有LED驅動器IC中之峰值電流。在一較佳實施例中,該Vref信號係由介面IC 101產生,或其可被供應作為來自AC/DC轉換器模組之一輔助輸出。在一替代實施例中,可消除通道特定像點校正,及Vref可經調變以促進LED電流之全域電流控制。 The peak currents in all LED driver ICs are globally set by the Vref signal and by the value of Iset resistor 82. In a preferred embodiment, the Vref signal is generated by interface IC 101, or it can be supplied as an auxiliary output from an AC/DC converter module. In an alternate embodiment, channel-specific pixel correction can be eliminated, and Vref can be modulated to facilitate global current control of the LED current.
在能進行通道特定像點校正之驅動器IC中,可藉由像點鎖存器(較佳包括一8位元至12位元字組)透過SLI匯流排控制任一個LED串中之電流,該像點鎖存器分別在256或4096不同步驟中調整電流槽DMOSFET之電流至自峰值電流之0%至100%之一百分比。以此方式,使用新揭示之架構可進行LED電流之精確數位控制(仿效一電流模式數位轉類比轉換器或「電流DAC」之功能)。在LCD背光應用中,此特徵可用於校準背光亮度、用於改良背光均勻性或用於在3D模式中操作。 In a driver IC capable of channel-specific pixel correction, the current in any of the LED strings can be controlled by an SLI bus through an image dot latch (preferably including an 8-bit to 12-bit block). The pixel latch adjusts the current of the current sink DMOSFET to one of 0% to 100% of the peak current in 256 or 4096 different steps, respectively. In this way, the newly revealed architecture enables precise digital control of the LED current (a function of a current mode digital to analog converter or "current DAC"). In LCD backlight applications, this feature can be used to calibrate backlight brightness, to improve backlight uniformity, or for operation in 3D mode.
I精確閘極驅動器電路86A及86B以及AC&S電路403之結構及操作係描述於申請案第13/346,625號中。 The structure and operation of the I-precision gate driver circuits 86A and 86B and the AC&S circuit 403 are described in application Serial No. 13/346,625.
如展示,流經LED串83A之電流受控於電流槽DMOSFET 87A及對應I精確閘極驅動電路86A。類似地,流經LED串83B之電流受控於電流槽DMOSFET 87B及對應I精確閘極驅動電路86B。在沒有疊接箝制MOSFET之情況下,施加於電流槽DMOSFET 87A及87B上之最大電 壓限於低於高電壓二極體88A及88B之崩潰電壓之操作。偏壓電路84自一5V Vcc輸入產生一內部晶片偏壓電壓。 As shown, the current flowing through LED string 83A is controlled by current sink DMOSFET 87A and corresponding I precision gate drive circuit 86A. Similarly, the current flowing through LED string 83B is controlled by current sink DMOSFET 87B and corresponding I precision gate drive circuit 86B. Maximum power applied to current sink DMOSFETs 87A and 87B without splicing the MOSFET The voltage is limited to operations below the breakdown voltage of the high voltage diodes 88A and 88B. Bias circuit 84 produces an internal wafer bias voltage from a 5V Vcc input.
電流槽DMOSFET 87A及87B之汲極電壓亦係藉由AC&S電路403而監測且與儲存於SLI匯流排410之鎖存器中之一過電壓值進行比較。若該汲極電壓低於一程式化值,則LED串83A及83B正常操作。然而,若電流槽DMOSFET 87A及87B之汲極電壓升高至約程式化值,則LED串83A及83B之一或多者短路,及偵測且記錄特定通道之一故障。同樣地,若I精確閘極驅動器電路86A及86B之一或多者無法維持所需電流(亦即,LED串在「電流不足」的情況下操作),此意謂一LED未開啟並失去電路連續性。接著關閉通道,忽略該通道之CSFB信號,及報告該故障。可藉由監測I精確閘極驅動器電路86A及86B之輸出飽和(意謂該閘極驅動器電路儘可能地將電流槽DMOSFET之閘極驅動為「完全接通」)與否而感測此「電流不足」,或替代地,可藉由監測橫跨I精確閘極驅動器電路之輸入端子之電壓降而感測此「電流不足」。當至I精確閘極驅動器電路之輸入電壓之電壓下降過低時,即已發生指示一斷路LED故障的電流不足狀態。 The drain voltages of current sink DMOSFETs 87A and 87B are also monitored by AC&S circuit 403 and compared to an overvoltage value stored in the latch of SLI bus 410. If the drain voltage is below a stylized value, the LED strings 83A and 83B operate normally. However, if the drain voltages of current sink DMOSFETs 87A and 87B rise to about a programmed value, one or more of LED strings 83A and 83B are shorted, and one of the particular channels is detected and recorded as a fault. Similarly, if one or more of the I precision gate driver circuits 86A and 86B are unable to maintain the required current (ie, the LED string is operating in the "under current" condition), this means that an LED is not turned on and loses the circuit. Continuity. The channel is then closed, the CSFB signal for that channel is ignored, and the fault is reported. The "current" can be sensed by monitoring the output saturation of the I-precision gate driver circuits 86A and 86B (meaning that the gate driver circuit drives the gate of the current-slot DMOSFET as "fully-on" as possible). Insufficient, or alternatively, this "out of current" can be sensed by monitoring the voltage drop across the input terminals of the I precision gate driver circuit. When the voltage to the input voltage to the I-precision gate driver circuit drops too low, an under-current condition indicating a broken-circuit LED fault has occurred.
若偵測一超溫狀態,則報告一故障及使通道保持接通且傳導,除非介面IC 101發送一命令以關閉該通道。然而,若該溫度繼續升高至危險位準,則AC&S電路403將獨立停用該通道且報告該故障。無論一故障之本質(一短路LED、一斷路LED或一超溫狀態)為何,只要發生故障,AC&S電路403內之一開放汲極MOSFET將啟動FLT接針及將FLT接針拉至低位準,將已發生一故障狀態之情形發信號至主機μC 152。 If an over-temperature condition is detected, a fault is reported and the channel remains on and conducted unless the interface IC 101 sends a command to close the channel. However, if the temperature continues to rise to a dangerous level, the AC&S circuit 403 will independently deactivate the channel and report the fault. Regardless of the nature of the fault (a shorted LED, a broken LED, or an overtemperature condition), as soon as a fault occurs, one of the open MOSFETs in the AC&S circuit 403 will activate the FLT pin and pull the FLT pin to a low level. A situation in which a fault condition has occurred is signaled to the host μC 152.
AC&S電路403亦包含一類比電流感測回饋(CSFB)信號,其監測電流槽DMOSFET 87A及87B之汲極電壓及LED驅動器IC 81之CSFBI輸入接針處之電壓,在該三個電壓中有一最低電壓且將該電壓傳遞至 LED驅動器IC 81之CSFBO輸出接針。以此方式,該等電流槽DMOSFET之任意者之最低汲極電壓,及因此具有最高正向電壓降之LED串被傳遞至下一個LED驅動器IC之輸入且最終返回至系統之SMPS 108以給+VLED供應軌110供電。 The AC&S circuit 403 also includes an analog current sense feedback (CSFB) signal that monitors the drain voltage of the current sink DMOSFETs 87A and 87B and the voltage at the CSFBI input pin of the LED driver IC 81, with a minimum of the three voltages. The voltage is passed to the CSFBO output pin of the LED driver IC 81. In this manner, the lowest drain voltage of any of the current sink DMOSFETs, and thus the LED string with the highest forward voltage drop, is passed to the input of the next LED driver IC and ultimately returned to the SMPS 108 of the system for The V LED supply rail 110 is powered.
以所描述之方式,可實現具有整合調光及故障偵測能力之一兩通道LED驅動器IC 81而無需一介面IC。 In the manner described, a two-channel LED driver IC 81 with integrated dimming and fault detection capabilities can be implemented without the need for an interfacing IC.
圖12B繪示將所揭示之首碼多工SLI匯流排控制方法擴展至一四通道LED驅動器IC 501。如展示,LED驅動器IC 501包括四個用於獨立驅動四個LED串503A至503D之具有對應I精確閘極驅動器電路506A至506D之電流槽DMOSFET 507A至507D。在四通道LED驅動器IC 501中,DC&T電路509及AC&S電路510控制四個I精確電路506A至506D,使兩通道驅動器之功能鎖存器之數量加倍。 FIG. 12B illustrates extending the disclosed first code multiplex SLI bus control method to a four-channel LED driver IC 501. As shown, LED driver IC 501 includes four current sink DMOSFETs 507A through 507D having corresponding I precision gate driver circuits 506A through 506D for independently driving four LED strings 503A through 503D. In the four-channel LED driver IC 501, the DC&T circuit 509 and the AC&S circuit 510 control the four I-precision circuits 506A-506D to double the number of function latches of the two-channel driver.
在此實例中為32個位元長之SLI匯流排位移暫存器512被載入多次以將必要資料傳送至DC&T電路509及AC&S電路510中之各種鎖存器。例如,若各通道包括四個鎖存器(即,D鎖存器、Φ鎖存器、像點鎖存器及故障鎖存器),及驅動器IC包括四個通道,則SLI匯流排512必須被載入十六次以設定所有功能鎖存器。將各時間資料移至SLI匯流排位移暫存器512中,解碼器513解譯首碼以選擇目標通道及功能,藉此透過多工器511將資料路由至DC&T電路509及AC&S電路510中之適當鎖存器。 The 32-bit long SLI bus shift register 512 is loaded multiple times in this example to transfer the necessary data to the various latches in the DC&T circuit 509 and AC&S circuit 510. For example, if each channel includes four latches (ie, D latch, Φ latch, pixel latch, and fault latch), and the driver IC includes four channels, the SLI bus 512 must It is loaded 16 times to set all function latches. Each time data is moved to the SLI bus shift register 512, and the decoder 513 interprets the first code to select the target channel and function, thereby routing the data through the multiplexer 511 to the DC&T circuit 509 and the AC&S circuit 510. Appropriate latch.
由於在精簡型SLI匯流排協定中,SLI匯流排介面512內之資料暫存器不夠大以自一單一SLI匯流排字組或資料封包寫入至DC&T電路509及AC&S電路510內之所有功能鎖存器,所以介面IC必須發送多個SLI匯流排封包至該等驅動器IC以載入所有該等鎖存器。此狀況發生於啟動時,即當首先初始化所有功能鎖存器時,或一個以上功能鎖存器中之資料必須同時變更時。若容許在若干Vsync週期內以多個步驟 逐漸變更控制I精確閘極驅動器電路506A至506D之資料(例如,首先變更Φ鎖存器,接著變更D鎖存器,再變更像點鎖存器等),則一觀看者能隨著視訊影像中之閃爍或雜訊看出步驟變更。在下文揭示防止此可能問題之若干發明解決方案。 Since in the reduced SLI bus protocol, the data register in the SLI bus interface 512 is not large enough to write all function latches from the DC&T circuit 509 and the AC&S circuit 510 from a single SLI bus block or data packet. Therefore, the interface IC must send multiple SLI bus packets to the driver ICs to load all of these latches. This condition occurs at startup, when all function latches are initialized first, or when data in more than one function latch must be changed at the same time. If allowed in multiple steps within a few Vsync cycles Gradually changing the data of the control I precision gate driver circuits 506A to 506D (for example, first changing the Φ latch, then changing the D latch, and then changing the pixel latch, etc.), then a viewer can follow the video image The flashing or noise in the middle sees the step change. Several inventive solutions to prevent this possible problem are disclosed below.
在載入鎖存器資料之後,始於下一個Vsync脈衝,DC&T電路509產生四個獨立PWM脈衝以在適當相位延遲之後及適當脈衝寬度持續時間(或作用時間因數D)內切換I精確閘極驅動器電路506A至506D之輸出為開啟及關閉。I精確閘極驅動器電路506A至506D分別感測電流槽DMOSFET 507A至507D中之電流且提供適當閘極驅動電壓以在I精確閘極驅動器電路被PWM脈衝啟用之時間期間維持一目標電流。I精確閘極驅動器電路之操作因此類似於一「選通」放大器之操作,進行數位脈衝開啟及關閉但控制LED中之電流作為一類比參數。LED電流可透過像點鎖存器、全域透過Vref電壓輸入或透過兩者之一組合而透過SLI匯流排控制。 After loading the latch data, starting with the next Vsync pulse, the DC&T circuit 509 generates four independent PWM pulses to switch the I precision gate after the appropriate phase delay and the appropriate pulse width duration (or duration of action factor D). The outputs of driver circuits 506A through 506D are on and off. The I precision gate driver circuits 506A through 506D sense the currents in the current sink DMOSFETs 507A through 507D, respectively, and provide the appropriate gate drive voltage to maintain a target current during the time that the I precision gate driver circuit is enabled by the PWM pulse. The operation of the I precision gate driver circuit is therefore similar to the operation of a "strobe" amplifier that performs digital pulse on and off but controls the current in the LED as an analog parameter. The LED current can be controlled through the SLI bus through the image dot latch, globally through the Vref voltage input, or through a combination of the two.
圖12C展示一四通道LED驅動器之一替代實施例。LED驅動器IC 531併入兩個32位元SLI匯流排位移暫存器542A及542B以促進平行(亦即,同時)載入兩個功能鎖存器。SLI匯流排位移暫存器542A及542B之各者具有其自已的首碼及其自已的相關聯解碼器543A及543B。透過一雙通道多工器541將資料路由至DC&T電路539及AC&S電路540中之適當功能鎖存器。否則,驅動器IC 531之操作類似於圖12B中之驅動器IC 501之操作。使用一雙SLI匯流排介面之優點在於,介面IC可在一半的SLI匯流排寫入循環數中載入至LED驅動器IC中之所有功能鎖存器。由於在SLI匯流排上傳達相同數量之位元(亦即,32位元字組或64位元字組之一半之一固定數量),所以任一方法中之實際系統速度均為類似。此方法之主要優點為,介面IC不必管理諸多小型SLI匯流排通信。 Figure 12C shows an alternate embodiment of a four channel LED driver. LED driver IC 531 incorporates two 32-bit SLI bus shift registers 542A and 542B to facilitate parallel (i.e., simultaneous) loading of two functional latches. Each of the SLI bus displacement registers 542A and 542B has its own first code and its own associated decoders 543A and 543B. The data is routed through a dual channel multiplexer 541 to appropriate function latches in DC&T circuit 539 and AC&S circuit 540. Otherwise, the operation of the driver IC 531 is similar to the operation of the driver IC 501 in FIG. 12B. The advantage of using a dual SLI bus interface is that the interface IC can be loaded into all of the function latches in the LED driver IC in half of the SLI bus write cycles. Since the same number of bits (i.e., a fixed number of one-half of a 32-bit block or a 64-bit block) is conveyed on the SLI bus, the actual system speed in either method is similar. The main advantage of this method is that the interface IC does not have to manage many small SLI bus communication.
如圖11之電路圖中所繪示,首碼多工SLI匯流排協定及介面之要件為解碼器及多工器功能。負責將來自SLI匯流排位移暫存器311之資料依序分佈至適當功能鎖存器(亦即,一鎖存器455),首碼解碼器451解譯各新數位字組上之首碼且指示多工器454將來自SLI匯流排資料暫存器313之資料複製至對應功能鎖存器455中。 As shown in the circuit diagram of FIG. 11, the requirements of the first code multiplexed SLI bus protocol and the interface are decoder and multiplexer functions. Responsible for distributing the data from the SLI bus shift register 311 to the appropriate function latches (ie, a latch 455), the first code decoder 451 interpreting the first code on each new digit block and The multiplexer 454 is instructed to copy the data from the SLI bus data register 313 into the corresponding function latch 455.
在圖13A中展示此解碼器及多工器功能之一實施方案,其中一首碼多工SLI匯流排311透過受控於一解碼器601以及解碼鍵605C及605F之一數位多工器604而將資料依序分佈至功能鎖存器之眾多庫607。各庫之功能鎖存器及其等相關聯組之鎖存器606獨立控制驅動不同LED串之單獨I精確閘極驅動器電路(未展示)。具體言之,功能鎖存器606包括通道A鎖存器A1至A8、通道B鎖存器B1至B8、通道C鎖存器C1至C8及通道D鎖存器D1至D8,其等一起組成4個通道之8個鎖存器,總共控制32個功能參數。為簡潔之故,僅展示鎖存器A1。 One embodiment of this decoder and multiplexer function is shown in FIG. 13A, wherein a first code multiplexed SLI bus 311 is controlled by a decoder 601 and a digital multiplexer 604 of decoding keys 605C and 605F. The data is sequentially distributed to a plurality of libraries 607 of function latches. The functional latches of the banks and their associated sets of latches 606 independently control separate I precision gate driver circuits (not shown) that drive different LED strings. Specifically, the function latch 606 includes channel A latches A1 to A8, channel B latches B1 to B8, channel C latches C1 to C8, and channel D latches D1 to D8, which are formed together. 8 latches of 4 channels for a total of 32 function parameters. For the sake of brevity, only the latch A1 is shown.
用於在SLI匯流排與通道及功能之間路由數位資料之多工器604以類似於一多極多擲(multi-throw)開關之一方式操作以促進多個自SLI匯流排資料暫存器313至功能鎖存器606之可選擇資料途徑。在此實例中,多工器604包括共同受控於解碼器601之四個12極8擲或12P8T開關。如展示,在此實施例中,實際上可選擇儲存於SLI匯流排位移暫存器311中之字組之可能組合之僅一部分。 A multiplexer 604 for routing digital data between the SLI bus and the channel and function operates in a manner similar to one of a multi-throw switch to facilitate multiple self-SLI bus data registers. An optional data path from 313 to function latch 606. In this example, multiplexer 604 includes four 12-pole, 8-throw or 12P8T switches that are commonly controlled by decoder 601. As shown, in this embodiment, only a portion of the possible combinations of blocks stored in the SLI bus displacement register 311 can be selected.
具體言之,由於多工器604僅具有12個「極」或並聯電路,所以儘管資料位移暫存器313包含一較高解析度16位元字組之事實,多工器604僅傳遞12個位元資料至鎖存器606。使用來自一16位元字組之12個位元僅解碼65,536個組合中之4,096個組合或可能組合之僅6%。然而,在多數照明應用中,八個至十二個位元足以將功能執行成所要之精確度。通常,PWM亮度「D」及相位延遲「Φ」需要12位元精確 度,而像點校正僅需要8位元精確度。 In particular, since the multiplexer 604 has only 12 "poles" or parallel circuits, the multiplexer 604 passes only 12 facts despite the fact that the data shift register 313 contains a higher resolution 16-bit block. The bit data is to latch 606. Using only 12 bits from a 16-bit block, only 4 of the 65,536 combinations are decoded, or only 6% of the possible combinations. However, in most lighting applications, eight to twelve bits are sufficient to perform the function with the desired accuracy. In general, PWM brightness "D" and phase delay "Φ" require 12-bit precision. Degree, while pixel correction requires only 8-bit precision.
由於多工器604用8個位置定址4個通道,所以僅可存取32個鎖存器,儘管首碼暫存器312C及312F能定址65,536個不同通道及參數。因此,一四元通道八位置開關存取32個組合,或可自一16位元首碼中選擇5個位元,此實施方案使用小於0.05%之首碼組合。由於僅使用位移暫存器311中之資料之一小部分,所以使用一相對較低數量之邏輯閘極及電晶體之多工器電路604佔據一非常小的晶粒面積。 Since multiplexer 604 addresses 4 channels with 8 locations, only 32 latches can be accessed, although first code registers 312C and 312F can address 65,536 different channels and parameters. Thus, a four-element channel eight-position switch accesses 32 combinations, or five bits can be selected from a 16-bit first-order code. This embodiment uses a combination of less than 0.05% of the first code. Since only a small portion of the data in the shift register 311 is used, the multiplexer circuit 604, which uses a relatively low number of logic gates and transistors, occupies a very small grain area.
解碼器601包括12個量值比較器(四個用於通道選擇及八個用於功能選擇),以及32個數位邏輯閘603以解碼SLI匯流排首碼碼312之一部分且藉此控制由多工器604選擇之通道。 The decoder 601 includes 12 magnitude comparators (four for channel selection and eight for function selection), and 32 digital logic gates 603 to decode a portion of the SLI bus header code 312 and thereby control more The device 604 selects the channel.
具體言之,為能唯一地選擇四個通道,需要自通道首碼暫存器312C解碼一2位元首碼。在通道首碼暫存器312C中之兩個最低有效位元每次正確匹配於通道選擇碼鍵605C中之兩個最低有效位元時,皆藉由輸出一邏輯高或二進制「1」之一量值比較器602C執行通道解碼。在表1中展示兩通道量值比較器602C之真值表:
由於存在通道首碼之四個組合,所以有四個具有相同輸入但具有四個不同輸出之相異的量值比較器602C,該等量值比較器之僅一者可在任意給定時間具有一邏輯「1」輸出。自上述,僅一「00」碼啟動通道A,僅一「01」碼啟動通道B,需要一「10」碼來選擇通道C,及需要一「11」碼來選擇通道D。以此方式,僅有一個SLI匯流排首碼碼組合來選擇一給定通道。在所展示之2位元解碼器中,僅解碼兩個最低有效位元,完全忽略較高量值之位元。 Since there are four combinations of channel first codes, there are four different magnitude comparators 602C having the same input but having four different outputs, only one of which can have any given time A logical "1" output. Since the above, only one "00" code starts channel A, only one "01" code starts channel B, a "10" code is needed to select channel C, and an "11" code is needed to select channel D. In this way, there is only one SLI bus header code combination to select a given channel. In the 2-bit decoder shown, only the two least significant bits are decoded, completely ignoring the bits of the higher magnitude.
以一類似方式,為唯一地選擇八個功能鎖存器之一者,需要自功能首碼暫存器312F解碼一3位元首碼。在功能首碼暫存器312F中之三個最低有效位元每次正確匹配於功能選擇碼鍵605F中之三個最低有效位元時,皆藉由輸出一邏輯高或二進制「1」之一量值比較器602F而執行功能解碼。在表2中展示三通道量值比較器602F之真值表:
由於存在功能首碼碼之八個組合,所以有八個具有相同輸入但具有四個不同輸出之相異的量值比較器602F,該等量值比較器之僅一者可在任意給定時間具有一邏輯「1」輸出。自上述,僅一「000」碼啟動功能#1(例如,作用時間因數D),僅一「001」碼啟動功能#2(例如,相位延遲Φ),以此類推。以此方式,僅有一個SLI匯流排首碼碼組合來選擇一給定功能。在所展示之3位元解碼器中,僅解碼三個最低有效位元,完全忽略較高量值之位元。 Since there are eight combinations of functional first code codes, there are eight different magnitude comparators 602F having the same input but having four different outputs, only one of which can be at any given time. Has a logical "1" output. From the above, only one "000" code starts function #1 (for example, the action time factor D), only one "001" code starts function #2 (for example, phase delay Φ), and so on. In this way, there is only one SLI bus header code combination to select a given function. In the 3-bit decoder shown, only the three least significant bits are decoded, completely ignoring the bits of the higher magnitude.
量值比較器之實施方案可使用布林(Boolean)邏輯(其中解碼器601與通道及功能碼鍵605C及605F為硬線連接)、使用計數器或儲存於包含SRAM或甚至E2PROM之可程式化記憶體元件中而以各種方式執行。在本發明之一實施例中,使用圖13D中所展示之電路實現量值比較器,圖13D繪示包括三個雙輸入互斥NOR閘632至634及三輸入AND閘635之三通道量值比較器631。一互斥OR及其反相對應體(一互斥NOR或XNOR閘)之實施方案在此項技術中為已知(參見(例如)http://en.wikipedia.org/wiki/XOR_gate)。 The implementation of the magnitude comparator can use Boolean logic (where decoder 601 is hardwired with channel and function code keys 605C and 605F), use counters, or can be stored in a program containing SRAM or even E 2 PROM. The memory elements are implemented in various ways. In one embodiment of the present invention, the magnitude comparator is implemented using the circuit shown in FIG. 13D, and FIG. 13D illustrates the three-channel magnitude including three dual-input mutually exclusive NOR gates 632 to 634 and three-input AND gates 635. Comparator 631. An embodiment of a mutually exclusive OR and its inverted counterpart (a mutually exclusive NOR or XNOR gate) is known in the art (see, for example, http://en.wikipedia.org/wiki/XOR_gate).
當兩個輸入每次相同(兩者皆為「0」輸入或兩者皆為「1」輸入)時,兩輸入XNOR函數之邏輯真值表將產生一「高」或邏輯「1」輸出。此展示於表3中:
出於此原因,互斥NOR函數在邏輯上常用於比較兩個暫存器中之位元,實則為一比較器之一數位版本。為利用一邏輯XNOR閘,一多位元字組必須使用多個XNOR閘以進行位元對位元之比較。例如,為檢查兩個8位元數位字組是否相同,必須使用八個XNOR閘以個別地檢查各位元。為使兩個數位字組匹配,所有對應位元必須匹配。藉由在所有XNOR輸出上執行一八輸入邏輯AND函數,AND閘之一正輸出可證實一匹配。 For this reason, the mutually exclusive NOR function is logically used to compare bits in two registers, which is actually a digital version of a comparator. To utilize a logical XNOR gate, a multi-bit block must use multiple XNOR gates for bit-to-bit comparison. For example, to check if two 8-bit digits are identical, eight XNOR gates must be used to individually check the bits. In order for two digit blocks to match, all corresponding bits must match. By performing an eight-input logical AND function on all XNOR outputs, one of the AND gates positive outputs can confirm a match.
在圖13D中之解碼器631中展示此方法,其中三個互斥NOR閘632至634係用於比較SLI匯流排首碼暫存器中之各位元與通道或功能選擇鍵碼表636中之對應位元。例如,XNOR閘632比較SLI匯流排首碼中之最低有效位元與選擇碼鍵636中之最低有效位元且僅在其等匹配(兩者皆具有一邏輯「0」狀態或兩者皆具有一邏輯「1」狀態)時輸出一邏輯「高」。XNOR閘633類似地比較SLI匯流排首碼之下一個最低有效位元(亦即,LSB+1)與碼鍵636中之對應位元且僅在其等匹配時輸出一「高」。以類似方式,比較器631比較兩個暫存器中之下一個最低有效位元是否匹配。僅在SLI匯流排首碼中之所有三個位元匹配時,AND閘635之輸出才會變成「高」,其指示兩個三位元字組正確匹配。否則,AND閘635之輸出及量值比較器631之輸出將保持「低」。 This method is shown in decoder 631 in FIG. 13D, where three mutually exclusive NOR gates 632 through 634 are used to compare the bits in the SLI bus header code register with the channel or function selection key code table 636. Corresponding bit. For example, XNOR gate 632 compares the least significant bit in the SLI bus header code with the least significant bit of select code key 636 and matches only them (both have a logical "0" state or both) A logical "1" state outputs a logic "high". The XNOR gate 633 similarly compares one of the least significant bits (i.e., LSB+1) below the first code of the SLI bus with the corresponding bit in the code key 636 and outputs a "high" only when it matches. In a similar manner, comparator 631 compares whether the next least significant bit of the two registers matches. The output of the AND gate 635 will become "high" only if all three bits in the SLI bus header code match, indicating that the two octets are correctly matched. Otherwise, the output of the AND gate 635 and the output of the magnitude comparator 631 will remain "low".
為簡潔之故,我們使用一參考數字組637來表示一多通道量值比較器(MC)閘,其中各對輸出彼此進行比較是否匹配,及接著將此等結果遞送至一邏輯AND閘。在表4中描述三輸入MC閘之一真值表,其中「1」表示匹配及「0」表示未匹配:
僅在兩個數位字組之量值正確匹配(逐位元證實)時,量值比較器637之輸出才為「高」。在布林邏輯中,量值比較器637被描述為
返回圖13A,解碼器601用MC 602C檢查四個可能通道之一者,及用MC 602F檢查八個可能功能之一者,及接著使用32個不同雙輸入AND閘603執行此等結果之一邏輯AND。在任意給定時間,僅一個AND閘603具有一「高」輸出。此高輸出接通在所要通道中使SLI資料暫存器313與對應鎖存器606連接之多工器604內之一組12傳輸閘MOSFET。如同多工器604,為簡潔之故,在圖13A中簡化解碼器601。 Returning to Figure 13A, decoder 601 checks one of the four possible channels with MC 602C, and checks one of the eight possible functions with MC 602F, and then performs logic of one of these results using 32 different two-input AND gates 603. AND. At any given time, only one AND gate 603 has a "high" output. This high output turns on a group 12 of transfer MOSFETs in the multiplexer 604 that connects the SLI data register 313 to the corresponding latch 606 in the desired channel. As with multiplexer 604, decoder 601 is simplified in Figure 13A for the sake of brevity.
在圖13E中繪示解碼器601及多工器604之一更詳細描述,其中藉由四個量值比較器641A至641D解碼SLI匯流排通道首碼,產生經解碼之通道匯流排647,及其中藉由八個量值比較器642A至642H解碼SLI匯流排功能首碼,產生經解碼之功能匯流排648。此等12根匯流排線共同饋送一系列32雙輸入邏輯AND閘643A1至643A8、643B1至643B8、643C1至643C8及643D1-643D8,其繼而驅動包括多工器功能之MOSFET。 A more detailed description of one of the decoder 601 and the multiplexer 604 is illustrated in FIG. 13E, wherein the SLI bus channel first code is decoded by the four magnitude comparators 641A through 641D to produce a decoded channel bus 647, and The SLI bus function first code is decoded by the eight magnitude comparators 642A through 642H to produce a decoded function bus 648. These 12 bus bars collectively feed a series of 32 dual input logic AND gates 643A1 through 643A8, 643B1 through 643B8, 643C1 through 643C8, and 643D1-643D8, which in turn drive MOSFETs including multiplexer functions.
各AND閘643組合兩個輸入,一者來自四通道匯流排線647之一者,另一者來自八功能匯流排線648之一者。由於僅一個通道匯流排線647在任何時候皆為「高」及四個通道之各者在八根功能匯流排線648中可具有僅一者為「高」,所以僅解碼32個組合。由邏輯AND閘643A1解碼之一此組合組合來自匯流排647之通道A之一輸入(亦即,MC 641A之輸出)與來自匯流排648之PWM亮度控制功能「D」之一第二輸入(亦即,MC 642A之輸出)。因而,此通道解碼用於通道A之PWM亮度控制。以一類似方式,通道MC 641B及功能MC 642A之輸出饋送AND閘643B1,其等之輸出唯一地選擇用於通道B之PWM亮度控制。 Each AND gate 643 combines two inputs, one from one of the four-channel bus bars 647 and the other from one of the eight-function bus bars 648. Since only one channel bus bar 647 is "high" at any time and each of the four channels can have only one of the eight function bus bars 648 as "high", only 32 combinations are decoded. Decoded by the logical AND gate 643A1, this combination combines one of the inputs from the channel A of the bus 647 (ie, the output of the MC 641A) with the second input of the PWM brightness control function "D" from the bus 648 (also That is, the output of MC 642A). Thus, this channel decodes the PWM brightness control for channel A. In a similar manner, the output of channel MC 641B and function MC 642A feeds AND gate 643B1, the output of which is uniquely selected for PWM brightness control of channel B.
如展示,AND閘643A2解碼用於通道A之相位功能Φ。若SLI匯流排首碼選擇此組合,則量值比較器641A及642B之輸出兩者皆為「高」,使得AND閘643A2之輸出亦為高。反相器644A之輸出繼而變成「低」(亦即,接近接地之一電位),藉此接通12個P通道MOSFET 645A至645L。MOSFET 645A至645L一起充當為透過資料匯流排649使SLI匯流排資料暫存器313與功能鎖存器626A連接之一多通道傳輸閘。 As shown, the AND gate 643A2 decodes the phase function Φ for channel A. If the SLI bus header code selects this combination, both outputs of the magnitude comparators 641A and 642B are "high" such that the output of the AND gate 643A2 is also high. The output of inverter 644A then becomes "low" (i.e., near one ground potential), thereby turning on twelve P-channel MOSFETs 645A through 645L. MOSFETs 645A through 645L together act as a multi-channel transfer gate for connecting SLI bus data register 313 to function latch 626A through data bus 649.
藉由同等有效位元之間之一對一對應關係而發生SLI資料暫存器313與功能鎖存器626A之間之多線連接,其中兩個對應LSB被連接,兩個LSB+1被連接,以此類推。作為一實例,MOSFET 645A使b1(資料匯流排上之LSB位元)與鎖存器626A中之LSB連接。類似地,MOSFET 645L使匯流排649上之b12與鎖存器626A中之最高有效位元或MSB連接。匯流排位元b2至b11同樣地以一對一對應關係透過十個中間MOSFET(未展示)連接至鎖存器626A中之其等各自位元。儘管SLI匯流排資料暫存器313包括一16位元數位字組之事實,目的地鎖存器626A僅為12個位元寬。藉由自LSB及往上複製,該十二個最低有效位 元b1至b12自資料暫存器313被複製至鎖存器626A中,而忽略位移暫存器311中之四個最高有效位元。來源暫存器313及目的地鎖存器626A無需具有同樣位元寬度。 A multi-line connection between the SLI data register 313 and the function latch 626A occurs by a one-to-one correspondence between the equally significant bits, where two corresponding LSBs are connected and two LSB+1s are connected And so on. As an example, MOSFET 645A connects b 1 (the LSB bit on the data bus) to the LSB in latch 626A. Similarly, MOSFET 645L connects b 12 on bus 649 to the most significant bit or MSB in latch 626A. Bus bars b 2 through b 11 are likewise connected in a one-to-one correspondence through ten intermediate MOSFETs (not shown) to their respective bits in latch 626A. Despite the fact that the SLI bus data register 313 includes a 16-bit alphanumeric block, the destination latch 626A is only 12 bits wide. By copying from LSB and up, the twelve least significant bits b 1 through b 12 are copied from the data register 313 into the latch 626A, ignoring the four most significant of the shift registers 311. Bit. Source register 313 and destination latch 626A need not have the same bit width.
類似地,AND閘634D8解碼用於通道D之故障資料。若SLI匯流排首碼選擇此組合,則量值比較器641D及642H之輸出皆為高,使得AND閘643D8之輸出亦為高。反相器644B之輸出繼而變成低(亦即,接近接地之一電位),藉此接通八個P通道MOSFET 646A至646H。MOSFET 646A至646H一起充當為透過資料匯流排649使SLI匯流排位移暫存器313與功能鎖存器626B連接之一多通道傳輸閘。如在先前實例中,多個MOSFET(在此情況中為八個)使暫存器313及資料匯流排649互連至鎖存器626B內之對應位元。 Similarly, AND gate 634D8 decodes the fault data for channel D. If the SLI bus header code selects this combination, the outputs of the magnitude comparators 641D and 642H are both high, so that the output of the AND gate 643D8 is also high. The output of inverter 644B then goes low (i.e., near one ground potential), thereby turning on eight P-channel MOSFETs 646A through 646H. The MOSFETs 646A through 646H together act as a multi-channel transfer gate for the SLI busbar shift register 313 to be coupled to the function latch 626B through the data bus 649. As in the previous example, multiple MOSFETs (eight in this case) interconnect register 313 and data bus 649 to corresponding bits within latch 626B.
具體言之,MOSFET 646A使b1(資料匯流排上之LSB位元)與鎖存器626B中之LSB連接。類似地,MOSFET 646H使匯流排649上之b8與鎖存器626B中之最高有效位元或MSB連接。匯流排位元b2至b7同樣地以一對一對應關係透過六個中間MOSFET(未展示)連接至鎖存器626B中之其等各自位元。儘管SLI匯流排資料暫存器313包括一16位元數位字組之事實,目的地鎖存器626B僅為8個位元寬。藉由自LSB及往上複製,該八個最低有效位元b1至b8自資料暫存器313被複製至鎖存器626B中,而忽略位移暫存器311中之八個最高有效位元(包含MSB)。來源暫存器313及目的地鎖存器626B不與彼此或與鎖存器626A共用同樣位元寬度。 In particular, MOSFET 646A connects b 1 (the LSB bit on the data bus) to the LSB in latch 626B. Similarly, MOSFET 646H so on the bus 6498 b is connected to the latch 626B in the MSB or MSB. Bus bars b 2 through b 7 are likewise connected in a one-to-one correspondence through six intermediate MOSFETs (not shown) to their respective bits in latch 626B. Despite the fact that the SLI bus data register 313 includes a 16-bit alphanumeric block, the destination latch 626B is only 8 bits wide. By copying from LSB and up, the eight least significant bits b 1 through b 8 are copied from the data register 313 into the latch 626B, ignoring the eight most significant bits in the shift register 311. Yuan (including MSB). Source register 313 and destination latch 626B do not share the same bit width with each other or with latch 626A.
以此方式,即使當該等功能鎖存器不具有與SLI匯流排資料相同之大小,亦可透過一首碼多工SLI匯流排將16位元SLI匯流排資料引導至一LED驅動器中之特定功能鎖存器。相比之下,圖13A將解碼器電路601及多工器電路604之操作描述為一高階建構,該建構包括四個用於通道選擇之量值比較器、八個用於功能選擇之量值比較器及32個 AND閘以唯一地驅動四元12P8T多工器開關604內之傳輸閘MOSFET。圖13E因此描述圖13A中所展示之系統之一可能實施例。 In this way, even when the function latches do not have the same size as the SLI bus data, the 16-bit SLI bus data can be directed to a specific LED driver through a code multiplex SLI bus. Function latch. In contrast, FIG. 13A depicts the operation of decoder circuit 601 and multiplexer circuit 604 as a high level construction including four magnitude comparators for channel selection and eight magnitudes for function selection. Comparator and 32 The AND gate uniquely drives the transfer gate MOSFET in the quaternary 12P8T multiplexer switch 604. Figure 13E thus depicts one possible embodiment of the system shown in Figure 13A.
重申,圖13A中所展示之電路及圖13E中所展示之電路之實施方案繪示獨立控制32個參數之一SLI匯流排多工LED驅動器系統。由於25=32,所以僅需要16位元SLI匯流排首碼暫存器312C及312F之5個位元以提供控制一32參數LED驅動器所需之資料。忽略該等SLI匯流排首碼暫存器312C及312F中之剩餘I1個位元。儘管可減小SLI匯流排位移暫存器之大小,然而減少之SLI匯流排位移暫存器所節省之面積相較於解碼器之大小亦為較小。藉由僅解碼所需之組合,可在一相對較小量之矽面積中實現一彈性SLI匯流排協定。 It is reiterated that the circuit shown in FIG. 13A and the embodiment of the circuit shown in FIG. 13E illustrate an SLI bus multiplexer LED driver system that independently controls one of the 32 parameters. Since 2 5 = 32, only 5 bits of the 16-bit SLI bus header code registers 312C and 312F are needed to provide the data needed to control a 32-parameter LED driver. The remaining I1 bits in the SLI bus first code registers 312C and 312F are ignored. Although the size of the SLI bus displacement register can be reduced, the area saved by the reduced SLI bus displacement register is also smaller than the size of the decoder. An elastic SLI busbar protocol can be implemented in a relatively small amount of area by decoding only the desired combination.
儘管一首碼多工SLI匯流排之此實例使用儲存於一8位元通道首碼暫存器312C及一8位元功能首碼暫存器312F中之一16位元首碼字組,然對熟習此項技術者為明顯的是,可使用較小數量之位元,及通道首碼暫存器及功能首碼暫存器在大小上無需相等。例如,一8位元首碼暫存器可利用一5位元通道首碼暫存器以定址32個通道,及僅利用一3位元功能首碼暫存器以定址8個功能。若證明(例如)在一LED壁標牌應用中支援高達256個單獨通道是有利的,則該通道首碼暫存器需要一八位元字組。使用用於功能解碼之額外四個位元支援16個功能,這對於大多數LED照明及顯示應用一般已經夠用。然而,減小前述16位元SLI匯流排首碼至一12位元位移暫存器之優點提供最小節省面積。此外,一12位元字組並非為2的次方且因此與二進制及十六進制資料集以及其他工業標準通信協定不一致。 Although this example of a multiplexed SLI bus uses one of the 16-bit first codewords stored in an 8-bit channel first code register 312C and an 8-bit function first code register 312F, It will be apparent to those skilled in the art that a smaller number of bits can be used, and the channel first code register and the function first code register need not be equal in size. For example, an 8-bit meta-address register can utilize a 5-bit channel first-code register to address 32 channels, and utilize only a 3-bit function first-code register to address eight functions. It would be advantageous to prove that, for example, up to 256 separate channels were supported in an LED wall signage application, the channel first code register would require one octet. The use of an additional four bits for function decoding supports 16 functions, which is generally sufficient for most LED lighting and display applications. However, reducing the advantages of the aforementioned 16-bit SLI bus header code to a 12-bit displacement register provides a minimum area of savings. In addition, a 12-bit block is not a power of 2 and is therefore inconsistent with binary and hex data sets and other industry standard communication protocols.
因此,儘管減小SLI匯流排首碼暫存器及相關聯位移暫存器之大小提供最小節省量,同時犧牲SLI協定之彈性及擴展性,然最小化經解碼之組合之數量及減小被多工之資料匯流排之大小可確實節省成本。 Therefore, while reducing the size of the SLI bus first code register and associated shift register provides minimal savings while sacrificing the flexibility and scalability of the SLI protocol, the number of decoded combinations is minimized and reduced. The size of the multiplexed data bus can really save costs.
為完整起見,亦包含其他解碼實例。圖13B繪示藉由用MC 612C及612F解碼儲存於一暫存器615C中之一2位元通道鍵及儲存於一暫存器615F中之一2位元功能鍵而驅動16個功能鎖存器616之一解碼器611及一多工器614,其中16個邏輯AND閘613驅動一四元12P4T多工器614,促進將12位元資料獨立路由至16個功能鎖存器。使用儲存於一通道首碼暫存器312C及一功能首碼暫存器312F中之首碼資料,將儲存於一資料暫存器313中之資料路由至鎖存器616之一適當者。 For the sake of completeness, other decoding examples are also included. FIG. 13B illustrates driving 16 functional latches by decoding one of the 2-bit channel keys stored in a register 615C and one of the 2-bit function keys stored in a register 615F with the MC 612C and 612F. One of the decoders 616 is a decoder 611 and a multiplexer 614, wherein 16 logical AND gates 613 drive a quad 12T4T multiplexer 614 to facilitate independent routing of 12-bit data to 16 function latches. The data stored in a data buffer 313 is routed to a suitable one of the latches 616 using the first code data stored in a channel first code register 312C and a function first code register 312F.
圖13C繪示藉由用MC 622C及622F解碼儲存於一暫存器625C中之一1位元通道鍵及儲存於一暫存器625F中之一2位元功能鍵而驅動8個功能鎖存器626之一解碼器621及一多工器624,其中8個邏輯AND閘623驅動一雙重12P4T多工器624,促進將12位元資料獨立路由至8個功能鎖存器。使用儲存於通道首碼暫存器312C及功能首碼暫存器312F中之首碼資料,將儲存於一資料暫存器313中之資料路由至鎖存器626之一適當者。 FIG. 13C illustrates driving eight functional latches by decoding one of the 1-bit channel keys stored in a register 625C and one of the 2-bit function keys stored in a register 625F with the MC 622C and 622F. The decoder 621 is a decoder 621 and a multiplexer 624, wherein the eight logical AND gates 623 drive a dual 12P4T multiplexer 624 to facilitate independent routing of 12 bits of data to the eight function latches. The data stored in a data buffer 313 is routed to the appropriate one of the latches 626 using the first code data stored in the channel first code register 312C and the function first code register 312F.
以所揭示之方式,一首碼多工LED驅動器可透過一彈性序列通信介面而達成多個LED串之動態獨立控制。藉由用一LED驅動器IC多工及路由包含於一序列通信位移暫存器中之資料至各種功能鎖存器,可達成彈性控制而無需昂貴的高接針數封裝、大面積位移暫存器或高資料速率通信匯流排或過度複雜的控制。 In the disclosed manner, a multiplexed LED driver can achieve dynamic independent control of multiple LED strings through an elastic sequence communication interface. By using an LED driver IC to multiplex and route data contained in a sequence of communication shift registers to various function latches, flexible control can be achieved without the need for expensive high pin count packages, large area shift registers Or high data rate communication bus or excessively complex control.
儘管所揭示之SLI匯流排通信介面及協定促進低接針數封裝中之彈性多通道LED驅動,然前述實施方案仍受限於其固有的二階層之暫存器-鎖存器架構。如圖10至圖13中所展示,在二階層暫存器-鎖存器架構中,控制資料僅存在於兩個鎖存器中:SLI匯流排之一位移暫存器及主動功能鎖存器。例如,在圖11中,位移暫存器311包含SLI匯流排通信資料,及功能鎖存器455包含用於控制LED驅動器IC之操作之 功能資料。 Although the disclosed SLI bus interface and protocol facilitates flexible multi-channel LED driving in low pin count packages, the foregoing implementation is still limited by its inherent two-level register-latch architecture. As shown in Figures 10 through 13, in a two-level register-latch architecture, control data exists only in two latches: one of the SLI bus shift registers and the active function latch . For example, in FIG. 11, the shift register 311 includes SLI bus communication data, and the function latch 455 includes an operation for controlling the operation of the LED driver IC. Functional data.
在先前所描述之操作中,每次發生一Vsync時脈脈衝時,即自位移暫存器311複製資料至鎖存器455。藉由該簡單的控制方法,載入多個鎖存器可花費若干個Vsync時脈循環。例如,在第一循環中,將SLI匯流排資料寫入至用於通道A之PWM亮度「D」,在一第二循環中,將該資料寫入至用於通道B之亮度「D」,在一第三循環中,將該SLI匯流排資料寫入至用於通道A之相位延遲鎖存器,以此類推。考慮到各通道需要D、Φ、像點及故障設定以及故障報告,一雙通道LED驅動器IC需要至少十個Vsync循環以載入所有鎖存器。 In the previously described operation, each time a Vsync clock pulse occurs, the data is copied from the shift register 311 to the latch 455. With this simple control method, loading multiple latches can take several Vsync clock cycles. For example, in the first cycle, the SLI bus data is written to the PWM brightness "D" for channel A, and in a second cycle, the data is written to the brightness "D" for channel B, In a third cycle, the SLI bus data is written to the phase delay latch for channel A, and so on. Considering that each channel requires D, Φ, pixel and fault settings, and fault reporting, a dual channel LED driver IC requires at least ten Vsync cycles to load all latches.
在二階層暫存器-鎖存器架構中,鎖存器資料在Vsync脈衝時載入於鎖存器中之後立即變為主動。在此上下文中,術語「主動」意謂LED驅動狀態受鎖存器資料之變更之影響(亦即,顯示器背光狀態已經更改),可引起顯示器之背光之可見變更。因此,在載入通道A亮度資料之後,在載入對應通道A相位資料之前等待另兩個Vsync脈衝意謂在一段時間內,通道A將以適當之亮度但卻錯誤的相位驅動其LED串。 In the two-level register-latch architecture, the latch data becomes active immediately after being loaded into the latch at the Vsync pulse. In this context, the term "active" means that the LED drive state is affected by changes in the latch data (ie, the display backlight state has changed), which can cause visible changes in the backlight of the display. Therefore, after loading the channel A luminance data, waiting for the other two Vsync pulses before loading the corresponding channel A phase data means that channel A will drive its LED string with the appropriate brightness but the wrong phase for a period of time.
以若干階段將該變更寫入至功能鎖存器中可引起背光之可見像差,包含重像、閃爍等。不幸地係,二階層暫存器-鎖存器系統中之功能鎖存器之序列非同步載入本來就很有問題。由於沒有暫時儲存位置來保存資料,所以沒有辦法將資料自介面IC依序載入至驅動器IC中。因此,無法避免序列變更之連鎖效應。SLI匯流排位移暫存器無法保存資料,此係因為其必須用於計時更多之資料。無法使用功能鎖存器,此係因為其為主動且在載入時即變更LED驅動狀態。 Writing the change to the function latch in several stages can cause visible aberrations in the backlight, including ghosting, flickering, and the like. Unfortunately, the sequence of non-synchronous loading of function latches in a two-tier register-latch system is inherently problematic. Since there is no temporary storage location to save the data, there is no way to load the data from the interface IC into the driver IC. Therefore, the knock-on effect of sequence changes cannot be avoided. The SLI Bus Displacement Register cannot save data because it must be used to time more data. The function latch cannot be used because it is active and changes the LED drive state when it is loaded.
此難題之解決方案在於利用如圖14中所展示之三階層暫存器-鎖存器架構。此架構包括一單一SLI匯流排位移暫存器311、多個預負載鎖存器655及連結至控制功能657之多個主動功能鎖存器656。控制功 能657可為類比或數位。在此實施例中,僅使用一個SLI匯流排位移暫存器311以將資料依序寫入至多個預負載鎖存器655。此外,在圖14之實施例中,各預負載鎖存器655與各主動鎖存器656之間存在一對一對應關係,然在其他實施例中可不存在此對應關係。 The solution to this problem is to utilize a three-level scratchpad-latch architecture as shown in FIG. The architecture includes a single SLI bus shift register 311, a plurality of preload latches 655, and a plurality of active function latches 656 coupled to control function 657. Control work Energy 657 can be analogous or digital. In this embodiment, only one SLI bus displacement register 311 is used to sequentially write data to a plurality of preload latches 655. In addition, in the embodiment of FIG. 14, there is a one-to-one correspondence between each preload latch 655 and each active latch 656, although this correspondence may not exist in other embodiments.
圖14中所展示之具有三階層暫存器/鎖存器之架構並不意謂詳盡無遺或限制性,但僅意謂例示性。例如,一個LED驅動器IC可包含一個以上SLI匯流排暫存器,藉此一個SLI匯流排位移暫存器定址一組預負載鎖存器,及一第二SLI匯流排暫存器定址一第二組預負載鎖存器。然而,一般而言,為進行經濟有利的多工,主動鎖存器656之數量應等於或超過預負載鎖存器655之數量;否則,該首碼SLI匯流排架構實際上比複雜型SLI匯流排架構沒有面積效益小且又昂貴。 The architecture with three levels of registers/latches shown in Figure 14 is not meant to be exhaustive or limiting, but is merely illustrative. For example, an LED driver IC can include more than one SLI bus register, whereby one SLI bus shift register addresses a set of preload latches, and a second SLI bus register addresses a second Group preload latches. However, in general, for economically advantageous multiplexing, the number of active latches 656 should equal or exceed the number of preload latches 655; otherwise, the first code SLI busbar architecture is actually more complex than the complex SLI The row architecture is not cost effective and expensive.
類似地,儘管在圖14中,預負載鎖存器655之數量等於主動鎖存器656之數量,然而在其他實施例中,預負載鎖存器655之數量可小於主動鎖存器656之數量。由於一預負載鎖存器之主要功能為緩衝資料以便防止該資料影響LED驅動之狀態,同時容許在需要時(不一定在一Vsync脈衝之瞬間)將該資料寫入至相關聯主動鎖存器中,必須小心以防因自一些通道省略預負載鎖存器655而產生前述閃爍問題。一些功能對該閃爍問題不敏感,例如,故障集及故障狀態鎖存器可被實時寫入及查詢而沒有問題。事實上,故障鎖存器無需同步於Vsync脈衝,此係因為管理故障與逐圖框影像控制及背光狀態不相關。類似地,若像點鎖存器在啟動期間僅被寫入一次,則可省略用於像點功能之預負載鎖存器。在一些例子中,可在若干主動鎖存器之中共用一個預負載鎖存器。例如,若像點功能僅被用作為一全域設定但不用於逐通道控制,則用於像點資料之一個預負載鎖存器可用於寫入多個通道之主動鎖存器以設定LED電流。 Similarly, although the number of preload latches 655 is equal to the number of active latches 656 in FIG. 14, in other embodiments, the number of preload latches 655 can be less than the number of active latches 656. . Since the primary function of a preload latch is to buffer the data in order to prevent the data from affecting the state of the LED driver, while allowing the data to be written to the associated active latch when needed (not necessarily at the instant of a Vsync pulse) Care must be taken to prevent the aforementioned flicker problem from occurring due to the omission of the preload latch 655 from some channels. Some functions are not sensitive to this flicker problem, for example, the fault set and fault status latches can be written and queried in real time without problems. In fact, the fault latch does not need to be synchronized to the Vsync pulse because the management fault is not related to frame-by-frame image control and backlight status. Similarly, if the image dot latch is only written once during startup, the preload latch for the pixel function can be omitted. In some examples, a preload latch can be shared among several active latches. For example, if the pixel function is only used as a global setting but not for channel-by-channel control, a preload latch for pixel data can be used to write active latches for multiple channels to set the LED current.
總而言之,在架構上,預負載鎖存器之數量應等於或小於主動 鎖存器之數量,及SLI匯流排位移暫存器之數量應小於預負載鎖存器之數量。在一較佳實施例中,至少通道PWM亮度功能或「D」資料、及相位延遲功能或「Φ」資料應包含包括主動鎖存器及預負載鎖存器兩者之三階層暫存器-鎖存器方法。 In summary, the number of preloaded latches should be equal to or less than the active The number of latches and the number of SLI bus shift registers should be less than the number of preload latches. In a preferred embodiment, at least the channel PWM luminance function or the "D" data, and the phase delay function or "Φ" data should include a three-level register including both the active latch and the pre-load latch - Latch method.
繼續參考圖14,三階層暫存器-鎖存器架構之基本操作涉及:將資料移至SLI匯流排位移暫存器311中,將來自SLI匯流排資料暫存器313中之資料寫入至該等預負載655之一者中而不在此時更改對應主動鎖存器中之資料,及針對每個通道及功能重複該程序直至所有預負載鎖存器被載入,接著在某個指定時間(例如,在Vsync脈衝時),將來自該等預負載鎖存器655之資料複製至其等各自主動鎖存器656中。僅在主動鎖存器資料發生變更時,LED驅動狀態才變更。只要不發生Vsync脈衝,預負載鎖存器可被寫入及重新寫入多次而不影響LED驅動狀態。 With continued reference to FIG. 14, the basic operation of the three-level register-latch architecture involves moving data into the SLI bus shift register 311 to write data from the SLI bus data register 313 to The data in the corresponding active latch is changed in one of the preloads 655, and the program is repeated for each channel and function until all preload latches are loaded, then at a specified time (For example, at the time of the Vsync pulse), the data from the preload latches 655 is copied into their respective active latches 656. The LED drive status changes only when the active latch data changes. As long as the Vsync pulse does not occur, the preload latch can be written and rewritten multiple times without affecting the LED drive state.
在該三階層暫存器-鎖存器架構中存在用於寫入資料之多種時序選項:是否在若干Vsync循環內將資料載入至SLI匯流排位移暫存器311中且複製至預負載鎖存器655中,或在一單一Vsync循環內載入所有資料。無論如何,較佳在一Vsync循環開始時將來自預負載鎖存器655之資料複製至主動鎖存器656中,使得PWM調光及相位延遲操作在一視訊圖框內保持恆定且與其前身(複雜型SLI匯流排版本)之操作一致。在一較佳實施例中,在一單一Vsync週期內將所有資料寫入至各種預負載鎖存器655,使得無需考慮特定時序問題。 There are various timing options for writing data in the three-level scratchpad-latch architecture: whether data is loaded into the SLI bus shift register 311 and copied to the preload lock within several Vsync cycles All data is loaded in memory 655, or in a single Vsync loop. In any event, it is preferred to copy the data from the preload latch 655 to the active latch 656 at the beginning of a Vsync cycle such that the PWM dimming and phase delay operations remain constant within a video frame and with their predecessors ( The operation of the complex SLI bus version is consistent. In a preferred embodiment, all of the data is written to various preload latches 655 in a single Vsync cycle so that no particular timing issues need to be considered.
在圖15中繪示用於在一單一Vsync循環將每個通道之每個預負載鎖存器載入於一顯示LED背光系統中之一SLI匯流排通信序列之一實例。該16通道顯示系統總共包括驅動16個LED串之八個LED驅動器IC 701A至701G,其中每LED驅動器IC有兩個通道及個別鎖存器用於控制PWM亮度、相位延遲、像點電流設定及故障資訊。為便利起見, 16個通道被唯一地識別,通道A及B對應於LED驅動器IC 701A、通道C及D對應於LED驅動器IC 701B,以此類推,直至驅動器701G包含通道P及Q。 One example of an SLI bus communication sequence for loading each preloaded latch of each channel into a display LED backlight system in a single Vsync cycle is illustrated in FIG. The 16-channel display system includes a total of eight LED driver ICs 701A through 701G that drive 16 LED strings, each of which has two channels and individual latches for controlling PWM brightness, phase delay, pixel current setting, and faults. News. For convenience, Sixteen channels are uniquely identified, channels A and B correspond to LED driver IC 701A, channels C and D correspond to LED driver IC 701B, and so on, until driver 701G includes channels P and Q.
在連續標記中排除了通道O以避免字母「O」與數字「0」之間之混淆。鎖存器之數量總共包括8個驅動器IC乘以每驅動器IC的2個通道乘以每通道4個鎖存器,總共64個鎖存器。各驅動器IC包括具有四個功能鎖存器之兩個通道或總共八個鎖存器,與圖13C中所展示之雙通道驅動器及解碼架構一致。由於各驅動器IC僅包含一個SLI匯流排位移暫存器及八個功能鎖存器,所以將資料載入至整個背光系統中最少需要八個循環,藉由連續資料序列702至709標示。 Channel O is excluded from the continuous mark to avoid confusion between the letter "O" and the number "0". The total number of latches includes a total of eight driver ICs multiplied by two channels per driver IC multiplied by four latches per channel for a total of 64 latches. Each driver IC includes two channels with four function latches or a total of eight latches, consistent with the dual channel driver and decode architecture shown in Figure 13C. Since each driver IC contains only one SLI bus shift register and eight function latches, it takes at least eight cycles to load data into the entire backlight system, indicated by successive data sequences 702 through 709.
在所展示之實例中,第一資料序列702包含依序用於通道Q、N、L、J、H、F、D及B之故障鎖存器之資料,其中FLT資料集被移至SLI匯流排且從中通過且接著複製至對應故障預負載鎖存器中。接著,一第二資料序列703包含依序用於通道P、M、K、I、G、E、C及A之故障鎖存器之資料,其中FLT資料集被移至SLI匯流排且從中通過且接著複製至對應故障預負載鎖存器中。 In the example shown, the first data sequence 702 contains data for the fault latches of channels Q, N, L, J, H, F, D, and B in sequence, where the FLT data set is moved to the SLI sink. The row passes through and is then copied into the corresponding fault preload latch. Next, a second data sequence 703 includes data for the fault latches of the channels P, M, K, I, G, E, C, and A, wherein the FLT data set is moved to and passed through the SLI bus. And then copied to the corresponding fault preload latch.
接著,在資料序列704中,像點資料依序被載入用於通道Q、N、L、J、H、F、D及B,接著是資料序列705,其中循序載入像點資料用於通道P、M、K、I、G、E、C及A。類似地,在隨後資料序列706中,依序載入用於通道Q、N、L、J、H、F、D及B的相位資料,接著是資料序列707,其中載入用於通道P、M、K、I、G、E、C及A的相位資料。最後在資料序列708中,依序載入用於通道Q、N、L、J、H、F、D及B的PWM資料,接著是資料序列709,其中循序載入用於通道P、M、K、I、G、E、C及A的PWM資料。以此方式,驅動器IC 701A至701G中之每個功能鎖存器係使用一單一共用SLI匯流排而載入且使用適當首碼碼而多工至其等適當鎖存器,藉此在一單一Vsync循 環內載入所有資料。隨後,在稍後某個時候,發生Vsync脈衝,將預負載鎖存器資料載入至主動鎖存器中,變更LED驅動狀態及顯示器背光之操作。 Then, in the data sequence 704, the image data is sequentially loaded for the channels Q, N, L, J, H, F, D, and B, followed by the data sequence 705, in which the image data is sequentially loaded for Channels P, M, K, I, G, E, C, and A. Similarly, in the subsequent data sequence 706, the phase data for channels Q, N, L, J, H, F, D, and B are sequentially loaded, followed by the data sequence 707, which is loaded for channel P, Phase data of M, K, I, G, E, C, and A. Finally, in the data sequence 708, the PWM data for the channels Q, N, L, J, H, F, D, and B are sequentially loaded, followed by the data sequence 709, which is sequentially loaded for the channels P, M, PWM data for K, I, G, E, C, and A. In this manner, each of the driver ICs 701A through 701G is loaded using a single shared SLI bus and multiplexed to its appropriate latch using the appropriate first code, thereby Vsync Load all the data in the ring. Then, at some later time, a Vsync pulse occurs, loading the preload latch data into the active latch, changing the LED drive state and the operation of the display backlight.
應注意,儘管上述序列被描述為經由SLI匯流排將資料自介面IC寫入至其衛星LED驅動器IC中,然該協定亦支援自LED驅動器IC返回至介面IC之雙向通信。例如,當資料序列702中之資料被寫入至FLT鎖存器中時,故障狀態資訊可自驅動器IC複製返回至SLI匯流排位移暫存器之資料欄位中之適當位元中。接著,當資料序列703中之FLT資料自介面IC移出至LED驅動器IC時,駐存於SLI匯流排位移暫存器中之故障資料被移出菊鏈中之最後驅動器IC之SO接針且返回至介面IC以待解譯。因此,並非在資料序列702之SLI匯流排廣播期間,而是在隨後資料序列703之廣播期間,藉由介面IC接收用於通道Q、N、L、J、H、F、D及B之故障狀態資料。以一類似方式,並非在資料序列703之SLI匯流排廣播期間,而是在隨後資料序列704之廣播期間,藉由介面IC接收用於通道P、M、K、I、G、E、C及A之故障狀態資料。 It should be noted that although the above sequence is described as writing data from the interface IC to its satellite LED driver IC via the SLI bus, the agreement also supports two-way communication from the LED driver IC back to the interface IC. For example, when data in the data sequence 702 is written to the FLT latch, the fault status information can be copied back from the driver IC to the appropriate bit in the data field of the SLI bus shift register. Then, when the FLT data in the data sequence 703 is removed from the interface IC to the LED driver IC, the fault data residing in the SLI bus displacement register is removed from the SO pin of the last driver IC in the daisy chain and returned to The interface IC is to be interpreted. Therefore, not during the SLI bus broadcast of the data sequence 702, but during the broadcast of the subsequent data sequence 703, the faults for the channels Q, N, L, J, H, F, D, and B are received by the interface IC. Status data. In a similar manner, not during the SLI bus broadcast of the data sequence 703, but during the broadcast of the subsequent data sequence 704, the channel P, M, K, I, G, E, C and A fault status data of A.
在此實例中,在一單一Vsync循環內寫入整個系統中之所有預負載鎖存器,及在發生隨後Vsync脈衝時,將因此所寫入之資料自該等預負載鎖存器傳送至主動鎖存器。儘管可針對顯示操作之每個圖框及Vsync脈衝重複此程序,然而在背光驅動器系統之初始設定之後,重新發送多餘資料既不必要且甚至累贅。 In this example, all preload latches in the entire system are written in a single Vsync loop, and when subsequent Vsync pulses occur, the data thus written is transferred from the preload latches to the active Latches. Although this procedure can be repeated for each frame and Vsync pulse of the display operation, resending the excess data after the initial setting of the backlight driver system is neither necessary nor even cumbersome.
在圖16A中所展示之流程圖及狀態圖中繪示在每個Vsync循環中重寫寫入每個鎖存器之一計算及節能替代方案。在該流程圖中,背光控制序列包括兩個時期:初始化背光LED驅動器之751A及重新整理背光LED驅動器狀態之751B。如在圖15中所展示之序列中,初始化時期751A涉及根據序列時脈SCK信號將用於一給定主動鎖存器(754)之資 料(包含首碼資料及功能資料)移至(752A)SLI匯流排中,及接著載入適當預負載鎖存器(753A)。以用於每個主動鎖存器(754)之資料重複此程序直至所有預負載鎖存器(753A)被載入。可將自SLI匯流排複製資料至一預負載鎖存器(753A)中之命令嵌入於序列時脈SCK波形中且因此不需要一單獨硬體解決方案或佈線。在所有預負載鎖存器(753A)被初始化之後,Vsync脈衝告知LED驅動器IC複製資料至主動鎖存器(754)中且進行變更,藉此變更LED驅動狀態及顯示器背光之操作。 One of the calculations and power saving alternatives for overwriting each latch in each Vsync cycle is illustrated in the flow chart and state diagram shown in FIG. 16A. In this flow chart, the backlight control sequence includes two periods: 751A to initialize the backlight LED driver and 751B to refresh the backlight LED driver state. As in the sequence shown in Figure 15, the initialization period 751A involves the use of a sequence clock SCK signal for a given active latch (754). The material (including the first code data and function data) is moved to the (752A) SLI bus and then loaded with the appropriate preload latch (753A). This procedure is repeated with data for each active latch (754) until all preload latches (753A) are loaded. The command to copy data from the SLI bus to a preload latch (753A) can be embedded in the sequence clock SCK waveform and thus does not require a separate hardware solution or wiring. After all of the preload latches (753A) are initialized, the Vsync pulse tells the LED driver IC to copy the data into the active latch (754) and change it, thereby changing the LED drive state and operation of the display backlight.
在初始化之後,僅更新及重新寫入(亦即,重新整理)需要變更之功能鎖存器。更新背光時期751B繪示在一資料重新整理期間,藉由以下方式僅重新寫入特定鎖存器:在序列時脈SCK信號之控制下位移資料(752B)至SLI匯流排中,且接著將正在更新之通道及功能之資料僅載入至特定預負載鎖存器中(753B)。其他預負載鎖存器(亦即,未更新之鎖存器)保持不變。例如,可頻繁更新每個通道的PWM及相位資料,但像點資料可保持不變,除非TV自2D模式變更至3D模式或反之亦然。以此方式,在SLI匯流排上重複廣播之資料之大小為在初始化期間發送之一小部分。 After initialization, only the function latches that need to be changed are updated and rewritten (ie, rearranged). The update backlight period 751B illustrates that during a data rearrangement, only a particular latch is rewritten by: shifting the data (752B) into the SLI bus under the control of the sequence clock SCK signal, and then Updated channel and function data is only loaded into the specific preload latch (753B). Other preload latches (ie, unupdated latches) remain unchanged. For example, the PWM and phase data for each channel can be updated frequently, but the image data can remain unchanged unless the TV changes from 2D mode to 3D mode or vice versa. In this way, the size of the material that is repeatedly broadcast on the SLI bus is a small portion that is sent during initialization.
在本發明之一實施例中,自一SLI匯流排資料暫存器複製資料至一預負載鎖存器中之指令完全基於SCK序列時脈信號之波形。在圖16B之時序圖中,序列時脈SCK信號711以連續方式運行,同時資料被載入至LED驅動器IC 701A至701H中。由於該資料為連續序列,所以被移至SLI匯流排中之第一資料對應於離介面IC最遠之驅動器IC(亦即,驅動器IC 701H),而被移至SLI匯流排中之最後資料對應於最接近於介面IC之驅動器IC(亦即,驅動器IC 701A)。在資料已被移至驅動器IC 701A至701H內之所有SLI匯流排位移暫存器中之後,SCK信號在某個持續時間tlatch 774內保持為高,在該持續時間之後,來自所有不同SLI匯流排位移暫存器之資料被平行複製至預負載鎖存器773中。 該持續時間tlatch可用一計時器輕易實施,且出於方便可等於約等於10至20個SCK脈衝之時間。例如,若序列時脈以10MHz運行,則各SCK脈衝之持續時間為0.1微秒。若該SCK信號經偵測以保持為高,則在tlatch計時器計時約1微秒後,來自SLI匯流排位移暫存器之資料將鎖存至預負載鎖存器773中。 In one embodiment of the invention, the instructions for copying data from an SLI bus data register to a preload latch are based entirely on the waveform of the SCK sequence clock signal. In the timing diagram of FIG. 16B, the sequence clock SCK signal 711 operates in a continuous manner while data is loaded into the LED driver ICs 701A through 701H. Since the data is a continuous sequence, the first data moved to the SLI bus bar corresponds to the driver IC farthest from the interface IC (ie, the driver IC 701H), and is moved to the last data in the SLI bus bar. The driver IC closest to the interface IC (ie, driver IC 701A). After the data has been moved to all SLI bus displacement registers in drive ICs 701A through 701H, the SCK signal remains high for a duration t latch 774 after which all different SLI sinks are coming from. The data of the row shift register is copied in parallel to the preload latch 773. The duration t latch can be easily implemented with a timer and, for convenience, can be equal to approximately 10 to 20 SCK pulses. For example, if the sequence clock is running at 10 MHz, the duration of each SCK pulse is 0.1 microseconds. If the SCK signal is detected to remain high, the data from the SLI busbar shift register will be latched into the preload latch 773 after the t latch timer has been clocked for approximately one microsecond.
tlatch計時器之時序並非關鍵。實際上,SLI匯流排之資料正確度對SCK信號之中斷不敏感。例如,若該資料在SCK信號因任何原因暫時處於一「高」狀態時僅位移通過序列鏈之一半,則該高狀態將被解譯為將資料寫入至預負載鎖存器中之一指令。由於此時SLI匯流排位移暫存器中存在錯誤資料,或更準確而言,該資料錯誤地定位在SLI匯流排暫存器中,所以該錯誤資料將鎖存至預負載鎖存器773中。儘管此暫時通信錯誤,然只要在該資料處於不適當SLI匯流排位移暫存器中時不發生Vsync脈衝,將不會導致系統操作問題。 The timing of the t latch timer is not critical. In fact, the data accuracy of the SLI bus is not sensitive to the interruption of the SCK signal. For example, if the data is only shifted through one-half of the sequence chain when the SCK signal is temporarily in a "high" state for any reason, the high state will be interpreted as one of the instructions to write data to the preload latch. . Since there is an error data in the SLI bus displacement register at this time, or more accurately, the data is incorrectly located in the SLI bus register, the error data will be latched into the preload latch 773. . Despite this temporary communication error, as long as the Vsync pulse does not occur when the data is in an inappropriate SLI bus shift register, it will not cause system operation problems.
沒有Vsync脈衝,即沒有預負載資料被複製至一主動鎖存器中。假定SCK信號恢復計數,SLI匯流排資料將繼續位移通過序列匯流排直至其到達其最終目的地LED驅動器IC位移暫存器,在tlatch之一持續時間之後,自驅動器IC 701A至701H中之SLI匯流排位移暫存器載入適當資料至預負載鎖存器773中,覆寫不正確資料。由於在一單一Vsync脈衝內發生整個事件,所以臨時將錯誤資料載入至預負載鎖存器中之事實在背光操作中完全無害且觀察不出來。 There is no Vsync pulse, ie no preload data is copied into an active latch. Assuming the SCK signal resumes counting, the SLI bus data will continue to be displaced through the sequence bus until it reaches its final destination LED driver IC Displacement Register, after one of the t latch durations, SLI from the driver ICs 701A through 701H The bus shift register loads the appropriate data into the preload latch 773 to overwrite the incorrect data. Since the entire event occurs within a single Vsync pulse, the fact that the error data is temporarily loaded into the preload latch is completely harmless and unobservable in backlight operation.
為將SLI匯流排資料移至適當IC中,SLI匯流排操作之一關鍵方面在於,在SLI匯流排上廣播之位元數必須對應於對應的LED驅動器IC。例如,在圖16B中,SLI匯流排上之位元總數等於八個雙通道LED驅動器IC 701A至701H之個別SLI匯流排暫存器中之位元數之總和。假定八個驅動器IC 701A至701H之各者中之SLI匯流排暫存器包含一8位元通道首碼暫存器、一8位元功能首碼暫存器及一16位元資料暫存 器,總共32個位元。將SLI匯流排資料寫入至八個32位元位移暫存器中需要256個SCK脈衝。前32個SCK脈衝將載入驅動器IC 701H所要之資料,及第33個至64個SCK脈衝將載入驅動器IC 701G所要之資料,以此類推。具體言之,在圖16B之實例中,在發生tlatch持續時間之後,將資料DB、DD、DF、DH、DJ、DL、DN及DQ自驅動器IC 701A至701H中之SLI匯流排中之資料暫存器分別複製至其等對應PWM預負載鎖存器PWM B、PWM D、PWM F、PWM H、PWM J、PWM L、PWM N及PWM Q。 To move the SLI bus data to the appropriate IC, one of the key aspects of the SLI bus operation is that the number of bits broadcast on the SLI bus must correspond to the corresponding LED driver IC. For example, in Figure 16B, the total number of bits on the SLI bus is equal to the sum of the number of bits in the individual SLI bus registers of the eight dual channel LED driver ICs 701A through 701H. Assume that the SLI bus register in each of the eight driver ICs 701A to 701H includes an 8-bit channel first code register, an 8-bit function first code register, and a 16-bit data register. , a total of 32 bits. It takes 256 SCK pulses to write SLI bus data into eight 32-bit shift registers. The first 32 SCK pulses will load the data required by the driver IC 701H, and the 33rd to 64th SCK pulses will load the data required by the driver IC 701G, and so on. Specifically, in the example of FIG. 16B, after the t latch duration occurs, the data D B , D D , D F , D H , D J , D L , D N , and D Q are derived from the driver ICs 701A to 701H. The data registers in the SLI bus are respectively copied to their corresponding PWM preload latches PWM B, PWM D, PWM F, PWM H, PWM J, PWM L, PWM N and PWM Q.
由於各驅動器IC包括具有兩組預負載鎖存器之兩個通道,所以在SLI匯流排上需要一第二廣播以載入PWM預負載鎖存器PWM A、PWM C、PWM E、PWM G、PWM I、PWM K及PWM M。必須針對待載入之各組鎖存器重複此程序。 Since each driver IC includes two channels with two sets of preload latches, a second broadcast is required on the SLI bus to load the PWM preload latches PWM A, PWM C, PWM E, PWM G, PWM I, PWM K and PWM M. This procedure must be repeated for each set of latches to be loaded.
在圖16C之時序及流程圖中進一步闡明一多通道多鎖存器序列之操作,表示控制SLI匯流排及所有衛星LED驅動器IC之介面IC之輸出。在所展示之實例中,時序波形801及802表示SCK時脈及Vsync時脈,波形在時間上自左至右前進。 The operation of a multi-channel multi-latch sequence is further illustrated in the timing and flow diagram of Figure 16C, which shows the output of the interface IC that controls the SLI bus and all satellite LED driver ICs. In the example shown, timing waveforms 801 and 802 represent the SCK clock and the Vsync clock, and the waveform progresses from left to right in time.
在SCK叢發803A期間,將第一組之PWM持續時間「D」資料移至SLI匯流排位移暫存器中。在SCK叢發803A結束時,SCK信號暫時保持為「高」,在該時間期間,SLI匯流排「D」資料被複製至預負載鎖存器P、M、K、I、G、E、C及A。在下一個SCK叢發803B期間,第二組之PWM「D」資料被移至SLI匯流排位移暫存器中。在SCK叢發803B結束時,SCK信號暫時保持為「高」,在該時間期間,SLI匯流排「D」資料被複製至預負載鎖存器Q、N、L、J、H、F、D及B中。 During the SCK burst 803A, the first set of PWM duration "D" data is moved to the SLI bus displacement register. At the end of SCK burst 803A, the SCK signal is temporarily held "high" during which time the SLI bus "D" data is copied to the preload latches P, M, K, I, G, E, C. And A. During the next SCK burst 803B, the second set of PWM "D" data is moved to the SLI bus shift register. At the end of SCK burst 803B, the SCK signal is temporarily held "high" during which time the SLI bus "D" data is copied to the preload latches Q, N, L, J, H, F, D. And B.
在SCK叢發803C且接著的SCK「高」期間,相位資料移至SLI匯流排中且鎖存至預負載鎖存器P、M、K、I、G、E、C及A中,接著是SCK叢發803D及接著的SCK「高」,在該期間將相位資料移至SLI匯流 排中且鎖存至預負載鎖存器Q、N、L、J、H、F、D及B中。其後,在SCK叢發803E及接著的SCK「高」期間,將像點(亦即,LED電流)資料移至SLI匯流排中且鎖存至預負載鎖存器P、M、K、I、G、E、C及A中,接著是SCK叢發803F及接著的SCK「高」,在該期間將像點資料移至SLI匯流排中且鎖存至預負載鎖存器Q、N、L、J、H、F、D及B中。最後,在SCK叢發803G及接著的SCK「高」期間,將故障資料移至SLI匯流排中且鎖存至預負載鎖存器P、M、K、I、G、E、C及A中,接著是SCK叢發803H及接著的SCK「高」,在該期間將故障資料移至SLI匯流排中且鎖存至預負載鎖存器Q、N、L、J、H、F、D及B中。 During the SCK burst 803C and the subsequent SCK "high", the phase data is moved into the SLI bus and latched into the preload latches P, M, K, I, G, E, C and A, followed by SCK bursts 803D and then SCK "high", during which phase data is moved to the SLI sink It is aligned and latched into preload latches Q, N, L, J, H, F, D, and B. Thereafter, during the SCK burst 803E and the subsequent SCK "high", the pixel (ie, LED current) data is moved into the SLI bus and latched to the preload latches P, M, K, I. , G, E, C, and A, followed by SCK burst 803F and subsequent SCK "high", during which the image data is moved to the SLI bus and latched to the preload latches Q, N, L, J, H, F, D and B. Finally, during the SCK burst 803G and the subsequent SCK "high", the fault data is moved into the SLI bus and latched into the preload latches P, M, K, I, G, E, C and A. , followed by SCK burst 803H and subsequent SCK "high", during which the fault data is moved into the SLI bus and latched to the preload latches Q, N, L, J, H, F, D and B.
應注意,關於所揭示之首碼多工SLI匯流排,一驅動器IC內之第一或第二通道之寫入之序列完全為任意的。例如,在SCK叢發803A期間,PWM資料用於通道P、M、K、I、G、E、C及A或用於通道Q、N、L、J、H、F、D及B並沒有差別。由於預負載鎖存器中之資料直至在Vsync脈衝802時被複製至相關聯鎖存器中才顯示,所以載入預負載鎖存器之順序無關緊要。唯一要求在於,在菊鏈中距離介面IC最遠之驅動器IC中之通道(亦即,通道P或通道Q)所要之資料被首先寫入,及距離介面IC最近之驅動器IC中之通道(通道A或通道B)所要之資料被最後寫入。在理論上,可以替代或任意方式在SLI匯流排通信中混合第一及第二通道(例如,通道Q接著是通道M再是通道K),但此做法使檢查定序是否有誤變得更加困難而沒有益處。 It should be noted that with respect to the disclosed first code multiplexed SLI bus, the sequence of writing of the first or second channel within a driver IC is completely arbitrary. For example, during SCK 803A, PWM data is used for channels P, M, K, I, G, E, C, and A or for channels Q, N, L, J, H, F, D, and B. difference. Since the data in the preload latch is not displayed until it is copied to the associated latch at Vsync pulse 802, the order in which the preload latch is loaded does not matter. The only requirement is that the data required for the channel (ie, channel P or channel Q) in the driver IC that is the farthest from the interface IC in the daisy chain is written first, and the channel in the driver IC closest to the interface IC (channel) The information required for A or channel B) is last written. In theory, the first and second channels can be mixed in the SLI bus communication instead or in any way (for example, channel Q is followed by channel M and then channel K), but this makes the check sequence more error-free. Difficult and not beneficial.
在所揭示之首碼多工SLI匯流排中,藉以將預負載鎖存器載入於一給定驅動器IC及通道內之序列亦為完全任意。例如,可在保存PWM作用時間因數資料之預負載鎖存器之前載入保存相位資料之預負載鎖存器,及此可在將像點資料或故障資料載入預負載鎖存器之前或之後完成。因此,本發明之首碼多工SLI匯流排及方法在多通道多 參數LED驅動之動態控制中提供了極大的彈性。 In the disclosed first code multiplexed SLI bus, the sequence by which the preload latches are loaded into a given driver IC and channel is also completely arbitrary. For example, the preload latch holding the phase data can be loaded before the preload latch holding the PWM action time factor data, and this can be done before or after loading the pixel data or fault data into the preload latch. carry out. Therefore, the first code multiplexed SLI bus and method of the present invention are multi-channel and multi-channel The flexibility of the parameter LED drive provides great flexibility.
在Vsync脈衝802時,將來自所有預負載鎖存器之資料複製至相關聯主動鎖存器中,由箭頭所指示。具體言之,將用於PWM P及PWM Q、相位P及相位Q、像點P及像點Q以及故障P及故障Q之資料寫入至雙通道LED驅動器IC 701H之主動鎖存器中;將用於PWM M及PWM N、相位M及相位N、像點M及像點N以及故障M及故障N之資料寫入至雙通道LED驅動器IC 701G之主動鎖存器中,以此類推。同樣在Vsync時,用於最接近於介面IC之LED驅動器IC 701A之PWM資料、相位資料、像點資料及故障資料亦自預負載鎖存器複製至主動鎖存器中。 At Vsync pulse 802, data from all preload latches is copied into the associated active latch, as indicated by the arrows. Specifically, data for PWM P and PWM Q, phase P and phase Q, pixel P and pixel Q, and fault P and fault Q are written into the active latch of the dual-channel LED driver IC 701H; The data for PWM M and PWM N, phase M and phase N, pixel M and pixel N, and fault M and fault N are written to the active latch of the dual-channel LED driver IC 701G, and so on. Also at Vsync, the PWM data, phase data, pixel data, and fault data for the LED driver IC 701A closest to the interface IC are also copied from the preload latch to the active latch.
在LED驅動器IC中之主動鎖存器被完全載入之後,可發送一子集之資料以更新鎖存器進行動態變更。一種常見的動態變更為更新PWM亮度設定(即可隨每個視訊圖框而變更之一參數)。展示於圖17A中所展示之SLI匯流排資料序列中之此一更新包括在來自介面IC之兩個資料廣播中載入LED驅動器IC 701H至701A中之所有PWM預負載鎖存器之兩個資料序列851及852。該等資料序列851及852因此為圖15中所展示之資料序列之一子集。 After the active latches in the LED driver IC are fully loaded, a subset of the data can be sent to update the latches for dynamic changes. A common dynamic change is to update the PWM brightness setting (that is, one of the parameters can be changed with each video frame). This update, shown in the SLI bus data sequence shown in Figure 17A, includes loading two data for all of the PWM preload latches in LED driver ICs 701H through 701A in two data broadcasts from the interface IC. Sequences 851 and 852. The data sequences 851 and 852 are thus a subset of the data sequences shown in FIG.
空白或「隨意(don't care)」資料亦可被移至不需要更新之通道中之SLI匯流排位移暫存器中,其限制條件為首碼係經選擇以便不寫入至驅動器IC中之任意鎖存器。例如,若僅變更PWM P及PWM Q鎖存器,則位移通過SLI匯流排之資料可包括14個通道之「隨意」資料及兩個通道之PWM資料,如圖17B之資料序列中所展示。藉由選定未實體定址IC中之一鎖存器之一首碼,藉由選定不存在之一通道選擇碼或不存在之一功能選擇碼而忽略資料欄位中之「隨意」資料或DC資料。例如,寫入0000至0100或更大(十六進制為04)之一通道碼將選擇 超出一四通道LED驅動器IC中之四個整合的十六進制通道00至03之一通道碼且因此將被忽略。替代地,寫入0000至1000或更大(十六進制為08)之一功能選擇碼將選擇在八個鎖存器十六進制範圍00至07之外之一功能鎖存器且因此將被忽略。 Blank or "don't care" data may also be moved to the SLI bus displacement register in the channel that does not need to be updated, with the restriction that the first code is selected so as not to be written to the driver IC. Any latch. For example, if only the PWM P and PWM Q latches are changed, the data that is shifted through the SLI bus can include 14 channels of "arbitrary" data and two channels of PWM data, as shown in the data sequence of Figure 17B. By selecting the first code of one of the latches in the unaddressed IC, the "arbitrary" data or DC data in the data field is ignored by selecting one of the channel selection codes or one of the function selection codes. . For example, writing a channel code from 0000 to 0100 or greater (hexadecimal 04) will select One of the four integrated hexadecimal channels 00 to 03 in a four-channel LED driver IC is out of range and will therefore be ignored. Alternatively, writing one of the function select codes from 0000 to 1000 or greater (hexadecimal to 08) will select one of the function latches in the eight latch hexadecimal range 00 to 07 and therefore Will be ignored.
替代地,一安全選擇為使用二進制中之首碼FFFF、1111-1111-1111-1111以在甚至最大系統中選定超過所有可實行鎖存器計數之一值。在一替代實施例中,碼FFFF可被保留以作為一「隨意」命令。該「隨意」功能係必要的,此係因為在基於一位移暫存器之通信協定中,必須位移正確數量之位元以將更新資料移至適當驅動器IC中之SLI匯流排之首碼暫存器及資料暫存器中。參考圖17B中所展示之實例,將包含用於PWM P之更新資料之一32位元字組載入通道701H中需要在包含PWM P鎖存器之更新之32位元字組之後,將七個32位元字組或224個位元移至位移暫存器中。在PWM Q中也是同樣的道理,其中具有選擇Q通道及PWM功能鎖存器之一首碼之一32位元更新字組必須接在224個位元之後以將該資料移動至其對應驅動器IC 701H中。應重申,在雙通道驅動器IC中,整體LED驅動器系統中之第二通道是否為通道B、D、F、H、J、L、N及Q並沒有差別。因此,在將用於一特定鎖存器之更新資料移至SLI匯流排上之後將正確位元數移至SLI匯流排中對於選擇正確通道、功能及LED驅動器IC係重要的。 Alternatively, a safe choice is to use the first of the binary codes FFFF, 1111-1111-1111-1111 to select one of the values of all of the implementable latch counts in even the largest system. In an alternate embodiment, the code FFFF can be reserved as a "random" command. This "arbitrary" function is necessary because in the communication protocol based on a displacement register, the correct number of bits must be shifted to move the updated data to the first code of the SLI bus in the appropriate driver IC. In the device and data register. Referring to the example shown in FIG. 17B, the 32-bit block loaded into the channel 701H, which contains one of the updated data for the PWM P, needs to be seven after the updated 32-bit block containing the PWM P-Latch. A 32-bit block or 224 bits are moved to the shift register. The same is true in PWM Q, where one of the first codes of the selected Q channel and PWM function latches, the 32-bit update block must be connected after 224 bits to move the data to its corresponding driver IC. 701H. It should be reiterated that in a two-channel driver IC, there is no difference in whether the second channel in the overall LED driver system is channels B, D, F, H, J, L, N, and Q. Therefore, moving the correct number of bits into the SLI bus after moving the update data for a particular latch onto the SLI bus is important for selecting the correct channel, function, and LED driver IC system.
最後一點,只要廣播的位元數等於LED驅動器IC之數量乘以各驅動器IC之SLI匯流排暫存器中之位元數,便可在一單一SLI匯流排更新中混合更新。 Finally, as long as the number of bits of the broadcast is equal to the number of LED driver ICs multiplied by the number of bits in the SLI bus register of each driver IC, the update can be mixed in a single SLI bus update.
例如,在圖17C中之SLI匯流排通信序列中,在廣播序列891中發送PWM、故障、相位及DC資料之一混合,總共包括移至SLI匯流排上之8個通道乘以32個位元或256個位元。在所展示之實例中,不僅不同功能被一起混合至相同資料流中,經選擇之通道亦可將A通道及B通 道資料混雜至相同資料流中。例如,該「A通道」資料包含分別用於LED驅動器IC 701B、701D及701H之PWM C、相位G及PWM P資料,及該「B通道」資料包含用於對應LED驅動器IC 701E及701G之故障J資料及PWM N資料,及驅動器IC 701A、701C及701F中之資料指示一「隨意」驅動狀態。簡而言之,在上文所描述之實施例中,用於任意驅動器IC中之高達一個(但不多於一個)預負載鎖存器之資料可包含於載入SLI匯流排中之任意單一資料序列中。 For example, in the SLI bus communication sequence of FIG. 17C, a mix of PWM, fault, phase, and DC data is transmitted in the broadcast sequence 891, including a total of 8 channels multiplied by 32 bits on the SLI bus. Or 256 bits. In the example shown, not only are the different functions mixed together into the same data stream, but the selected channel can also be connected to the A channel and the B channel. Road data is mixed into the same data stream. For example, the "A channel" data includes PWM C, phase G, and PWM P data for the LED driver ICs 701B, 701D, and 701H, respectively, and the "B channel" data includes faults for the corresponding LED driver ICs 701E and 701G. The J data and PWM N data, and the data in the driver ICs 701A, 701C and 701F indicate a "casual" drive state. In short, in the embodiments described above, data for up to one (but no more than one) of the preload latches in any of the driver ICs can be included in any single loaded into the SLI bus. In the data sequence.
以所規定之方法,可使用所揭示之首碼多工SLI匯流排協定執行更新LED驅動器狀態而不用重新發送全組之鎖存器資訊。 In the manner specified, the LED code state can be updated using the disclosed first code multiplex SLI bus protocol without resending the full set of latch information.
所揭示之首碼多工SLI匯流排與未在本文特定揭示之各種功能(包括切換一給定通道為開啟或關閉之能力、使PWM信號反相之能力以及編碼CSFB回饋信號且將其嵌入至SLI匯流排協定中之能力)相容。因此,本發明中所描述之應用及功能不應以任意方式解讀為限制SLI匯流排之效用。 The disclosed first code multiplexed SLI bus and various functions not specifically disclosed herein (including the ability to switch a given channel on or off, the ability to invert the PWM signal, and encode the CSFB feedback signal and embed it into The capabilities in the SLI bus protocol are compatible. Therefore, the applications and functions described in this disclosure should not be construed in any way as limiting the utility of the SLI bus.
81A‧‧‧LED驅動器IC 81A‧‧‧LED Driver IC
81H‧‧‧LED驅動器IC 81H‧‧‧LED Driver IC
83A‧‧‧LED串 83A‧‧‧LED string
83B‧‧‧LED串 83B‧‧‧LED string
83P‧‧‧LED串 83P‧‧‧LED string
83Q‧‧‧LED串 83Q‧‧‧LED string
85A‧‧‧類比控制及感測電路 85A‧‧‧ analog control and sensing circuit
85H‧‧‧類比控制及感測電路 85H‧‧‧ analog control and sensing circuit
86A‧‧‧I精確閘極驅動器電路 86A‧‧‧I Precision Gate Driver Circuit
86B‧‧‧I精確閘極驅動器電路 86B‧‧‧I Precision Gate Driver Circuit
86P‧‧‧I精確閘極驅動器電路 86P‧‧‧I Precision Gate Driver Circuit
86Q‧‧‧I精確閘極驅動器電路 86Q‧‧‧I Precision Gate Driver Circuit
87A‧‧‧電流槽DMOSFET 87A‧‧‧ Current Slot DMOSFET
87B‧‧‧電流槽DMOSFET 87B‧‧‧ Current Slot DMOSFET
87P‧‧‧電流槽DMOSFET 87P‧‧‧ Current Slot DMOSFET
87Q‧‧‧電流槽DMOSFET 87Q‧‧‧ Current Slot DMOSFET
88A‧‧‧積體HV二極體 88A‧‧‧Integrated HV diode
88B‧‧‧積體HV二極體 88B‧‧‧Integrated HV diode
88P‧‧‧積體HV二極體 88P‧‧‧Integrated HV diode
88Q‧‧‧積體HV二極體 88Q‧‧‧Integrated HV diode
89A‧‧‧數位控制及時序電路 89A‧‧‧Digital Control and Timing Circuit
89H‧‧‧數位控制及時序電路 89H‧‧‧Digital Control and Sequencing Circuit
90A‧‧‧序列照明介面匯流排 90A‧‧‧Sequence lighting interface bus
90H‧‧‧序列照明介面匯流排 90H‧‧‧Sequence lighting interface bus
100‧‧‧分散式多通道LED背光驅動器系統 100‧‧‧Distributed multi-channel LED backlight driver system
101‧‧‧介面積體電路(IC) 101‧‧‧Intermediate area circuit (IC)
102‧‧‧電容器 102‧‧‧ capacitor
107‧‧‧共同信號線 107‧‧‧Common signal line
108‧‧‧切換模式電源供應器 108‧‧‧Switch mode power supply
109‧‧‧線 109‧‧‧ line
110‧‧‧固定+24V供應軌 110‧‧‧Fixed +24V supply rail
111‧‧‧電流回饋信號 111‧‧‧ Current feedback signal
112B‧‧‧CSFB線 112B‧‧‧CSFB line
112H‧‧‧CSFB線 112H‧‧‧CSFB line
112I‧‧‧CSFB線 112I‧‧‧CSFB line
113A‧‧‧信號線 113A‧‧‧ signal line
113B‧‧‧信號線 113B‧‧‧ signal line
113H‧‧‧信號線 113H‧‧‧ signal line
113I‧‧‧信號線 113I‧‧‧ signal line
122‧‧‧序列周邊介面匯流排 122‧‧‧Sequence peripheral interface bus
123‧‧‧序列照明介面單元/序列照明介面電路 123‧‧‧Sequence illumination interface unit / sequence illumination interface circuit
124‧‧‧時序及控制單元 124‧‧‧Sequence and Control Unit
125‧‧‧電壓參考源 125‧‧‧Voltage Reference Source
126‧‧‧偏壓供應單元 126‧‧‧ bias supply unit
127‧‧‧運算跨導放大器 127‧‧‧Operation transconductance amplifier
CSFBI‧‧‧電流感測回饋輸入接針 CSFBI‧‧‧current sensing feedback input pin
CSFBO‧‧‧電流感測回饋輸出接針 CSFBO‧‧‧current sensing feedback output pin
FLT‧‧‧數位故障線/故障中斷線 FLT‧‧‧Digital Fault Line/Fault Interrupt Line
GSC‧‧‧數位時脈線 GSC‧‧‧ digital clock line
SCK‧‧‧數位時脈線 SCK‧‧‧ digital clock line
SI‧‧‧序列輸入/接針 SI‧‧‧Sequence input/pin
SO‧‧‧序列輸出/接針 SO‧‧‧Sequence output/pin
Vcc‧‧‧電源 Vcc‧‧‧ power supply
Vref‧‧‧類比參考電壓信號線 Vref‧‧‧ analog reference voltage signal line
Vsync‧‧‧數位時脈線 Vsync‧‧‧ digital clock line
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161550539P | 2011-10-24 | 2011-10-24 | |
US13/346,647 US8779696B2 (en) | 2011-10-24 | 2012-01-09 | Low cost LED driver with improved serial bus |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201531156A true TW201531156A (en) | 2015-08-01 |
TWI540935B TWI540935B (en) | 2016-07-01 |
Family
ID=48135404
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101139406A TWI486094B (en) | 2011-10-24 | 2012-10-24 | Low cost led driver with improved serial bus |
TW104113781A TWI540935B (en) | 2011-10-24 | 2012-10-24 | Low cost led driver with improved serial bus |
TW104113782A TWI540936B (en) | 2011-10-24 | 2012-10-24 | Low cost led driver with improved serial bus |
TW104113780A TWI561110B (en) | 2011-10-24 | 2012-10-24 | Low cost led driver with improved serial bus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101139406A TWI486094B (en) | 2011-10-24 | 2012-10-24 | Low cost led driver with improved serial bus |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104113782A TWI540936B (en) | 2011-10-24 | 2012-10-24 | Low cost led driver with improved serial bus |
TW104113780A TWI561110B (en) | 2011-10-24 | 2012-10-24 | Low cost led driver with improved serial bus |
Country Status (6)
Country | Link |
---|---|
US (5) | US8779696B2 (en) |
EP (1) | EP2771876A4 (en) |
KR (1) | KR102012994B1 (en) |
CN (1) | CN104011783B (en) |
TW (4) | TWI486094B (en) |
WO (1) | WO2013062957A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI794951B (en) * | 2021-09-01 | 2023-03-01 | 美商海盜船記憶體股份有限公司 | Method for detecting the quantity of light-emitting modules |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8779696B2 (en) | 2011-10-24 | 2014-07-15 | Advanced Analogic Technologies, Inc. | Low cost LED driver with improved serial bus |
US9288861B2 (en) | 2011-12-08 | 2016-03-15 | Advanced Analogic Technologies Incorporated | Serial lighting interface with embedded feedback |
US9232587B2 (en) | 2011-09-30 | 2016-01-05 | Advanced Analogic Technologies, Inc. | Low cost LED driver with integral dimming capability |
EP2728969B1 (en) * | 2012-10-30 | 2017-08-16 | Dialog Semiconductor GmbH | PSRR control loop with configurable voltage feed forward compensation |
US10328276B2 (en) * | 2014-02-14 | 2019-06-25 | Applied Biophotonics Ltd. | Sinusoidal drive system and method for phototherapy |
US9877361B2 (en) | 2012-11-08 | 2018-01-23 | Applied Biophotonics Ltd | Phototherapy system and process including dynamic LED driver with programmable waveform |
US11109458B2 (en) | 2012-11-08 | 2021-08-31 | Applied Biophotonics Ltd. | Phototherapy system with dynamic drive for light-emitting diodes |
US20140252984A1 (en) * | 2013-03-07 | 2014-09-11 | Shenzhen Chiina Star Optoelectronics Technology Co Ltd. | Led backlight driving circuit, lcd device, and driving circuit |
DE112014002911B4 (en) | 2013-06-19 | 2022-11-24 | Dialog Semiconductor Inc. | LED driver with comprehensive fault protection |
TWI465700B (en) * | 2013-07-19 | 2014-12-21 | Generalplus Technology Inc | Led device with built-in fast self-test circuit |
US9107265B2 (en) * | 2013-12-02 | 2015-08-11 | Richtek Technology Corporation | Light emitting device array billboard and control method thereof |
US9449546B2 (en) * | 2013-12-23 | 2016-09-20 | Chengdu Monolithic Power Systems Co., Ltd. | LED driver, LED driving method and controller for LED driver |
RU2683594C2 (en) * | 2014-07-03 | 2019-03-29 | Филипс Лайтинг Холдинг Б.В. | Splittable light strings and methods for splitting light strings |
CN107735832B (en) | 2015-06-05 | 2021-10-22 | 苹果公司 | Light emission control device and method for display panel |
CN113345362B (en) | 2015-06-10 | 2024-02-02 | 苹果公司 | Display panel redundancy scheme |
ES2604304B1 (en) * | 2015-09-03 | 2018-02-22 | Universidad De Málaga | LED-based lighting device with automated dose control for photodiagnosis of skin diseases related to light exposure, related applications and methods |
CN105657905B (en) * | 2016-03-11 | 2017-12-26 | 深圳市明微电子股份有限公司 | A kind of LED drive chip, LED drive circuit and LED display |
US11050419B2 (en) * | 2016-12-22 | 2021-06-29 | Analog Devices International Unlimited Company | High-voltage unity-gain buffer |
CN110462849A (en) * | 2017-01-27 | 2019-11-15 | 罗茵尼公司 | The device and method of the distribution control of semiconductor devices array |
JP2018124458A (en) * | 2017-02-01 | 2018-08-09 | パナソニック液晶ディスプレイ株式会社 | Liquid crystal backlight device and display device |
DE102017203593A1 (en) * | 2017-03-06 | 2018-09-06 | Siemens Schweiz Ag | Synchronization of brightness controllers |
CN107424557B (en) * | 2017-08-16 | 2023-01-24 | 深圳市德普微电子有限公司 | Single-double-color LED display screen driving circuit |
KR20190032689A (en) * | 2017-09-18 | 2019-03-28 | 삼성디스플레이 주식회사 | Backlight unit capable of controlling brightness and display apparatus having the same |
CN107896400B (en) * | 2017-12-12 | 2024-07-16 | 无锡德芯微电子有限公司 | LED driving circuit for transmitting data by using power line and data transmission method |
US10039164B1 (en) * | 2018-02-02 | 2018-07-31 | Semisilicon Technology Corp. | Sequencing method for light-emitting diode lamp string |
TWI735865B (en) * | 2018-04-18 | 2021-08-11 | 聯詠科技股份有限公司 | Led driving system and led driving device |
CN109246902B (en) * | 2018-08-03 | 2020-01-21 | 福建星网视易信息系统有限公司 | Light editing method and computer readable storage medium |
US11081070B2 (en) * | 2018-09-18 | 2021-08-03 | Apple Inc. | Backlight systems and methods for electronic device displays |
US10804332B2 (en) | 2018-11-16 | 2020-10-13 | Osram Opto Semiconductors Gmbh | Display, circuit arrangement for a display and method of operating a display |
CN110277069B (en) * | 2019-06-27 | 2021-09-14 | 广东海信电子有限公司 | Television screen backlight control method and device and television |
US11107423B2 (en) | 2019-06-27 | 2021-08-31 | Hisense Visual Technology Co., Ltd. | Method and device for controlling backlight, and display device |
US10984734B2 (en) * | 2019-07-19 | 2021-04-20 | Sharp Kabushiki Kaisha | Backlight driving device |
KR102174972B1 (en) * | 2019-10-08 | 2020-11-05 | (주)실리콘인사이드 | Fault detectable light emission device array |
US11076462B2 (en) * | 2019-10-23 | 2021-07-27 | Toshiba Global Commerce Solutions Holdings Corporation | Remote counting of serially connected components using a controller |
TWI723669B (en) * | 2019-12-06 | 2021-04-01 | 新唐科技股份有限公司 | Backlight device and driving method |
WO2021173153A1 (en) * | 2020-02-28 | 2021-09-02 | Hewlett-Packard Development Company, L.P. | Drivers to power led zones |
US11151932B2 (en) * | 2020-03-13 | 2021-10-19 | Macroblock, Inc. | Driving system |
US11211001B2 (en) * | 2020-05-22 | 2021-12-28 | Huayuan Semiconductor (Shenzhen) Limited Company | Display device with feedback via serial connections between distributed driver circuits |
KR20230069110A (en) | 2020-09-14 | 2023-05-18 | 엘모스 세미컨덕터 에스이 | Compact control for lamps in automobiles |
US11488548B2 (en) | 2020-10-08 | 2022-11-01 | Samsung Electronics Co., Ltd. | Backlight system, display device including the backlight system and method of transferring data in the backlight system |
US11528102B1 (en) * | 2021-08-18 | 2022-12-13 | International Business Machines Corporation | Built-in-self-test and characterization of a high speed serial link receiver |
US11662381B2 (en) | 2021-08-18 | 2023-05-30 | International Business Machines Corporation | Self-contained built-in self-test circuit with phase-shifting abilities for high-speed receivers |
KR20230040221A (en) * | 2021-09-15 | 2023-03-22 | 에스케이하이닉스 주식회사 | A shift register and electronic device including the shift register |
KR20240013513A (en) * | 2022-07-22 | 2024-01-30 | 서울바이오시스 주식회사 | Light emitting diode dirving module |
CN115731853A (en) * | 2022-08-02 | 2023-03-03 | 深圳英集芯科技股份有限公司 | LED display device, related LED display method and electronic equipment |
US11849517B1 (en) * | 2022-11-14 | 2023-12-19 | Infineon Technologies Ag | Detecting error conditions in a plurality of LED channels |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU549795A1 (en) | 1975-07-09 | 1977-03-05 | Предприятие П/Я Х-5737 | DC Voltage Stabilizer |
US4967192A (en) | 1987-04-22 | 1990-10-30 | Hitachi, Ltd. | Light-emitting element array driver circuit |
SU1709351A1 (en) | 1989-12-25 | 1992-01-30 | Восточно-Сибирский технологический институт | Device for localizing failed units and members |
RU2103839C1 (en) | 1993-09-01 | 1998-01-27 | Борис Иванович Волков | Digital color television system |
JP4081912B2 (en) | 1999-03-31 | 2008-04-30 | 株式会社デンソー | Display device |
JP2001188498A (en) | 1999-12-28 | 2001-07-10 | Sony Corp | Led driver |
JP4495814B2 (en) | 1999-12-28 | 2010-07-07 | アビックス株式会社 | Dimmable LED lighting fixture |
US6754784B1 (en) | 2000-02-01 | 2004-06-22 | Cirrus Logic, Inc. | Methods and circuits for securing encached information |
JP3512710B2 (en) * | 2000-05-30 | 2004-03-31 | Nec液晶テクノロジー株式会社 | Liquid crystal display |
TWI235349B (en) | 2001-11-26 | 2005-07-01 | Osram Opto Semiconductors Gmbh | Circuit-arrangement for an LED-array |
JP2005309230A (en) | 2004-04-23 | 2005-11-04 | Tohoku Pioneer Corp | Self-luminous display module, electronic equipment equipped with the same, and method of verifying defective state in the module |
KR101067042B1 (en) | 2004-12-13 | 2011-09-22 | 엘지디스플레이 주식회사 | Device for driving a display device |
KR100670581B1 (en) | 2005-02-18 | 2007-01-17 | 삼성전자주식회사 | Led driver |
KR100688538B1 (en) * | 2005-03-22 | 2007-03-02 | 삼성전자주식회사 | Display panel driving circuit capable of minimizing an arrangement area by changing the internal memory scheme in display panel and method using the same |
CA2632385C (en) | 2005-12-20 | 2015-02-24 | Tir Technology Lp | Method and apparatus for controlling current supplied to electronic devices |
DE102006032071B4 (en) | 2006-07-11 | 2008-07-10 | Austriamicrosystems Ag | Control circuit and method for controlling light emitting diodes |
US7777704B2 (en) | 2007-01-12 | 2010-08-17 | Msilica, Incorporated | System and method for controlling a multi-string light emitting diode backlighting system for an electronic display |
US8044612B2 (en) | 2007-01-30 | 2011-10-25 | Cypress Semiconductor Corporation | Method and apparatus for networked illumination devices |
JP4523016B2 (en) | 2007-05-22 | 2010-08-11 | 株式会社沖データ | Drive circuit, LED head, and image forming apparatus |
US7956824B2 (en) | 2007-07-26 | 2011-06-07 | Stmicroelectronics S.R.L. | Light emitting element driver device |
US9342266B2 (en) | 2007-08-08 | 2016-05-17 | Landmark Screens, Llc | Apparatus for dynamically circumventing faults in the light emitting diodes (LEDs) of a pixel in a graphical display |
US8253666B2 (en) | 2007-09-21 | 2012-08-28 | Point Somee Limited Liability Company | Regulation of wavelength shift and perceived color of solid state lighting with intensity and temperature variation |
RU2385553C2 (en) | 2007-11-16 | 2010-03-27 | Сергей Борисович Злочевский | Power supply for light-emitting diodes |
US9814109B2 (en) | 2007-11-19 | 2017-11-07 | Atmel Corporation | Apparatus and technique for modular electronic display control |
TWI367050B (en) | 2007-12-12 | 2012-06-21 | Au Optronics Corp | Color control method for led lighting system |
US7843148B2 (en) | 2008-04-08 | 2010-11-30 | Micrel, Inc. | Driving multiple parallel LEDs with reduced power supply ripple |
US20090284445A1 (en) | 2008-05-15 | 2009-11-19 | Sheng-Chang Kuo | Led data input scheme with sequential scan method and cascade connection for light emitting diode (led) display system |
EP2291664B1 (en) | 2008-05-23 | 2022-10-26 | Fisher Controls International Llc | Opto-isolator multi-voltage detection circuit |
TW200950578A (en) * | 2008-05-23 | 2009-12-01 | Semisilicon Technology Corp | Parallel-type single-line addressing lamp apparatus |
WO2010004871A1 (en) | 2008-07-11 | 2010-01-14 | シャープ株式会社 | Backlight drive device, display device using the same, and backlight drive method |
TWI404459B (en) | 2008-07-29 | 2013-08-01 | Starchips Technology Inc | Led driver circuit and the method thereof |
US20100052558A1 (en) * | 2008-08-29 | 2010-03-04 | Samsung Electronics Co., Ltd. | Backlight assembly, driving method thereof and display apparatus |
JP4849107B2 (en) * | 2008-09-03 | 2012-01-11 | セイコーエプソン株式会社 | Integrated circuit device and electronic apparatus |
US8035315B2 (en) | 2008-12-22 | 2011-10-11 | Freescale Semiconductor, Inc. | LED driver with feedback calibration |
US8049439B2 (en) | 2009-01-30 | 2011-11-01 | Freescale Semiconductor, Inc. | LED driver with dynamic headroom control |
US8493003B2 (en) | 2009-02-09 | 2013-07-23 | Freescale Semiconductor, Inc. | Serial cascade of minimium tail voltages of subsets of LED strings for dynamic power control in LED displays |
US8058810B2 (en) | 2009-05-07 | 2011-11-15 | Linear Technology Corporation | Method and system for high efficiency, fast transient multi-channel LED driver |
KR100941509B1 (en) | 2009-06-30 | 2010-02-10 | 주식회사 실리콘마이터스 | Reference voltage generation device, control device comprising the reference voltage generation device and led light emitting device using the control device |
US8305007B2 (en) | 2009-07-17 | 2012-11-06 | Freescale Semiconductor, Inc. | Analog-to-digital converter with non-uniform accuracy |
TWI419609B (en) | 2009-08-19 | 2013-12-11 | Novatek Microelectronics Corp | Led device with simultaneous open and short detection function and method thereof |
TW201108186A (en) * | 2009-08-20 | 2011-03-01 | Ene Technology Inc | LED display system and related control method |
TW201110809A (en) | 2009-09-07 | 2011-03-16 | Grenergy Opto Inc | Power source control method for a multi-module LED circuit and related control device and LED circuit |
US8344659B2 (en) | 2009-11-06 | 2013-01-01 | Neofocal Systems, Inc. | System and method for lighting power and control system |
KR20110057594A (en) * | 2009-11-24 | 2011-06-01 | 삼성전자주식회사 | A method for controlling supply voltage and driving circuit for multi-channel light emitting diode and multi-channel system using the method |
KR20110114075A (en) | 2010-04-12 | 2011-10-19 | 삼성전자주식회사 | Back-light unit and display apparatus having the same |
US8779688B2 (en) | 2010-10-25 | 2014-07-15 | Himax Analogic, Inc. | Light emitting diode driving circuit |
US8779696B2 (en) | 2011-10-24 | 2014-07-15 | Advanced Analogic Technologies, Inc. | Low cost LED driver with improved serial bus |
US9288861B2 (en) | 2011-12-08 | 2016-03-15 | Advanced Analogic Technologies Incorporated | Serial lighting interface with embedded feedback |
US9232587B2 (en) | 2011-09-30 | 2016-01-05 | Advanced Analogic Technologies, Inc. | Low cost LED driver with integral dimming capability |
US9491838B2 (en) | 2012-01-26 | 2016-11-08 | Texas Instruments Incorporated | LED matrix manager |
-
2012
- 2012-01-09 US US13/346,647 patent/US8779696B2/en active Active
- 2012-01-10 US US13/347,650 patent/US8786216B2/en active Active
- 2012-01-10 US US13/347,658 patent/US9351364B2/en active Active
- 2012-01-10 US US13/347,654 patent/US8810162B2/en active Active
- 2012-10-23 EP EP12842902.4A patent/EP2771876A4/en not_active Withdrawn
- 2012-10-23 CN CN201280064344.8A patent/CN104011783B/en active Active
- 2012-10-23 WO PCT/US2012/061464 patent/WO2013062957A1/en active Application Filing
- 2012-10-23 KR KR1020147010919A patent/KR102012994B1/en active IP Right Grant
- 2012-10-24 TW TW101139406A patent/TWI486094B/en active
- 2012-10-24 TW TW104113781A patent/TWI540935B/en active
- 2012-10-24 TW TW104113782A patent/TWI540936B/en active
- 2012-10-24 TW TW104113780A patent/TWI561110B/en active
-
2016
- 2016-05-20 US US15/160,205 patent/US9723244B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI794951B (en) * | 2021-09-01 | 2023-03-01 | 美商海盜船記憶體股份有限公司 | Method for detecting the quantity of light-emitting modules |
Also Published As
Publication number | Publication date |
---|---|
US20130099681A1 (en) | 2013-04-25 |
TWI561110B (en) | 2016-12-01 |
TWI540936B (en) | 2016-07-01 |
EP2771876A4 (en) | 2015-06-17 |
US9723244B2 (en) | 2017-08-01 |
US8810162B2 (en) | 2014-08-19 |
US20130099702A1 (en) | 2013-04-25 |
TW201531155A (en) | 2015-08-01 |
TW201328414A (en) | 2013-07-01 |
TWI540935B (en) | 2016-07-01 |
US20130099701A1 (en) | 2013-04-25 |
US9351364B2 (en) | 2016-05-24 |
KR102012994B1 (en) | 2019-08-21 |
US20160360144A1 (en) | 2016-12-08 |
TW201531157A (en) | 2015-08-01 |
TWI486094B (en) | 2015-05-21 |
US8786216B2 (en) | 2014-07-22 |
WO2013062957A1 (en) | 2013-05-02 |
CN104011783A (en) | 2014-08-27 |
EP2771876A1 (en) | 2014-09-03 |
CN104011783B (en) | 2017-08-25 |
US8779696B2 (en) | 2014-07-15 |
US20130099682A1 (en) | 2013-04-25 |
KR20140092315A (en) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI540935B (en) | Low cost led driver with improved serial bus | |
TWI480849B (en) | Serial lighting interface with embedded feedback | |
US9609708B2 (en) | Low cost LED driver with integral dimming capability | |
WO2023225810A1 (en) | Pixel unit, display substrate and driving method therefor, and display device | |
US20230197021A1 (en) | System and method for controlling back light unit | |
US20230199927A1 (en) | Hybrid dimming control device and hybrid dimming control method |