TW201110809A - Power source control method for a multi-module LED circuit and related control device and LED circuit - Google Patents

Power source control method for a multi-module LED circuit and related control device and LED circuit Download PDF

Info

Publication number
TW201110809A
TW201110809A TW98130131A TW98130131A TW201110809A TW 201110809 A TW201110809 A TW 201110809A TW 98130131 A TW98130131 A TW 98130131A TW 98130131 A TW98130131 A TW 98130131A TW 201110809 A TW201110809 A TW 201110809A
Authority
TW
Taiwan
Prior art keywords
value
power control
comparison result
switching
power supply
Prior art date
Application number
TW98130131A
Other languages
Chinese (zh)
Inventor
Jian-Shen Li
Chun-Liang Lin
Original Assignee
Grenergy Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grenergy Opto Inc filed Critical Grenergy Opto Inc
Priority to TW98130131A priority Critical patent/TW201110809A/en
Publication of TW201110809A publication Critical patent/TW201110809A/en

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A current control method for a multi-module light-emitting diode (LED) circuit is disclosed. The multi-module LED circuit includes a plurality of LED modules connected in parallel, and each LED module includes a plurality of LEDs. The current control method includes detecting a signal characteristics value based upon a plurality of switching signals belonging to the plurality of LED modules, which are used for controlling the conduction of currents in the plurality of LED modules, comparing the signal characteristics value with a predefined value to generate a comparison result, and transmitting the comparison result to an external power supply device for controlling a voltage value of an input voltage source of the LED circuit via the external power supply device based upon the comparison result.

Description

201110809 六、發明說明: 【發明所屬之技術領域】 本發明係指-種用於-多模組之發光二極體電路之電源控制 方法及其相關控制裝置及電路,尤指—種可促進多模組發光二極體 電路之電流平衡度及提升電路效率的電源控制方法及其相關控制裝 置及電路。 【先前技術】 發光二極體的應用愈來愈普遍,舉凡從大型戶外看板、交通號 誌、液晶顯示器的背光板到一般照明設備,幾乎到處可見發光二極 體的使用。驅動多個發光二極體以均衡的電流以及省電的狀態發 光’牵涉到複雜的電路控制技術。比如說,以發光二極體所建構的 戶外照明設備為例’其中可能包含數十個至超過百萬個的發光二極 體同時發光,不同的發光二極體之間,亮度的均勻度將會影響照明 的品質;若能同時考慮電能的使用效率,便能大量節省使用成本。 請參考第1圖’第1圖為習知技術中一發光二極體電路1〇之 示意圖。發光二極體電路10包含有一電源裝置100、發光模組LM_1 〜LM_N及控制裝置CD_1〜CD_N。電源裝置100用來提供一固定 的電壓VIN_0給發光模組LM_1〜LM_N,以驅使發光模組LM_1 201110809 轟201110809 VI. Description of the Invention: [Technical Field] The present invention relates to a power supply control method for a light-emitting diode circuit for a multi-module, and related control devices and circuits, and more particularly A power supply control method for a current balance of a module light-emitting diode circuit and an efficiency of a circuit, and related control devices and circuits. [Prior Art] The application of light-emitting diodes is becoming more and more common. From the large outdoor billboards, traffic signs, backlights of liquid crystal displays to general lighting equipment, the use of light-emitting diodes can be seen almost everywhere. Driving multiple light-emitting diodes to equalize current and save power is a complex circuit control technique. For example, an outdoor lighting device constructed by a light-emitting diode is taken as an example, in which tens to more than one million light-emitting diodes may be simultaneously illuminated, and brightness uniformity between different light-emitting diodes will be It will affect the quality of lighting; if you can consider the efficiency of energy use at the same time, you can save a lot of cost. Please refer to FIG. 1 '. FIG. 1 is a schematic diagram of a light-emitting diode circuit 1 in the prior art. The LED circuit 10 includes a power supply device 100, illumination modules LM_1 LMLM_N, and control devices CD_1 CDCD_N. The power supply device 100 is configured to provide a fixed voltage VIN_0 to the light-emitting modules LM_1 LMLM_N to drive the light-emitting module LM_1 201110809

〜LM_N發光。發光模組lm_1〜LM一N係由控制裝置cDj〜CD N 所控制,且每一發光模組皆包含串聯之發光二極體,並分別對應於 一工作電壓值。當電源裝置1〇〇提供的電壓高於發光模組 LM_1〜LM—N中-發光模組lm—X的工作電壓值時,發光模組 LM一X就可正常發光。然而,因為發光模組1^一1〜1^^^分別由 不同的控制裝置CD一 1〜CD_N所控制,為保證電流的平衡度達到最 佳,控制裝S CD一1〜CD一N之間的連繫機制較為複雜,系統建置成 # 本較高。 除此之外,發光模組LM_1〜LM_N所對應的N個工作電壓值 也可能大小各異,而電源裝置100所提供的電壓VIN_〇係維持在一 固定值,因此不能隨時機動調整電壓VIN一〇,導致整體的能量轉換 效率無法進一步改善,因而浪費許多電能。 I 【發明内容】 因此,本發明的目的即在於提供—種用於一多模組發光二極體 電路之電源控制方法及相關之電源控制裝置及發光二極體電路。 本發明揭露一種用於一多模組之發光二極體電路之電源控制 方法,該發光二極體電路包含有複數個並聯之模組,每一模組包含 .有魏個㈣之發光二鋪’該電;驗制方法包含有根_複數個 核組之複數個i刀換訊號,制—訊號特徵值,該複數個切換訊號用 201110809 來控制該複數個模組之發光二極體的電流導通;比較該訊號特徵值 及一預設值,以產生一比較結果;以及輸出該比較結果至一外部電 源供應裝置’以由該外部電源供應裝置根據該比較結果,調整該多 模組發光二極體電路之一輸入電墨的電麼值。 本發明另揭露一種用於一多模組之發光二極體電路架構之電 源控制裝置,該架構包含有複數個並聯模組,任一模組包含有複數 個串聯之發光二極體,該電源控制裝置,包含有一偵測單元,用來 根據該複數個模組之複數個切換訊號,偵測一訊號特徵值,該複數 個切換訊號用來控制該複數個模組之發光二極體的電流導通;一比 較單元’用來比較§亥訊號特徵值及一預設值,以產生一比較結果; 以及一傳送單元,用來輸出該比較結果至該電源供應裝置,以由該 電源供應裝置根據該比較結果,調整該輸入電壓的電壓值。 本發明另揭露一種發光二極體電路,包含有一電源供應裝置, 用來提供一輸入電壓;複數個發光二極體模組,耦接於該電源供應 裝置,每一發光二極體模組包含有複數個串聯之發光二極體;以及 一整合式控制裝置,耦接於該電源供應裝置,以及該複數個發光二 極體模組,包含有一驅動裝置,耦接於該複數個發光裝置,用來輸 出複數個切換訊號至該複數個發光二極體模組,以控制該複數個發 光二極體模組之電流導通;錢_電·雛置,驅動裝 置,其包含K貞測單元,用來根據該複數個切換訊號,偵測一訊 號特徵值;一比較單元,用來比較該訊號特徵值及一預設值,以產 201110809 生-比較結果;以及-傳送單元,用來輪出該比較結果至該電源供 應裝置,以由該電源供應裝置根據槪較結果.,調整該輸入電塵的 電壓值。 【實施方式】 清參考第2圖,第2圖為本發明之一發光二極體電路2〇之示 # 思圖。發光二極體電路20包含有一電源供應裝置200、發光模組 LM_1〜LM_N及一整合控制裝置202。電源供應裝置2〇〇用來提供 一輸入電壓VIN給發光模組LM_1〜LM_N,以驅使發光模組LM_1 〜LM_N發光。此外’由第2圖可知,發光二極體模組lm_1〜LM_N 係為並聯,且較佳地包含有多個串聯成一序列之發光二極體。整合 控制裝置202包含有一驅動裝置204以及一電源控制裝置20ό,用 來控制發光模組LM_1〜LM_N。首先,驅動裝置204係根據反饋訊 • 號輸入端FB_1〜FB_N所輸入之反饋訊號,量測得到通過發光二極 體模組LM_1〜LM_N的電流,並輸出切換訊號〇UT_l〜〇UT_N, 以各別控制發光二極體模組LM一 1〜LM_N的電流導通。其次,電 源控制裝置206係根據切換訊號〇UT_l〜OUT_N ’用來協調電源 供應裴置200,使輸入電壓VIN得以調整。 因此’經由使用本發明之整合控制裝置202,發光二極體電路 20的控制功能得以整合成一個精簡的電路’並用來控制外部之電源 供應裝置200,使發光模組LM_1〜LM__N的電能轉換效率達到最佳 201110809 狀悲。 有闕整合控制裝置2〇2的詳細工作原理與細部構造,請繼續參 考第3圖,第3圖為本發明實施例之一電源控制流程30之示意圖。 電源控制流程30包含有以下步驟: 步驟300 :開始。 y驟根據發光一極體核組LM—1〜LM_N之切換訊號 OUT—1〜OUT—N,偵測一訊號特徵值。 步驟304 :比較該訊號特徵值及一預設值,以產生—比較結 CMP_0 〇 、”。 步驟306 :輸出比較結果CMp—〇至電源供應裝置2〇〇,以由電 源供應裳置2〇0根據比較結果CMP—〇,調整發光二極體電路如之 一輸入電壓VIN的電壓值。 步驟308 :結束。 根據包源控制流程3〇,本發明係依據發光二極體電路如中用 來控制發光二極雜組LMJ〜LM_N之切換訊號㈣」〜 OUT_N ’摘測—訊號特徵值,將偵測得來的訊號特徵值與一預設值 比較’將所得的比較結果CMP—0輸出至電源供絲置200,使電源 供應裝置能約根據前述之比較結果CMP—0,調整發光二極體電路 2〇之輸入電壓VIN。-般而言,發光二極體電路2〇輸入電壓谓 與發光二極體模纪LMJ〜LM—N的工作電壓愈接近時,光電能量 的轉換效率愈高。因此’透财發明,電雜概程Μ可以藉由訊 201110809 ) 、號特徵值與一預設值的比較動作,調整輸入電壓VIN至一最佳電壓 值,使整個發光二極體電路2〇的發光效率能達到最佳的狀態。 請參考第4圖,第4圖為本發明中電源控制裝置2〇6之一實施 例示思圖。電源控制裝置206包含有一偵測單元4〇〇、一比較單元 402以及-傳送單元404。偵測單元400用來根據發光二極體模組 LM—1〜LM—N之切換訊號OUT_1〜〇UT_N,偵測一訊號特徵值。 • 比較單兀402用來將訊號特徵值與一預設值比較,並用來產生一比 較結果CMP_0,經由傳送單元404輸出前述比較結果CMp_〇至電 源供應裝置200。如此一來,電源供應裝置2〇〇可根據比較結果 CMP_0 ’調整輸入電壓VIN的電壓值。 於本發明實施例的發光二極體電路2〇中,整合控制裝置2〇2 所輸出之切換訊號OUTJ〜0UT—N係用來控制各發光二極體模組 鲁 LMJ〜LM-N的電流切換動作。同時,本發明利用電源控制裝置 206中的偵測單元400、比較單元4〇2以及傳送單元4〇4,協調電源 供應裝置200完成對發光二極體模的控制動作, 使電流的平衡度達到最佳’並節省電力資源。較佳地,整合控制裝 置202係實現於一單顆積體電路之内’並經由此積體電路控制多個 發光二極體模組的電流平衡度。 . 此外,本發明根據實施例之電路架構及操作方式,分別將訊號 J 特徵值及其所對應的預没值給予不同的定義。本發明實施例可分別 201110809 應用於區間控制架構、固定關閉時間架構以及降壓架構。首先,當 發光二極體電路20的控制方式係使用區間控制架構(BangBang Structure,亦稱為Hysterical Structure)時,電源控制流程3〇中所謂 的訊號特徵值係指於切換訊號0UTj〜〇υτ—N中,找出責任關閉 時間(duty-offtime)的最小值,此時步驟304中所對應的預設值係 為-責任_時間參考值。也就是說,在使祕間控制架構時,電 源控制流程30將切換訊號0UTj〜〇UT_N中責任關閉時間 (duty-offtime)的最小值找出,並使此責任關閉時間最小值控制在 大於責任關啊間參考值的細_作。其次,當發光二極體電路 20的控制方式係使用固定關閉時間架構(c〇nstant〇ff_time~LM_N glows. The illumination modules lm_1 LMLM-N are controlled by the control devices cDj to CDN, and each of the illumination modules includes LEDs connected in series and respectively correspond to an operating voltage value. When the voltage supplied by the power supply device 1 is higher than the operating voltage value of the light-emitting module lm_X in the light-emitting modules LM_1 LM-N, the light-emitting modules LM-X can normally emit light. However, since the light-emitting modules 1^1~1^^^ are respectively controlled by different control devices CD-1~CD_N, in order to ensure the best balance of current, the control device S CD-1~CD-N The connection mechanism between the two is more complicated, and the system is built to be higher. In addition, the N operating voltage values corresponding to the light-emitting modules LM_1 LMLM_N may also vary in magnitude, and the voltage VIN_〇 provided by the power supply device 100 is maintained at a fixed value, so the voltage VIN cannot be adjusted at any time. At a glance, the overall energy conversion efficiency cannot be further improved, thus wasting a lot of power. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a power supply control method for a multi-module LED circuit and related power control device and LED circuit. The invention discloses a power supply control method for a multi-module LED circuit. The LED circuit comprises a plurality of parallel modules, each module comprises: a Wei (4) light-emitting two shop 'The electric power; the verification method includes a plurality of i-knife exchange numbers having a root_complex number of sets, a signal-signal characteristic value, and the plurality of switching signals control the current of the plurality of LEDs of the plurality of modules by using 201110809 Turning on; comparing the signal characteristic value and a preset value to generate a comparison result; and outputting the comparison result to an external power supply device 'to adjust the multi-module illumination according to the comparison result by the external power supply device One of the polar circuits inputs the electrical value of the ink. The invention further discloses a power control device for a multi-module LED structure, the structure comprising a plurality of parallel modules, and any module comprises a plurality of LEDs connected in series, the power supply The control device includes a detecting unit for detecting a signal characteristic value according to the plurality of switching signals of the plurality of modules, wherein the plurality of switching signals are used to control the current of the LEDs of the plurality of modules Turning on; a comparing unit' is used to compare the eigenvalue value and a preset value to generate a comparison result; and a transmitting unit is configured to output the comparison result to the power supply device to be used by the power supply device As a result of the comparison, the voltage value of the input voltage is adjusted. The present invention further discloses a light emitting diode circuit including a power supply device for providing an input voltage, and a plurality of light emitting diode modules coupled to the power supply device, each of the light emitting diode modules includes a plurality of LEDs connected in series; and an integrated control device coupled to the power supply device, and the plurality of LED modules, including a driving device coupled to the plurality of illumination devices The utility model is configured to output a plurality of switching signals to the plurality of light emitting diode modules to control current conduction of the plurality of light emitting diode modules; and the driving device comprises a K measuring unit. Detecting a signal characteristic value according to the plurality of switching signals; a comparing unit for comparing the signal characteristic value and a preset value to produce a 2011-10809 bio-comparison result; and - a transmitting unit for rotating The comparison result is sent to the power supply device, so that the voltage value of the input electric dust is adjusted by the power supply device according to the comparison result. [Embodiment] Referring to Fig. 2, Fig. 2 is a schematic diagram of a light-emitting diode circuit 2 of the present invention. The LED circuit 20 includes a power supply device 200, illumination modules LM_1 LMLM_N, and an integrated control device 202. The power supply device 2 is configured to provide an input voltage VIN to the light-emitting modules LM_1 LMLM_N to drive the light-emitting modules LM_1 LMLM_N to emit light. Further, as can be seen from Fig. 2, the light-emitting diode modules lm_1 to LM_N are connected in parallel, and preferably include a plurality of light-emitting diodes connected in series. The integrated control device 202 includes a driving device 204 and a power control device 20 for controlling the lighting modules LM_1 LMLM_N. First, the driving device 204 measures the current through the LED modules LM_1 LM LM_N according to the feedback signals input from the feedback signal input terminals FB_1 FB FB_N, and outputs switching signals 〇UT_1 〇 UT_N to each Do not control the current conduction of the LED modules LM-1 to LM_N. Next, the power control device 206 is used to coordinate the power supply unit 200 based on the switching signals 〇UT_1~OUT_N' to adjust the input voltage VIN. Therefore, by using the integrated control device 202 of the present invention, the control functions of the LED circuit 20 can be integrated into a simplified circuit' and used to control the external power supply device 200, so that the power conversion efficiency of the light-emitting modules LM_1 LM__N Achieve the best 201110809 sad. For a detailed working principle and detailed structure of the integrated control device 2〇2, please refer to FIG. 3, which is a schematic diagram of a power control flow 30 according to an embodiment of the present invention. The power control process 30 includes the following steps: Step 300: Start. y Detecting a signal characteristic value according to the switching signals OUT-1~OUT-N of the light-emitting one-pole core group LM-1~LM_N. Step 304: Compare the signal characteristic value with a preset value to generate a comparison node CMP_0 〇, ". Step 306: Output the comparison result CMp_〇 to the power supply device 2〇〇 to be set by the power supply 2〇0 According to the comparison result CMP-〇, the voltage value of the input voltage VIN of the LED circuit is adjusted. Step 308: End. According to the packet source control flow, the present invention is used to control according to the LED circuit. The switching signal of the illuminating dipole group LMJ~LM_N (4)"~ OUT_N 'Extraction-signal eigenvalue, compares the detected signal characteristic value with a preset value', and outputs the obtained comparison result CMP-0 to the power supply The supply wire 200 is provided so that the power supply device can adjust the input voltage VIN of the LED circuit 2 according to the comparison result CMP-0 described above. In general, the input voltage of the light-emitting diode circuit 2 is closer to the operating voltage of the light-emitting diode mode LMJ to LM-N, and the conversion efficiency of the photoelectric energy is higher. Therefore, the 'transportation invention, the electric hybrid program can use the comparison function of the number characteristic value and a preset value to adjust the input voltage VIN to an optimum voltage value, so that the entire light-emitting diode circuit 2〇 The luminous efficiency can be optimal. Please refer to FIG. 4, which is a schematic diagram of an embodiment of the power control device 2〇6 of the present invention. The power control device 206 includes a detecting unit 4, a comparing unit 402, and a transmitting unit 404. The detecting unit 400 is configured to detect a signal characteristic value according to the switching signals OUT_1 〇 UT_N of the LED modules LM-1 to LM_N. The comparison unit 402 is configured to compare the signal characteristic value with a predetermined value and to generate a comparison result CMP_0, and output the aforementioned comparison result CMp_〇 to the power supply device 200 via the transmission unit 404. In this way, the power supply device 2 can adjust the voltage value of the input voltage VIN according to the comparison result CMP_0'. In the LED circuit 2 of the embodiment of the present invention, the switching signals OUTJ~OUT-N output by the integrated control device 2〇2 are used to control the current of each LED module LMJ~LM-N. Switch actions. At the same time, the present invention utilizes the detecting unit 400, the comparing unit 4〇2 and the transmitting unit 4〇4 in the power control device 206 to coordinate the power supply device 200 to complete the control action of the LED module, so that the current balance is achieved. Best' and save power resources. Preferably, the integrated control device 202 is implemented within a single integrated circuit and controls the current balance of the plurality of light emitting diode modules via the integrated circuit. In addition, according to the circuit architecture and the operation mode of the embodiment, the present invention separately assigns the signal J characteristic value and its corresponding pre-no value to different definitions. The embodiments of the present invention can be applied to the interval control architecture, the fixed off-time architecture, and the buck architecture, respectively, in 201110809. First, when the control mode of the LED circuit 20 uses a BangBang Structure (also called Hysterical Structure), the so-called signal characteristic value in the power control flow 3〇 refers to the switching signal 0UTj~〇υτ— In N, the minimum value of the duty-offtime is found, and the preset value corresponding to the step 304 is the -responsibility_time reference value. That is to say, when the secret control architecture is implemented, the power control flow 30 finds the minimum value of the duty off time in the switching signals 0UTj~〇UT_N, and controls the minimum duty time to be greater than the responsibility. The fineness of the reference value between the two. Secondly, when the control mode of the LED circuit 20 is a fixed off time architecture (c〇nstant〇ff_time)

Structure)時,電源控制流程3〇中所謂的訊號特徵值則是指於切換 訊號ουτ_ι〜〇UT_N中,找出切換頻率(switchingfreq職y)的 最小值,而此時步驟304中所對應的預設值,則定義為一切換頻率 參考值。也就是說,當發光二極體電路2〇的控制方式為固定關閉時 間架構時,電源控制流程3〇將訊號〇UT_1〜〇UT—N中切換頻率的 最小值’控制在大於切換頻率參考值的範圍内操作。此外,當發光 二極體電路20的控制方式使用的是降壓架構(]311(±汾111(^1^)時, 則步驟304中所指的訊號特徵值係為切換訊號〇UT-1〜〇ut—n操 作於相同頻率時,找出切換訊號OUT」〜〇υτ一中責任週期 cycle)的最大值,而此時步驟3〇4中的預設值則為一責任週期參考 值。也就疋s兒’當發光二極體電路2〇的控制方式使用的是降壓架構 (BuckStmcture)時,電源控制流程3〇係用來將責任週期的最大 值盡可能地固定於責任週期參考值的附近範圍内操作。 201110809 如前所述,本發明實施例可應用於區間控制架構、固定關閉時 間架構以及降壓架構,茲將不同實施例之架構及操作原理分別詳述 如下: 請參考第5A圖,第5A圖為一區間控制架構咖哗取呢 Structure)之發光二極體電路50示意圖。由第5a圖可知,發光二 • 極體電路50之架構與發光二極體電路20之架構相同,但詳繪了發 光一極II模組LM-1〜LM一N之組成方式。其中,發光二極體模組 LM_1〜LM—N包含有串聯成序列之發光二極體串列〜 LEDS—N、模組電晶體m_1〜Μ—N、電感L—1〜L—N、二極體D_1 〜D_N以及電阻Rj〜R_N。發光二極體電路5〇係利用切換訊號 OUT—1〜〇UT_N控制模組電晶體M—卜义N的開啟或關閉,使通 過電感L一 1〜L一N的電流在一預先設定的電流上限值與一預先設定 φ 的電流下限值之間紐,以提供適當的操作電塵以及操作電流給發 光二極體串列LEDS_1〜LEDS—N使用。此外,與發光二極體串列 LEDS—1〜LEDS—N平行的二極體DJ〜D—N係用來在模組電晶體 M_1〜M—N關閉時’提供從地端GND到電感L—k—N的通路。 在區間控制架構下’發光二極體的工作電屢愈高則充電速度愈快, 工作電壓魏職魏慢。也就是說,制糕丽而 言,發光二極體串歹LEDS一X的工作電壓V〇UT—χ愈高,則切換訊 ‘號OUT—X的責任開啟時間u (duty_〇ntime)將會愈長,而責任關 :閉時間W (duty-offtime)將會愈短;反之,若發光二極體串列 201110809 LEDS_x的工作電壓v〇UT_x愈低,則切換訊號〇υτ_χ的責任開μ 啟時間ton將愈短,而貴任關閉時間t〇ff (duty_〇fftime)將會愈長。 根據定義’責任週期D可以表示如下: D = —^— 言on +玄off 也就是說’假使輸入電壓VIN與工作電壓v〇UT_x差距愈小 時,模組電晶體Μ一X的責任開啟時間w (duty_〇ntime)將會愈長, 責任關閉時間toff (duty-offtime)將會愈短’責任週期〇將愈接近_ 於1。因此,發光二極體電路50可以藉由降低輸入電壓VIN,使責 任週期D接近於1,以使電能轉換效率達到最高。同理,降低輸入 電壓VIN也可使貝任關閉時間toff ( duty-〇fftime)縮短,同樣達到 提向電能轉換效率的效果。因此,本發明實施例係於區間控制架構 中’偵測模組電晶體M—1〜M_N中責任關閉時間t〇ff的最小值之後, 將此最小值與一預設之責任關閉時間參考值比較,以產生比較結果 CMP—〇。同時,比較結果CMp—〇係指將模組電晶體〜n中孀 貝任關閉時間toff的最小值與責任關閉時間參考值比較大小後所得 的結果。最後,經由輸出端C〇MP傳送比較結果CMP_〇至電源供 應裝置200,使電源供應裝置2〇〇根據比較結果CMp_〇,調整發光 二極體電路50之輸入電壓viN的電壓值,以使模組電晶體MJ〜 Μ—_Ν中責任關閉時間t〇ff的最小值控制在大於責任關閉時間參考值 的fe位内操作。如此一來,發光二極體電路5〇便可以藉由將1^個 發光二極體模組LMj〜lm一N中責任關閉時間^的最小值控制在“ /* 12 201110809 j • 責任關閉時間參考值之上,使發光二極體模組LMJ〜LM—N皆可 正常發光,並使電能轉換效率達到最高。 除此之外,整合控制裝置202另包含有一過電壓保護輸入端 ovp,用以提供電壓保護,以及一反饋訊號輸入端FBJ〜FB n, 用以偵測發光二極體模組LM_—1〜LM_N的電流大小。此外,電阻 R_1〜R一N係用來將發光二極體模組LMJ〜LM—N的電流訊號轉 • 換為電壓訊號,電阻处一1及RF一2係用來提供電壓值VIN的分壓 值給過電壓賴輸人端QVP,侧運作縣領域躺常知識者所熟 知’故不資述。 簡言之,區間控制架構50係藉由約略地控制通過發光二極體 串列LEDS—1〜LEDS—N的電流到—理想電流位準,並侧發光二 極體模組LM—1〜LM—N中模組電晶體〜M—N的責任 φ . W,纏輸人電源猶到—適當的賴值,使責蝴啊間^中曰 的最J值維持在冑預设值之上。如此一來,可使電能轉換效率達 此外’明參考第5B _,第SB圖為本發明實施例之另一區間 控制架構之發光二極體電路55示意圖。發光二極體電路%係於曰 光二極體電路5G巾加额發光二極體㈣LEDS_1〜LEDS_N相並 聯的旁路電谷C—1〜’使高頻成分通過此旁路電容,以降低言 頻訊號通過發光二_ _列LEDS—丨〜leds_n。其餘部分之操作^ 13 201110809 理與第5A圖所不之電路相同’故不予.費述。 請參考第6A圖’第6A圖為本發明實施例之一固定關閉時間 架構(Constant Off-time Structure)之發光二極體電路6〇示咅圖。 由第6A圖可知,發光二極體電路60之架構與發光二極體電路2〇 之架構相同,但詳繪了發光二極體模組LM_1〜LM_N之組成方式。 其中,發光二極體模組LM—1〜LM一N包含有串聯成序列之發光二 極體串列LEDS一 1〜LEDS_N、模組電晶體MJ〜M_N、電感L J 〜L—N、一極體D_1〜D—N以及電阻R—1〜R—n。發光二極體電路 60係利用切換訊號out—1〜〇UT_N控制模組電晶體m_1〜μ N 的開啟或關閉,導通輸入電壓VIN與電感l一 1〜L一Ν的電路,提供 第6Α圖中發光二極體串列LEDS一 1〜LEDS一Ν適當的操作電壓以及 操作電流。然而,與區間控制架構5〇、55不同的是,固定關閉時間 架構60藉由將模組電晶體MJ〜M_N的責任關閉時間〖禮,保持在 -定值’尸、改變責任開啟時間t〇n的長短,用來保持發光二極體串列 LEDS—1〜LEDS_N在適當的電壓以及電流工作。也就是說,由於模 組電晶體M—1〜M_N的切換周期τ等於電晶體的責任開啟時間^ 及責任_時間的和’依照操作原理,輸人電壓VIN與工作電 壓VOUT_x的差距愈大,將使模組電晶體Μ」〜M—N的切換頻率 愈大;反之,若輸入電壓VIN與工作電壓的差距愈小,將使模組電 晶體M_1〜的切換頻率愈小。本發明實施例係於固定關閉時間 架構中’制得模組電晶體切換頻率的最小值之後,將 此最小值與-預設之切麵率參考值值比較,以產生比較結果 201110809 ' CMPJ)。此時,比較結果CMP-G係指將切換頻率的最小值與切換 頻率參考值峨大小後所得之結果。最後,整合控繼置搬傳送 比較結果CMPJ)至魏供隸置㈣,使電雜雜置·根據比 U CMP_0’調整發光二極體電路6〇之輸入電壓的電壓值, 將模組電晶體M—1〜M—N之+切換頻率的最小值,控制在大於切換 頻率參考值的範圍操作。如此一來,發光二極體電路6〇便可以藉由 將N個發光„_極體模組LM—km—N中切換頻率的最小值控制在 #切換頻率參考值之上,使發光二極體模組LM_1〜LM N皆可正常 發光,並使電能轉換效率達到最高。 — 簡。之’固疋關閉時間架構係藉由控制通過發光二極體串列 LEDS_1〜LEDS—N的電流到—大約的理想電流位準,並偵測發光二 極體串列LEDSJ〜LEDS—N的模組電晶體M—工〜(n的切換頻 率’调整輸入電壓VIN到一適當的電壓值,使所有切換頻率中的最 #小值維持在-個預設頻率值之上。如此一來,可使光電能量轉換效 率達到最高。 此外明參考第όΒ _,第όΒ圖為本發明實施例之一發光二 極體架構65之電路示意圖。發光二極體電路65係於發光二極體電 路=〇中增加與發光二極體串列相並聯的旁路電容卜C—N,可使 隹,的Γ7頻成刀通過此旁路電容,以降低高頻成分對發光二極體 Β 一 ~ LEDS-N的景;^響。其他部分之操作原理與 第6A圖所 '不之電路相同,故不予贅述。 15 201110809 值得注意的是,固定關閉時間架構6〇、65,控制所有的發光二 極體模_最低_頻率,使其大於人麵覺崎的音絲圍(約 為20Hz〜2Gkhz) ’防止操作時發出人耳可以聽見的音齡音。或 者’固定_時間架構亦可基於其他朋,奴其他的最低切換頻 率值’以達成其他之設計目的。簡言之,當輸入電愿VIN被調整到 愈接近於發光二極體㈣的玉作縣〜ν〇υτ—Ν中的最大 f時’其魏轉換效率聽佳為使電關單,本發明不採用直接 量測工作電壓νουτ」〜V0UT_N的方式以控制輸入電壓權,相 反地,本發明係採用間接地由發光二極體串列LEDSJ〜LEDS N 的切換頻率、責任開啟時間‘及責任酬_ W等訊號參數,—選 取其中的訊號特徵值來做為控制輸人縣種的躺基準,以簡單 而有效的方式,達到螬進電能轉換效率的目的。 明參考第7圖,第7圖為本發明實施例之一降壓架構(Buck Structure)之發光二極體電路7〇之示意圖。由第7圖可知,發光二 極體電路70之架構與發光二極體電路20之架構相同,但騎了發 光一極體模、组LM_1〜LM—N之組成方式。其中,發光二極體模組 LM一 1〜LM—N,包含有串聯成序列之發光二極體串列ledsj〜 LEDS—N、模組電晶體〜M—N、電感^〜L_N、電容cj〜 C_N、二極體dj〜D—N以及電阻。發光二極體電路兀 係利用切換訊號0UT一丨〜〇υτ—N控制模組電晶體M—丨〜m—n的開 啟或關閉,提供發光二極體模組LM—1〜LM_N十發光二極體串列 1 201110809 j * LEDSJ〜LEDS—N適當的操作電壓及操作電流。此架構藉由先控制 通過發光二極體串列的電流到達一理想的電流位準,接著偵測通道 電晶體的責任週期D。當谓測到模組電晶體M—j〜M—N責任週期D 的最大值之後,本發明實施例將責任週期D最大值與一預設之責任 週期參考值比較,以產生比較結果CMp_〇。較佳地,模組電晶體 Μ一1〜M—N之切換週期相同。此外,比較結〇係指責任週 期的最大值與責任週期參考值比較大小後的結果。然後,整合控制 •裝置202傳送比較結果CMP_0至電源供應裝置2〇〇。電源供應裝置 2〇〇則根據比較結果CMP_〇,調整輸入電壓VIN,以使模組電晶體 M—1〜Μ_Ν中責任週期的最大值,控制在責任週期參考值。 簡§之,發光二極體電路7〇係藉由先控制通過發光二極體串 列LEDS_1〜LEDS—N的電流到一大約之理想電流位準,再根據所 有的模組電晶體M—1〜M_N的責任週期,改變輸入電壓至一適當的 • 電壓值,控制責任週期中的最大值,使其盡量地接近預設之責任週 期參考值。如此一來,可使電能轉換效率達到最高。較佳地,責任 週期參考值可設定為0.97至1.0之間的任意值。此外,降壓架構中 控制貝任週期的方法係為一較通用之控制方法,也就是說,發光二 極體電路70的控制方法亦可應用於區間控制架構及固定關閉時間 架構等同屬降壓式架構的發光二極體電路。 , 值得注意的是’發光二極體電路輸入電壓VIN的電壓值與發光 .一極體串列的工作電壓VOUT_x愈接近時,光電能量的轉換效率愈 17 201110809 同在夕輪組發光二極體電路(多串並聯)的架構中,因為發光二 極體串歹j的工作電屢通常都不會完全相等,因此如何使發光二極撼 $光裝置以最佳亮度的均勻度及最佳的效率工作,其實施方式有〆 定的,度。本發明揭露區間控制架構(Bang b琴tmcture)、固定 關閉k間架構(C〇_nt 0ff_timestructure)以及降屢架構(別冰 re)用於多串並聯架構的實施例。由於纟發明的控制架構可以 單-積體電路實現,因此能夠輕易地在並聯的發光二極體模組之間 達到電流平衡。本發明經由控制通過發光二極體串列的電流到一大 約之理想電流辦’再經由細各模組_換喊,決定—個訊號 特徵值’並將此訊號特徵值與一預設值比較,最後,、經由將比較結 果傳送到-個外部的可控電麗源,調整輸入頓,使發光二極體模 組能以最佳的效率 工作。 總而言之,本發明將多模組發光二極體電路以單一的積體電 路,控制複數個發光二極體模組,藉由調整外部輸入電壓,^吏其達 到以最佳電流平衡度及最佳的光電能量轉換效率。 、 以上所述僅為本發明之較佳實施例,凡依本發明申請專利鼙 所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 &圍 【圖式簡單說明】 第1圖為習知技術之一發光二極體電路之架構示意圖。 201110809 第2圖為本發明實施例之一發光二極體電路之架構示音圖。 第3圖為本發明實施例之—發光二極體電路之電源控制流程之示意 圖。 ^ 第4圖為本發明實施例之一電源控制 ^ CA π 刃裒置之架構示意圖。 第5Α圖至第5Β圖為本發明實施例之一 圖。 11間控制架構之電路示意 第6Α圖至第6Β圖為本發明實施例 意圖。 1疋_時間架構之電路示 第7圖為本發明實施例之一降壓架構之電路厂、立圖 【主要元件符號說明】 發光二極體電路 流程 步驟 電源裝置 電源供應裝置 整合控制裝置 驅動裝置 電源控制裴置 偵測單元 比較單元 傳送單元 10、20、50、55、60、65、70 30In the case of Structure, the so-called signal feature value in the power control flow 3〇 refers to finding the minimum value of the switching frequency (switchingfreq job y) in the switching signals ουτ_ι~〇UT_N, and the corresponding pre-step in step 304 The set value is defined as a switching frequency reference value. That is to say, when the control mode of the LED circuit 2 is a fixed off-time architecture, the power control flow 3 controls the minimum value of the switching frequency in the signals 〇 UT_1 〇 UT_N to be greater than the switching frequency reference value. The scope of operation. In addition, when the control mode of the LED circuit 20 uses the buck architecture (] 311 (± 汾 111 (^1^)), the signal characteristic value referred to in step 304 is the switching signal 〇UT-1. When 〇ut-n operates at the same frequency, the maximum value of the duty cycle cycle in the switching signal OUT"~〇υτ1 is found, and the preset value in the step 3〇4 is a duty cycle reference value. In other words, when the control method of the LED circuit is used in the buck architecture (BuckStmcture), the power control flow 3 is used to fix the maximum value of the duty cycle as much as possible in the duty cycle reference. Operation in the vicinity of the value 201110809 As described above, the embodiments of the present invention can be applied to the interval control architecture, the fixed off-time architecture, and the buck architecture. The architecture and operation principles of the different embodiments are respectively described as follows: Fig. 5A, Fig. 5A is a schematic diagram of a light-emitting diode circuit 50 of an interval control architecture. As can be seen from Fig. 5a, the structure of the light-emitting diode circuit 50 is the same as that of the light-emitting diode circuit 20, but the composition of the light-emitting diode module LM-1 to LM-N is detailed. The light-emitting diode modules LM_1 LM-N include a series of light-emitting diodes arranged in series ~ LEDS-N, module transistors m_1~Μ-N, inductors L-1~L-N, two The polar bodies D_1 to D_N and the resistors Rj to R_N. The LED circuit 5 uses the switching signals OUT-1~〇UT_N to control the opening or closing of the module transistor M-Buy N, so that the current through the inductor L-1~L-N is at a preset current. The upper limit value and a current lower limit value of a predetermined φ are provided to provide appropriate operating dust and operating current for the LED arrays LEDS_1 to LEDS-N. In addition, the diodes DJ to D-N parallel to the LED arrays LEDS-1 to LEDS-N are used to provide 'from the ground GND to the inductor L when the module transistors M_1 to M-N are turned off. -k-N path. Under the interval control architecture, the working power of the LED is higher and the charging speed is faster, and the working voltage is Wei Wei. That is to say, in the case of the cake, the working voltage V〇UT of the LEDs X-LED is higher, and the duty opening time u (duty_〇ntime) of the switch's OUT_X will be switched. The longer it will be, and the duty is closed: the shorter the time W (duty-offtime) will be; on the contrary, if the operating voltage v〇UT_x of the LEDs 201110809 LEDS_x is lower, the responsibility of switching the signal 〇υτ_χ is opened μ The shorter the start time ton will be, and the longer the off time t〇ff (duty_〇fftime) will be. According to the definition, 'responsibility cycle D can be expressed as follows: D = —^— 言on + 玄off means that 'if the input voltage VIN is less than the working voltage v〇UT_x, the module transistor ΜX is responsible for the opening time w The longer (duty_〇ntime) will be, the shorter the duty off time toff (duty-offtime) will be. The closer the duty cycle will be to _1. Therefore, the light-emitting diode circuit 50 can make the duty cycle D close to 1 by lowering the input voltage VIN to maximize the power conversion efficiency. Similarly, lowering the input voltage VIN can also shorten the off-turn time toff (duty-〇fftime), and also achieve the effect of improving the efficiency of power conversion. Therefore, the embodiment of the present invention is based on the minimum value of the duty-off time t〇ff in the detection module transistors M-1 to M_N in the interval control architecture, and the minimum value and a preset duty-off time reference value are used. Compare to produce a comparison result CMP-〇. At the same time, the comparison result CMp_〇 refers to the result obtained by comparing the minimum value of the off time toff of the module transistor ~n in the module to the reference value of the duty off time. Finally, the comparison result CMP_〇 is transmitted to the power supply device 200 via the output terminal C〇MP, so that the power supply device 2〇〇 adjusts the voltage value of the input voltage viN of the LED circuit 50 according to the comparison result CMp_〇, The minimum value of the duty off time t〇ff in the module transistor MJ~Μ__Ν is controlled to operate within the fe bit greater than the duty off time reference value. In this way, the LED circuit 5 can be controlled by the minimum value of the duty-off time ^ in the LED module LMj~lm-N. " /* 12 201110809 j • Responsibility off time Above the reference value, the light-emitting diode modules LMJ LM-LM-N can normally emit light and maximize the power conversion efficiency. In addition, the integrated control device 202 further includes an over-voltage protection input terminal ovp for use. To provide voltage protection, and a feedback signal input terminal FBJ~FB n for detecting the current magnitude of the LED modules LM_-1~LM_N. In addition, the resistors R_1~R-N are used to emit the LEDs. The current signal of the body module LMJ~LM-N is changed to a voltage signal, and the resistors 1 and RF-2 are used to provide the voltage value of the voltage VIN to the overvoltage and the input terminal QVP. It is not well known to those who are familiar with the knowledge. In short, the interval control architecture 50 is to control the current through the LEDs 1 - 1 LEDS - N to the ideal current level. Side-emitting diode module LM-1~LM-N module transistor ~M-N Ren φ. W, the power supply is still in the right place - the appropriate value, so that the most J value of the middle of the ^ 维持 维持 维持 维持 维持 维持 维持 维持 维持 最 最 最 最 最 最 最 最 最 最 最 最 最 最 最 最 最 最 最 最 最 最Referring to FIG. 5B_, FIG. SB is a schematic diagram of a light-emitting diode circuit 55 of another section control architecture according to an embodiment of the present invention. The light-emitting diode circuit is based on a neon diode circuit 5G towel plus light-emitting diode. (4) The LEDS_1~LEDS_N are connected in parallel with the bypass valley C-1~' to make the high frequency component pass through the bypass capacitor to reduce the frequency signal through the light __ column LEDS_丨~leds_n. The rest of the operation ^ 13 201110809 It is the same as the circuit which is not shown in FIG. 5A. Therefore, it is not mentioned. Please refer to FIG. 6A. FIG. 6A is a schematic diagram of a light-emitting diode circuit of a constant off-time structure according to an embodiment of the present invention. 6 shows that the structure of the light-emitting diode circuit 60 is the same as that of the light-emitting diode circuit 2, but the composition of the light-emitting diode modules LM_1 to LM_N is detailed. The light emitting diode modules LM-1 to LM-N comprise a series sequence Light-emitting diode series LEDS-1~LEDS_N, module transistor MJ~M_N, inductance LJ~L-N, one body D_1~D-N and resistor R-1~R-n. Light-emitting diode circuit The 60 series uses the switching signals out-1 to 〇UT_N to control the opening or closing of the module transistors m_1~μN, and turns on the circuit of the input voltage VIN and the inductor l-1~L, providing the LED in the sixth figure. Serial LEDS-1~LEDS have an appropriate operating voltage and operating current. However, unlike the interval control architectures 5, 55, the fixed off-time architecture 60 is turned off by the duty of the module transistors MJ to M_N, and is maintained at - fixed value, and the duty is turned on. The length of n is used to keep the LEDs LEDS-1~LEDS_N operating at appropriate voltages and currents. That is, since the switching period τ of the module transistors M-1 to M_N is equal to the duty opening time of the transistor ^ and the sum of the responsibility_times, 'the difference between the input voltage VIN and the operating voltage VOUT_x is larger according to the operation principle, The switching frequency of the module transistor 〜"M-N will be increased; conversely, if the difference between the input voltage VIN and the operating voltage is smaller, the switching frequency of the module transistor M_1~ will be smaller. In the embodiment of the present invention, after the minimum value of the module transistor switching frequency is obtained in the fixed off time frame, the minimum value is compared with the preset slice rate reference value to generate a comparison result 201110809 'CMPJ). At this time, the comparison result CMP-G refers to the result of the minimum value of the switching frequency and the switching frequency reference value 峨. Finally, the integrated control relays the transfer comparison result CMPJ) to the Wei supply (4), so that the electrical impurity is mixed. According to the U CMP_0' adjustment of the voltage value of the input voltage of the LED circuit, the module transistor is The minimum value of the switching frequency of M-1 to M-N is controlled to operate in a range larger than the reference value of the switching frequency. In this way, the LED circuit 6 can control the minimum value of the switching frequency of the N illuminating modules LM_km_N by the switching frequency reference value. The body modules LM_1 ~ LM N can normally illuminate and maximize the power conversion efficiency. - The simple 'close-time architecture' controls the current through the LEDs LEDS_1~LEDS-N through the LEDs. Approx. the ideal current level, and detect the LEDs of the LEDs in series LEDSJ~LEDS-N. The switching frequency of n adjusts the input voltage VIN to an appropriate voltage value, so that all switching The most small value of the frequency is maintained above a preset frequency value. In this way, the photoelectric energy conversion efficiency can be maximized. Further, reference is made to the third embodiment, which is one of the embodiments of the present invention. The circuit diagram of the polar body structure 65. The light-emitting diode circuit 65 is connected to the bypass capacitor C-N in parallel with the LED array in the light-emitting diode circuit=〇, which can make the Γ7 frequency of 隹The knife passes through this bypass capacitor to reduce the high frequency component The light diodes Β one ~ LEDS-N scene; ^ ring. The operation principle of the other parts is the same as the circuit of Figure 6A, so it will not be described. 15 201110809 It is worth noting that the fixed off time structure is 6〇, 65, control all the LED mode _ minimum _ frequency, so that it is larger than the surface of the human face (about 20Hz ~ 2Gkhz) 'to prevent the sound of the human ear can be heard when operating. Or 'fixed The _ time architecture can also be based on other friends, slaves and other minimum switching frequency values' to achieve other design goals. In short, when the input power VIN is adjusted to be closer to the light-emitting diode (four) Yuzuo County ~ ν 〇υτ—Ν's maximum f time', its Wei conversion efficiency is good for the electric power, and the present invention does not directly measure the working voltage νουτ”~V0UT_N to control the input voltage weight. Conversely, the present invention adopts The grounding is determined by the switching frequency of the LEDs LEDSJ~LEDS N, the duty opening time and the signal parameters such as the responsibility compensation, and the signal characteristic value is selected as the reference standard for controlling the input county. Simple and effective For the purpose of achieving the power conversion efficiency of the power supply. Referring to FIG. 7, FIG. 7 is a schematic diagram of a light-emitting diode circuit 7 of a Buck structure according to an embodiment of the present invention. The structure of the light-emitting diode circuit 70 is the same as that of the light-emitting diode circuit 20, but the light-emitting one-pole mode and the group LM_1~LM-N are assembled. Among them, the light-emitting diode module LM-1 ~LM-N, including LEDs in series with a series of LEDs ledsj~LEDS-N, module transistor ~M-N, inductor ^~L_N, capacitor cj~C_N, diode dj~D-N And resistance. The light-emitting diode circuit uses the switching signal 0UT~丨τ-N to control the opening or closing of the module transistor M_丨~m-n, and provides the light-emitting diode module LM-1~LM_N ten light-emitting two Polar body series 1 201110809 j * LEDSJ ~ LEDS - N appropriate operating voltage and operating current. The architecture firstly controls the current through the LED series to reach an ideal current level, and then detects the duty cycle D of the channel transistor. After detecting the maximum value of the module transistor M_j~M-N duty cycle D, the embodiment of the present invention compares the maximum value of the duty cycle D with a predetermined duty cycle reference value to generate a comparison result CMp_. Hey. Preferably, the switching periods of the module transistors Μ1 to M-N are the same. In addition, the comparison of the knot refers to the result of comparing the maximum value of the duty cycle with the reference value of the duty cycle. Then, the integrated control device 202 transmits the comparison result CMP_0 to the power supply device 2A. The power supply device 2〇〇 adjusts the input voltage VIN according to the comparison result CMP_〇, so that the maximum value of the duty cycle in the module transistors M-1 to Μ_Ν is controlled in the duty cycle reference value. In short, the LED circuit 7 is controlled by first controlling the current through the LEDs LEDS_1~LEDS-N to an approximate current level, and then according to all the module transistors M-1. ~M_N's duty cycle, changing the input voltage to an appropriate • voltage value, controls the maximum value in the duty cycle, making it as close as possible to the preset duty cycle reference value. In this way, the power conversion efficiency can be maximized. Preferably, the duty cycle reference value can be set to any value between 0.97 and 1.0. In addition, the method of controlling the Bayesian period in the buck architecture is a more general control method, that is, the control method of the LED circuit 70 can also be applied to the interval control architecture and the fixed off-time architecture is equivalent to the buck. Light-emitting diode circuit of the architecture. It is worth noting that the voltage value of the input voltage VIN of the light-emitting diode circuit is different from that of the light-emitting diode. The closer the operating voltage VOUT_x of the one-pole series is, the more the conversion efficiency of the photoelectric energy is 17 201110809. In the architecture of the circuit (multiple series-parallel connection), since the operating power of the LEDs is not always equal, how to make the light-emitting diodes have the best brightness uniformity and the best. Efficiency work, its implementation is determined, degree. The present invention discloses an embodiment of a multi-parallel architecture in which an interval control architecture (Bang b tmture), a fixed off k architecture (C〇_nt 0ff_timestructure), and a down architecture (other ice re) are used. Since the control architecture of the invention can be implemented in a single-integrated circuit, it is easy to achieve current balance between the parallel light-emitting diode modules. The invention determines the signal characteristic value by comparing the current through the LED array to an approximate current current, and then compares the signal characteristic value with a preset value. Finally, by transmitting the comparison result to an external controllable battery source, the input is adjusted to enable the LED module to operate at an optimum efficiency. In summary, the multi-module LED circuit controls a plurality of LED modules by using a single integrated circuit, and by adjusting the external input voltage, the optimal current balance and the best are achieved. Photoelectric energy conversion efficiency. The above is only the preferred embodiment of the present invention, and all the equivalent changes and modifications made by the patent application of the present invention are within the scope of the present invention. & [Simplified description of the drawings] Fig. 1 is a schematic diagram of the structure of a light-emitting diode circuit of one of the prior art. 201110809 FIG. 2 is a schematic diagram showing the structure of a light-emitting diode circuit according to an embodiment of the present invention. Fig. 3 is a schematic view showing a power supply control flow of a light-emitting diode circuit according to an embodiment of the present invention. ^ FIG. 4 is a schematic structural diagram of a power supply control CA π edge arrangement according to an embodiment of the present invention. Figures 5 through 5 are diagrams of one embodiment of the invention. Circuit Diagrams of 11 Control Architectures Figures 6 through 6 are schematic views of embodiments of the present invention. FIG. 7 is a circuit diagram and a diagram of a buck architecture according to an embodiment of the present invention. [Main component symbol description] Light-emitting diode circuit flow step Power supply device power supply device integrated control device driving device Power control device detection unit comparison unit transfer unit 10, 20, 50, 55, 60, 65, 70 30

300、302、304、306、308 100 200 202 204 206 400 402 404 19 201110809 M_1 〜M_N 模組電晶體 LM_1 〜LM_N 發光二極體模組 LEDS—l 〜LEDS_N 發光二極體串列 FB—1 〜FB—N 反饋訊號輸入端 OVP 過電壓保護輸入端 OUT—1 〜OUT_N 切換訊號 C_1 〜C_N 電容 D_1 〜D_N 二極體 VIN > VIN_0 輸入電壓 VOUT_l 〜VOUT—N 工作電壓 t〇n 責任開啟時間 t〇ff 責任關閉時間 D 責任週期 L_1 〜L_N 電感 COMP 比較結果輸出端 CMP_0 比較結果 R 1 〜R N、RF 1、RF 2 電阻 20300, 302, 304, 306, 308 100 200 202 204 206 400 402 404 19 201110809 M_1 ~ M_N Module transistor LM_1 ~ LM_N LED module LEDS_l ~ LEDS_N LED series FB-1 FB—N feedback signal input terminal OVP Overvoltage protection input terminal OUT-1~OUT_N Switching signal C_1~C_N Capacitor D_1~D_N Diode VIN > VIN_0 Input voltage VOUT_l~VOUT—N Operating voltage t〇n Responsibility on time t 〇ff responsibility off time D duty cycle L_1 ~ L_N inductor COMP comparison result output CMP_0 comparison result R 1 ~ RN, RF 1, RF 2 resistance 20

Claims (1)

201110809 ' 七、申請專利範圍: 1. 一種用於一多模組發光二極體電路之電源控制方法,兮夕枚名 發光二極體電路包含有複數個並聯之發光二極體模組— 光二極體模組包含有複數個串聯之發光二極體,該電源控制二 法包含有: ^ 根據该複數個發光二極體模組之複數個切換訊號,偵測々孔號 特徵值,該複數個切換訊號係用來控制該複數個之發光: 極體模組的電流導通; 比較該訊號特徵值及一預設值,以產生一比較結果;以及 輸出該比較結果至-外部電源供應裝置,以由該外部電源供應 襄置根據槪較結果’調整該多模組發光二極體電路之一 輸入電壓的電壓值。 2. 如請求項1之電源控制方法,其中該輸入.電壓之電壓值係由該 參 複數個模組所共用。 3.如。月求項1之電源控制方法,其中該訊號特徵值係為該複數個 切換訊號中具有最小責任關閉時間之一切換訊號之一責任關 閉時間值。 .如》月求項3之電源控制方法,其中該預設值係一責任酬時間 21 201110809 5 y j 士 Ψ • 凊求項1之電源控制方法,其中該訊號特徵值係為該複數個· ^ 刀換訊號中具有最低切換頻率之一切換訊號之一切換頻率值。 6.如凊求項5之電源控制方法,其中該預設值係一切換頻率參考 值。 . I如睛求項1之電源控制方法,其中該訊號特徵值係為該複數個 切換訊號中具有最大責任週期之一切換訊號之一貴任週期值。鲁 8. 如晴求項7之電源控制方法,其中該預設值係指一貴任週期參 考值。 9. 如請求項1之電源控制方法,其中根據該比較結果由該外部電 源供應裝置調整該多模組發光二極體電路之該輸入電壓的電 壓值,係發送該比較結果,透過該外部電源供應裝置所包含之 一回授輸入端,調整該輪入電壓的電麗值。 ⑩ 1〇* 一種用於一多模組發光二極體電路之電源控制裝置,該多模組 發光二極體電路包含有複數個並聯之模組,每一模組包含有複 數個串聯之發光二極體,該電源控制裝置包含有: 一偵測單元,用來根據該複數個切換訊號,偵測一訊號特徵值; 一比較單元,用來比較該訊號特徵值及一預設值,以產生一比 較結果;以及 22 201110809 傳送單7L ’用來輪出該比較結果至該電源供缝置,以由該 電源供應襄置根據該比較結果,調整一輸入電壓的電壓值。 項1G之電源控制裝置,其中該輸人電壓之電壓值係由 該複數個模組所共用。 ’其中該訊號特徵值係為該複數 閉時間之一切換訊號之一責任 12.如請求項1〇之電源控制裝置201110809 ' VII. Patent application scope: 1. A power control method for a multi-module LED circuit, the 兮 枚 ming LED circuit includes a plurality of parallel LED modules - Light II The polar body module includes a plurality of LEDs in series. The power control method includes: ^ detecting a pupil number characteristic value according to the plurality of switching signals of the plurality of LED modules, the complex number The switching signals are used to control the plurality of illuminations: the current of the polar body module is turned on; comparing the signal characteristic value with a preset value to generate a comparison result; and outputting the comparison result to the external power supply device, The voltage value of the input voltage of one of the multi-module LED circuits is adjusted by the external power supply device according to the comparison result. 2. The power control method of claim 1, wherein the voltage value of the input voltage is shared by the plurality of modules. 3. For example. The power control method of claim 1, wherein the signal characteristic value is a duty-off time value of one of the plurality of switching signals having a minimum duty-off time. For example, the power control method of the monthly claim 3, wherein the preset value is a responsibility time 21 201110809 5 yj 士 Ψ • The power control method of the item 1 , wherein the signal characteristic value is the plurality of ^ ^ One of the lowest switching frequency of the knife change signal switches the frequency value of one of the switching signals. 6. The power control method of claim 5, wherein the preset value is a switching frequency reference value. The power control method of claim 1, wherein the signal characteristic value is one of the plurality of switching signals having one of the maximum duty cycles of the switching signal. Lu 8. The power control method of the seventh item, wherein the preset value refers to a reference value of a noble period. 9. The power control method of claim 1, wherein the voltage value of the input voltage of the multi-module LED circuit is adjusted by the external power supply device according to the comparison result, and the comparison result is sent through the external power source. The supply device includes one of the feedback inputs to adjust the electrical value of the wheel-in voltage. 10 1〇* A power control device for a multi-module LED circuit, the multi-module LED circuit comprises a plurality of parallel modules, each module comprising a plurality of series of illuminations The power control device includes: a detecting unit configured to detect a signal characteristic value according to the plurality of switching signals; and a comparing unit configured to compare the signal characteristic value and a preset value to A comparison result is generated; and 22 201110809 Transfer order 7L' is used to rotate the comparison result to the power supply for sewing, so that the power supply unit adjusts the voltage value of an input voltage according to the comparison result. The power control device of item 1G, wherein the voltage value of the input voltage is shared by the plurality of modules. </ RTI> wherein the signal characteristic value is one of the switching signals of the plurality of closed times. 12. The power control device of claim 1 個切換訊號中具有最小責任關 關閉時間值。 其中該預設值係一責任關閉時 13.如請求項12之電源控制裴置, 間參考值。 14.如α求項10之電源控制裝置,其巾該訊麟徵值係為該複數 個切換訊號中具有最低切換頻率之—切換訊號之—切換頻 值。 •如請求項Μ之電源控置,其中該預設值係—切換頻率參 考值。 16.如請求項1〇之電源控制聚置,其中該訊號特徵值係為該複數 個切換訊號中具有最大責任週期之—切換訊號之―責任週期 值。 23 J 201110809 17. 18. 19. 如明求項16之電源控制展置,其t該預設值係指-責任週期 參考值。 如請求項1G之電源控制裝置,其中該傳送單元係發送該比較 果透過該外電源供應裝置所包含之一回授輸入端,調整 該輸入電壓的電壓值。 一種發光二極體電路,包含有: · -電源供應裝置,用來提供—輸入電壓; 複數個發光二極體模組,耦接於該電源供應裝置,每一發光二 極體模組包含有複數個串聯之發光二極體;以及 一整合式控制裝置,耦接於該電源供應裝置及該複數個發光二 極體模組,包含有: 一驅動裝置,耦接於該複數個發光裝置,用來輸出複數個切 換訊號至該複數個發光二極體模組,以控制該複數個 鲁 發光二極體模組之電流導通;以及 一電源控制裝置,耦接於該驅動裝置,其包含有: 一偵測單元,用來根據該複數個切換訊號,偵測一訊號特 徵值; 比車父早元’用來比較該訊號特徵值及一預設值,以產生 一比較結果;以及 一傳送單元,用來輸出該比較結果至該電源供應裝置,以 . 24 201110809 &gt; % 由該電源供應裝置根據該比較結果,調整該輸入電 壓的電壓值。 20. 如請求項19之發光二極體電路,其中該輸入電壓之電壓值係 由該複數個模組所共用。 21. 如叫求項19之發光二極體電路,其中該訊號特徵值係為該複 鲁 數個切換5凡號中具有最小責任關閉時間之一切換訊號之一責 任關閉時間值。 22. 如明求項21之發光二極體電路,其中該預設值係一責任關閉 時間參考值。 23. 如„月求項19之發光二極體電路,其中該訊號特徵值係為該複 數個切換訊號中具有最低切換頻率之一切換訊號之一切換頻 率值。 24. 如凊求項23之發光二極體電路,其中該預設值係一切換頻率 參考值。 25·如3月求項19之發光二極體電路,其中該訊號特徵值係為該複 數個切換訊號中具有最大責任週期之一切換訊號之一責任週 、 期值。 4 25 201110809 26. 如請求項25之發光二極體電路,其中該預設值係指一責任週 期參考值。 27. 如請求項19之發光二極體電路,其中該傳送單元係發送該比 較結果,透過該電源供應裝置所包含之一回授輸入端,調整該 輸入電壓的電壓值。 八、圖式:There is a minimum duty off time value in the switching signals. Wherein the preset value is when the responsibility is turned off. 13. If the power control device of claim 12 is set, the reference value is interposed. 14. The power control device of claim 10, wherein the signal value is a switching frequency of the switching signal having the lowest switching frequency among the plurality of switching signals. • If the power of the request item is controlled, the preset value is the switching frequency reference value. 16. The power control aggregation of claim 1 wherein the signal characteristic value is a duty cycle value of the switching signal having the largest duty cycle of the plurality of switching signals. 23 J 201110809 17. 18. 19. If the power control of the item 16 is displayed, the preset value is the reference value of the duty cycle. The power control device of claim 1G, wherein the transmitting unit transmits the comparison value through a feedback input terminal included in the external power supply device to adjust a voltage value of the input voltage. An LED circuit includes: a power supply device for providing an input voltage; a plurality of LED modules coupled to the power supply device, each of the LED modules includes a plurality of LEDs connected in series; and an integrated control device coupled to the power supply device and the plurality of LED modules, comprising: a driving device coupled to the plurality of lighting devices a plurality of switching signals are outputted to the plurality of LED modules to control current conduction of the plurality of LED modules; and a power control device coupled to the driving device includes : a detecting unit, configured to detect a signal characteristic value according to the plurality of switching signals; and compare the signal characteristic value and a preset value to generate a comparison result; and transmit a unit for outputting the comparison result to the power supply device to: 24 201110809 &gt; %, the voltage supply device adjusts the voltage of the input voltage according to the comparison result . 20. The illuminating diode circuit of claim 19, wherein the voltage value of the input voltage is shared by the plurality of modules. 21. The illuminating diode circuit of claim 19, wherein the signal characteristic value is one of the plurality of switching times of the switching number 5 having the least duty off time. 22. The illuminating diode circuit of claim 21, wherein the preset value is a duty-off time reference value. 23. The illuminating diode circuit of the ninth item, wherein the signal characteristic value is a switching frequency value of one of the switching signals having the lowest switching frequency among the plurality of switching signals. 24. The illuminating diode circuit, wherein the preset value is a switching frequency reference value. 25. The illuminating diode circuit of claim 19, wherein the signal characteristic value is a maximum duty cycle of the plurality of switching signals One of the switching signals is one of the duty cycle and the period value. 4 25 201110809 26. The light-emitting diode circuit of claim 25, wherein the preset value is a duty cycle reference value. a polar body circuit, wherein the transmitting unit transmits the comparison result, and the voltage value of the input voltage is adjusted through a feedback input terminal included in the power supply device. 2626
TW98130131A 2009-09-07 2009-09-07 Power source control method for a multi-module LED circuit and related control device and LED circuit TW201110809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98130131A TW201110809A (en) 2009-09-07 2009-09-07 Power source control method for a multi-module LED circuit and related control device and LED circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98130131A TW201110809A (en) 2009-09-07 2009-09-07 Power source control method for a multi-module LED circuit and related control device and LED circuit

Publications (1)

Publication Number Publication Date
TW201110809A true TW201110809A (en) 2011-03-16

Family

ID=44836376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98130131A TW201110809A (en) 2009-09-07 2009-09-07 Power source control method for a multi-module LED circuit and related control device and LED circuit

Country Status (1)

Country Link
TW (1) TW201110809A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933634B2 (en) 2011-09-30 2015-01-13 Advanced Analogic Technologies Incorporated Low cost LED driver with integral dimming capability
TWI480849B (en) * 2011-12-08 2015-04-11 Advanced Analogic Tech Inc Serial lighting interface with embedded feedback
US9351364B2 (en) 2011-10-24 2016-05-24 Advanced Analogic Technologies Incorporated Low cost LED driver with improved serial bus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232587B2 (en) 2011-09-30 2016-01-05 Advanced Analogic Technologies, Inc. Low cost LED driver with integral dimming capability
US8947407B2 (en) 2011-09-30 2015-02-03 Advanced Analogic Technologies Incorporated Low cost LED driver with integral dimming capability
US8952619B2 (en) 2011-09-30 2015-02-10 Advanced Analogic Technologies Incorporated Low cost LED driver with integral dimming capability
US9609708B2 (en) 2011-09-30 2017-03-28 Advanced Analogic Technologies Incorporated Low cost LED driver with integral dimming capability
US8933634B2 (en) 2011-09-30 2015-01-13 Advanced Analogic Technologies Incorporated Low cost LED driver with integral dimming capability
US9351364B2 (en) 2011-10-24 2016-05-24 Advanced Analogic Technologies Incorporated Low cost LED driver with improved serial bus
US9723244B2 (en) 2011-10-24 2017-08-01 Advanced Analogic Technologies Incorporated Low cost LED driver with improved serial bus
US9220139B2 (en) 2011-12-08 2015-12-22 Advanced Analogic Technologies Incorporated Serial lighting interface with embedded feedback
US9288861B2 (en) 2011-12-08 2016-03-15 Advanced Analogic Technologies Incorporated Serial lighting interface with embedded feedback
US9295123B2 (en) 2011-12-08 2016-03-22 Advanced Analogic Technologies Incorporated Serial lighting interface with embedded feedback
US9210753B2 (en) 2011-12-08 2015-12-08 Advanced Analogic Technologies, Inc. Serial lighting interface with embedded feedback
TWI480849B (en) * 2011-12-08 2015-04-11 Advanced Analogic Tech Inc Serial lighting interface with embedded feedback
US9622310B2 (en) 2011-12-08 2017-04-11 Advanced Analogic Technologies Incorporated Serial lighting interface with embedded feedback

Similar Documents

Publication Publication Date Title
TWI701972B (en) Multiway led constant current controller and control method
JP5038982B2 (en) LED drive device
CN104185350B (en) Multipath LED constant current drive circuit and its control method
TWI430705B (en) Driving apparatus of light emitted diode and driving method thereof
US8558462B2 (en) Driving circuit for cascade light emitting diodes
KR101822192B1 (en) Voltage-limiting and reverse polarity series type led device
US20140159593A1 (en) Apparatus having universal structure for driving a plurality of led strings
CN103813585B (en) A kind of equipment for controlling luminescent device
CN102307410A (en) Light source module, lighting apparatus, and illumination device using the same
US20110133659A1 (en) Power Source Control Method for a Multi-module LED Circuit and Related Control Device and LED Circuit
US20120056559A1 (en) Integrated circuit for driving high-voltage led lamp
TWI428055B (en) Electronic device
CN100490596C (en) Method and device for supplying power to LEDs
JP4187565B2 (en) Lighting device
TW201228457A (en) Light-emitting device
WO2007139565A1 (en) Controlling switching circuits to balance power or current drawn from multiple power supply inputs
US8120263B2 (en) Portable lighting device and method thereof
JP2017037844A (en) Lighting system
TW201110809A (en) Power source control method for a multi-module LED circuit and related control device and LED circuit
JP2010130810A (en) Led drive device
WO2014065865A1 (en) Apparatus and method of operation of a low-current led lighting circuit
CN105554974A (en) Lighting apparatus
CN102131332B (en) Light emitting diode string end voltage control circuit and light emitting diode lighting device
CN105517241B (en) A kind of method and brightness switching device for controlling LED lamp brightness switching
JP2010063340A (en) Led driving unit