TW201519054A - Capacitive touch sensor and switching method between self capacitance and mutual capacitance therefor - Google Patents

Capacitive touch sensor and switching method between self capacitance and mutual capacitance therefor Download PDF

Info

Publication number
TW201519054A
TW201519054A TW102139732A TW102139732A TW201519054A TW 201519054 A TW201519054 A TW 201519054A TW 102139732 A TW102139732 A TW 102139732A TW 102139732 A TW102139732 A TW 102139732A TW 201519054 A TW201519054 A TW 201519054A
Authority
TW
Taiwan
Prior art keywords
sensing
line
signal
touch sensor
capacitive touch
Prior art date
Application number
TW102139732A
Other languages
Chinese (zh)
Other versions
TWI489365B (en
Inventor
Lien-Hsing Feng
Chi-Tien Yeh
Original Assignee
Holtek Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holtek Semiconductor Inc filed Critical Holtek Semiconductor Inc
Priority to TW102139732A priority Critical patent/TWI489365B/en
Priority to CN201310561385.4A priority patent/CN104615314B/en
Publication of TW201519054A publication Critical patent/TW201519054A/en
Application granted granted Critical
Publication of TWI489365B publication Critical patent/TWI489365B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)

Abstract

A capacitive touch sensor comprises a touch interface, a sensing unit, a driving and sensing unit and a control unit for providing self-capacitance and mutual-capacitance sensing. The control unit has an analog mux. The switching of the mux integrates the driving unit and the sensing to simplify the circuitry for reducing the circuit (or chip) area. In the mutual-capacitive mode, the sensing signal is integrated to provide the sensing result. In the self-capacitive mode, charging/discharging the parasitic capacitance(s) to a balance voltage level in a predetermined frequency and converting the balance voltage level to the sensing result.

Description

電容式觸控感測器及其自容與互容的切換方法 Capacitive touch sensor and switching method of self-capacity and mutual capacitance

本發明有關於一種觸控感測器,且特別是一種電容式觸控感測器及其自容與互容的切換方法。 The invention relates to a touch sensor, and in particular to a capacitive touch sensor and a self-capacitance and mutual capacitance switching method thereof.

電容式觸控感測器,做為一種人機介面之輸入工具,一般而言投射式電容觸控感測器有自容(self capacitance),與互容(mutual capacitance)之分。所謂自容是指驅動端與感測端皆為同一點;而互容是指驅動端與感測端為分開的兩點,自容與互容各有其優缺點,自容有鬼點(ghost point)的問題,互容則否,因此互容可實現真正多點觸控。 Capacitive touch sensors are used as input tools for human-machine interfaces. In general, projected capacitive touch sensors have self capacitance and mutual capacitance. The so-called self-containment means that both the driver and the sensing end are the same point; and the mutual capacitance refers to the two points where the driving end and the sensing end are separated. The self-capacity and the mutual capacity have their own advantages and disadvantages, and the self-contained ghost points ( Ghost point), mutual compatibility is not, so mutual compatibility can achieve true multi-touch.

台灣專利公開號TW 201133319,揭示一種觸控感測系統、電子觸控裝置及觸控感測方法,其電路方塊如圖1A與圖1B所示。電子觸控裝置100包括觸控介面110、至少一感測單元120(包括120a、120b)、切換單元130、處理單元140以及驅動單元160。驅動單元160耦接於切換單元130與處理單元140,且適於傳送驅動信號。 Taiwan Patent Publication No. TW 201133319 discloses a touch sensing system, an electronic touch device and a touch sensing method, the circuit blocks of which are shown in FIGS. 1A and 1B. The electronic touch device 100 includes a touch interface 110 , at least one sensing unit 120 (including 120 a , 120 b ), a switching unit 130 , a processing unit 140 , and a driving unit 160 . The driving unit 160 is coupled to the switching unit 130 and the processing unit 140 and is adapted to transmit a driving signal.

以圖1B之互容模式來說,先將開關單元130切換連接至驅動單元160,驅動單元160對驅動線114(drive line)驅動信號,再由感測單元120循序接收接收線112(receive line)的信號,最後由處理單元140將接收到的類比信號轉換成數位信號,一直到最後一 條接收線的信號處理完畢。接著,切換到下一條驅動線。因此,若驅動線有m條線路(trace),接收線有n條線路,則掃描一個框(frame)需對應m*n條掃描路徑。 In the mutual capacitance mode of FIG. 1B, the switching unit 130 is firstly switched to the driving unit 160, the driving unit 160 drives the signal to the driving line 114, and the sensing unit 120 sequentially receives the receiving line 112 (receive line). And finally the processing unit 140 converts the received analog signal into a digital signal until the last one The signal of the receiving line is processed. Next, switch to the next drive line. Therefore, if the drive line has m traces and the receive line has n lines, scanning a frame must correspond to m*n scan paths.

若要執行自容模式,如圖1A的自容模式,將開關單元130切換連接至感測單元120,整體的掃描機制為X軸與Y軸循序掃描,由於自容感測其驅動接點(pin)與感測接點共用同一接點,每掃描一條線路時,將驅動信號驅動該條線路,同時由處理單元140感測該條線路的類比信號,並將之轉換成數位信號。若X軸有m條線路,Y軸有n條線路,則掃描一個框需對應m+n條掃描路徑。 To perform the self-contained mode, as shown in the self-capacity mode of FIG. 1A, the switching unit 130 is switched and connected to the sensing unit 120, and the overall scanning mechanism is sequentially scanning the X-axis and the Y-axis, and the driving contact is sensed by self-capacitance ( Pin) shares the same contact with the sensing contact. When scanning one line, the driving signal drives the line, and the processing unit 140 senses the analog signal of the line and converts it into a digital signal. If there are m lines on the X axis and n lines on the Y axis, scanning one frame requires m+n scan paths.

互容掃描的時間較長,但是互容沒有鬼點的問題;相對的,自容的掃描時間較短,但是自容有鬼點的問題。由此可知,傳統的做法主要的特點在於用於互容感測的驅動單元160與自容的感測單元120需各自建置一套電路,同時還需切換開關130,用以切換驅動單元160與感測單元120,這樣的機制較為浪費晶片面積,增加晶片成本。 The mutual-capacity scanning takes a long time, but the mutual capacitance has no ghost point problem; in contrast, the self-contained scanning time is shorter, but the self-contained problem has a ghost point. It can be seen that the main feature of the conventional method is that the driving unit 160 for mutual capacitance sensing and the self-capacitating sensing unit 120 need to construct a set of circuits, and also need to switch the switch 130 for switching the driving unit 160. With the sensing unit 120, such a mechanism wastes wafer area and increases wafer cost.

本發明實施例提供一種電容式觸控感測器及其自容與互容的切換方法,可提供自容與互容的感測。 The embodiment of the invention provides a capacitive touch sensor and a self-capacitance and mutual capacitance switching method thereof, which can provide sensing of self-capacity and mutual capacitance.

本發明實施例提供一種電容式觸控感測器,包括觸控介面、感測單元、驅動/感測單元以及控制單元。觸控介面具有複數條第一線路與複數條第二線路。感測單元用以耦接觸控介面。驅動/感測單元產生驅動信號。控制單元控制感測單元與驅動/感測單元,控制單元將電容式觸控感測器切換為互容感測模式或自容感測模式。控制單元具有類比多工器,類比多工器之輸出端耦接感測單元,類比多工器之第一輸入端耦接第一線路,類比多工器之第二輸入端耦接第二線路。當電容式觸控感測器於互容感測模式時,驅動/感測單元提供驅動信號至第二線路,感測單元透過類比多工器耦接第一線路,以使感測單元感測第一線路之第一感測信號。 當電容式觸控感測器於自容感測模式時,感測單元依據類比多工器之切換而耦接第一線路或第二線路,並感測第一線路之第一感測信號或第二線路之第二感測信號。 The embodiment of the invention provides a capacitive touch sensor, which comprises a touch interface, a sensing unit, a driving/sensing unit and a control unit. The touch interface has a plurality of first lines and a plurality of second lines. The sensing unit is configured to couple the contact interface. The drive/sense unit generates a drive signal. The control unit controls the sensing unit and the driving/sensing unit, and the control unit switches the capacitive touch sensor to the mutual capacitance sensing mode or the self-capacitive sensing mode. The control unit has an analog multiplexer, and the output end of the analog multiplexer is coupled to the sensing unit, the first input end of the analog multiplexer is coupled to the first line, and the second input end of the analog multiplexer is coupled to the second line . When the capacitive touch sensor is in the mutual capacitance sensing mode, the driving/sensing unit provides a driving signal to the second line, and the sensing unit is coupled to the first line through the analog multiplexer to enable the sensing unit to sense The first sensing signal of the first line. When the capacitive touch sensor is in the self-capacitance sensing mode, the sensing unit is coupled to the first line or the second line according to the switching of the analog multiplexer, and senses the first sensing signal of the first line or The second sensing signal of the second line.

本發明實施例提供一種自容與互容的切換方法,用於電容式觸控感測器,電容式觸控感測器包括觸控介面、感測單元、驅動/感測單元與控制單元,控制單元具有類比多工器,所述方法包括以下步驟。首先,判斷電容式觸控感測器操作於互容感測模式或自容感測模式,其中類比多工器依據互容感測模式或自容感測模式而使感測單元耦接於觸控介面之第一線路或第二線路。然後,當電容式觸控感測器於互容感測模式時,一偏壓透過類比多工器被提供至第一線路,且將第一線路之第一感測信號積分,並將第一感測信號的積分結果轉換為感測結果信號。接著,當電容式觸控感測器於自容檢測模式時,第二線路耦接接地,第一線路透過類比多工器耦接感測單元,且感測單元以特定頻率對第一線路所形成的寄生電容充放電,以使第一線路的電位接近平衡電位,接著將平衡電位轉換為感測結果信號。 The embodiment of the invention provides a self-capacitance and mutual capacitance switching method, which is used for a capacitive touch sensor, and the capacitive touch sensor comprises a touch interface, a sensing unit, a driving/sensing unit and a control unit, The control unit has an analog multiplexer, and the method includes the following steps. First, it is determined that the capacitive touch sensor operates in a mutual capacitance sensing mode or a self-capacitive sensing mode, wherein the analog multiplexer couples the sensing unit to the touch according to the mutual capacitance sensing mode or the self-capacitive sensing mode. The first line or the second line of the interface. Then, when the capacitive touch sensor is in the mutual capacitance sensing mode, a bias voltage is supplied to the first line through the analog multiplexer, and the first sensing signal of the first line is integrated, and the first The integrated result of the sensing signal is converted into a sensing result signal. Then, when the capacitive touch sensor is in the self-capacity detection mode, the second line is coupled to the ground, the first line is coupled to the sensing unit through the analog multiplexer, and the sensing unit is connected to the first line at a specific frequency. The formed parasitic capacitance is charged and discharged so that the potential of the first line approaches the equilibrium potential, and then the balanced potential is converted into the sensing result signal.

綜上所述,本發明實施例提供一種電容式觸控感測器及其自容與互容的切換方法,依據自容與互容的感測條件,透過類比多工器的切換而將驅動單元與感測單元整合在一起,簡化電路的結構,以節省電路(或晶片)的面積。 In summary, the embodiments of the present invention provide a capacitive touch sensor and a self-capacitance and mutual capacitance switching method thereof, which are driven by switching of an analog multiplexer according to sensing conditions of self-capacity and mutual capacitance. The unit is integrated with the sensing unit to simplify the structure of the circuit to save the area of the circuit (or wafer).

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。 The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

100‧‧‧電子觸控裝置 100‧‧‧Electronic touch device

110‧‧‧觸控介面 110‧‧‧Touch interface

120、120a、120b‧‧‧感測單元 120, 120a, 120b‧‧‧ sensing unit

130‧‧‧切換單元 130‧‧‧Switch unit

140‧‧‧處理單元 140‧‧‧Processing unit

160‧‧‧驅動單元 160‧‧‧ drive unit

114‧‧‧驅動線 114‧‧‧Drive line

112‧‧‧感測線 112‧‧‧Sensing line

2‧‧‧電容式觸控感測器 2‧‧‧Capacitive touch sensor

210‧‧‧觸控介面 210‧‧‧ Touch interface

220、41‧‧‧感測單元 220, 41‧‧‧ Sensing unit

230‧‧‧控制單元 230‧‧‧Control unit

240‧‧‧處理單元 240‧‧‧Processing unit

250‧‧‧驅動/感測單元 250‧‧‧Drive/Sensor Unit

212、RCV‧‧‧第一線路 212, RCV‧‧‧ first line

214、DRV‧‧‧第二線路 214, DRV‧‧‧ second line

42‧‧‧類比多工器 42‧‧‧ analog multiplexer

VP‧‧‧驅動信號 VP‧‧‧ drive signal

TS1‧‧‧第一感測信號 TS1‧‧‧first sensing signal

TS2‧‧‧第二感測信號 TS2‧‧‧ second sensing signal

TS3‧‧‧感測結果信號 TS3‧‧‧Sensor signal

CPD、CPR、CM‧‧‧寄生電容 CPD, CPR, CM‧‧‧ parasitic capacitance

OP1‧‧‧比較器 OP1‧‧‧ Comparator

412‧‧‧偏壓電路 412‧‧‧Bias circuit

411‧‧‧電流鏡 411‧‧‧current mirror

413‧‧‧重置電路 413‧‧‧Reset circuit

CLD、CS‧‧‧電容 CLD, CS‧‧‧ capacitor

S1、S2、S3、S4、S5、S6、S7‧‧‧開關 S1, S2, S3, S4, S5, S6, S7‧‧ switch

P1、P2、P3、P4、N1、P5、P6、P7‧‧‧電晶體 P1, P2, P3, P4, N1, P5, P6, P7‧‧‧ transistors

Vo、M1‧‧‧輸出端 Vo, M1‧‧‧ output

M2‧‧‧第一輸入端 M2‧‧‧ first input

M3‧‧‧第二輸入端 M3‧‧‧ second input

T1‧‧‧第一輸出端 T1‧‧‧ first output

T2‧‧‧第二輸出端 T2‧‧‧ second output

OP2‧‧‧操作放大器 OP2‧‧‧Operational Amplifier

SENS‧‧‧端點 SENS‧‧‧ endpoint

VSENS‧‧‧感測信號 V SENS ‧‧‧Sensor signal

Vref‧‧‧參考信號 Vref‧‧‧ reference signal

Cmp‧‧‧比較信號 Cmp‧‧‧ comparison signal

pRECT、pISRC、pGATE、pDISCHRG、nSENS、pINIT‧‧‧控制信號 pRECT, pISRC, pGATE, pDISCHRG, nSENS, pINIT‧‧‧ control signals

nSENS‧‧‧平衡信號 nSENS‧‧‧balance signal

ISRC1、ISRC2‧‧‧電流源 ISRC1, ISRC2‧‧‧ current source

GND‧‧‧接地 GND‧‧‧ Grounding

VDD‧‧‧電壓 VDD‧‧‧ voltage

S101、S103、S105‧‧‧步驟流程 S101, S103, S105‧‧‧ step procedure

圖1A是傳統的電子觸控裝置的電路方塊圖。 1A is a circuit block diagram of a conventional electronic touch device.

圖1B是傳統的電子觸控裝置的電路方塊圖。 FIG. 1B is a circuit block diagram of a conventional electronic touch device.

圖2是本發明實施例提供的電容式觸控感測器的電路方塊 圖。 2 is a circuit block of a capacitive touch sensor according to an embodiment of the invention. Figure.

圖3是本發明實施例提供的觸控介面的線路布局圖。 3 is a circuit layout diagram of a touch interface provided by an embodiment of the present invention.

圖4是圖3的觸控介面的等效電路圖。 4 is an equivalent circuit diagram of the touch interface of FIG. 3.

圖5A是本發明實例提供的用於感測單元與驅動/感測單元的電路的電路圖。 5A is a circuit diagram of a circuit for a sensing unit and a driving/sensing unit provided by an example of the present invention.

圖5B是圖5A的電路的波形圖。 Figure 5B is a waveform diagram of the circuit of Figure 5A.

圖6是本發明實施例提供的感測單元在互容感測模式的電路圖。 FIG. 6 is a circuit diagram of a sensing unit in a mutual capacitance sensing mode according to an embodiment of the present invention.

圖7是圖6的感測單元的時序圖。 FIG. 7 is a timing diagram of the sensing unit of FIG. 6.

圖8是本發明實施例提供的感測單元在自容感測模式的電路圖。 FIG. 8 is a circuit diagram of a sensing unit in a self-capacitance sensing mode according to an embodiment of the present invention.

圖9是圖8的感測單元的波形圖。 9 is a waveform diagram of the sensing unit of FIG. 8.

圖10是本發明實施例提供的感測單元在自容感測模式的電路圖。 FIG. 10 is a circuit diagram of a sensing unit in a self-capacitance sensing mode according to an embodiment of the invention.

圖11是本發明實施例提供的自容與互容的切換方法的流程圖。 FIG. 11 is a flowchart of a method for switching between self-capacity and mutual capacitance according to an embodiment of the present invention.

自容的掃描時間正比於X軸和Y軸的線路(trace)數目的和(X+Y),互容的掃描時間則正比於X軸和Y軸的線路數目的乘積(X*Y),因此自容的掃描時間較短且較省電。所以為整合自容與互容的優點,本發明提出一種電容式觸控感測器及其自容與互容的切換方法,該切換方法具有節省電路(或晶片)面積的優點。本發明所提出的自容與互容切換的電路及其方法免除圖1A(與圖1B)的切換單元130,並且將圖1A(與圖1B)的驅動單元160與感測單元120整合在一起。 The self-capacitance scan time is proportional to the sum of the number of traces of the X-axis and the Y-axis (X+Y), and the scan time of the mutual capacitance is proportional to the product of the number of lines of the X-axis and the Y-axis (X*Y). Therefore, the self-contained scanning time is shorter and more power-saving. Therefore, in order to integrate the advantages of self-contained and mutual capacity, the present invention provides a capacitive touch sensor and a self-capacitance and mutual capacitance switching method thereof, which has the advantages of saving circuit (or wafer) area. The self-capacity and mutual capacitance switching circuit and method thereof proposed by the present invention are exempt from the switching unit 130 of FIG. 1A (and FIG. 1B), and the driving unit 160 and the sensing unit 120 of FIG. 1A (and FIG. 1B) are integrated. .

〔電容式觸控感測器之實施例〕 [Embodiment of Capacitive Touch Sensor]

本發明之電容式觸控感測器的電路方塊如圖2所示,電容式觸 控感測器2包含觸控介面210、感測單元220、驅動/感測單元250、處理單元240與控制單元230。觸控介面210具有複數條第一線路212(圖2中以接收線表示)與複數條第二線路214(圖2中以驅動線表示),依據自容與互容的感測,所述第一線路212與第二線路214可以是驅動線或者是接收線,本發明並不限定第一線路212與第二線路214是驅動線或是接收線。 The circuit block of the capacitive touch sensor of the present invention is shown in FIG. 2, and the capacitive touch The control sensor 2 includes a touch interface 210, a sensing unit 220, a driving/sensing unit 250, a processing unit 240, and a control unit 230. The touch interface 210 has a plurality of first lines 212 (represented by receiving lines in FIG. 2) and a plurality of second lines 214 (represented by driving lines in FIG. 2), and the sensing is performed according to self-capacity and mutual capacitance. A line 212 and a second line 214 may be a driving line or a receiving line. The present invention does not limit the first line 212 and the second line 214 to be a driving line or a receiving line.

依據圖2的架構,控制單元230控制感測單元220與驅動/感測單元250,控制單元230將電容式觸控感測器2切換為互容感測模式或自容感測模式。控制單元230具有類比多工器(analog mux)(圖2未繪示,參照圖6的類比多工器42),類比多工器42之輸出端M1耦接感測單元220,類比多工器之42第一輸入端M2耦接第一線路212(圖4的第一線路RCV),類比多工器42之第二輸入端M3耦接第二線路214(圖4的第二線路DRV)。當電容式觸控感測器2於互容感測模式時,驅動/感測單元250提供驅動信號VP至第二線路214,感測單元220透過類比多工器耦接第一線路212,以使感測單元220感測第一線路212之第一感測信號TS1。當電容式觸控感測器2於自容感測模式時,感測單元220依據類比多工器之切換而耦接第一線路212或第二線路214,並感測第一線路212之第一感測信號TS1或第二線路214之第二感測信號TS2。 According to the architecture of FIG. 2 , the control unit 230 controls the sensing unit 220 and the driving/sensing unit 250 , and the control unit 230 switches the capacitive touch sensor 2 into a mutual capacitive sensing mode or a self-capacitive sensing mode. The control unit 230 has an analog multiplexer (not shown in FIG. 2 , referring to the analog multiplexer 42 of FIG. 6 ). The output M1 of the analog multiplexer 42 is coupled to the sensing unit 220 and the analog multiplexer. The first input terminal M2 of the 42 is coupled to the first line 212 (the first line RCV of FIG. 4), and the second input terminal M3 of the analog multiplexer 42 is coupled to the second line 214 (the second line DRV of FIG. 4). When the capacitive touch sensor 2 is in the mutual capacitance sensing mode, the driving/sensing unit 250 provides the driving signal VP to the second line 214, and the sensing unit 220 is coupled to the first line 212 through the analog multiplexer to The sensing unit 220 is caused to sense the first sensing signal TS1 of the first line 212. When the capacitive touch sensor 2 is in the self-capacitance sensing mode, the sensing unit 220 is coupled to the first line 212 or the second line 214 according to the switching of the analog multiplexer, and senses the first line 212. A sensing signal TS1 or a second sensing signal TS2 of the second line 214.

詳細的說,驅動/感測單元250可由控制單元230切換成驅動模式或感應模式,所述驅動模式對應於互容感測模式,所述感應模式對應於自容感測模式。處理單元240耦接感測單元220、驅動/感測單元250以及控制單元230,並將類比的第一感測信號TS1以及第二感測信號TS2轉換成數位信號。換句話說,處理單元240則是接收來自感測單元220或驅動/感測單元250的類比信號,並將之轉換成數位信號。控制單元230則用以控制感測單元220、驅動/感測單元250與處理單元240。 In detail, the driving/sensing unit 250 can be switched by the control unit 230 into a driving mode or a sensing mode, the driving mode corresponding to the mutual capacitance sensing mode, the sensing mode corresponding to the self-capacitance sensing mode. The processing unit 240 is coupled to the sensing unit 220, the driving/sensing unit 250, and the control unit 230, and converts the analog first sensing signal TS1 and the second sensing signal TS2 into digital signals. In other words, the processing unit 240 receives the analog signal from the sensing unit 220 or the driving/sensing unit 250 and converts it into a digital signal. The control unit 230 is configured to control the sensing unit 220, the driving/sensing unit 250, and the processing unit 240.

驅動/感測單元250產生驅動信號VP。當要執行互容感測模式時,由控制單元230將驅動/感測單元250切換成驅動模式,驅動/感測單元250提供驅動信號至觸控介面210之第二線路214(驅動線),再由感測單元220循序接收來自觸控介面210之第一線路212的第一感測信號TS1,接著由處理單元240將接收到的類比信號轉換成數位信號,一直到最後一條第一線路212(接收線)的信號被處理完畢。然後,切換到下一條第二線路214(驅動線),再次循序感測第一感測信號TS1。因此,若第二線路214(驅動線)有m條線路(trace),接收線有n條線路,則掃描一個框(frame)需m*n條掃描路徑。 The drive/sense unit 250 generates a drive signal VP. When the mutual capacitance sensing mode is to be performed, the driving/sensing unit 250 is switched to the driving mode by the control unit 230, and the driving/sensing unit 250 provides a driving signal to the second line 214 (drive line) of the touch interface 210. The first sensing signal TS1 from the first line 212 of the touch interface 210 is sequentially received by the sensing unit 220, and then the received analog signal is converted into a digital signal by the processing unit 240 until the last first line 212. The signal (receive line) is processed. Then, switching to the next second line 214 (drive line), the first sensing signal TS1 is sequentially sensed again. Therefore, if the second line 214 (drive line) has m traces and the receive line has n lines, scanning a frame requires m*n scan paths.

若要執行自容感測模式,整體的掃描機制為X軸與Y軸循序掃描,由於自容感測其驅動接點(pin)與感測接點共用同一接點,每掃描一條線路時,將驅動信號驅動該條線路,同時由處理單元240接收感測單元220所感測到的該條線路的類比信號,並將之轉換成數位信號。若X軸有m條線路,Y軸有n條線路,則掃描一個框需m+n條掃描路徑。 To perform the self-capacitance sensing mode, the overall scanning mechanism scans the X-axis and the Y-axis sequentially. Since the self-capacitance senses that the driving contact (pin) and the sensing contact share the same contact, each time a line is scanned, The drive signal is driven to the line while the processing unit 240 receives the analog signal of the line sensed by the sensing unit 220 and converts it into a digital signal. If the X-axis has m lines and the Y-axis has n lines, scanning a frame requires m+n scanning paths.

請同時參照圖3與圖4,假設兩條交錯的第二線路DRV(X軸)與第一線路RCV(Y軸)的線路布局如圖3所示,第二線路DRV對地的寄生電容為CPD,而第一線路RCV對地的寄生電容為CPR,第二線路DRV與第一線路RCV兩者間的寄生電容為CM,其等效電路則如圖4所示。值得注意的是,在圖3中,第二線路DRV與第一線路RCV以節點表示,第二線路DRV即圖2中的第一線路212,第一線路RCV即圖2中的第二線路214。在本實施例中,在互容感測模式下,第二線路DRV是驅動線,第一線路RCV是感測線。在自容感測模式下,第二線路DRV(或第一線路RCV)同時為驅動線與感測線。 Referring to FIG. 3 and FIG. 4 simultaneously, it is assumed that the line layout of the two interleaved second lines DRV (X-axis) and the first line RCV (Y-axis) is as shown in FIG. 3, and the parasitic capacitance of the second line DRV to the ground is CPD, and the parasitic capacitance of the first line RCV to ground is CPR, and the parasitic capacitance between the second line DRV and the first line RCV is CM, and the equivalent circuit is as shown in FIG. It should be noted that, in FIG. 3, the second line DRV and the first line RCV are represented by nodes, the second line DRV is the first line 212 in FIG. 2, and the first line RCV is the second line 214 in FIG. . In this embodiment, in the mutual capacitance sensing mode, the second line DRV is a driving line, and the first line RCV is a sensing line. In the self-capacitance sensing mode, the second line DRV (or the first line RCV) is both a drive line and a sense line.

請同時參照圖2、圖5A與圖6,圖5A是感測單元220與驅動/感測單元250中所使用的電路。圖6是本發明實施例提供的感測 單元在互容感測模式的電路圖。針對圖2中的感測單元220的電路架構,進一步敘述如下。感測單元220以圖6的感測單元41實現。感測單元41包括比較器OP1(在本實施例中為操作放大器)、偏壓電路412、電流鏡411、第一電容CLD、第二電容CS、重置電路413、第一電晶體P1、第二電晶體P2、第三電晶體P3、第四電晶體P4、第二開關S2、第三開關S3、電流源ISRC1與第四開關S4。類比多工器42、所有的開關(S1、S2、S3、S4、S5)的控制信號pRECT、pISRC、pGATE、pDISCHRG、第三電晶體P3、第四電晶體P4以及電晶體N1的控制信號nSENS、pINIT都受控於控制單元230。 Referring to FIG. 2, FIG. 5A and FIG. 6, FIG. 5A is a circuit used in the sensing unit 220 and the driving/sensing unit 250. FIG. 6 is a sensing provided by an embodiment of the present invention. The circuit diagram of the unit in the mutual capacitance sensing mode. The circuit architecture of the sensing unit 220 in FIG. 2 is further described below. The sensing unit 220 is implemented with the sensing unit 41 of FIG. The sensing unit 41 includes a comparator OP1 (in this embodiment, an operational amplifier), a bias circuit 412, a current mirror 411, a first capacitor CLD, a second capacitor CS, a reset circuit 413, and a first transistor P1. The second transistor P2, the third transistor P3, the fourth transistor P4, the second switch S2, the third switch S3, the current source ISRC1, and the fourth switch S4. Analog signal multiplexer 42, control signals pRECT, pISRC, pGATE, pDISCHRG, third transistor P3, fourth transistor P4, and control signal nSENS of transistor N1 for all switches (S1, S2, S3, S4, S5) The pINIT is controlled by the control unit 230.

比較器OP1之第一輸入端(-)接收參考信號Vref,比較器之第二輸入端(+)依據類比多工器42之切換而接收第一感測信號TS1或第二感測信號TS2,比較器OP1之輸出端產生比較信號Cmp。偏壓電路412耦接比較器OP1之第二輸入端(+),偏壓電路412提供一偏壓,在本實施例中所述偏壓是Vref,但本發明並不一此限定,偏壓可以依據實際設計而調整。偏壓電路412包括第一開關S1與單位增益緩衝器(unit gain buffer)(由操作放大器OP2所構成)。電流鏡411具有第一輸出端T1以及第二輸出端T2,在本實施例中電流鏡411由電晶體P5、P6、P7與電流源ISRC2所構成。第一電容CLD之第一端耦接比較器OP1之第二輸入端(+)以及電流鏡411之第一輸出端T1,第二電容CLD之第二端耦接接地GND。第二電容CS之第一端耦接電流鏡411之第二輸出端T2,第二電容CS之第二端耦接接地GND,第二電容CS之第一端(即輸出端Vo)提供感測結果信號TS3。重置電路413耦接第二電容CS之第一端(即輸出端Vo),用以重置第二電容CS之第二端(Vo)的電位。在本實施例中,重置電路413是以電晶體N1實現。第一電晶體P1耦接於電流鏡411之第一輸出端T1以及第一電容CLD之第一端之間,且受控於比較信號Cmp。第二電晶體P2耦接於電 流鏡411之第二輸出端T2以及第二電容CS之第一端(Vo)之間,且受控於比較信號Cmp。第三電晶體P3耦接於第一電晶體P1以及第一電容CLD之第一端之間,且受控於一平衡信號nSENS。第四電晶體P4耦接於第二電晶體P2以及第二電容CS之第一端(Vo)之間,且受控於平衡信號nSENS。第二開關S2耦接於類比多工器42之輸出端M1以及比較器OP1之第二輸入端(+)之間。電流源ISRC1透過第三開關S3耦接於比較器OP1之第二輸入端(+)。第四開關S4耦接於類比多工器42之輸出端M1以及接地GND之間。 The first input terminal (-) of the comparator OP1 receives the reference signal Vref, and the second input terminal (+) of the comparator receives the first sensing signal TS1 or the second sensing signal TS2 according to the switching of the analog multiplexer 42. The output of comparator OP1 produces a comparison signal Cmp. The bias circuit 412 is coupled to the second input terminal (+) of the comparator OP1, and the bias circuit 412 provides a bias voltage. In the embodiment, the bias voltage is Vref, but the invention is not limited thereto. The bias voltage can be adjusted according to the actual design. The bias circuit 412 includes a first switch S1 and a unit gain buffer (consisting of the operational amplifier OP2). The current mirror 411 has a first output terminal T1 and a second output terminal T2. In the present embodiment, the current mirror 411 is composed of transistors P5, P6, and P7 and a current source ISRC2. The first end of the first capacitor CLD is coupled to the second input end (+) of the comparator OP1 and the first output end T1 of the current mirror 411, and the second end of the second capacitor CLD is coupled to the ground GND. The first end of the second capacitor CS is coupled to the second output terminal T2 of the current mirror 411, the second end of the second capacitor CS is coupled to the ground GND, and the first end of the second capacitor CS (ie, the output terminal Vo) provides sensing Result signal TS3. The reset circuit 413 is coupled to the first end of the second capacitor CS (ie, the output terminal Vo) for resetting the potential of the second terminal (Vo) of the second capacitor CS. In the present embodiment, the reset circuit 413 is implemented by a transistor N1. The first transistor P1 is coupled between the first output terminal T1 of the current mirror 411 and the first terminal of the first capacitor CLD, and is controlled by the comparison signal Cmp. The second transistor P2 is coupled to the electricity The second output terminal T2 of the flow mirror 411 and the first end (Vo) of the second capacitor CS are controlled by the comparison signal Cmp. The third transistor P3 is coupled between the first transistor P1 and the first end of the first capacitor CLD and is controlled by a balance signal nSENS. The fourth transistor P4 is coupled between the second transistor P2 and the first end (Vo) of the second capacitor CS, and is controlled by the balance signal nSENS. The second switch S2 is coupled between the output terminal M1 of the analog multiplexer 42 and the second input terminal (+) of the comparator OP1. The current source ISRC1 is coupled to the second input terminal (+) of the comparator OP1 via the third switch S3. The fourth switch S4 is coupled between the output terminal M1 of the analog multiplexer 42 and the ground GND.

在本實施例中,第一電晶體P1、第二電晶體P2、第三電晶體P3以及第四電晶體P4是P型電晶體(PMOS)。上述電晶體是用於控制感測單元41的作動,上述電晶體也可以替換為N型電晶體(NMOS)。為了達到相同的功能或操作目的,本領域具有通常知識者可以輕易將P型電晶體替換為N型電晶體而完成類似於圖5A的電路,不再贅述。 In the present embodiment, the first transistor P1, the second transistor P2, the third transistor P3, and the fourth transistor P4 are P-type transistors (PMOS). The above transistor is used to control the operation of the sensing unit 41, and the above transistor may be replaced by an N-type transistor (NMOS). In order to achieve the same function or operation, those skilled in the art can easily replace the P-type transistor with the N-type transistor to complete a circuit similar to that of FIG. 5A, and will not be described again.

圖6中的比較器OP1、電流鏡411、第一電容CLD、第二電容CS、重置電路413、第一電晶體P1、第二電晶體P2、第三電晶體P3、第四電晶體P4繪製於圖5A,以進一步敘述其操作方式。針對圖5A的電路的操作方式敘述如下,圖5A的電路的基本型態是峰值偵測器(peak detector),並以參考信號Vref為參考電位。端點SENS上的信號為感測信號VSENS,在本實施例中感測信號VSENS為第一感測信號TS1。在當端點SENS上的感測信號VSENS低於Vref的電位時,感測電路做出反應,如圖5B的波形所顯示。在本實施例中,由操作放大器(OP1)扮演電位比較器角色,比對參考信號Vref和感測信號VSENS。當感測信號VSENS高於參考信號Vref,則操作放大器(OP1)輸出的比較信號Cmp為高電位(high),並關閉(turn OFF)P型電晶體(PMOS)P1和P2(即第一電晶體與第二電晶體),輸出端Vo的電位不會改變。輸出端Vo要由控制信號pINIT清除其電位,使每次的偵測都能由接地電位(GND)開始累積。亦即 控制信號pINIT為重置信號,以使第二電容CS之電位重置為接地電位(GND)。當感測信號VSENS低於參考信號Vref時,操作放大器(OP1)輸出的比較信號Cmp為低電位(low),且打開(turn ON)P型電晶體P1和P2(即第一電晶體與第二電晶體),同時拉高感測信號VSENS和輸出端Vo的電位,直到感測信號VSENS等於參考信號Vref,即VSENS=Vref。如此,完成一次的信號轉換。信號轉換可以多做幾次,以累積足夠電荷在輸出端Vo上(產生感測結果信號TS3)。值得注意的是,只在一開始做信號檢測時控制信號pINIT重置(reset)輸出端Vo的電位。通過多次信號轉換的累積,可有助於消除背景雜訊。 Comparator OP1, current mirror 411, first capacitor CLD, second capacitor CS, reset circuit 413, first transistor P1, second transistor P2, third transistor P3, fourth transistor P4 in FIG. This is depicted in Figure 5A to further illustrate its mode of operation. The mode of operation of the circuit of Figure 5A is described below. The basic form of the circuit of Figure 5A is a peak detector with reference signal Vref as the reference potential. SENS signal on the endpoint to sense signals V SENS, Example V sense signal SENS in the present embodiment a first sensing signal TS1. When the sense signal at the terminal SENS SENS V lower than the potential Vref, the sensing circuit to react, the waveform shown in FIG. 5B. In the present embodiment, the operational amplifier (OP1) acts as a potential comparator, aligning the reference signal Vref with the sense signal V SENS . When the sensing signal V SENS is higher than the reference signal Vref, the comparison signal Cmp outputted by the operational amplifier (OP1) is high, and turns off the P-type transistors (PMOS) P1 and P2 (ie, the first The transistor and the second transistor) do not change the potential of the output terminal Vo. The output terminal Vo is cleared by the control signal pINIT so that each detection can be accumulated by the ground potential (GND). That is, the control signal pINIT is a reset signal to reset the potential of the second capacitor CS to the ground potential (GND). When the sensing signal V SENS is lower than the reference signal Vref, the comparison signal Cmp output by the operational amplifier (OP1) is low (low), and turns on the P-type transistors P1 and P2 (ie, the first transistor and The second transistor) simultaneously pulls up the potential of the sensing signal V SENS and the output terminal Vo until the sensing signal V SENS is equal to the reference signal Vref, that is, V SENS =Vref. In this way, the signal conversion is completed once. The signal conversion can be done several times to accumulate enough charge on the output Vo (generating the sensing result signal TS3). It is worth noting that the control signal pINIT resets the potential of the output terminal Vo only at the beginning of the signal detection. The accumulation of multiple signal transitions can help eliminate background noise.

請同時參照圖6與圖7。如圖6所示,當電路設定為互容感測模式時,類比多工器42將觸控介面210的第一線路RCV接到感測電路41,開關S5關閉(close),並將驅動信號(voltage pulse)VP輸入到觸控介面210的第二線路DRV,第三開關S3與第四開關S4打開(open),操作放大器OP2以單位增益緩衝器形式提供第一線路RCV及端點SENS的偏壓點。在第二線路DRV轉態時,要關掉單位增益緩衝器412的輸出,由控制信號pRECT打開(open)第一開關S1。在第二線路DRV的上升邊緣(rising edge)時,第二開關S2要關閉(close),以讓信號積分至電容CLD。時序圖如圖7所示。 Please refer to FIG. 6 and FIG. 7 at the same time. As shown in FIG. 6, when the circuit is set to the mutual capacitance sensing mode, the analog multiplexer 42 connects the first line RCV of the touch interface 210 to the sensing circuit 41, and the switch S5 is closed, and the driving signal is turned on. (voltage pulse) VP is input to the second line DRV of the touch interface 210, the third switch S3 and the fourth switch S4 are opened, and the operational amplifier OP2 provides the first line RCV and the end point SENS in the form of a unity gain buffer. Bias point. When the second line DRV transitions, the output of the unity gain buffer 412 is turned off, and the first switch S1 is opened by the control signal pRECT. At the rising edge of the second line DRV, the second switch S2 is to be closed to integrate the signal to the capacitor CLD. The timing diagram is shown in Figure 7.

值得一提的是,在互容感測模式之下,由於手指接觸觸控介面210時寄生電容CM會變小,因此在第二線路DRV的上升邊緣時,當手指未接觸時,感測信號VSENS的電位比較高。相對地,手指接觸時,感測信號VSENS的電位比較低。因此可分辨出手指的存在。 It is worth mentioning that in the mutual capacitance sensing mode, since the parasitic capacitance CM becomes smaller when the finger touches the touch interface 210, the sensing signal is not touched when the finger is not in contact at the rising edge of the second line DRV. The potential of V SENS is relatively high. In contrast, when the finger is in contact, the potential of the sensing signal V SENS is relatively low. Therefore, the presence of the finger can be distinguished.

換句話說,當電容式觸控感測器2於互容感測模式時,電容式觸控感測器2先操作於一偏壓階段再操作於一感測階段。在偏壓階段,第一開關S1關閉(close)以使偏壓電路412提供偏壓至比較器OP1之第二輸入端(+),且偏壓電路412透過類比多工器42提 供偏壓至第一線路RCV。接著,在感測階段,第一開關S1打開(open)、第二開關S2關閉(close)以使第一感測信號TS1積分至第一電容CLD,且第三電晶體P3與第四電晶體P4打開(trun on),並利用電流鏡411將第一感測信號TS1的積分結果轉換為感測結果信號TS3。 In other words, when the capacitive touch sensor 2 is in the mutual capacitance sensing mode, the capacitive touch sensor 2 first operates in a biasing phase and then operates in a sensing phase. In the bias phase, the first switch S1 is closed to bias the bias circuit 412 to the second input (+) of the comparator OP1, and the bias circuit 412 is passed through the analog multiplexer 42 Supply biased to the first line RCV. Then, in the sensing phase, the first switch S1 is opened, the second switch S2 is closed to integrate the first sensing signal TS1 to the first capacitor CLD, and the third transistor P3 and the fourth transistor are P4 is turned on, and the integration result of the first sensing signal TS1 is converted into the sensing result signal TS3 by the current mirror 411.

請同時參照圖8與圖9,在本實施例中,當電容式觸控感測器2於自容感測模式時,感測單元41以一特定頻率f對第一線路RCV或第二線路DRV所形成之寄生電容充放電,使第一線路RCV或第二線路DRV的電位接近一平衡電位,並將所述平衡電位透過一電流鏡轉換為感測結果信號TS3。詳細的電路操作方式請參照後續的說明。 Referring to FIG. 8 and FIG. 9 simultaneously, in the embodiment, when the capacitive touch sensor 2 is in the self-capacitance sensing mode, the sensing unit 41 pairs the first line RCV or the second line with a specific frequency f. The parasitic capacitance formed by the DRV is charged and discharged, so that the potential of the first line RCV or the second line DRV approaches an equilibrium potential, and the balanced potential is converted into a sensing result signal TS3 through a current mirror. For detailed circuit operation, please refer to the following instructions.

請參照圖8,當電路設定為自容模式且感測第二線路DRV時,感測線RCV透過開關S6(受控於控制單元230)被接地,造成寄生電容CPD與寄生電容CM並聯,類比多工器42將觸控介面210的第二線路DRV接到感測電路41,第一開關S1與S5打開(open),第三開關S3關閉(close)。透過特定頻率,控制第二開關S2和第四開關S4的開和關。在第二開關S2關閉時,第四開關S4打開,電流源ISRC1充電到寄生電容CPD和寄生電容CM。在第二開關S2打開時,第四開關S4關閉,使已充到寄生電容CPD和寄生電容CM的電荷經由第四開關S4放電。這就是一個電容至電阻的轉換電路(C to R電路),其等效電阻如下: Referring to FIG. 8, when the circuit is set to the self-capacit mode and the second line DRV is sensed, the sensing line RCV is grounded through the switch S6 (controlled by the control unit 230), causing the parasitic capacitance CPD to be in parallel with the parasitic capacitance CM, and the analogy is The device 42 connects the second line DRV of the touch interface 210 to the sensing circuit 41, the first switches S1 and S5 are open, and the third switch S3 is closed. The opening and closing of the second switch S2 and the fourth switch S4 are controlled by a specific frequency. When the second switch S2 is turned off, the fourth switch S4 is turned on, and the current source ISRC1 is charged to the parasitic capacitance CPD and the parasitic capacitance CM. When the second switch S2 is turned on, the fourth switch S4 is turned off, so that the charge that has been charged to the parasitic capacitance CPD and the parasitic capacitance CM is discharged via the fourth switch S4. This is a capacitor-to-resistance conversion circuit (C to R circuit) whose equivalent resistance is as follows:

其中,f為頻率。電流源ISRC1提供電流IDAC。在控制信號pISRC關閉(close或enable)第三開關S3的時候,感測信號VSENS會平衡為下式: Where f is the frequency. Current source ISRC1 provides current I DAC . When the control signal pISRC closes or enables the third switch S3, the sensing signal V SENS is balanced as follows:

時序圖如圖9所示,上式所表示感測信號VSENS的即是平衡電位。在平衡電位達到之後,控制信號pGATE和pISRC分別關閉第二開關S2和第三開關S3,且控制信號nSENS打開P型電晶體P6和P7。由以上敘述可知,第二感測信號TS2可以依據上述的電路操作方式而獲得。值得一提的是,感測單元41可以是圖2的感測單元220或是驅動/感測單元250,當驅動/感測單元250具有與感測單元220相同的電路(感測單元41的電路)時,驅動/感測單元250可以直接感測第二線路DRV的第二感測信號TS2。 The timing chart is shown in Fig. 9. The sense signal V SENS represented by the above equation is the equilibrium potential. After the equilibrium potential is reached, the control signals pGATE and pISRC turn off the second switch S2 and the third switch S3, respectively, and the control signal nSENS turns on the P-type transistors P6 and P7. As can be seen from the above description, the second sensing signal TS2 can be obtained according to the above-described circuit operation mode. It is worth mentioning that the sensing unit 41 can be the sensing unit 220 or the driving/sensing unit 250 of FIG. 2, and the driving/sensing unit 250 has the same circuit as the sensing unit 220 (the sensing unit 41 In the circuit), the driving/sensing unit 250 can directly sense the second sensing signal TS2 of the second line DRV.

值得一提的是,在自容感測模式之下,由於手指接觸觸控介面210時會使寄生電容變大,當手指未接觸時,感測信號VSENS的電位比較高。相對地,手指接觸時,感測信號VSENS的電位比較低。因此可分辨出手指的存在。 It is worth mentioning that in the self-capacitance sensing mode, the parasitic capacitance is increased when the finger touches the touch interface 210, and the potential of the sensing signal V SENS is relatively high when the finger is not in contact. In contrast, when the finger is in contact, the potential of the sensing signal V SENS is relatively low. Therefore, the presence of the finger can be distinguished.

換句話說,當電容式觸控感測器2於自容感測模式時,為了感測第二線路DRV,電容式觸控感測器2先操作於一平衡階段再操作於一感測階段。在平衡階段,第一開關S1打開(open),第一線路RCV耦接接地GND,第三開關S3關閉(close),第二開關S2以及第四開關S4以特定頻率f交錯地開關,使電流源ISRC1以特定頻率f對第二線路DRV所形成的寄生電容(寄生電容CPD與寄生電容CM並聯)充放電,以使比較器OP1之第二輸入端(+)的電位接近平衡電位。接著,在感測階段,第二開關S2、第三開關S3與第四開關S4打開(open),平衡信號nSENS使第三電晶體P3與第四電晶體P4打開(turn on),並利用電流鏡411將比較器OP1之第二輸入端(+)的平衡電位轉換為感測結果信號TS3。 In other words, when the capacitive touch sensor 2 is in the self-capacitance sensing mode, in order to sense the second line DRV, the capacitive touch sensor 2 first operates in a balancing phase and then operates in a sensing phase. . In the balancing phase, the first switch S1 is open, the first line RCV is coupled to the ground GND, the third switch S3 is closed, and the second switch S2 and the fourth switch S4 are alternately switched at a specific frequency f to cause current The source ISRC1 charges and discharges the parasitic capacitance (parasitic capacitance CPD in parallel with the parasitic capacitance CM) formed by the second line DRV at a specific frequency f such that the potential of the second input terminal (+) of the comparator OP1 approaches the equilibrium potential. Then, in the sensing phase, the second switch S2, the third switch S3 and the fourth switch S4 are opened, and the balancing signal nSENS turns the third transistor P3 and the fourth transistor P4 on, and utilizes the current. The mirror 411 converts the balanced potential of the second input terminal (+) of the comparator OP1 into the sensing result signal TS3.

如圖10所示,當電路設定為自容感測模式且感測第一線路RCV時,第二線路DRV透過開關S7(受控於控制單元)被接地,造成寄生電容CPR與寄生電容CM並聯。類比多工器42將觸控介面210的第一線路RCV接到感測單元41。以特定頻率對第一線路212所形成之寄生電容充放電,使第一線路212的電位接近一平衡電 位,並將所述平衡電位透過電流鏡411轉換為感測結果信號。其餘操作方式將與自容感測模式感測第二線路DRV時類似,敘述如下。 As shown in FIG. 10, when the circuit is set to the self-capacitance sensing mode and the first line RCV is sensed, the second line DRV is grounded through the switch S7 (controlled by the control unit), causing the parasitic capacitance CPR to be in parallel with the parasitic capacitance CM. . The analog multiplexer 42 connects the first line RCV of the touch interface 210 to the sensing unit 41. Charge and discharge the parasitic capacitance formed by the first line 212 at a specific frequency, so that the potential of the first line 212 approaches a balanced power And shifting the balanced potential through the current mirror 411 into a sensing result signal. The remaining operation modes will be similar to when the self-capacitance sensing mode senses the second line DRV, as described below.

當電容式觸控感測器2於自容感測模式時,為了感測第一線路RCV,電容式觸控感測器2先操作於一平衡階段再操作於一感測階段。在平衡階段,第一開關S1打開(open),第二線路S2耦接接地GND,第三開關S3關閉(close),第二開關S2以及第四開關S4以特定頻率f交錯地開關,使電流源ISRC1以特定頻率f對第一線路RCV所形成的寄生電容(寄生電容CPR與寄生電容CM並聯)充放電,以使比較器OP1之第二輸入端(+)的電位接近平衡電位。接著,在感測階段,第二開關S2與第三開關S3打開(open),平衡信號nSENS使第三電晶體P3與第四電晶體P4打開(turn on),並利用電流鏡411將比較器OP1之第二輸入端(+)的平衡電位轉換為感測結果信號TS3。 When the capacitive touch sensor 2 is in the self-capacitance sensing mode, in order to sense the first line RCV, the capacitive touch sensor 2 first operates in a balancing phase and then operates in a sensing phase. In the balancing phase, the first switch S1 is open, the second line S2 is coupled to the ground GND, the third switch S3 is closed, and the second switch S2 and the fourth switch S4 are alternately switched at a specific frequency f to cause current The source ISRC1 charges and discharges the parasitic capacitance (parasitic capacitance CPR in parallel with the parasitic capacitance CM) formed by the first line RCV at a specific frequency f such that the potential of the second input terminal (+) of the comparator OP1 approaches the equilibrium potential. Then, in the sensing phase, the second switch S2 and the third switch S3 are opened, the balance signal nSENS turns the third transistor P3 and the fourth transistor P4 on, and the comparator is used by the current mirror 411. The balanced potential of the second input terminal (+) of OP1 is converted into the sensing result signal TS3.

〔自容與互容的切換方法之實施例〕 [Embodiment of self-capacity and mutual capacitance switching method]

請同時參照圖2、圖6和圖11,圖11是本發明實施例提供的自容與互容的切換方法的流程圖。本實施例的自容與互容的切換方法,用於圖2的電容式觸控感測器2,電容式觸控感測器2包括觸控介面210、感測單元220、驅動/感測單元250、控制單元230與處理單元240。控制單元230具有如圖6所示的類比多工器42。所述方法包括以下步驟。首先,在步驟S101中,判斷電容式觸控感測器2操作於互容感測模式或自容感測模式,其中類比多工器42依據互容感測模式或自容感測模式而使感測單元41耦接於觸控介面210之第一線路RCV或第二線路DRV(即圖2的第一線路212與第二線路214)。 Referring to FIG. 2, FIG. 6, and FIG. 11, FIG. 11 is a flowchart of a method for switching between self-capacity and mutual capacitance according to an embodiment of the present invention. The method for switching the self-capacitance and mutual capacitance of the present embodiment is used in the capacitive touch sensor 2 of FIG. 2 . The capacitive touch sensor 2 includes a touch interface 210 , a sensing unit 220 , and a driving/sensing The unit 250, the control unit 230 and the processing unit 240. Control unit 230 has an analog multiplexer 42 as shown in FIG. The method includes the following steps. First, in step S101, it is determined that the capacitive touch sensor 2 operates in a mutual capacitance sensing mode or a self-capacitive sensing mode, wherein the analog multiplexer 42 is configured according to the mutual capacitance sensing mode or the self-capacitive sensing mode. The sensing unit 41 is coupled to the first line RCV or the second line DRV of the touch interface 210 (ie, the first line 212 and the second line 214 of FIG. 2 ).

然後,在步驟S103中,當電容式觸控感測器2於互容感測模式時,一偏壓(由偏壓電路412提供)透過類比多工器42被提供至第一線路RCV,且將第一線路RCV之第一感測TS1信號積分, 並將第一感測信號TS1的積分結果轉換為感測結果信號TS3。一般而言,當電容式觸控感測器2於互容感測模式時,驅動/感測單元250可提供脈衝信號VP至觸控介面210之第二線路DRV。 Then, in step S103, when the capacitive touch sensor 2 is in the mutual capacitance sensing mode, a bias voltage (provided by the bias circuit 412) is supplied to the first line RCV through the analog multiplexer 42. And integrating the first sensing TS1 signal of the first line RCV, The integration result of the first sensing signal TS1 is converted into the sensing result signal TS3. In general, when the capacitive touch sensor 2 is in the mutual capacitance sensing mode, the driving/sensing unit 250 can provide the pulse signal VP to the second line DRV of the touch interface 210.

接著,在步驟S105中,當電容式觸控感測器2於自容檢測模式時,第二線路DRV耦接接地GND,第一線路RCV透過類比多工器42耦接感測單元41(即感測單元220),且感測單元41以特定頻率f對第一線路RCV所形成的寄生電容(寄生電容CPR與寄生電容CM並聯)充放電,以使第一線路RCV的電位接近平衡電位,接著將平衡電位轉換為感測結果信號TS3。 Then, in step S105, when the capacitive touch sensor 2 is in the self-contained detection mode, the second line DRV is coupled to the ground GND, and the first line RCV is coupled to the sensing unit 41 through the analog multiplexer 42 (ie, The sensing unit 220), and the sensing unit 41 charges and discharges the parasitic capacitance (the parasitic capacitance CPR is connected in parallel with the parasitic capacitance CM) formed by the first line RCV at a specific frequency f, so that the potential of the first line RCV approaches the equilibrium potential, The equilibrium potential is then converted into a sensing result signal TS3.

在步驟S105結束後,為了感測第二線路DRV,可以進行類似於步驟S105的步驟,僅將第一線路RCV和第二線路DRV的角色互換。如下所述,當電容式觸控感測器2於自容檢測模式時,為了感測第二線路DRV,第一線路RCV耦接接地GND,第二線路DRV透過類比多工器42耦接感測單元41,且感測單元41以特定頻率f對第二線路DRV所形成的寄生電容(寄生電容CPD與寄生電容CM並聯)充放電,以使第二線路DRV的電位接近平衡電位,接著將平衡電位轉換為感測結果信號TS3。 After the end of step S105, in order to sense the second line DRV, a step similar to step S105 may be performed to interchange only the roles of the first line RCV and the second line DRV. As described below, when the capacitive touch sensor 2 is in the self-contained detection mode, in order to sense the second line DRV, the first line RCV is coupled to the ground GND, and the second line DRV is coupled through the analog multiplexer 42. The measuring unit 41, and the sensing unit 41 charges and discharges the parasitic capacitance (the parasitic capacitance CPD and the parasitic capacitance CM) formed by the second line DRV at a specific frequency f to bring the potential of the second line DRV close to the equilibrium potential, and then The equilibrium potential is converted into a sensing result signal TS3.

詳細的說,感測結果信號TS3的產生方式可由圖6的電流鏡411實現。當電容式觸控感測器2於互容感測模式時,利用電流鏡411將第一感測信號TS1的積分結果轉換為感測結果信號TS3。當電容式觸控感測器2於自容檢測模式時,利用電流鏡411將平衡電位轉換為感測結果信號TS3。 In detail, the manner in which the sensing result signal TS3 is generated can be realized by the current mirror 411 of FIG. When the capacitive touch sensor 2 is in the mutual capacitance sensing mode, the integration result of the first sensing signal TS1 is converted into the sensing result signal TS3 by using the current mirror 411. When the capacitive touch sensor 2 is in the self-contained detection mode, the balance potential is converted into the sensing result signal TS3 by the current mirror 411.

〔實施例的可能功效〕 [Possible effects of the examples]

綜上所述,本發明實施例所提供的電容式觸控感測器及其自容與互容的切換方法,依據自容與互容的感測條件,透過類比多工器的切換而將驅動單元與感測單元整合在一起,簡化電路的結構,以節省電路(或晶片)的面積。在自容感測模式時,以特定頻率對觸控介面的第一線路或第二線路所形成之寄生電容充放電, 使第一線路或第二線路的電位接近平衡電位,並將平衡電位透過電流鏡轉換為感測結果信號。 In summary, the capacitive touch sensor provided by the embodiment of the present invention and the self-capacity and mutual capacitance switching method thereof are switched by the analog multiplexer according to the sensing conditions of the self-capacity and the mutual capacitance. The drive unit is integrated with the sensing unit to simplify the structure of the circuit to save the area of the circuit (or wafer). In the self-capacitance sensing mode, the parasitic capacitance formed by the first line or the second line of the touch interface is charged and discharged at a specific frequency, The potential of the first line or the second line is brought close to the equilibrium potential, and the balanced potential is converted into a sensing result signal through the current mirror.

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。 The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.

2‧‧‧電容式觸控感測器 2‧‧‧Capacitive touch sensor

210‧‧‧觸控介面 210‧‧‧ Touch interface

220‧‧‧感測單元 220‧‧‧Sensor unit

230‧‧‧控制單元 230‧‧‧Control unit

240‧‧‧處理單元 240‧‧‧Processing unit

250‧‧‧驅動/感測單元 250‧‧‧Drive/Sensor Unit

212‧‧‧第一線路 212‧‧‧First line

214‧‧‧第二線路 214‧‧‧second line

TS1‧‧‧第一感測信號 TS1‧‧‧first sensing signal

TS2‧‧‧第二感測信號 TS2‧‧‧ second sensing signal

Claims (14)

一種電容式觸控感測器,包括:一觸控介面,具有複數條第一線路與複數條第二線路;一感測單元,用以耦接該觸控介面;一驅動/感測單元,產生一驅動信號;以及一控制單元,控制該感測單元與該驅動/感測單元,該控制單元將該電容式觸控感測器切換為一互容感測模式或一自容感測模式,該控制單元具有一類比多工器,該類比多工器之一輸出端耦接該感測單元,該類比多工器之一第一輸入端耦接該第一線路,該類比多工器之一第二輸入端耦接該第二線路;其中,當該電容式觸控感測器於該互容感測模式時,該驅動/感測單元提供該驅動信號至該第二線路,該感測單元透過該類比多工器耦接該第一線路,以使該感測單元感測該第一線路之一第一感測信號;其中,當該電容式觸控感測器於該自容感測模式時,該感測單元依據該類比多工器之切換而耦接該第一線路或該第二線路,並感測該第一線路之該第一感測信號或該第二線路之一第二感測信號。 A capacitive touch sensor includes: a touch interface having a plurality of first lines and a plurality of second lines; a sensing unit coupled to the touch interface; and a driving/sensing unit, Generating a driving signal; and a control unit that controls the sensing unit and the driving/sense unit, the control unit switches the capacitive touch sensor to a mutual capacitance sensing mode or a self-capacitive sensing mode The control unit has an analog multiplexer, and the output end of the analog multiplexer is coupled to the sensing unit, and the first input end of the analog multiplexer is coupled to the first line, the analog multiplexer The second input end is coupled to the second line; wherein, when the capacitive touch sensor is in the mutual capacitance sensing mode, the driving/sensing unit provides the driving signal to the second line, The sensing unit is coupled to the first line through the analog multiplexer, so that the sensing unit senses one of the first sensing signals of the first line; wherein, when the capacitive touch sensor is In the capacitive sensing mode, the sensing unit is coupled according to the switching of the analog multiplexer The first line or the second line, and senses the sensing signal from the first line of the first or second line of the second one of the sensing signal. 根據請求項第1項之電容式觸控感測器,其中當該電容式觸控感測器於該自容感測模式時,該感測單元以一特定頻率對該第一線路或該第二線路所形成之寄生電容充放電,使該第一線路或該第二線路的電位接近一平衡電位,並將該平衡電位透過一電流鏡轉換為一感測結果信號。 The capacitive touch sensor of claim 1, wherein the sensing unit is configured to the first line or the first frequency at a specific frequency when the capacitive touch sensor is in the self-capacitance sensing mode The parasitic capacitance formed by the two lines is charged and discharged, so that the potential of the first line or the second line approaches an equilibrium potential, and the balanced potential is converted into a sensing result signal through a current mirror. 根據請求項第1項之電容式觸控感測器,更包括:一處理單元,耦接該感測單元、該驅動/感測單元以及該控制單元,該處理單元受控於該控制單元,並將類比的該第一感測信號以及該第二感測信號轉換成數位信號。 The capacitive touch sensor of claim 1, further comprising: a processing unit coupled to the sensing unit, the driving/sensing unit and the control unit, the processing unit being controlled by the control unit And analogizing the first sensing signal and the second sensing signal into a digital signal. 根據請求項第1項之電容式觸控感測器,其中該感測單元包括: 一比較器,該比較器之一第一輸入端接收一參考信號,該比較器之一第二輸入端依據該類比多工器之切換而接收該第一感測信號或該第二感測信號,該比較器之一輸出端產生一比較信號;一偏壓電路,耦接該比較器之該第二輸入端,該偏壓電路提供一偏壓,該偏壓電路具有一第一開關;一電流鏡,具有一第一輸出端以及一第二輸出端;一第一電容,該第一電容之第一端耦接該比較器之該第二輸入端以及該電流鏡之該第一輸出端,該第二電容之第二端耦接一接地;一第二電容,該第二電容之第一端耦接該電流鏡之該第二輸出端,該第二電容之第二端耦接該接地,該第二電容之第一端提供一感測結果信號;一重置電路,耦接該第二電容之第一端,用以重置該第二電容之第二端的電位;一第一電晶體,耦接於該電流鏡之該第一輸出端以及該第一電容之第一端之間,受控於該比較信號;一第二電晶體,耦接於該電流鏡之該第二輸出端以及該第二電容之第一端之間,受控於該比較信號;一第三電晶體,耦接於該第一電晶體以及該第一電容之第一端之間,受控於一平衡信號;一第四電晶體,耦接於該第二電晶體以及該第二電容之第一端之間,受控於該平衡信號;一第二開關,耦接於該類比多工器之該輸出端以及該比較器之該第二輸入端之間;一電流源,透過一第三開關耦接於該比較器之該第二輸入端;以及一第四開關,耦接於該類比多工器之該輸出端以及該接地之間。 The capacitive touch sensor of claim 1, wherein the sensing unit comprises: a comparator, the first input of the comparator receives a reference signal, and the second input of the comparator receives the first sensing signal or the second sensing signal according to the switching of the analog multiplexer The output of one of the comparators generates a comparison signal; a biasing circuit is coupled to the second input end of the comparator, the bias circuit provides a bias voltage, and the bias circuit has a first a current mirror having a first output and a second output; a first capacitor, the first end of the first capacitor coupled to the second input of the comparator and the current mirror An output end, the second end of the second capacitor is coupled to a ground; a second capacitor, the first end of the second capacitor is coupled to the second output end of the current mirror, and the second end of the second capacitor The first end of the second capacitor is coupled to the ground, the first end of the second capacitor is coupled to the first end of the second capacitor for resetting the potential of the second end of the second capacitor; a first transistor coupled to the first output end of the current mirror and the first capacitor Between the terminals, controlled by the comparison signal; a second transistor coupled between the second output end of the current mirror and the first end of the second capacitor, controlled by the comparison signal; a third transistor coupled between the first transistor and the first end of the first capacitor and controlled by a balanced signal; a fourth transistor coupled to the second transistor and the second capacitor The first end is controlled by the balance signal; a second switch is coupled between the output end of the analog multiplexer and the second input end of the comparator; a current source is transmitted through the The third switch is coupled to the second input of the comparator; and a fourth switch coupled between the output of the analog multiplexer and the ground. 根據請求項第4項之電容式觸控感測器,其中該第一電晶體、該第二電晶體、該第三電晶體以及該第四電晶體是P型電晶體(PMOS)。 The capacitive touch sensor of claim 4, wherein the first transistor, the second transistor, the third transistor, and the fourth transistor are P-type transistors (PMOS). 根據請求項第4項之電容式觸控感測器,其中該重置電路受控於一重置信號,以使該第二電容之電位重置為接地電位。 The capacitive touch sensor of claim 4, wherein the reset circuit is controlled by a reset signal to reset the potential of the second capacitor to a ground potential. 根據請求項第4項之電容式觸控感測器,其中該偏壓電路包括一單位增益緩衝器。 The capacitive touch sensor of claim 4, wherein the bias circuit comprises a unity gain buffer. 根據請求項第4項之電容式觸控感測器,其中當該電容式觸控感測器於該互容感測模式時,該電容式觸控感測器先操作於一偏壓階段再操作於一感測階段,其中在該偏壓階段,該第一開關關閉(close)以使該偏壓電路提供該偏壓至該比較器之該第二輸入端,且該偏壓電路透過該類比多工器提供該偏壓至該第一線路,接著在該感測階段,該第一開關打開(open)、該第二開關關閉(close)以使該第一感測信號積分至該第一電容,且該第三電晶體與該第四電晶體打開(trun on),並利用該電流鏡將該第一感測信號的積分結果轉換為該感測結果信號。 The capacitive touch sensor of claim 4, wherein when the capacitive touch sensor is in the mutual capacitance sensing mode, the capacitive touch sensor operates first in a bias phase Operating in a sensing phase, wherein the first switch is closed to cause the bias circuit to provide the bias to the second input of the comparator, and the bias circuit Providing the bias voltage to the first line through the analog multiplexer, and then in the sensing phase, the first switch is opened, and the second switch is closed to integrate the first sensing signal to The first capacitor, and the third transistor and the fourth transistor are turned on, and the integrated result of the first sensing signal is converted into the sensing result signal by using the current mirror. 根據請求項第4項之電容式觸控感測器,其中當該電容式觸控感測器於該自容感測模式時,該電容式觸控感測器先操作於一平衡階段再操作於一感測階段,其中在該平衡階段,該第一開關打開(open),該第二線路耦接該接地,該第三開關關閉(close),該第二開關以及該第四開關以一特定頻率交錯地開關,使該電流源以該特定頻率對該第一線路所形成的寄生電容充放電,以使該比較器之該第二輸入端的電位接近一平衡電位,接著在該感測階段,該第二開關與該第三開關打開(open),該平衡信號使該第三電晶體與該第四電晶體打開(turn on),並利用該電流鏡將該比較器之該第二輸入端的該平衡電位轉換為該感測結果信號。 The capacitive touch sensor of claim 4, wherein when the capacitive touch sensor is in the self-capacitance sensing mode, the capacitive touch sensor operates in a balancing phase and then operates In a sensing phase, in the balancing phase, the first switch is open, the second line is coupled to the ground, the third switch is closed, and the second switch and the fourth switch are The specific frequency is alternately switched, so that the current source charges and discharges the parasitic capacitance formed by the first line at the specific frequency, so that the potential of the second input end of the comparator approaches an equilibrium potential, and then in the sensing phase. The second switch is opened to the third switch, the balance signal turns the third transistor and the fourth transistor on, and the second input of the comparator is used by the current mirror The equilibrium potential of the terminal is converted to the sensing result signal. 根據請求項第4項之電容式觸控感測器,其中當該電容式觸控感測器於該自容感測模式時,該電容式觸控感測器先操作於一 平衡階段再操作於一感測階段,其中在該平衡階段,該第一開關打開(open),該第一線路耦接該接地,該第三開關關閉(close),該第二開關以及該第四開關以一特定頻率交錯地開關,使該電流源以該特定頻率對該第二線路所形成的寄生電容充放電,以使該比較器之該第二輸入端的電位接近一平衡電位,接著在該感測階段,該第二開關、該第三開關與該第四開關打開(open),該平衡信號使該第三電晶體與該第四電晶體打開(turn on),並利用該電流鏡將該比較器之該第二輸入端的該平衡電位轉換為該感測結果信號。 The capacitive touch sensor of claim 4, wherein when the capacitive touch sensor is in the self-capacitance sensing mode, the capacitive touch sensor operates first The balancing phase is further operated in a sensing phase, wherein in the balancing phase, the first switch is open, the first line is coupled to the ground, the third switch is closed, the second switch and the second The four switches are alternately switched at a specific frequency, so that the current source charges and discharges the parasitic capacitance formed by the second line at the specific frequency, so that the potential of the second input terminal of the comparator approaches an equilibrium potential, and then During the sensing phase, the second switch, the third switch and the fourth switch are opened, the balancing signal turns the third transistor and the fourth transistor on, and uses the current mirror The balanced potential of the second input of the comparator is converted to the sensing result signal. 一種自容與互容的切換方法,用於一電容式觸控感測器,該電容式觸控感測器包括一觸控介面、一感測單元、一驅動/感測單元與一控制單元,該控制單元具有一類比多工器,該方法包括:判斷該電容式觸控感測器操作於一互容感測模式或一自容感測模式,其中該類比多工器依據該互容感測模式或該自容感測模式而使該感測單元耦接於該觸控介面之一第一線路或一第二線路;當該電容式觸控感測器於該互容感測模式時,一偏壓透過該類比多工器被提供至該第一線路,且將該第一線路之一第一感測信號積分,並將該第一感測信號的積分結果轉換為一感測結果信號;當該電容式觸控感測器於該自容檢測模式時,該第二線路耦接一接地,該第一線路透過該類比多工器耦接該感測單元,且該感測單元以一特定頻率對該第一線路所形成的寄生電容充放電,以使該第一線路的電位接近一平衡電位,接著將該平衡電位轉換為該感測結果信號。 A capacitive touch sensor includes a touch interface, a sensing unit, a driving/sensing unit, and a control unit. The control unit has an analog multiplexer, and the method includes: determining that the capacitive touch sensor operates in a mutual capacitance sensing mode or a self-capacitive sensing mode, wherein the analog multiplexer is based on the mutual capacitance The sensing unit or the self-capacitance sensing mode is coupled to the first line or the second line of the touch interface; when the capacitive touch sensor is in the mutual capacitance sensing mode a bias voltage is supplied to the first line through the analog multiplexer, and the first sensing signal of one of the first lines is integrated, and the integration result of the first sensing signal is converted into a sensing a result signal; when the capacitive touch sensor is in the self-capacitance detection mode, the second line is coupled to a ground, the first line is coupled to the sensing unit through the analog multiplexer, and the sensing The unit charges and discharges the parasitic capacitance formed by the first line at a specific frequency, so that The potential of the first line approaches an equilibrium potential, which is then converted to the sensed signal. 根據請求項第11項之自容與互容的切換方法,更包括:當該電容式觸控感測器於該自容檢測模式時,該第一線路耦接一接地,該第二線路透過該類比多工器耦接該感測單元,且該感測單元以該特定頻率對該第二線路所形成的寄生電容充放電,以 使該第二線路的電位接近該平衡電位,接著將該平衡電位轉換為該感測結果信號。 The method for switching the self-capacity and the mutual capacitance according to the claim 11 further includes: when the capacitive touch sensor is in the self-capacitance detection mode, the first line is coupled to a ground, and the second line is transmitted through The analog multiplexer is coupled to the sensing unit, and the sensing unit charges and discharges the parasitic capacitance formed by the second line at the specific frequency to The potential of the second line is brought close to the equilibrium potential, and then the balanced potential is converted into the sensing result signal. 根據請求項第11項之自容與互容的切換方法,其中當該電容式觸控感測器於該互容感測模式時,該驅動/感測單元提供一脈衝信號至該觸控介面之該第二線路。 According to the method of switching the self-capacity and the mutual capacitance of the claim 11, wherein the driving/sensing unit provides a pulse signal to the touch interface when the capacitive touch sensor is in the mutual capacitance sensing mode The second line. 根據請求項第11項之自容與互容的切換方法,其中當該電容式觸控感測器於該互容感測模式時,利用一電流鏡將該第一感測信號的積分結果轉換為該感測結果信號,當該電容式觸控感測器於該自容檢測模式時,利用該電流鏡將該平衡電位轉換為該感測結果信號。 According to the method for switching the self-capacity and the mutual capacitance according to Item 11 of the claim, wherein when the capacitive touch sensor is in the mutual capacitance sensing mode, the integration result of the first sensing signal is converted by using a current mirror For the sensing result signal, when the capacitive touch sensor is in the self-capacity detecting mode, the current potential is converted into the sensing result signal by using the current mirror.
TW102139732A 2013-11-01 2013-11-01 Capacitive touch sensor and switching method between self capacitance and mutual capacitance therefor TWI489365B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102139732A TWI489365B (en) 2013-11-01 2013-11-01 Capacitive touch sensor and switching method between self capacitance and mutual capacitance therefor
CN201310561385.4A CN104615314B (en) 2013-11-01 2013-11-12 Capacitive touch sensor and self-capacitance and mutual capacitance switching method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102139732A TWI489365B (en) 2013-11-01 2013-11-01 Capacitive touch sensor and switching method between self capacitance and mutual capacitance therefor

Publications (2)

Publication Number Publication Date
TW201519054A true TW201519054A (en) 2015-05-16
TWI489365B TWI489365B (en) 2015-06-21

Family

ID=53149792

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102139732A TWI489365B (en) 2013-11-01 2013-11-01 Capacitive touch sensor and switching method between self capacitance and mutual capacitance therefor

Country Status (2)

Country Link
CN (1) CN104615314B (en)
TW (1) TWI489365B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731056B (en) * 2016-03-29 2021-06-21 德商微晶片科技德國公司 Water robustness and detection on capacitive buttons

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9836636B2 (en) * 2015-06-25 2017-12-05 Sunasic Technologies Inc. Capacitive image sensor that obtains a noise-reduced image of a finger
KR102332425B1 (en) * 2015-06-30 2021-12-01 엘지디스플레이 주식회사 Touch sensing apparatus
JP6615683B2 (en) * 2016-04-14 2019-12-04 ローム株式会社 Capacitance measurement circuit, input device using the circuit, electronic device
KR102325034B1 (en) * 2017-06-02 2021-11-10 엘지디스플레이 주식회사 Touch display device and method for driving thereof
CN109388263B (en) * 2017-08-04 2022-01-18 鸿富锦精密工业(深圳)有限公司 Touch control display device
TWI663531B (en) * 2017-08-18 2019-06-21 友達光電股份有限公司 Electronic device having touch panel and control circuit thereof
CN109445667B (en) * 2018-10-30 2021-01-08 维沃移动通信有限公司 Screen mode switching method and device
CN112305320B (en) * 2020-12-30 2021-06-11 深圳市汇顶科技股份有限公司 Proximity detection circuit, wearable device and proximity detection method
WO2022141248A1 (en) * 2020-12-30 2022-07-07 深圳市汇顶科技股份有限公司 Proximity detection circuit, wearable device and proximity detection method
CN113778265B (en) * 2021-09-28 2024-03-12 京东方科技集团股份有限公司 Touch panel, display device and control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358142B2 (en) * 2008-02-27 2013-01-22 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
TWI590133B (en) * 2010-12-31 2017-07-01 樂金顯示科技股份有限公司 Apparatus and method for driving touch sensor
CN103164061B (en) * 2011-12-15 2016-06-29 晨星软件研发(深圳)有限公司 Touch sensing device and touch-control sensing equipment and its sensing method of touch control
CN103186298B (en) * 2011-12-29 2016-06-22 旭曜科技股份有限公司 The low standby power consumption drive method of capacitance type multi-point touch-control and device
TWI464637B (en) * 2012-02-17 2014-12-11 Elan Microelectronics Corp Dynamic adjusting method of adc transferring parameter of touch panel
CN102662536B (en) * 2012-03-07 2015-12-09 旭曜科技股份有限公司 A kind of switch mode driving method of capacitance type multi-point touch-control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731056B (en) * 2016-03-29 2021-06-21 德商微晶片科技德國公司 Water robustness and detection on capacitive buttons

Also Published As

Publication number Publication date
CN104615314B (en) 2017-08-25
CN104615314A (en) 2015-05-13
TWI489365B (en) 2015-06-21

Similar Documents

Publication Publication Date Title
TWI489365B (en) Capacitive touch sensor and switching method between self capacitance and mutual capacitance therefor
US9778301B2 (en) Compensation circuit for a TX-RX capacitive sensor
US8624870B2 (en) System for and method of transferring charge to convert capacitance to voltage for touchscreen controllers
US9652104B2 (en) Capacitance voltage conversion circuit, input apparatus using the same, electronic instrument, and capacitance voltage conversion method
US9791986B2 (en) Touch display device for controlling offset capacitance calibration
US8681110B2 (en) Sensing circuit for use with capacitive touch panel
US10641805B2 (en) Capacitance detection method and capacitance detection apparatus using the same
EP2565755B1 (en) Control circuit and control method for touch panel
CN107449810B (en) Capacitance measuring circuit, input device using the same, and electronic apparatus
WO2019144303A1 (en) Capacitance detection circuit, touch apparatus, and terminal device
US20120092297A1 (en) Multi-touch panel capacitance sensing circuit
US20110068810A1 (en) Sensing method and driving circuit of capacitive touch screen
CN109976574B (en) Integrator, touch display device and driving method thereof
US9197207B2 (en) Touch sensor circuit and touch display device
TWI503725B (en) Circuit for measuring mutual and self capacitance and capacitive touch panel having the same
US9383395B1 (en) Charge balancing converter using a passive integrator circuit
JP2015114872A (en) Semiconductor device and error cancellation method
US20100065341A1 (en) Driving scanned channel and non-scanned channels of a touch sensor with same amplitude and same phase
US10942606B2 (en) Touch sensing device of current driving type
CN111801584A (en) Capacitance detection circuit, touch device and terminal equipment
TWI479400B (en) Sensing circuit relating to capacitive touch panel and mehod thereof using the same
TWI381300B (en) Touch panel, touch display panel, and conpacitive touch sensor
US8593432B2 (en) Sample and hold analog front end for a capacitive touchpad
JP2014164607A (en) Electrostatic capacity type touch sensor
JP2012164083A (en) Capacitance detection circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees