TW201514558A - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
TW201514558A
TW201514558A TW103129351A TW103129351A TW201514558A TW 201514558 A TW201514558 A TW 201514558A TW 103129351 A TW103129351 A TW 103129351A TW 103129351 A TW103129351 A TW 103129351A TW 201514558 A TW201514558 A TW 201514558A
Authority
TW
Taiwan
Prior art keywords
micro
deflection
units
image
display device
Prior art date
Application number
TW103129351A
Other languages
Chinese (zh)
Inventor
Chao-Hsu Tsai
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to US14/513,225 priority Critical patent/US20150102999A1/en
Publication of TW201514558A publication Critical patent/TW201514558A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

A display apparatus including an image module and a micro deflecting array is provided. The image module is configured to provide a plurality of image beams, wherein these image beams contain a plurality sets of image information of different viewing angles, and the micro deflecting array is disposed on the transmission path of these image beams. The micro deflecting array has a plurality of micro deflecting units arranged in an array, and these micro deflecting units are grouped into a plurality of micro deflecting groups interlaced with each other, and these micro deflecting groups respectively deflect these image beams to a plurality of directions, and a distribution range of azimuthal angles of these directions in a direction perpendicular to the optical axis of the micro deflecting array occupies at least part of 360 degrees.

Description

顯示裝置 Display device

本發明是有關於一種影像裝置,且特別是有關於一種顯示裝置。 The present invention relates to an image device, and more particularly to a display device.

隨著顯示技術的發展,各種顯示裝置的需求在人類的生活中不斷在提昇。在目前發展的顯示科技中,立體顯示技術也是發展的主流之一。立體顯示除了可以帶給使用者在視覺上更佳的視覺感受外,藉由與立體影像的互動也可以讓使用者得到更直覺、更多的影像資訊。 With the development of display technology, the demand for various display devices is constantly increasing in human life. Among the currently developed display technologies, stereoscopic display technology is also one of the mainstream of development. In addition to giving the user a visually better visual experience, the stereoscopic display can also provide users with more intuitive and more image information by interacting with the stereoscopic image.

在目前的立體顯示技術中,能形成360度立體影像的立體顯示技術是發展的主流之一。現有的360度立體顯示技術,多半是藉由會旋轉的屏幕來達成,因此也需要能夠旋轉屏幕之機械元件,導致此類旋轉屏幕之桌面型立體顯示技術之製作成本提高,同時在運作時也會產生較多噪音與震動。另一方面,屏幕旋轉時所掃過的空間不能有物體阻擋,因此屏幕的旋轉也會使使用者無法直接觸碰顯示在上述空間中的立體影像,進而導致使用者無法有更直覺的使用經驗。因此,需要一種可以提供廣視角(例 如是360度)及更佳互動效果的立體顯示裝置。 In the current stereoscopic display technology, stereoscopic display technology capable of forming a 360-degree stereoscopic image is one of the mainstream developments. The existing 360-degree stereo display technology is mostly achieved by rotating the screen, so mechanical components capable of rotating the screen are also required, resulting in an increase in the production cost of the desktop stereoscopic display technology of such a rotating screen, and also during operation. It will produce more noise and vibration. On the other hand, the space swept during the rotation of the screen cannot be blocked by objects, so the rotation of the screen also prevents the user from directly touching the stereoscopic image displayed in the above space, thereby preventing the user from having more intuitive experience. . Therefore, there is a need for a wide viewing angle (example Such as 360 degrees) and a better interactive effect of the stereo display device.

本發明提供一種顯示裝置,其可以提供浮空的影像。 The present invention provides a display device that can provide an image that is floating.

本發明的實施例提供一種顯示裝置,包括一影像模組以及一微偏折陣列。影像模組用以提供多個影像光束,其中這些影像光束含有多個不同視角的影像資訊,微偏折陣列配置於這些影像光束的傳遞路徑上。微偏折陣列具有排成陣列的多個微偏折單元,這些微偏折單元分成彼此交錯排列的多個微偏折單元組,這些微偏折單元組分別將這些影像光束偏折至多個方向,這些方向相對於微偏折陣列的光軸在垂直於光軸的方向上的方位角的分佈範圍佔360度的至少一部分。 Embodiments of the present invention provide a display device including an image module and a micro-deflection array. The image module is configured to provide a plurality of image beams, wherein the image beams comprise image information of different viewing angles, and the micro-deflection arrays are disposed on the transmission paths of the image beams. The micro-deflection array has a plurality of micro-deflection units arranged in an array, and the micro-deflection units are divided into a plurality of micro-deflection unit groups staggered with each other, and the micro-deflection unit groups respectively deflect the image beams into multiple directions The distribution of azimuths of these directions with respect to the optical axis of the micro-deflection array in a direction perpendicular to the optical axis occupies at least a portion of 360 degrees.

在本發明的一實施例中,上述的影像模組更包括一微透鏡陣列以及一投影模組。微透鏡陣列具有多個排成陣列的微透鏡。投影模組具有多個投影單元,以分別發出這些影像光束。微透鏡陣列配置於這些影像光束的傳遞路徑上,且位於投影模組與微偏折陣列之間,這些微透鏡將不同的這些影像光束分別導引至不同的這些微偏折單元組。 In an embodiment of the invention, the image module further includes a microlens array and a projection module. The microlens array has a plurality of microlenses arranged in an array. The projection module has a plurality of projection units to respectively emit the image beams. The microlens array is disposed on the transmission path of the image beams, and is located between the projection module and the micro-deflection array. The microlenses respectively guide different image beams to different micro-deflection unit groups.

在本發明的一實施例中,上述的這些微偏折單元中彼此相鄰且分別屬於不同的這些微偏折單元組者分別形成多個偏折單元。每一偏折單元具有每一微偏折單元組中的一個微偏折單元。這些影像光束中分別來自這些微透鏡的多個部分光束分別被這些 微透鏡傳遞至這些偏折單元。 In an embodiment of the present invention, the plurality of micro-deflection unit groups adjacent to each other and belonging to the different micro-deflection unit groups respectively form a plurality of deflection units. Each deflection unit has one of the micro-deflection units in each of the micro-deflection unit groups. These partial beams of light from these microlenses are respectively Microlenses are delivered to these deflection units.

在本發明的一實施例中,上述的這些投影單元與每一偏折單元中對應的這些微偏折單元的排列順序的方向相差了180度。 In an embodiment of the invention, the projection units are offset from the direction of the arrangement of the corresponding micro-deflection units in each of the deflection units by 180 degrees.

在本發明的一實施例中,上述的這些投影單元的數量等於這些微偏折單元組的數量。 In an embodiment of the invention, the number of the projection units described above is equal to the number of the micro-deflection unit groups.

在本發明的一實施例中,上述的影像模組包括一顯示元件。顯示元件具有多個顯示單元,這些顯示單元分成彼此交錯排列的多個顯示單元組,不同的這些顯示單元組分別發出不同的這些影像光束。 In an embodiment of the invention, the image module includes a display element. The display element has a plurality of display units which are divided into a plurality of display unit groups which are staggered with each other, and the different display unit groups respectively emit different image light beams.

在本發明的一實施例中,上述的這些顯示單元組分別與這些微偏折單元組對應。每一顯示單元組中的這些顯示單元分別與對應的一微偏折單元組中的這些微偏折單元對應。這些影像光束中來自每一顯示單元的部分光束準直地傳遞至對應的微偏折單元。 In an embodiment of the invention, the display unit groups described above respectively correspond to the micro-deflection unit groups. The display units in each display unit group respectively correspond to the micro-deflection units in the corresponding one of the micro-deflection unit groups. A portion of the light beams from each of the display beams are collimated to the corresponding micro-deflection unit.

在本發明的一實施例中,上述的這些微偏折單元中彼此相鄰且分別屬於不同的這些微偏折單元組者分別形成多個偏折單元。每一偏折單元具有每一微偏折單元組中的一個微偏折單元。 In an embodiment of the present invention, the plurality of micro-deflection unit groups adjacent to each other and belonging to the different micro-deflection unit groups respectively form a plurality of deflection units. Each deflection unit has one of the micro-deflection units in each of the micro-deflection unit groups.

在本發明的一實施例中,上述的顯示單元為顯示元件的一畫素或一次畫素。 In an embodiment of the invention, the display unit is a pixel or a single pixel of the display element.

在本發明的一實施例中,上述的顯示模組更包括一準直光源,其準直地發出一照明光束至顯示元件,且這些顯示單元組分別將準直光束轉換成這些影像光束。 In an embodiment of the invention, the display module further includes a collimated light source that collimates an illumination beam to the display element, and the display unit groups respectively convert the collimated beam into the image beam.

在本發明的一實施例中,上述的準直光源是一準直背光板,其覆蓋全部的這些顯示單元。 In an embodiment of the invention, the collimated light source is a collimated backlight that covers all of the display units.

在本發明的一實施例中,上述的這些顯示單元組各具有的部分這些顯示單元的數目相同。 In an embodiment of the invention, the display unit groups described above each have the same number of portions of the display units.

在本發明的一實施例中,上述的準直光源包括一光源以及一準直透鏡。光源用以發出一發散光束,準直透鏡將發散光束會聚成準直的照明光束。 In an embodiment of the invention, the collimated light source comprises a light source and a collimating lens. The light source is used to emit a divergent beam, and the collimating lens converges the divergent beam into a collimated illumination beam.

在本發明的一實施例中,上述的光源為點光源。點光源實質上配置於準直透鏡的焦點位置。 In an embodiment of the invention, the light source is a point source. The point source is disposed substantially at a focus position of the collimating lens.

基於上述,本發明的實施例中所提供的顯示裝置可以藉由影像模組所提供的影像光束,再搭配配置於影像光束的微偏折陣列來提供影像。這些影像可以根據不同方向提供不同的立體影像,也就是可以讓使用者可以看到浮空的立體影像。 Based on the above, the display device provided in the embodiment of the present invention can provide an image by using an image beam provided by the image module and a micro-deflection array disposed on the image beam. These images can provide different stereoscopic images according to different directions, that is, the user can see the floating stereoscopic images.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

α、β‧‧‧發散角 α, β‧‧‧ divergence angle

I1‧‧‧光軸 I1‧‧‧ optical axis

s1~s16‧‧‧標示 S1~s16‧‧‧ mark

50‧‧‧人眼 50‧‧‧ human eyes

100A、100B、100C、500、700‧‧‧顯示裝置 100A, 100B, 100C, 500, 700‧‧‧ display devices

200、600‧‧‧影像模組 200, 600‧‧‧ image module

201‧‧‧影像光束 201‧‧‧Image beam

203‧‧‧扇形光束 203‧‧‧fan beam

210‧‧‧微透鏡陣列 210‧‧‧Microlens array

212‧‧‧微透鏡 212‧‧‧Microlens

220‧‧‧投影模組 220‧‧‧Projection Module

222‧‧‧投影單元 222‧‧‧projection unit

300、300A、300B‧‧‧微偏折陣列 300, 300A, 300B‧‧‧ micro-fold array

310‧‧‧微偏折單元 310‧‧‧Micro-folding unit

k1~k16‧‧‧微偏折單元組 K1~k16‧‧‧Micro-deflection unit group

330‧‧‧偏折單元 330‧‧‧ deflecting unit

400A、400B‧‧‧透鏡 400A, 400B‧‧ lens

600‧‧‧影像模組 600‧‧‧Image Module

610‧‧‧顯示元件 610‧‧‧Display components

611‧‧‧部分光束 611‧‧‧Partial beam

612‧‧‧顯示單元 612‧‧‧Display unit

620‧‧‧準直光源 620‧‧‧ Collimated light source

621‧‧‧準直光束 621‧‧‧ Collimated beam

622‧‧‧光源 622‧‧‧Light source

623‧‧‧發散光束 623‧‧‧Diffuse beam

624‧‧‧準直透鏡 624‧‧‧ Collimating lens

630‧‧‧感測模組 630‧‧‧Sensing module

640‧‧‧處理單元 640‧‧‧Processing unit

圖1是本發明的第一實施例中顯示裝置的示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view of a display device in a first embodiment of the present invention.

圖2是本發明的第一實施例中顯示裝置的局部立體示意圖及局部俯視圖。 2 is a partial perspective view and a partial plan view of a display device in a first embodiment of the present invention.

圖3是本發明的實施例中顯示裝置由為微偏折陣列的光軸上 往微偏折陣列方向觀察的光路示意圖。 Figure 3 is a view showing the display device of the embodiment of the present invention on the optical axis of the micro-deflection array Schematic diagram of the optical path viewed in the direction of the micro-deflection array.

圖4是本發明的第一實施例中顯示裝置由側邊觀察的光路示意圖。 Fig. 4 is a view showing the optical path of the display device viewed from the side in the first embodiment of the present invention.

圖5是本發明的一實施例中微偏折陣列的示意圖。 Figure 5 is a schematic illustration of a micro-deflection array in accordance with one embodiment of the present invention.

圖6A是本發明的第二實施例中顯示裝置的示意圖。 Fig. 6A is a schematic view of a display device in a second embodiment of the present invention.

圖6B是本發明的另一實施例中顯示裝置的示意圖。 Fig. 6B is a schematic view of a display device in another embodiment of the present invention.

圖7是本發明的第三實施例中顯示裝置的示意圖。 Figure 7 is a schematic view of a display device in a third embodiment of the present invention.

圖8是本發明的第三實施例中偏折單元的俯視圖。 Figure 8 is a plan view of a deflection unit in a third embodiment of the present invention.

圖9是本發明的第三實施例中部分顯示裝置的示意圖。 Figure 9 is a schematic illustration of a portion of a display device in a third embodiment of the present invention.

圖10是本發明的第四實施例中顯示裝置的示意圖。 Figure 10 is a schematic view of a display device in a fourth embodiment of the present invention.

圖1是本發明的第一實施例中顯示裝置的示意圖。圖2是本發明的第一實施例中顯示裝置的局部立體示意圖及局部俯視圖。圖3是本發明的實施例中顯示裝置由微偏折陣列的光軸上往微偏折陣列方向觀察的光路示意圖。圖4是本發明的第一實施例中顯示裝置由側邊觀察的光路示意圖。圖5是本發明的一實施例中微偏折陣列的示意圖。需要說明的是,為了能夠清楚說明本發明的實施例中顯示裝置100A的細節,圖1及圖2所繪示的圖形有放大部分構件,其所繪示之大小及位置並非用於限定本發明的構件之大小及位置。請參照圖1至5,在本實施例中,顯示裝置100A包括一影像模組200以及一微偏折陣列300。影像模組200可用以 提供多個影像光束201,其中這些影像光束201含有多個不同視角的影像資訊,且影像模組200包括一微透鏡陣列210及投影模組220。微透鏡陣列210具有多個排成陣列的微透鏡212。投影模組220具有多個投影單元222,且這些投影單元222分別發出這些影像光束201。微偏折陣列300配置於這些影像光束201的傳遞路徑上。微偏折陣列300具有排成陣列的多個微偏折單元310,這些微偏折單元310分成彼此交錯排列的多個微偏折單元組k1至k16(請參照圖5)。具體而言,請參照圖5,在本實施例中,這些微偏折單元310(例如這邊繪示為12乘12之陣列,也就是144個)中,其上標示有k1的所有這些微偏折單元310組成一微偏折單元組k1,其上標示有k2的所有這些微偏折單元310組成一微偏折單元組k2,以此類推,在本實施例中共組成十六個微偏折單元組k1~k16。微透鏡陣列210位於投影模組220與微偏折陣列300之間,這些微透鏡212將不同的這些影像光束201分別導引至不同的這些微偏折單元組k1~k16,這些微偏折單元組k1~k16分別將這些影像光束201偏折至多個方向,這些方向相對於微偏折陣列300的光軸I1在垂直於光軸I1的方向上的方位角的分佈範圍佔360度的至少一部分。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view of a display device in a first embodiment of the present invention. 2 is a partial perspective view and a partial plan view of a display device in a first embodiment of the present invention. 3 is a schematic view of an optical path of the display device viewed from the optical axis of the micro-deflection array toward the micro-deflection array in the embodiment of the present invention. Fig. 4 is a view showing the optical path of the display device viewed from the side in the first embodiment of the present invention. Figure 5 is a schematic illustration of a micro-deflection array in accordance with one embodiment of the present invention. It should be noted that, in order to clearly explain the details of the display device 100A in the embodiment of the present invention, the figures illustrated in FIGS. 1 and 2 have enlarged components, and the sizes and positions thereof are not intended to limit the present invention. The size and location of the components. Referring to FIGS. 1 to 5 , in the embodiment, the display device 100A includes an image module 200 and a micro-deflection array 300 . The image module 200 can be used A plurality of image beams 201 are provided, wherein the image beams 201 include a plurality of image information of different viewing angles, and the image module 200 includes a microlens array 210 and a projection module 220. The microlens array 210 has a plurality of microlenses 212 arranged in an array. The projection module 220 has a plurality of projection units 222, and the projection units 222 respectively emit the image beams 201. The micro-deflection array 300 is disposed on the transmission path of the image beam 201. The micro-deflection array 300 has a plurality of micro-deflection units 310 arranged in an array, and these micro-deflection units 310 are divided into a plurality of micro-deflection unit groups k1 to k16 which are alternately arranged with each other (please refer to FIG. 5). Specifically, referring to FIG. 5, in the embodiment, the micro-deflection units 310 (for example, an array of 12 by 12, that is, 144) are marked with all the slight deviations of k1. The folding unit 310 constitutes a micro-deflection unit group k1, and all of the micro-deflection units 310 on which k2 is marked form a micro-deflection unit group k2, and so on. In this embodiment, a total of sixteen micro-deflections are formed. Unit group k1~k16. The microlens array 210 is located between the projection module 220 and the micro-deflection array 300. The microlenses 212 respectively guide the different image beams 201 to different micro-deflection unit groups k1~k16, and the micro-deflection units. The groups k1 to k16 respectively deflect the image beams 201 into a plurality of directions, and the distribution of the azimuths in the direction perpendicular to the optical axis I1 with respect to the optical axis I1 of the micro-deflection array 300 accounts for at least a part of 360 degrees. .

請參照圖1至圖4,本發明的第一實施例中,這些微偏折單元組320分別將這些影像光束201偏折至多個方向,這些方向排列於環繞該微偏折陣列300的光軸I1及與光軸I1平行的軸向的方向上。具體來說,在本實施例中,微偏折單元組320分別將這 些影像光束201偏折成例如是多個扇形光束203,而這些扇形光束203例如沿著這些方向射出。因此,在本實施例中,一使用者在觀看顯示裝置100A時,會根據使用者的位置的不同(也就是相對於光軸I1的方向的不同)而接受到不同的扇形光束203,藉以提供使用者一立體影像。更具體來說,在本實施例中,微偏折單元組320分別偏折成例如是多個扇形光束203,這些扇形光束203各自在平行於光軸I1的其中一平面上具有大發散角β,且這些扇形光束203在垂直於光軸I1的其中一平面上具有小發散角α。因此,在本實施例中,顯示裝置100A可以提供一良好的立體影像外,同時又可以在平行於光軸I1的方向上具有大視角。也就是說,本發明的第一實施例中的顯示裝置100A可以提供一個良好的浮空立體影像。 Referring to FIG. 1 to FIG. 4, in the first embodiment of the present invention, the micro-deflection unit groups 320 respectively deflect the image beams 201 into a plurality of directions, and the directions are arranged around the optical axis surrounding the micro-deflection array 300. I1 and the axial direction parallel to the optical axis I1. Specifically, in the embodiment, the micro-deflection unit group 320 respectively The image beams 201 are deflected into, for example, a plurality of fan beams 203, and the fan beams 203 are emitted, for example, along these directions. Therefore, in the present embodiment, when viewing the display device 100A, a user receives different fan beams 203 according to different positions of the user (that is, different directions with respect to the optical axis I1), thereby providing The user has a stereo image. More specifically, in the present embodiment, the micro-deflection unit groups 320 are respectively deflected into, for example, a plurality of fan-shaped light beams 203 each having a large divergence angle β on one of the planes parallel to the optical axis I1. And these fan-shaped beams 203 have a small divergence angle α on one of the planes perpendicular to the optical axis I1. Therefore, in the present embodiment, the display device 100A can provide a good stereoscopic image while having a large viewing angle in a direction parallel to the optical axis I1. That is, the display device 100A in the first embodiment of the present invention can provide a good floating stereoscopic image.

請參照圖3,在本發明的第一實施例中,這些扇形光束203投射的方向環繞微偏折陣列300的光軸I1及與光軸I1平行的軸向排列成一圓環狀,但不限於此。在其他實施例中,這些扇形光束203投射的方向也可以環繞微偏折陣列300的光軸I1及與光軸I1平行的軸向排列成一圓環狀的一部分。更具體來說,在本發明的第一實施例中,這些扇形光束203投射的方向環繞偏折陣列300的光軸I1及與光軸I1平行的軸向作360度的排列,但不限於此。在其他實施例中這些扇形光束203投射的方向更可以環繞偏折陣列300的光軸I1及與光軸I1平行的軸向排列成90度、120度、180度或其他適當角度。 Referring to FIG. 3, in the first embodiment of the present invention, the direction in which the fan beams 203 are projected is arranged around the optical axis I1 of the micro-deflection array 300 and the axial direction parallel to the optical axis I1, but is not limited thereto. this. In other embodiments, the direction in which the fan beams 203 are projected may also be arranged in a ring-shaped portion around the optical axis I1 of the micro-deflection array 300 and the axial direction parallel to the optical axis I1. More specifically, in the first embodiment of the present invention, the directions in which the fan beams 203 are projected are arranged around the optical axis I1 of the deflecting array 300 and the axial direction parallel to the optical axis I1, but are not limited thereto. . In other embodiments, the direction in which the fan beams 203 are projected may be arranged at 90 degrees, 120 degrees, 180 degrees, or other suitable angle around the optical axis I1 of the deflecting array 300 and the axial direction parallel to the optical axis I1.

請參照圖5,需要說明的是,圖5所繪示的內容是舉例說明本發明的實施例中微偏折陣列300的排列方式,並非用於限定各微偏折單元310的形狀、數量以及這些微偏折單元310的排列方式。請參照圖1及圖5,在本發明的第一實施例中,這些微偏折單元310中彼此相鄰且分別屬於不同的這些微偏折單元組k1~k16者分別形成多個偏折單元330,每一偏折單元330具有每一微偏折單元組k1~k16中的一個微偏折單元310,這些影像光束201中分別來自這些微透鏡212的多個部分光束分別被這些微透鏡212傳遞至這些偏折單元330。也就是說,所有的投影單元222所發出的影像光束201中,來自任一個微透鏡212的一個部分光束傳遞至一個對應的偏折單元330。 Please refer to FIG. 5 . It should be noted that the content illustrated in FIG. 5 is an example of the arrangement of the micro-deflection array 300 in the embodiment of the present invention, and is not intended to limit the shape and number of each micro-deflection unit 310 . The arrangement of these micro-deflection units 310. Referring to FIG. 1 and FIG. 5, in the first embodiment of the present invention, each of the micro-deflection units 310 adjacent to each other and belonging to the different micro-deflection unit groups k1 to k16 respectively form a plurality of deflection units. 330, each deflection unit 330 has one micro-deflection unit 310 of each of the micro-deflection unit groups k1 - k16, and a plurality of partial light beams from the image light beams 201 from the micro-lenses 212 are respectively received by the micro-lenses 212 Passed to these deflection units 330. That is to say, among the image light beams 201 emitted by all the projection units 222, a partial light beam from any one of the microlenses 212 is transmitted to a corresponding deflection unit 330.

詳細來說,請參照圖5,在本實施例中,這些微偏折單元310形成例如是十六個微偏折單元組k1~k16(也就是這些微偏折單元310根據圖5所標示的編號分為微偏折單元組k1至k16),而偏折單元330具有每一微偏折單元組k1至k16的一個微偏折單元310。在本實施例中,這些微偏折單元310例如各是一折射式透鏡、一菲涅耳透鏡、一繞射光柵或一繞射光學元件,但不限於此。 In detail, referring to FIG. 5 , in the embodiment, the micro-deflection units 310 form, for example, sixteen micro-deflection unit groups k1 - k16 (that is, the micro-deflection units 310 are labeled according to FIG. 5 . The numbers are divided into micro-deflection unit groups k1 to k16), and the deflection unit 330 has one micro-deflection unit 310 of each of the micro-deflection unit groups k1 to k16. In the present embodiment, the micro-deflection units 310 are each, for example, a refractive lens, a Fresnel lens, a diffraction grating or a diffractive optical element, but are not limited thereto.

另一方面,需要特別說明的是,圖2所繪示的微偏折陣列300及投影模組220中各微偏折單元310及各投影模組220根據各自標示的標號存在有對應關係,也就例如是標示有s1的投影單元222所發出的影像光束201在透過微透鏡陣列210後會到達標示有k1微偏折單元310,以此類推。請參照圖2中所繪示之微 偏折陣列300及投影模組220的俯視圖,在本發明的第一實施例中,這些投影單元222的數量等於這些微偏折單元組k1~k16的數量(這邊以十六個排成四乘四矩陣為例),且這些投影單元222與每一偏折單元330中對應的這些微偏折單元310的排列順序的方向相差了180度。也就是說,請參照圖2,在本實施例中,以自微偏折陣列300往投影模組220的方向俯視來看,當一偏折單元330中由左至右、由上至下依序排列來自微偏折單元組k1至k16的十六個微偏折單元310,則投影模組220中會由右至左、由下至上依序排列標示有s1至s16的十六個投影單元222。進一步來說,請參照圖1、圖2及圖5,在本實施例中,標示有s1的投影單元222所發出的影像光束201透過微透鏡陣列210後可以到達微偏折單元組k1的多個微偏折單元310,以此類推,另外十五個投影單元222也可以透過微透鏡陣列210各自到達微偏折單元組k2~k16。 On the other hand, it should be particularly noted that each of the micro-deflection unit 310 and each of the projection modules 220 in the micro-deflection array 300 and the projection module 220 in FIG. 2 has a corresponding relationship according to the respective labeled labels. For example, the image beam 201 emitted by the projection unit 222 labeled with s1 will reach the k1 micro-deflection unit 310 after passing through the microlens array 210, and so on. Please refer to the micro as shown in Figure 2. A top view of the deflecting array 300 and the projection module 220. In the first embodiment of the present invention, the number of the projection units 222 is equal to the number of the micro-deflection unit groups k1 to k16 (the six sides are arranged in sixteen Taking the four matrix as an example, and the direction in which the projection units 222 and the corresponding micro-deflection units 310 in each of the deflection units 330 are arranged is different by 180 degrees. In other words, referring to FIG. 2, in the embodiment, the direction of the deflection module 300 is from the left to the right and from top to bottom. Sixteen micro-deflection units 310 from the micro-deflection unit groups k1 to k16 are sequentially arranged, and sixteen projection units marked with s1 to s16 are sequentially arranged from right to left and from bottom to top in the projection module 220. 222. Further, referring to FIG. 1 , FIG. 2 and FIG. 5 , in the embodiment, the image beam 201 emitted by the projection unit 222 marked with s1 can pass through the microlens array 210 and can reach the micro-deflection unit group k1. The micro-deflection unit 310, and so on, the other fifteen projection units 222 can also pass through the microlens array 210 to reach the micro-deflection unit groups k2 to k16.

由上述可知,本發明的第一實施例中,投影模組220中的一投影單元222所發出的影像光束201穿透微透鏡陣列210後可以到達微偏折單元組k1~k16的其中之一,而所述微偏折單元組k1~k16再將所述影像光束201偏折往同一方向。因此,在本實施例中,多個投影單元222搭配這些微偏折單元組k1~k16可以使顯示裝置100A在環繞微偏折陣列300的方向上各自具有來自不同投影單元222的影像光束201,進而形成良好的立體影像。 As can be seen from the above, in the first embodiment of the present invention, the image beam 201 emitted by a projection unit 222 in the projection module 220 can penetrate the microlens array 210 to reach one of the micro deflection unit groups k1 to k16. And the micro-deflection unit groups k1~k16 further deflect the image beam 201 in the same direction. Therefore, in the embodiment, the plurality of projection units 222 combined with the micro-deflection unit groups k1 - k16 can cause the display device 100A to have the image light beams 201 from the different projection units 222 in the direction surrounding the micro-deflection array 300, Further, a good stereoscopic image is formed.

更具體來說,在本發明的一實施例中,微透鏡陣列210及微偏折陣列300之間的距離大於或小於每一微透鏡212的焦 距。詳細來說,由於投影單元222(例如是投影機)的出光端(例如是投影鏡頭)例如是一圓形,其具有一直徑,因此所述出光端所發出的影像光束201之垂直其光軸的截面也會具有一照射面積,而藉由微透鏡陣列210及微偏折陣列300之間的距離大於或小於每一微透鏡212的焦距,可以使影像光束201到達微偏折陣列300時的照射面積與微偏折單元310的尺寸接近,進而充分應用微偏折陣列300。再進一步來說,在本實施例中,由於出光端所發出的影像光束201之垂直其光軸的截面會具有一寬度,因此藉由微透鏡陣列210及微偏折陣列300之間的距離大於或小於每一微透鏡212的焦距,也可以對出光端所發出的影像光束201的寬度作適當地修正。 More specifically, in an embodiment of the invention, the distance between the microlens array 210 and the micro-deflection array 300 is greater or smaller than the focal length of each microlens 212. distance. In detail, since the light-emitting end (for example, a projection lens) of the projection unit 222 (for example, a projector) is, for example, a circle having a diameter, the optical beam 201 emitted by the light-emitting end is perpendicular to its optical axis. The cross-section also has an illumination area, and the distance between the microlens array 210 and the micro-deflection array 300 is greater or smaller than the focal length of each microlens 212, so that the image beam 201 can reach the micro-deflection array 300. The irradiation area is close to the size of the micro-deflection unit 310, and the micro-deflection array 300 is sufficiently applied. Further, in this embodiment, since the cross section of the optical beam 201 emitted by the light-emitting end perpendicular to the optical axis has a width, the distance between the microlens array 210 and the micro-deflection array 300 is greater than Or less than the focal length of each microlens 212, the width of the image beam 201 emitted by the light exiting end may be appropriately corrected.

圖6A是本發明的第二實施例中顯示裝置的示意圖。請參照圖6A,在本發明的第二實施例中,顯示裝置100B類似於上述第一實施例的顯示裝置100A,惟其不同之處在於,顯示裝置100B更包括一透鏡400A。透鏡400A配置於這些影像光束201的傳遞路徑上,並位於微透鏡陣列210與投影模組220之間。請參照圖5及圖6A,在本實施例中,投影模組200與透鏡400A的距離等於透鏡400A的焦距,因此影像光束201被投影模組200發出再穿透透鏡400A後可以成為平行的影像光束201,進而使偏折單元330的週期和微透鏡陣列210的週期具有一致尺寸,且每一微偏折單元組中的微偏折單元因為光入射角度相同,故彼此也完全相同即可。 Fig. 6A is a schematic view of a display device in a second embodiment of the present invention. Referring to FIG. 6A, in the second embodiment of the present invention, the display device 100B is similar to the display device 100A of the first embodiment described above, except that the display device 100B further includes a lens 400A. The lens 400A is disposed on the transmission path of the image beam 201 and is located between the microlens array 210 and the projection module 220. Referring to FIG. 5 and FIG. 6A , in the embodiment, the distance between the projection module 200 and the lens 400A is equal to the focal length of the lens 400A. Therefore, the image beam 201 can be a parallel image after being transmitted through the lens 400A by the projection module 200. The light beam 201, in turn, has a uniform size of the period of the deflection unit 330 and the period of the microlens array 210, and the micro-deflection units in each of the micro-deflection unit groups are identical to each other because the light incident angles are the same.

圖6B是本發明的另一實施例中顯示裝置的示意圖。請參照圖6A,在本發明的第二實施例中,透鏡400A與投影模組220的距離例如大於透鏡400A的焦距,但不限於此。請參照圖6B,在本發明的另一實施例中,更可以視光源的差異或微透鏡陣列210的尺寸差異來調整使透鏡400B與投影模組220的距離大於透鏡400B的焦距。更進一步來說,在本發明的一實施例中,透鏡400B與投影模組220的距離大於透鏡400B的焦距,進而使影像光束201穿過透鏡400B後開始匯聚,偏折單元330的週期需較微透鏡陣列210的週期略小,且每一微偏折單元組中的微偏折單元根據影像光束201的入射角逐漸變化以達最佳效果,但不限於此。在其他實施例中,如影像光束201的入射角度變化小,每一微偏折單元組300B中的微偏折單元310也可採相同設計,以簡化製作。 Fig. 6B is a schematic view of a display device in another embodiment of the present invention. Referring to FIG. 6A, in the second embodiment of the present invention, the distance between the lens 400A and the projection module 220 is, for example, greater than the focal length of the lens 400A, but is not limited thereto. Referring to FIG. 6B, in another embodiment of the present invention, the distance between the lens 400B and the projection module 220 may be adjusted to be larger than the focal length of the lens 400B depending on the difference of the light sources or the difference in the size of the microlens array 210. Further, in an embodiment of the present invention, the distance between the lens 400B and the projection module 220 is greater than the focal length of the lens 400B, and then the image beam 201 is concentrated after passing through the lens 400B, and the period of the deflection unit 330 needs to be compared. The period of the microlens array 210 is slightly smaller, and the micro-deflection unit in each micro-deflection unit group gradually changes according to the incident angle of the image beam 201 for the best effect, but is not limited thereto. In other embodiments, as the incident angle of the image beam 201 changes little, the micro-deflection unit 310 in each of the micro-deflection unit groups 300B can also adopt the same design to simplify the fabrication.

圖7是本發明的第三實施例中顯示裝置的示意圖。圖8是本發明的第三實施例中偏折單元的俯視圖。圖9是本發明的第三實施例中部分顯示裝置的示意圖。特別要說明的是,圖7、圖8及圖9所繪示的實施例中的微偏折陣列300與上述實施例中的微偏折陣列300類似,惟不同之處在於此處不繪示標號而以圖像化的符號來說明偏折單元330中這些微偏折單元310的偏折方向之分佈。更具體來說,請參照圖9,在本實施例中光束經過微偏折單元310後會往各自依照微偏折單元上所繪示的弧線的垂直方向偏折成多個扇形光束203,其中所繪的弧線代表折射元件的等高線或繞射元件的微結構紋路。請參照圖7、圖8,在本發明的第三實施 例中,顯示裝置500類似於上述實施例中的顯示裝置100A,惟其不同之處在於在本實施例中,影像模組600不同於影像模組200,影像模組600包括一顯示元件610以及一準直光源620,準直光源620準直地發出一準直光束621至顯示元件610。請參照圖5、圖7至圖9,顯示元件610具有多個顯示單元612。這些顯示單元612分成彼此交錯排列的多個顯示單元組,這些顯示單元組分別將準直光束621轉換成影像光束201,且這些顯示單元組分別與這些微偏折單元組k1~k16對應,每一顯示單元組中的這些顯示單元612分別與對應的一微偏折單元組k1~k16中的這些微偏折單元310對應。具體來說,請參照圖5、圖7和圖9,在本實施例中,顯示單元組的排列方式例如相同於圖5所繪示之微偏折單元組k1~k16的排列方式,而不同的這些顯示單元組分別發出不同的該些影像光束201,且這些影像光束201中來自每一顯示單元612的部分光束611準直地傳遞至對應的微偏折單元310。也就是說,請參照圖5、圖7和圖9,在本實施例中,其中一顯示單元組中的各顯示單元612的排列方式相同於圖5所繪示之標示k1之微偏折單元310的排列方式,且所述顯示單元組根據對應於一個方向的影像來發出影像光束201,以此類推,其他十五組顯示單元組各自根據標示k2~k16的其中之一的微偏折單元310的排列方式排列,並各自根據對應於一個方向的影像來發出影像光束201。更具體來說,本發明的第三實施例中,穿過顯示單元組的部分光束611會準直的傳遞到一微偏折單元組k1~k16,而所述微偏折單元組k1~k16會將所 述部分光束611傳遞至一方向。因此,多個顯示單元組與多個微偏折單元組k1~k16的搭配可以使多個不同的影像光束201的部分光束611傳遞至多個不同的方向,而這些方向相對於光軸I1在垂直於光軸I1的方向上的方位角排列於環繞該微偏折陣列300的光軸I1的方向上,進而提供良好的立體影像。在本實施例中,這些顯示單元組各具有的顯示單元612的數目相同。 Figure 7 is a schematic view of a display device in a third embodiment of the present invention. Figure 8 is a plan view of a deflection unit in a third embodiment of the present invention. Figure 9 is a schematic illustration of a portion of a display device in a third embodiment of the present invention. It should be noted that the micro-deflection array 300 in the embodiment illustrated in FIG. 7 , FIG. 8 and FIG. 9 is similar to the micro-deflection array 300 in the above embodiment, except that the difference is not shown here. The distribution of the deflection directions of the micro-deflection units 310 in the deflection unit 330 is illustrated by the reference numerals. More specifically, please refer to FIG. 9. In this embodiment, after the light beam passes through the micro-deflection unit 310, the light beams are deflected into a plurality of fan-shaped light beams 203 according to the vertical direction of the arcs drawn on the micro-deflection unit. The drawn arc represents the contour of the refractive element or the microstructure of the diffractive element. Please refer to FIG. 7 and FIG. 8 for the third embodiment of the present invention. For example, the display device 500 is similar to the display device 100A in the above embodiment, except that in the embodiment, the image module 600 is different from the image module 200, and the image module 600 includes a display element 610 and a The collimated light source 620 collimates a collimated beam 621 to the display element 610. Referring to FIG. 5 and FIG. 7 to FIG. 9 , the display element 610 has a plurality of display units 612 . The display units 612 are divided into a plurality of display unit groups staggered with each other, and the display unit groups respectively convert the collimated light beams 621 into image light beams 201, and the display unit groups respectively correspond to the micro-deflection unit groups k1 to k16, each of which The display units 612 in a display unit group respectively correspond to the micro-deflection units 310 of the corresponding one of the micro-deflection unit groups k1 to k16. Specifically, please refer to FIG. 5, FIG. 7, and FIG. 9. In this embodiment, the arrangement of the display unit groups is the same as the arrangement of the micro-deflection unit groups k1 to k16 illustrated in FIG. 5, and different. The display unit groups respectively emit different image beams 201, and the partial light beams 611 from each of the display units 612 are collimated to the corresponding micro-deflection units 310. That is, referring to FIG. 5, FIG. 7, and FIG. 9, in this embodiment, each display unit 612 in one display unit group is arranged in the same manner as the micro-deflection unit labeled k1 shown in FIG. The arrangement of the 310, and the display unit group emits the image light beam 201 according to the image corresponding to one direction, and so on, and the other fifteen groups of display unit groups each according to the micro-deflection unit of one of the marks k2 to k16 The arrangement of the arrays 310 is performed, and each of the image beams 201 is emitted based on an image corresponding to one direction. More specifically, in the third embodiment of the present invention, the partial light beam 611 passing through the display unit group is collimated and transmitted to a micro-deflection unit group k1 to k16, and the micro-deflection unit group k1 to k16 Clubhouse The partial beam 611 is transmitted to a direction. Therefore, the combination of the plurality of display unit groups and the plurality of micro-deflection unit groups k1 to k16 can transmit the partial light beams 611 of the plurality of different image beams 201 to a plurality of different directions, and the directions are vertical with respect to the optical axis I1. The azimuth angle in the direction of the optical axis I1 is arranged in a direction surrounding the optical axis I1 of the micro-deflection array 300, thereby providing a good stereoscopic image. In the present embodiment, these display unit groups each have the same number of display units 612.

具體來說,請參照圖5、圖7及圖8,在本實施例中,這些微偏折單元310中彼此相鄰且分別屬於不同的微偏折單元組k1~k16者分別形成多個偏折單元330,每一偏折單元330具有每一微偏折單元組k1~k16中的一個微偏折單元310,每一微偏折單元組k1~k16中的這些微偏折單元310彼此相同,且每一偏折單元330中的這些微偏折單元310彼此不相同,但不限於此。在其他實施例中,更可以視需求將每一微偏折單元組k1~k16中配置彼此不同的這些微偏折單元310,且每一偏折單元330中的部份這些微偏折單元310可以彼此相同。 Specifically, referring to FIG. 5, FIG. 7, and FIG. 8, in the embodiment, the micro-deflection units 310 are adjacent to each other and belong to different micro-deflection unit groups k1 to k16, respectively, forming a plurality of partial polarizations. a folding unit 330, each of the deflection units 330 has one of the micro-deflection units 3101 to k16, and the micro-deflection units 310 of each of the micro-deflection unit groups k1 to k16 are identical to each other And the micro-deflection units 310 in each of the deflection units 330 are different from each other, but are not limited thereto. In other embodiments, the micro-deflection units 310 different from each other may be disposed in each of the micro-deflection unit groups k1 - k16 as needed, and some of the micro-deflection units 310 in each of the deflection units 330 Can be the same as each other.

更具體來說,請參照圖7及圖9,在本實施例中,顯示單元612例如是顯示元件610的次畫素,也就例如是紅色次畫素、綠色次畫素或藍色次畫素,且各顯示單元組中的這些紅色次畫素、綠色次畫素及藍色次畫素的數量三者相近,而這些紅色次畫素、綠色次畫素及藍色次畫素以一順序輪流的排列在各顯示單元組中。也就是說,每一顯示單元組的這些次畫素所轉換出的影像光束201可以組成一個立體影像投射往一方向,而可以讓一位於 所述方向的使用者看到。在其他實施例中,顯示單元612也可以是顯示元件610的畫素,其包括多個次畫素。 More specifically, referring to FIG. 7 and FIG. 9 , in the embodiment, the display unit 612 is, for example, a sub-pixel of the display element 610 , that is, for example, a red sub-pixel, a green sub-pixel, or a blue sub-picture. And the number of these red sub-pixels, green sub-pixels, and blue sub-pixels in each display unit group are similar, and these red sub-pixels, green sub-pixels, and blue sub-pixels are one The order is alternately arranged in each display unit group. That is to say, the image beams 201 converted by the sub-pixels of each display unit group can form a stereo image projected in one direction, and one can be located The user in the direction sees. In other embodiments, display unit 612 can also be a pixel of display element 610 that includes a plurality of sub-pixels.

請參照圖7,在本實施例中,準直光源620例如是一準直背光板,其覆蓋全部的這些顯示單元612。 Referring to FIG. 7 , in the embodiment, the collimated light source 620 is, for example, a collimated backlight that covers all of the display units 612 .

另一方面,請參照圖7,在本實施例中,顯示裝置500更包括一感測模組630以及一處理單元640。感測模組630用以感測一使用者在顯示裝置500旁的影像,處理單元640根據感測模組630所感測到的影像判斷出使用者的動作,並輸出對應所述動作的一指令訊號至顯示元件610。具體來說,在本實施例中,一使用者在顯示裝置500旁做出一特定動作(例如是揮手)感測模組630例如可以感測一動態影像,而處理單元640根據此動態影像判斷上述使用者例如是揮手的動作、速度及方向,再輸出一指令訊號給顯示元件610來改變其輸出的影像光束201。也就是說,在本實施例中,使用者可以在不接觸顯示裝置500的前提下,直接藉由肢體的動作來操控顯示裝置500。 On the other hand, referring to FIG. 7 , in the embodiment, the display device 500 further includes a sensing module 630 and a processing unit 640 . The sensing module 630 is configured to sense an image of the user next to the display device 500. The processing unit 640 determines the motion of the user according to the image sensed by the sensing module 630, and outputs an instruction corresponding to the action. Signal to display element 610. Specifically, in this embodiment, a user performing a specific action (for example, waving) by the display device 500, for example, the sensing module 630 can sense a moving image, for example, and the processing unit 640 determines according to the moving image. The user, for example, is waving the motion, speed and direction, and then outputs a command signal to the display element 610 to change the output image beam 201. That is to say, in the present embodiment, the user can directly manipulate the display device 500 by the action of the limb without contacting the display device 500.

圖10是本發明的第四實施例中顯示裝置的示意圖。請參照圖10,在本實施例中,顯示裝置700類似於上述第三實施例中的顯示裝置500,惟其不同之處在於準直光源620包括光源622以及準直透鏡624。光源622用以發出一發散光束623,準直透鏡624將發散光束623會聚成準直的準直光束621,其中光源622為點光源,實質上配置於準直透鏡624的焦點位置。更具體來說,在本實施例中,準直光源620透過準直透鏡624來將發散光束623 折射成準直光束621,再將準直光束621提供到顯示元件610。 Figure 10 is a schematic view of a display device in a fourth embodiment of the present invention. Referring to FIG. 10, in the present embodiment, the display device 700 is similar to the display device 500 in the third embodiment described above, except that the collimated light source 620 includes a light source 622 and a collimating lens 624. The light source 622 is configured to emit a diverging beam 623, and the collimating lens 624 converges the diverging beam 623 into a collimated collimated beam 621. The source 622 is a point source substantially disposed at a focus position of the collimating lens 624. More specifically, in the present embodiment, the collimated light source 620 transmits the divergent beam 623 through the collimating lens 624. The collimated beam 621 is refracted and the collimated beam 621 is provided to the display element 610.

綜上所述,本發明的實施例中所提供的顯示裝置可以藉由影像模組提供多個不同的影像光束,再搭配配置於這些影像光束的傳遞路徑上的微偏折陣列來將相關於不同影像的多個影像光束偏折到多個方向,藉以使位於不同方向上的使用者可以看到不同的立體影像。也就是使用者環繞本發明的實施例所提供的顯示裝置移動時,使用者所觀看的立體影像會隨之改變,進而得到良好的浮空立體影像效果。 In summary, the display device provided in the embodiment of the present invention can provide a plurality of different image beams by using the image module, and then cooperate with the micro-deflection array disposed on the transmission paths of the image beams to correlate Multiple image beams of different images are deflected into multiple directions, so that users in different directions can see different stereo images. That is, when the user moves around the display device provided by the embodiment of the present invention, the stereoscopic image viewed by the user changes, thereby obtaining a good floating stereoscopic image effect.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100A‧‧‧顯示裝置 100A‧‧‧ display device

200‧‧‧影像模組 200‧‧‧Image Module

201‧‧‧影像光束 201‧‧‧Image beam

210‧‧‧微透鏡陣列 210‧‧‧Microlens array

212‧‧‧微透鏡 212‧‧‧Microlens

220‧‧‧投影模組 220‧‧‧Projection Module

222‧‧‧投影單元 222‧‧‧projection unit

300‧‧‧微偏折陣列 300‧‧‧Micro-folding array

310‧‧‧微偏折單元 310‧‧‧Micro-folding unit

Claims (18)

一種顯示裝置,包括:一影像模組,用以提供多個影像光束,其中該些影像光束含有多個不同視角的影像資訊;以及一微偏折陣列,配置於該些影像光束的傳遞路徑上,該微偏折陣列具有排成陣列的多個微偏折單元,該些微偏折單元分成彼此交錯排列的多個微偏折單元組,該些微偏折單元組將該些影像光束偏折至多個方向,該些方向相對於該微偏折陣列的光軸在垂直於該光軸的方向上的方位角的分佈範圍佔360度的至少一部分。 A display device includes: an image module for providing a plurality of image beams, wherein the image beams comprise a plurality of image information of different viewing angles; and a micro-deflection array disposed on the transmission path of the image beams The micro-deflection array has a plurality of micro-deflection units arranged in an array, and the micro-deflection units are divided into a plurality of micro-deflection unit groups staggered with each other, and the micro-deflection unit groups deflect the image beams to at most The direction of the azimuthal angle of the directions relative to the optical axis of the micro-deflection array in a direction perpendicular to the optical axis occupies at least a portion of 360 degrees. 如申請專利範圍第1項所述的顯示裝置,其中該影像模組更包括:一微透鏡陣列,具有多個排成陣列的微透鏡;以及一投影模組,具有多個投影單元,以分別發出該些影像光束,其中該微透鏡陣列配置於該些影像光束的傳遞路徑上,且位於該投影模組與該微偏折陣列之間,該些微透鏡將不同的該些影像光束分別導引至不同的該些微偏折單元組。 The display device of claim 1, wherein the image module further comprises: a microlens array having a plurality of microlenses arranged in an array; and a projection module having a plurality of projection units for respectively And emitting the image beam, wherein the microlens array is disposed on the transmission path of the image beam, and is located between the projection module and the micro-deflection array, and the microlenses respectively guide different image beams To different micro-deflection unit groups. 如申請專利範圍第2項所述的顯示裝置,其中該些微偏折單元中彼此相鄰且分別屬於不同的該些微偏折單元組者分別形成多個偏折單元,每一該偏折單元具有每一該微偏折單元組中的一個微偏折單元,該些影像光束中分別來自該些微透鏡的多個部分光束分別被該些微透鏡傳遞至該些偏折單元。 The display device of claim 2, wherein the plurality of micro-deflection units adjacent to each other and belonging to the different micro-deflection unit groups respectively form a plurality of deflection units, each of the deflection units having Each of the plurality of micro-deflection units of the micro-deflection unit group, the plurality of partial light beams from the plurality of micro-lenses are respectively transmitted to the deflection units by the micro-lenses. 如申請專利範圍第3項所述的顯示裝置,其中該些投影單 元與每一該偏折單元中對應的該些微偏折單元的排列順序的方向相差了180度。 The display device of claim 3, wherein the projection sheets are The direction of the arrangement order of the corresponding micro-deflection units in each of the deflection units is different by 180 degrees. 如申請專利範圍第2項所述的顯示裝置,其中該些投影單元的數量等於該些微偏折單元組的數量。 The display device of claim 2, wherein the number of the projection units is equal to the number of the micro-deflection unit groups. 如申請專利範圍第2項所述的顯示裝置,其中該微透鏡陣列及該微偏折陣列之間的距離大於或小於每一該微透鏡的焦距。 The display device of claim 2, wherein a distance between the microlens array and the micro-deflection array is greater or smaller than a focal length of each of the microlenses. 如申請專利範圍第2項所述的顯示裝置,更包括一透鏡,其配置於該些影像光束的傳遞路徑上,且位於該微透鏡陣列與該投影模組之間。 The display device of claim 2, further comprising a lens disposed on the transmission path of the image beam and located between the microlens array and the projection module. 如申請專利範圍第1項所述的顯示裝置,其中該些微偏折單元各為一折射式透鏡或一繞射光柵。 The display device of claim 1, wherein the micro-deflection units are each a refractive lens or a diffraction grating. 如申請專利範圍第1項所述的顯示裝置,更包括:一感測模組,用以感測一使用者在該顯示裝置旁的影像;以及一處理單元,用以根據該感測模組所感測到的該影像判斷出該使用者的動作,並輸出對應於該動作的一指令訊號至該影像模組。 The display device of claim 1, further comprising: a sensing module for sensing an image of a user beside the display device; and a processing unit for using the sensing module The sensed image determines the motion of the user and outputs a command signal corresponding to the motion to the image module. 如申請專利範圍第1項所述的顯示裝置,其中該影像模組包括一顯示元件,具有多個顯示單元,該些顯示單元分成彼此交錯排列的多個顯示單元組,不同的該些顯示單元組分別發出不同的該些影像光束。 The display device of claim 1, wherein the image module comprises a display element having a plurality of display units, the display units being divided into a plurality of display unit groups staggered with each other, different display units The groups respectively emit different image beams. 如申請專利範圍第10項所述的顯示裝置,其中該些顯示 單元組分別與該些微偏折單元組對應,每一該顯示單元組中的該些顯示單元分別與對應的一該微偏折單元組中的該些微偏折單元對應,且該些影像光束中來自每一該顯示單元的部分光束準直地傳遞至對應的該微偏折單元。 The display device of claim 10, wherein the display devices The unit groups respectively correspond to the micro-deflection unit groups, and the display units in each of the display unit groups respectively correspond to the micro-deflection units in the corresponding one of the micro-deflection unit groups, and the image beams are A portion of the light beam from each of the display units is collimated to the corresponding micro-deflection unit. 如申請專利範圍第11項所述的顯示裝置,其中該些微偏折單元中彼此相鄰且分別屬於不同的該些微偏折單元組者分別形成多個偏折單元,每一該偏折單元具有每一該微偏折單元組中的一個微偏折單元。 The display device of claim 11, wherein the plurality of micro-deflection units adjacent to each other and belonging to the different micro-deflection unit groups respectively form a plurality of deflection units, each of the deflection units having One of the micro-deflection units in each of the micro-deflection unit groups. 如申請專利範圍第10項所述的顯示裝置,其中該顯示單元為該顯示元件的一畫素或一次畫素。 The display device of claim 10, wherein the display unit is a pixel or a single pixel of the display element. 如申請專利範圍第10項所述的顯示裝置,其中該影像模組更包括一準直光源,準直地發出一準直光束至該顯示元件,且該些顯示單元組分別將該準直光束轉換成該些影像光束。 The display device of claim 10, wherein the image module further comprises a collimated light source, collimating a collimated beam to the display element, and the display unit groups respectively respectively collimate the beam Converted into the image beams. 如申請專利範圍第14項所述的顯示裝置,其中該準直光源是一準直背光板,其覆蓋全部的該些顯示單元。 The display device of claim 14, wherein the collimated light source is a collimated backlight that covers all of the display units. 如申請專利範圍第14項所述的顯示裝置,其中該些顯示單元組各具有的部分該些顯示單元的數目相同。 The display device of claim 14, wherein the display unit groups each have the same number of the display units. 如申請專利範圍第14項所述的顯示裝置,其中該準直光源包括:一光源,用以發出一發散光束;以及一準直透鏡,將該發散光束會聚成準直的該照明光束。 The display device of claim 14, wherein the collimated light source comprises: a light source for emitting a divergent beam; and a collimating lens for concentrating the divergent beam into the collimated illumination beam. 如申請專利範圍第17項所述的顯示裝置,其中該光源為點光源,且實質上配置於該準直透鏡的焦點位置。 The display device according to claim 17, wherein the light source is a point light source and is substantially disposed at a focus position of the collimating lens.
TW103129351A 2013-10-14 2014-08-26 Display apparatus TW201514558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/513,225 US20150102999A1 (en) 2013-10-14 2014-10-14 Display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361890335P 2013-10-14 2013-10-14

Publications (1)

Publication Number Publication Date
TW201514558A true TW201514558A (en) 2015-04-16

Family

ID=53087008

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103129351A TW201514558A (en) 2013-10-14 2014-08-26 Display apparatus

Country Status (2)

Country Link
CN (1) CN104570576A (en)
TW (1) TW201514558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9857604B2 (en) 2016-02-01 2018-01-02 Cheray Co. Ltd. Stereoscopic display

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631373B (en) * 2017-05-05 2018-08-01 友達光電股份有限公司 System and method for blood vessel scanning
CN107608085B (en) * 2017-09-15 2019-09-03 四川大学 Based on 360 ° of integration imaging desktop 3D display devices for combining micro- pattern matrix
CN107561722B (en) * 2017-09-15 2019-09-03 四川大学 360 ° of integration imaging desktop 3D display systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2267579A (en) * 1992-05-15 1993-12-08 Sharp Kk Optical device comprising facing lenticular or parallax screens of different pitch
GB2272555A (en) * 1992-11-11 1994-05-18 Sharp Kk Stereoscopic display using a light modulator
US6710920B1 (en) * 1998-03-27 2004-03-23 Sanyo Electric Co., Ltd Stereoscopic display
ATE507500T1 (en) * 2005-12-14 2011-05-15 Koninkl Philips Electronics Nv CONTROLLING THE PERCEIVED DEPTH OF AN AUTOSTEREOSCOPIC DISPLAY AND METHOD THEREOF
JP2010122424A (en) * 2008-11-19 2010-06-03 Hitachi Ltd Naked eye stereoscopic display
US8923686B2 (en) * 2011-05-20 2014-12-30 Echostar Technologies L.L.C. Dynamically configurable 3D display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9857604B2 (en) 2016-02-01 2018-01-02 Cheray Co. Ltd. Stereoscopic display
TWI614533B (en) * 2016-02-01 2018-02-11 群睿股份有限公司 Three-dimensional display device

Also Published As

Publication number Publication date
CN104570576A (en) 2015-04-29

Similar Documents

Publication Publication Date Title
KR102349765B1 (en) Immersive compact display glasses
US20200174279A1 (en) Three-dimensional display device
CN102184678B (en) Splicing display unit and large-screen display device
TW201514558A (en) Display apparatus
JP5943747B2 (en) 3D image display device
JP2018503132A5 (en)
CN104819389A (en) Surgical lamp and light spot adjusting device thereof
KR102598842B1 (en) 3D display device
WO2015072066A1 (en) Stereoscopic display
TWI583999B (en) Stereoscopic display screen and stereoscopic display device using the same
CN107643602B (en) Stereoscopic display device
JP2017032665A (en) Optical device
US10830412B2 (en) Light emitting device and image display system
US20150102999A1 (en) Display apparatus
JP2015145972A (en) Lighting device and projector
CN113589540B (en) Beam-expanding optical film, display device and multi-directional beam-expanding optical film
US20230156175A1 (en) Autostereoscopic display device and method
TWI620959B (en) Stereo display device
US20100097803A1 (en) Multiple Light Source Surface Packaging Structure
TW201818119A (en) Stereo display device
JP5447701B2 (en) screen
TW201803343A (en) Stereo display device
TWI584000B (en) Stereoscopic display screen and stereoscopic display device using the same
CN114585856A (en) Lighting device for providing a sparkling appearance
US11818330B2 (en) Display device and driving method thereof