TW201512649A - Method of chip detects inspecting, system therefor, and computer program product thereof - Google Patents

Method of chip detects inspecting, system therefor, and computer program product thereof Download PDF

Info

Publication number
TW201512649A
TW201512649A TW102133525A TW102133525A TW201512649A TW 201512649 A TW201512649 A TW 201512649A TW 102133525 A TW102133525 A TW 102133525A TW 102133525 A TW102133525 A TW 102133525A TW 201512649 A TW201512649 A TW 201512649A
Authority
TW
Taiwan
Prior art keywords
wafer
image
module
intensity
wafer image
Prior art date
Application number
TW102133525A
Other languages
Chinese (zh)
Other versions
TWI456190B (en
Inventor
Jiunn-Lin Wu
Chia-Feng Chang
Yu-Chu Wang
Original Assignee
Univ Nat Chunghsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing filed Critical Univ Nat Chunghsing
Priority to TW102133525A priority Critical patent/TWI456190B/en
Application granted granted Critical
Publication of TWI456190B publication Critical patent/TWI456190B/en
Publication of TW201512649A publication Critical patent/TW201512649A/en

Links

Landscapes

  • Image Analysis (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

The invention relates to a hybrid-based inspection approach to detect defect in chip. For high intensity defect, simple threshold method is used to detect candidate defect which contains defect, bright spots, weak bright spots and noise by the characterization of high intensity. Then morphology operations are used to filter out small candidate defect which is noise. Then, support vector machine is used to classified high intensity defect. For low intensity defect, a boundary defect detection algorithm is presented to detect low intensity defect. The result shows that the invention can efficiently detect most defects.

Description

偵測晶片影像瑕疵方法及其系統與電腦程式產品 Method for detecting wafer image and its system and computer program product

本發明是一種偵測晶片影像瑕疵的方法、系統及電腦程式產品,特別是有關於一種應用於半導體晶片檢測的偵測晶片影像瑕疵方法及其系統與電腦程式產品。 The invention relates to a method, a system and a computer program product for detecting a wafer image defect, in particular to a method for detecting a wafer image used in semiconductor wafer inspection, a system thereof and a computer program product.

隨著半導體製程技術的蓬勃發展,在晶片產業上,大部分還是依靠人工的方式來進行瑕疵檢測,然而利用人工的方式其檢測效率低、人事成本昂貴,也會因人員疏忽、誤判等因素使得正確率會有所不同,很難確保產品的品質。且產品的生產速度越來越快,只以人工檢測瑕疵是不足以負荷的。 With the rapid development of semiconductor process technology, most of the wafer industry relies on manual methods for flaw detection. However, the manual detection method has low detection efficiency and high personnel cost, and it is also caused by factors such as negligence and misjudgment. The correct rate will vary and it is difficult to ensure the quality of the product. And the production speed of the product is getting faster and faster, and it is not enough to load it only by manual inspection.

因此光學檢測儀器的發明取代肉眼檢測,利用計算機對所擷取到的晶片影像進行影像分析,如此可降低進行晶片檢測所需要花費的時間和人力。目前現存應用於半導體晶粒瑕疵檢測的各種光學檢測方法,絕大多數的方法均需先將待測晶片進行定位,然後再擷取晶片的影像,接著 利用一般的影像處理演算法進行影像分析,透過影像分析找出晶片影像的異常處,從而達成檢測晶片瑕疵的功能,對一個完整的晶片瑕疵檢測程序而言,處理過程所需的工序繁多,當然就必須花費較多的處理時間。此外目前各種的晶片瑕疵檢測裝置或方法,多半無法快速進行待測晶片瑕疵態樣之分類。 Therefore, the invention of the optical detecting instrument replaces the naked eye detection, and the image analysis of the captured wafer image is performed by a computer, thereby reducing the time and labor required for performing wafer inspection. At present, various optical detection methods are applied to the detection of semiconductor germanium, and most of the methods require first positioning the wafer to be tested, and then capturing the image of the wafer, and then The image analysis is performed by a general image processing algorithm, and the abnormality of the wafer image is found through image analysis, thereby achieving the function of detecting the wafer defect. For a complete wafer defect detection process, the processing requires a large number of processes, of course, It takes a lot of processing time. In addition, various wafer defect detection devices or methods are currently unable to quickly classify the wafers to be tested.

近年來有許多學者分別提出不同的方法用以檢測晶片上的瑕疵,大致分為五大類,分別為基於強度的方法、基於梯度的方法、基於頻率的方法、基於機器學習的方法、及基於混合的方法。這五種瑕疵檢測方法的優缺點和作法如下:基於強度的瑕疵檢測方法的優點是簡單且易於實施,但是當瑕疵的強度變異不大或者影像品質不佳時,不容易偵測出來而導致錯誤的檢測結果。基於梯度的瑕疵檢測方法可以有效的在低對比影像中偵測瑕疵,但是一旦晶片中紋理的梯度變化相似於瑕疵的梯度變化時,則無法有效的將瑕疵從晶片中分離出來。基於頻率的瑕疵檢測方法是利用晶片紋理存在的規則性,在頻率域下去除背景以找出影像中的瑕疵部分,但當瑕疵紋理出現不規則變化時,這類方法無法有效的將瑕疵檢測出來。基於機器學習的瑕疵檢測方法,則是利用訓練資料在不需要設置任何參數的情況下,透過學習的方式得到瑕疵的特性,進而利用這些特性判斷測試影像中是否存在瑕疵,但是由於在訓練階段必須以迭代的方式更新權重,時間複雜度比較高也較為費時。基於混合的瑕疵檢測方法,可針對不同種類的瑕疵使 用不同種類的方法偵測,但是計算量相對也比較大且程序較為複雜。隨著科技的發展,晶片的設計越來越複雜,對於較為複雜的晶片表面,只使用單一方法檢測瑕疵其效果有限,但在晶片製造過程中會隨著不同的製造程序產生不同的瑕疵類型,這使得傳統檢測方法在分析瑕疵上變得困難。目前沒有任何一個方法可以快速和有效的同時偵測晶片的高強度瑕疵和低強度瑕疵。 In recent years, many scholars have proposed different methods to detect flaws on wafers, which are roughly divided into five categories: intensity-based methods, gradient-based methods, frequency-based methods, machine learning-based methods, and hybrid-based hybrids. Methods. The advantages, disadvantages, and practices of the five flaw detection methods are as follows: The strength-based flaw detection method is simple and easy to implement, but it is not easy to detect and cause errors when the intensity of the flaw is not very variable or the image quality is poor. Test results. The gradient-based chirp detection method can effectively detect flaws in low-contrast images, but once the gradient of the texture in the wafer is similar to the gradient change of the tantalum, the tantalum cannot be effectively separated from the wafer. The frequency-based chirp detection method utilizes the regularity of the existence of the wafer texture, and removes the background in the frequency domain to find the flaws in the image. However, when the texture of the tantalum changes irregularly, such methods cannot effectively detect the flaws. . The detection method based on machine learning is to use the training data to obtain the characteristics of the flaw through the learning method without setting any parameters, and then use these characteristics to judge whether there is flaw in the test image, but it is necessary in the training phase. Updating the weights in an iterative manner is more time consuming and time consuming. Hybrid based detection method for different types of sputum It is detected by different kinds of methods, but the calculation amount is relatively large and the program is complicated. With the development of technology, the design of wafers is more and more complicated. For a more complex wafer surface, the effect is limited by using only a single method, but different types of defects are generated in different wafer manufacturing processes. This makes traditional detection methods difficult to analyze. There is currently no single method that can detect high-intensity defects and low-intensity defects of wafers quickly and efficiently.

本發明提供一種偵測晶片影像瑕疵方法及其系統與電腦程式產品,用以同時偵測晶片的高強度瑕疵和低強度瑕疵,並能更精準偵測晶片瑕疵。 The invention provides a method for detecting a wafer image, a system thereof and a computer program product for simultaneously detecting high-intensity defects and low-intensity defects of the wafer, and more accurately detecting the wafer defect.

有鑑於上述,本發明的一實施方式是提供一種偵測晶片影像瑕疵的方法,包含下列步驟:第一步驟,拍攝一晶片影像。第二步驟,將晶片影像進行水平方向影像校正,用以降低因旋轉誤差使得分析瑕疵結果不正確。第三步驟,利用一二值化模組提取晶片影像中高強度的一候選瑕疵。第四步驟,再使用二相異型態學模組移除一細小瑕疵。第五步驟,利用一機器學習模組以一支援向量機藉由一瑕疵特徵分類出晶片影像中至少一光點及至少一高強度瑕疵。第六步驟,因低強度瑕疵通常發生在晶片的邊緣部分,利用霍夫轉換模組轉換找出晶片邊界,將晶片影像以晶片影像強度平均值區分為晶片部分和背景部分用以計算一能量圖。第七步驟,以型態學方法填補晶片影像的輪廓不完 整並移除該晶片影像中細小瑕疵用以得到一完整晶片邊界輪廓。以及第八步驟,利用霍夫轉換模組轉換找出代表晶片邊界的一直線,計算直線與完整晶片邊界輪廓之間的差異用以檢測低強度瑕疵。 In view of the above, an embodiment of the present invention provides a method for detecting a wafer image defect, comprising the following steps: a first step of capturing a wafer image. In the second step, the wafer image is corrected in the horizontal direction to reduce the error caused by the rotation error. In the third step, a binarization module is used to extract a candidate of high intensity in the wafer image. In the fourth step, the two-phase heteromorphism module is used to remove a small flaw. In a fifth step, a machine learning module is used to classify at least one spot and at least one high intensity defect in the wafer image by a support vector machine. In the sixth step, since the low-intensity 瑕疵 usually occurs at the edge portion of the wafer, the Hough conversion module is used to convert and find the wafer boundary, and the wafer image is divided into the wafer portion and the background portion by the average value of the wafer image intensity to calculate an energy map. . The seventh step is to fill the outline of the wafer image by the type method. The fine ridges in the wafer image are removed and used to obtain a complete wafer boundary profile. And in the eighth step, the Hough transform module is used to find a straight line representing the boundary of the wafer, and the difference between the straight line and the complete wafer boundary contour is calculated to detect the low intensity 瑕疵.

此外,前述實施方式的二相異型態學模組,包含利用斷開運算平滑影像的輪廓和消除細小的區域,以及利用閉合運算消除小洞和填補輪廓上的小洞。 In addition, the two-phase heteromorphism module of the foregoing embodiment includes smoothing the contour of the image by using the disconnection operation and eliminating the small area, and eliminating the small hole and filling the small hole in the contour by the closing operation.

本發明的另一實施方式是在提供一種用以執行本發明方法的晶片影像瑕疵偵測系統。晶片影像瑕疵偵測系統包含一承載平台、一攝像機構和一電腦裝置。承載平台用以放置一晶片。攝像機構用以擷取一晶片影像。電腦裝置包含一影像顯示模組、複數個運算模組、一資料庫和一輸出裝置。運算模組用以分析判斷晶片影像。資料庫用以儲存先前分析結果,並建立機器學習資料以加快往後比對速度。輸出裝置用以顯示分析結果。 Another embodiment of the present invention is to provide a wafer image detection system for performing the method of the present invention. The wafer image detection system comprises a carrier platform, a camera mechanism and a computer device. The carrier platform is used to place a wafer. The camera mechanism is used to capture a wafer image. The computer device comprises an image display module, a plurality of computing modules, a database and an output device. The computing module is used to analyze and determine the wafer image. The database is used to store the results of previous analyses and to build machine learning materials to speed up the comparison. The output device is used to display the analysis result.

本發明的再一實施方式是在提供一種用以執行本發明方法的電腦程式產品。電腦程式產品內儲多個運算模組,包含一肯尼邊緣偵測器模組、一霍夫轉換模組、一二值化模組、一型態學模組及一機器學習模組,當電腦載入這些模組並執行後,可完成晶片影像瑕疵的偵測。 Yet another embodiment of the present invention is to provide a computer program product for performing the method of the present invention. The computer program product stores a plurality of computing modules, including a Kenny edge detector module, a Hough transform module, a binary module, a type module, and a machine learning module. After the computer loads these modules and executes them, the detection of the wafer image defects can be completed.

藉此,本發明能同時偵測晶片高強度瑕疵和低強度瑕疵,且本發明因先偵測高強度瑕疵再偵測低強度瑕疵,經過層級的篩選後,能降低每個階段的計算量,達到快速且準確的晶片瑕疵檢測。以改善目前最常用的五大類檢測 晶片瑕疵的方法所遇到的問題。 Thereby, the invention can simultaneously detect high-strength 瑕疵 and low-intensity 晶片 of the wafer, and the invention can detect low-intensity 瑕疵 by detecting high-strength 先 first, and can reduce the calculation amount of each stage after screening by level. Fast and accurate wafer defect detection is achieved. To improve the five most commonly used tests at present. The problems encountered with the wafer defect method.

上述發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容並非本揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。 The Summary of the Invention is intended to provide a simplified summary of the present disclosure in order to provide a basic understanding of the disclosure. This Summary is not an extensive overview of the disclosure, and is not intended to be an

110‧‧‧第一步驟 110‧‧‧First steps

120‧‧‧第二步驟 120‧‧‧ second step

130‧‧‧第三步驟 130‧‧‧ third step

140‧‧‧第四步驟 140‧‧‧ fourth step

150‧‧‧第五步驟 150‧‧‧ fifth step

160‧‧‧第六步驟 160‧‧‧ sixth step

170‧‧‧第七步驟 170‧‧‧ seventh step

180‧‧‧第八步驟 180‧‧‧ eighth step

200‧‧‧攝像機構 200‧‧‧ camera organization

300‧‧‧承載平台 300‧‧‧bearing platform

400‧‧‧電腦裝置 400‧‧‧ computer equipment

410‧‧‧影像顯示模組 410‧‧‧Image display module

420‧‧‧運算模組 420‧‧‧ Computing Module

421‧‧‧肯尼邊緣偵測模組 421‧‧‧Kenny Edge Detection Module

422‧‧‧霍夫轉換模組 422‧‧‧Hove Conversion Module

423‧‧‧二值化模組 423‧‧‧ Binarization Module

424‧‧‧型態學模組 424‧‧‧Type Module

425‧‧‧機器學習模組 425‧‧‧ machine learning module

430‧‧‧資料庫 430‧‧‧Database

440‧‧‧輸出裝置 440‧‧‧output device

500‧‧‧晶片影像 500‧‧‧ wafer imagery

510‧‧‧候選瑕疵 510‧‧‧ Candidates

511‧‧‧細小瑕疵 511‧‧‧小细

512‧‧‧高強度瑕疵 512‧‧‧High-intensity

513‧‧‧低強度瑕疵 513‧‧‧Low strength test

520‧‧‧瑕疵特徵 520‧‧‧瑕疵 characteristics

521‧‧‧瑕疵強度平滑度 521‧‧‧瑕疵 intensity smoothness

522‧‧‧瑕疵紋理複雜度 522‧‧‧瑕疵Texture complexity

523‧‧‧瑕疵紋理結構 523‧‧‧瑕疵 texture structure

524‧‧‧第一邊緣像素 524‧‧‧First edge pixel

525‧‧‧第二邊緣像素 525‧‧‧second edge pixel

530‧‧‧光點 530‧‧‧ light spots

540‧‧‧晶片部分 540‧‧‧ wafer part

550‧‧‧背景部分 550‧‧‧Background section

560‧‧‧完整晶片邊界輪廓 560‧‧‧Complete wafer boundary contour

570‧‧‧直線 570‧‧‧ Straight line

第1圖繪示本發明一實施方式之偵測晶片瑕疵方法之流程圖。 FIG. 1 is a flow chart showing a method for detecting a wafer according to an embodiment of the present invention.

第2圖繪示本發明另一實施方式之偵測晶片瑕疵系統之示意圖。 FIG. 2 is a schematic diagram of a process for detecting a wafer cassette according to another embodiment of the present invention.

第3圖的(a)部分為沒有傾斜的晶片影像圖;(b)部分為因為旋轉誤差而使晶片產生傾斜的晶片影像圖;(c)部分為利用肯尼邊緣偵測模組將晶片邊緣以直線表示的示意圖;(d)部分為高強度的候選瑕疵區域的示意圖;(e)部分為影像的直方圖範例的示意圖;(f)部分為二值化的晶片影像圖;(g)影像中存在細小瑕疵的示意圖;(h)部分為移除細小瑕疵後的晶片影像圖;(i)部分為候選瑕疵強度平滑度的示意圖;(j)部分為利用肯尼邊緣偵測模組偵測候選瑕疵的晶片影像圖;(k)部分為候選瑕疵紋理結構之示意圖;(l)部分為針對高強度瑕疵檢測後的晶片影像圖。 Part (a) of Figure 3 shows the image of the wafer without tilt; (b) part of the wafer image which is tilted due to the rotation error; and (c) part of the edge of the wafer using the Kenny edge detection module. a schematic diagram represented by a straight line; (d) a schematic diagram of a portion of the candidate region of high intensity; (e) a schematic diagram of an example of a histogram of the image; (f) a partial image of the wafer of binarization; (g) an image There is a schematic diagram of the tiny flaws; (h) is the image of the wafer after removing the fine flaws; (i) is a schematic diagram of the candidate smoothness of the flaw; (j) is partially detected by the Kenny edge detection module. A candidate wafer image map; (k) is a schematic diagram of the candidate tantalum texture structure; (1) is a wafer image map for high-intensity flaw detection.

第4圖的(a)部分為xy平面的示意圖;(b)部分為xy平面上的點映射到ab平面的示意圖;(c)一條直線的法線表示法的 示意圖。 Part (a) of Figure 4 is a schematic diagram of the xy plane; (b) is a schematic diagram of a point on the xy plane mapped to the ab plane; (c) a schematic diagram of a straight line normal representation.

第5圖為利用型態學運算修補晶片影像之示意圖,(a)部分為二值化的晶片影像圖;(b)部分為作斷開運算後的晶片影像圖;(c)部分為作閉合運算後的晶片影像圖;(d)部分為集合A的示意圖;(e)部分為結構元素B的示意圖;(f)部分為集合A被結構元素B所侵蝕狀況的示意圖;(g)部分為對集合A被結構元素B侵蝕後的結果作膨脹動作所得結果的示意圖;(h)部分為原始晶片影像的示意圖;(i)部分為斷開運算後晶片影像的示意圖;(j)部分為閉合運算後晶片影像的示意圖。 Figure 5 is a schematic diagram of repairing a wafer image by a type operation, (a) partially binarized wafer image; (b) part of the wafer image after disconnection; and (c) part for closing The image of the wafer after the operation; (d) is a schematic diagram of the set A; (e) is a schematic diagram of the structural element B; (f) is a schematic diagram of the erosion of the set A by the structural element B; A schematic diagram of the result of the expansion operation of the result of the erosion of the set A by the structural element B; (h) part of the original wafer image; (i) part of the schematic of the wafer image after the disconnection operation; (j) part of the closure Schematic diagram of the wafer image after the operation.

第6圖的(a)部分為候選瑕疵的紋理結構示意圖;(b)部分為瑕疵的紋理結構圖;(c)部分為微弱光點的紋理結構圖;(d)~(g)部分為邊緣像素(x,y)為傾斜方向的四個情況;(h)部分為遮罩w表示方法的示意圖;(i)部分為遮罩w相對係數值的示意圖。 Part (a) of Figure 6 is a schematic diagram of the texture structure of the candidate ;; (b) is a texture structure diagram of the 瑕疵; (c) is a texture structure diagram of the weak light spot; (d) ~ (g) part is the edge The pixel ( x, y ) is the four cases of the oblique direction; the (h) part is a schematic diagram showing the method of the mask w ; (i) the part is a schematic diagram of the relative value of the mask w .

第7圖的(a)部分為原始晶片影像圖;(b)部分為移除原始晶片影像中較亮部分的晶片影像圖;(c)部分為能量圖;(d)部分為保留最大面積輪廓的晶片影像圖;(e)部分為利用型態學修補晶片影像得到完整晶片邊界輪廓的晶片影像圖;(f)部分為預測的晶片邊界與完整晶片邊界輪廓之間差異的晶片影像圖。 Part (a) of Figure 7 is the original wafer image; (b) part of the wafer image for removing the brighter part of the original wafer image; (c) part of the energy map; (d) part of the remaining area contour (f) is a wafer image map that uses a pattern to repair a wafer image to obtain a complete wafer boundary profile; (f) a wafer image portion that is a difference between a predicted wafer boundary and a complete wafer boundary contour.

請一併參閱第1圖至第7圖,第1圖繪示偵測晶片 瑕疵方法之流程圖;第2圖偵測晶片瑕疵系統之示意圖。第3圖至第7圖為偵測流程的實驗影像圖。本實施方式之偵測晶片瑕疵方法依序包含下列步驟。 Please refer to Figure 1 to Figure 7 together. Figure 1 shows the detection chip. A flow chart of the method of detecting ;; Figures 3 through 7 show experimental imagery of the detection process. The method for detecting a wafer cassette of the present embodiment sequentially includes the following steps.

第一步驟110,將晶片放置於承載平台300上,由攝像機構200拍攝一晶片影像500。 In a first step 110, the wafer is placed on the carrying platform 300, and a wafer image 500 is captured by the camera mechanism 200.

第二步驟120,將晶片影像500進行水平方向影像校正,用以降低因旋轉誤差使得分析瑕疵結果不正確。如第3圖(b),在擷取晶片影像500時可能會因為晶片放置的位置而產生旋轉誤差。首先如第3圖(c)以一肯尼邊緣偵測器模組421偵測晶片影像500邊緣,並利用一霍夫轉換模組422找出晶片影像500中最長的一條直線並求得其角度,再利用二維旋轉公式將晶片影像500作旋轉校正。霍夫轉換模組422是檢測影像中直線的一種常見方式,考慮影像上的任一點(x i ,y i ),通過這一點的直線方程式可以表示為,其中ab分別為直線的斜率和截距:y i =ax i +bIn a second step 120, the wafer image 500 is subjected to horizontal image correction to reduce the analysis result due to the rotation error. As shown in FIG. 3(b), when the wafer image 500 is captured, a rotation error may occur due to the position at which the wafer is placed. First, as shown in FIG. 3(c), a Kenny edge detector module 421 detects the edge of the wafer image 500, and uses a Hough conversion module 422 to find the longest straight line in the wafer image 500 and obtain the angle thereof. Then, the wafer image 500 is rotated and corrected by a two-dimensional rotation formula. The Hough conversion module 422 is a common way to detect straight lines in an image. Considering any point ( x i , y i ) on the image, the straight line equation passing through this point can be expressed as a, where a and b are the slopes of the straight line, respectively. Intercept: y i = ax i + b .

可改寫為:b=-ax i +y i Can be rewritten as: b =- ax i + y i .

對於一條直線上一點(x i ,y i )及另一點(x j ,y j ),同一直線上的兩點在ab平面上會相交於一點(a’,b’),因此在ab平面上出現頻率最高的一點可以視為在空間座標中最常線段的a、b參數,如第4圖(b)為將xy平面上的點映射到ab平面上,其中兩直線相交於(a’,b’)點上。然而由於垂直線段的斜率為 無限大,因此無法使用斜截式表示垂直線段,所以在實作上是採用法線表示法,如下列方程式,其中ρ為過原點之法線距離,θ為水平線和垂直線的角度:x cos θ+y sin θ=ρFor a point (x i, y i) and the other point (x j, y j) on a straight line, two points in the same straight line on the ab plane intersect at a point (a ', b'), thus the ab plane The point with the highest frequency of occurrence can be regarded as the a and b parameters of the most frequent line segment in the space coordinates. For example, Figure 4 (b) maps the points on the xy plane to the ab plane, where the two lines intersect at (a', b') Point. However, since the slope of the vertical line segment is infinite, it is impossible to use the oblique section to represent the vertical line segment, so the implementation is based on the normal expression, such as the following equation, where ρ is the normal distance from the origin, and θ is the horizontal line. Angle from the vertical line: x cos θ + y sin θ = ρ .

如第4圖(c)所示,其作法同上述討論的斜截式做法,將晶片影像500從xy平面映射到ρ θ平面,在ρ θ平面中取得出現頻率最高的(ρ,θ),即可找出晶片影像500中最長的直線,也就是晶片的邊緣,其θ即為所求的晶片傾斜角度。當確定了晶片傾斜的角度θ,即可利用角度θ來對晶片影像500作校正,使晶片的邊緣呈現水平方向。利用下列方程式來計算晶片影像500中任一點(x,y)在經過角度校正後對映到的位置(x’,y’) As shown in Fig. 4(c), the method is the same as the oblique truncation described above, and the wafer image 500 is mapped from the xy plane to the ρ θ plane, and the highest frequency (ρ, θ) is obtained in the ρ θ plane. The longest straight line in the wafer image 500, that is, the edge of the wafer, is found, and θ is the desired wafer tilt angle. When the angle θ of the wafer tilt is determined, the wafer image 500 can be corrected by the angle θ so that the edge of the wafer is horizontal. The following equation is used to calculate the position (x', y') of any point (x, y) in the wafer image 500 after being angle corrected:

第三步驟130,利用一二值化模組423提取晶片影像500中高強度的一候選瑕疵510。二值化模組423為選定一門檻值,當晶片影像500的灰階值大於該門檻值時設定為1,當晶片影像500的灰階值小於該門檻值時設定為0。為了有效的的分離候選瑕疵510,瞭解晶片影像500的整體強度分布情況是非常必要的。因此利用直方圖觀察晶片影像500中強度的分布情況,如第3圖(e)直方圖的橫坐標表示強度刻度,縱座標表示為該強度刻度出現的像素個數。由於所要偵測的是晶片影像500上具有高強度值且有明顯 強度變異的瑕疵部分,利用晶片影像500的平均值只能大約將背景部分550與晶片部分540分離,為此計算晶片上的強度平均值與強度標準差,去除背景的影響將瑕疵偵測出來,其門檻值T以下所列的方程式計算,其中I(x,y)為晶片影像500的強度值,m c 為晶片影像500的強度平均值,N c 為強度值大於晶片影像500平均值的像素個數: In a third step 130, a candidate module 510 of high intensity in the wafer image 500 is extracted by a binarization module 423. The binarization module 423 selects a threshold value, and is set to 1 when the grayscale value of the wafer image 500 is greater than the threshold value, and is set to 0 when the grayscale value of the wafer image 500 is less than the threshold value. In order to effectively separate the candidate 瑕疵 510, it is necessary to understand the overall intensity distribution of the wafer image 500. Therefore, the distribution of the intensity in the wafer image 500 is observed by the histogram. For example, the abscissa of the histogram of Fig. 3 (e) represents the intensity scale, and the ordinate indicates the number of pixels appearing on the intensity scale. Since the portion of the wafer image 500 that has high intensity values and significant intensity variations is to be detected, the average of the wafer image 500 can only be used to separate the background portion 550 from the wafer portion 540, for which purpose the intensity on the wafer is calculated. The average value and the intensity standard deviation, the effect of removing the background will be detected, and the threshold value T is calculated by the equation listed below, where I(x, y) is the intensity value of the wafer image 500, and m c is the wafer image 500. The average value of the intensity, N c is the number of pixels whose intensity value is greater than the average value of the wafer image 500:

經二值化模組423運算後的晶片影像500如第3圖(f)。 The wafer image 500 calculated by the binarization module 423 is as shown in Fig. 3(f).

第四步驟140,再使用二相異型態學模組424移除一細小瑕疵511。因為二值化模組423的門檻值很難調整到一個精確的數據,如第3圖(g)經過二值化模組423的晶片影像500可能存在一些細小瑕疵511,這些區域因為太小或太細長被認為不可能存在瑕疵,因此利用使用二相異型態學模組424,移除這些細小的候選瑕疵510和消除輪廓上的缺口,讓候選瑕疵510的輪廓更為完整。侵蝕和膨脹是兩個型態學的基本運算。A被B侵蝕定義為: In a fourth step 140, a small defect 511 is removed using the two-phase heteromorphism module 424. Because the threshold value of the binarization module 423 is difficult to adjust to a precise data, as shown in FIG. 3(g), the wafer image 500 passing through the binarization module 423 may have some small flaws 511, which are too small or Too slender is considered to be impossible to exist, so the use of the two-phase heteromorphism module 424 removes these fine candidate 瑕疵 510 and eliminates the notch on the contour, making the outline of the candidate 瑕疵 510 more complete. Erosion and expansion are the basic operations of two types of morphology. A is defined by B erosion as:

A藉由B膨脹定義為: A is defined by B expansion as:

其中集合B在形態學算上稱為結構元素。侵蝕會使物體收縮,膨脹會擴大物體,如第5圖(d)~(f)所示,第5圖(d)為集合A,第5圖(e)為結構元素B,第5圖(f)中利用結構元 素對集合A作侵蝕的動作,灰色部分為侵蝕後的結果。第4圖(g)則是對虛線部分做膨脹,灰色部分為膨脹後的結果。而斷開運算和閉合運算是結合膨脹和侵蝕的兩個運算,常用於影像處理中。斷開運算是對物體先做侵蝕再做膨脹定義為: The set B is called a structural element in morphology. Erosion will cause the object to shrink, and expansion will enlarge the object, as shown in Figure 5 (d) ~ (f), Figure 5 (d) is the set A, Figure 5 (e) is the structural element B, Figure 5 ( f) The action of eroding the set A by the structural elements, and the gray part is the result of the erosion. Figure 4 (g) shows the expansion of the dotted line and the expansion of the gray part. The disconnection and closure operations are two operations that combine expansion and erosion, and are often used in image processing. The disconnection operation is defined by first eroding the object and then expanding:

反之閉合運算是對物體先做膨脹再做侵蝕的動作,定義成: Conversely, the closing operation is an action of swelling and then eroding the object, defined as:

第5圖(h)為原始晶片影像500的示意圖,第5圖(i)為原始晶片影像500做斷開運算後的示意圖,第5圖(j)為原始晶片影像500做閉合運算後的示意圖。斷開運算能夠平滑影像的輪廓,消除細小的區域;閉合運算則能有效的消除小洞和填補輪廓上的小洞。因此利用斷開運算消除晶片影像500中的細小輪廓,其結果如第5圖(b)所示。但輪廓上存在一些小洞,因此利用閉合運算填補輪廓上的小洞以提取完整的輪廓,其效果第5圖(c)所示。經此二相異型態學模組424運算後的晶片影像500如第3圖(h)。 Figure 5 (h) is a schematic diagram of the original wafer image 500, Figure 5 (i) is a schematic diagram of the original wafer image 500 after the disconnection operation, and Figure 5 (j) is a schematic diagram of the original wafer image 500 after the closing operation. . The break operation smoothes the outline of the image and eliminates small areas; the closed operation effectively eliminates small holes and fills small holes in the outline. Therefore, the fine outline in the wafer image 500 is eliminated by the breaking operation, and the result is as shown in Fig. 5(b). However, there are some small holes in the outline, so the closed hole is used to fill the small hole in the contour to extract the complete contour, and the effect is shown in Fig. 5(c). The wafer image 500 calculated by the two-phased type module 424 is as shown in FIG. 3(h).

第五步驟150,利用一機器學習模組425以一支援向量機,藉由一瑕疵特徵520分類出晶片影像500中至少一光點530及至少一高強度瑕疵512。光點530和高強度瑕疵512雖皆具有高對比的特性,但光點530內的強度變異程度較為平滑,而因瑕疵破壞了晶片表面,凹凸的表面透過光線反射後其反光很不均勻,因此利用標準差表示瑕疵 強度平滑度521,標準差主要用來衡量灰階影像資料的變異程度,數值較大表示晶片影像500的強度分佈較分散,利用此特性分別計算每個候選瑕疵510 C i 的標準差作為瑕疵特徵520之一。標準差σ i 公式如下所列,其中m I 為候選瑕疵510 C i 的強度平均值,I(x,y)為候選瑕疵510內的像素(x,y)強度值,C i 為一集合,包含第i個候選瑕疵510內的所有像素(x,y)N i C i 中的像素個數,: In a fifth step 150, at least one spot 530 and at least one high intensity 512 in the wafer image 500 are classified by a feature 520 using a machine learning module 425 in a support vector machine. Both the light spot 530 and the high-strength 瑕疵 512 have high contrast characteristics, but the intensity variation in the light spot 530 is relatively smooth, and since the surface of the wafer is destroyed by the flaw, the surface of the uneven surface is reflected unevenly by the light, so the reflection is very uneven. The standard deviation is used to express the intensity smoothness 521. The standard deviation is mainly used to measure the degree of variation of the grayscale image data. The larger value indicates that the intensity distribution of the wafer image 500 is more dispersed. Using this characteristic, each candidate 瑕疵510 C i is calculated separately. The standard deviation is one of the 瑕疵 features 520. The standard deviation σ i formula is as follows, where m I is the intensity average of the candidate 瑕疵 510 C i , I(x, y) is the pixel (x, y) intensity value within the candidate 瑕疵 510, and C i is a set. Containing all pixels (x, y) in the i- th candidate 瑕疵 510, N i is the number of pixels in C i ,

如第3圖(i),灰色表示為標準差大於門檻值的候選瑕疵510,白色表示為標準差小於門檻值的候選瑕疵510。此外,瑕疵也通常存在著比較複雜的紋理,如第3圖(j)利用肯尼邊緣偵測模組421來偵測邊緣和瑕疵紋理複雜度522。肯尼邊緣偵測模組421是經過優化得到的邊緣檢測方法,相對於其他檢測方法,肯尼邊緣偵測模組421檢測到的邊緣最為完整,檢測出來的邊緣連續性佳且定位也明確,利用下所列的公式來表示紋理的複雜程度,其中R ei 代表第i個候選瑕疵510的紋理複雜度,N ei 代表第i個候選瑕疵510內的邊緣像素個數,N i 為第i個候選瑕疵510內的總像素個數: R ei 越大表示候選瑕疵510內的紋理越複雜,其越有可能是 瑕疵。此外,如第6圖(b)所示,瑕疵紋理結構523包含了許多傾斜方向的邊緣;而如第6圖(c)所示,光點存在的紋理結構為原本晶片的紋理,大多呈現水平及垂直方向。因此如第3圖(k),利用肯尼邊緣偵測模組421判斷邊緣方向是水平、垂直或是傾斜。為了判斷邊緣方向是水平、垂直或者是傾斜的,本發明定義當肯尼邊緣像素(x,y)的四個對角座標(x-1,y-1)、(x+1,y-1)、(x+1,y+1)和(x-1,y+1)中存在邊緣像素時,則視邊緣像素(x,y)為傾斜方向,存在如第6圖(d)~(g)其中任何一個情況時,定義邊緣像素(x,y)為傾斜方向的。在實際操作上以空間濾波器計算候選瑕疵510內的邊緣方向。如第6圖(h)以3×3的濾波遮罩w為例,主要用來判斷3×3鄰域中的像素是否存在對角方向的邊緣像素,第6圖(h)為遮罩w的相對係數值,遮罩的四個對角的係數為1,其餘的五個係數為0。將肯尼邊緣偵測模組421檢測的結果影像f和3×3的w遮罩作線性濾波,以下所列方式表示: As shown in Fig. 3(i), gray indicates a candidate 瑕疵 510 whose standard deviation is larger than the threshold value, and white indicates a candidate 瑕疵 510 whose standard deviation is smaller than the threshold value. In addition, 瑕疵 also usually has more complex textures, such as Figure 3 (j) uses Kenny edge detection module 421 to detect edge and texture complexity 522. The Kenny edge detection module 421 is an optimized edge detection method. Compared with other detection methods, the edge detected by the Kenny edge detection module 421 is the most complete, and the detected edge continuity is good and the positioning is clear. using the formula listed under represented texture complexity, wherein R ei representative of the i-th candidate flaw texture complexity of 510, the number of edge pixels in the representative N ei i-th candidate defects 510, N i is the i th The total number of pixels in the candidate 瑕疵 510: The larger the R ei , the more complex the texture within the candidate 瑕疵 510 is, and the more likely it is 瑕疵. In addition, as shown in FIG. 6(b), the 瑕疵 texture 523 includes a plurality of edges in an oblique direction; and as shown in FIG. 6(c), the texture existing in the spot is the texture of the original wafer, and most of them are horizontal. And vertical direction. Therefore, as shown in FIG. 3(k), the Kenny edge detection module 421 determines whether the edge direction is horizontal, vertical or oblique. In order to judge whether the edge direction is horizontal, vertical or oblique, the present invention defines four diagonal coordinates ( x -1, y -1), ( x +1, y -1 ) when the Kenny edge pixel ( x , y ) When there are edge pixels in ( x +1, y +1) and ( x -1, y +1), the edge pixels ( x, y ) are oblique directions, as shown in Fig. 6(d)~( g) In either case, define the edge pixel ( x, y ) to be oblique. The edge direction within the candidate 瑕疵 510 is calculated by a spatial filter in practice. As shown in Fig. 6(h), a 3×3 filter mask w is used as an example to determine whether pixels in the 3×3 neighborhood have edge pixels in the diagonal direction, and FIG. 6(h) is a mask w. The relative coefficient value, the coefficient of the four diagonals of the mask is 1, and the remaining five coefficients are zero. The result image f detected by the Kenny edge detection module 421 and the 3×3 w mask are linearly filtered, and the following manners are indicated:

當空間濾波器的響應R(x,y)=1時表示第二邊緣像素525(x,y)的方向是傾斜的;反之當R(x,y)=0則表示第一邊緣像素524(x,y)為水平垂直方向的。如第6圖(a)~(c)為候選瑕疵510內的紋理結構示意圖,其中顏色較淺的表示第一邊緣像素524其R(x,y)=0,顏色較深的則表示第二邊緣像素525其R(x,y)=1。因瑕疵的紋理中具有較多的傾斜方向的像素,因 此以候選瑕疵510中的邊緣為傾斜方向的像素所占之比率r i 作為瑕疵特徵520之一,以下列方程式提取瑕疵紋理結構523特徵,其中N ri 為在第i個候選瑕疵510中,像素的方向為傾斜的個數,N gi 為像素的方向為非傾斜的個數: When the response of the spatial filter R(x, y) =1, the direction of the second edge pixel 525 (x, y) is inclined; otherwise, when R (x, y) = 0, the first edge pixel 524 ( x, y) is horizontal and vertical. Figure 6 (a) ~ (c) is a schematic diagram of the texture structure in the candidate 瑕疵 510, wherein the lighter color indicates that the first edge pixel 524 has R(x, y) =0, and the darker color indicates the second. Edge pixel 525 has R(x, y) =1. Since there are more pixels in the oblique direction in the texture, the ratio r i of the pixels in the oblique direction of the candidate 瑕疵 510 is taken as one of the 瑕疵 features 520, and the 瑕疵 texture 523 features are extracted by the following equation. Where N ri is the number of pixels in the i- th candidate 瑕疵 510, and N gi is the number of non-tilt directions of the pixel:

在定義瑕疵強度平滑度521、瑕疵紋理複雜度522和瑕疵紋理結構523為瑕疵特徵520後。接著利用機器學習模組425,即在訓練階段中以訓練資料學習,進而在測試階段藉由瑕疵特徵透過支援向量機將晶片影像500中的瑕疵和光點區分開來,以達到檢測高強度瑕疵512的目的,其結果如第3圖(1)所示。支援向量機是試圖對資料找出最佳空間分隔超平面來區分不同的樣本,將超平面和樣本之間的間隔最大化,從而最大限度的減少誤差的上限。訓練樣本為(xi,yi),i=1,2,...,n,xi Rn,yi{+1,-1},其中Rn是訓練樣本和測試樣本的原本空間,xi是樣本向量,yi則標記xi屬於哪一類資料。為確保唯一性,假設支持超平面和最佳超平面的距離縮小為1/∥w∥,因此訓練樣本有下列限制條件: 上面兩個限制式可化簡為一個限制式,如下: 為了獲得最佳分隔超平面,要最大限度的減少∥w2,因此的目標函式為: After the 瑕疵 intensity smoothness 521, the 瑕疵 texture complexity 522, and the 瑕疵 texture structure 523 are defined as the 瑕疵 feature 520. Then, the machine learning module 425 is used to learn the training data in the training phase, and then the 瑕疵 and the light spot in the wafer image 500 are distinguished by the 瑕疵 feature through the support vector machine in the test phase, so as to detect the high intensity 瑕疵 512. The purpose of this is shown in Fig. 3 (1). The support vector machine is trying to find the best spatial separation hyperplane for the data to distinguish different samples, maximizing the interval between the hyperplane and the sample, thus minimizing the upper limit of the error. The training samples are ( xi, yi ), i =1, 2, ..., n, xi Rn , yi {+1, -1}, where Rn is the original space of the training sample and the test sample, and xi is the sample vector. Yi is to mark which type of information xi belongs to. To ensure uniqueness, it is assumed that the distance supporting the hyperplane and the best hyperplane is reduced to 1/∥ w ∥, so the training samples have the following restrictions: The above two restrictions can be reduced to a limit, as follows: To get the best separation of the hyperplane, minimize ∥ w2 , so the target function is:

利用Lagrange Multiplier Method解上述問題,找出可以使L為最小值的w、biαiαi為Lagrange multiplier,n為支援向量個數,其中0≦αi≦C,C為用來衡量誤差個數和分類複雜性的參數。: 得到 接下來即可利用下列決策函數來分類資料: Use Lagrange Multiplier Method to solve the above problem, find w, bi and αi which can make L the minimum value, αi is Lagrange multiplier, and n is the number of support vectors, where 0≦ αi ≦C, C is used to measure the number of errors. And the parameters of the classification complexity. : get The following decision functions can then be used to classify the data:

然而,在實際操作上資料通常不是使用線性超平面就可以分割的,所以當遇到非線性的問題時,利用核心函數將原始資料對映到高維度的特徵空間後,再來進行線性分割,本發明使用放射核心函數RBF(Radial Basis Function),其函數為: 透過放射核心函數將決策函數改為: However, in practice, the data is usually not divided by using a linear hyperplane, so when a nonlinear problem is encountered, the core data is used to map the original data to the high-dimensional feature space, and then linearly split. The present invention uses a Radial Basis Function (RBF) whose function is: Change the decision function to the radio core function by:

利用放射核心函數RBF將資料從原本的空間映射到高維空間,使資料更容易分離,接著在訓練階段以上述說明的三個瑕疵特徵520作為支援向量機的輸入值用以更新權重,達到最小的誤差結果,在測試階段時則可利用確定好的決策函數區分瑕疵及光點530,判斷晶片影像500中是否存在瑕疵,達到瑕疵檢測的目的。 The radiological core function RBF is used to map the data from the original space to the high-dimensional space, so that the data is more easily separated. Then, in the training phase, the three characteristics 520 described above are used as input values of the support vector machine to update the weight to the minimum. As a result of the error, in the test phase, the determined decision function can be used to distinguish between the 瑕疵 and the light spot 530, and it is determined whether or not 瑕疵 is present in the wafer image 500 to achieve the purpose of 瑕疵 detection.

第六步驟160,利用霍夫轉換模組422找出晶片邊界,將晶片影像500以晶片影像強度平均值區分為晶片部分540和背景部分550兩部分用以計算一能量圖。低強度瑕疵通常發生在晶片的邊緣部分,利用霍夫轉換模組422找出晶片邊界。因晶片影像500中強度大的部分會拉高整張晶片影像500的平均強度,不易分離晶片影像500中的晶片部分540和背景部分550,如第7圖(b)先移除晶片影像500中像素強度值大於晶片影像500強度平均值的像素。接下來以晶片影像500強度平均值分為較大和較小兩部分,強度較大為晶片部分540以第一顏色表示;強度較小為背景部分550以第二顏色表示。為使得晶片影像500得到的晶片邊緣更為平滑,使用遮罩來計算能量圖,當像 素(x,y)在遮罩中存在大於平均值的像素時,將像素(x,y)視為是晶片部分,將E(x,y)設為255,反之則為背景部分將E(x,y)設為0。對於任一像素(x,y)以下所列方程式計算得到晶片影像500的能量圖,W為遮罩,其大小為N×N: In a sixth step 160, the wafer boundary is found by using the Hough conversion module 422, and the wafer image 500 is divided into the wafer portion 540 and the background portion 550 by the average image intensity of the wafer to calculate an energy map. Low-intensity germanium typically occurs at the edge portion of the wafer, and the wafer boundary is found using the Hough conversion module 422. Since the intensity of the portion of the wafer image 500 will increase the average intensity of the entire wafer image 500, it is difficult to separate the wafer portion 540 and the background portion 550 of the wafer image 500, as shown in FIG. 7(b). A pixel having a pixel intensity value greater than the intensity average of the wafer image 500. Next, the wafer image 500 intensity average is divided into two parts, larger and smaller, the intensity is larger, the wafer portion 540 is represented by the first color; and the intensity is smaller, the background portion 550 is represented by the second color. In order to make the wafer edge obtained by the wafer image 500 smoother, a mask is used to calculate the energy map. When the pixel ( x, y ) has a pixel larger than the average value in the mask, the pixel ( x, y ) is regarded as In the wafer portion, E( x , y ) is set to 255, and vice versa, E( x , y ) is set to 0 for the background portion. The energy map of the wafer image 500 is calculated for any pixel ( x, y ) listed below, and W is a mask having a size of N x N:

能量圖如第7圖(c)所示。晶片影像500中可能存在雜點或光點530而使得能量圖中存在多個輪廓,為了移除雜訊和光點530,如第7圖(d)保留面積最大的輪廓。 The energy map is shown in Figure 7(c). There may be noise or spots 530 in the wafer image 500 such that there are multiple contours in the energy map. To remove the noise and spots 530, the largest area of the area is preserved as in Figure 7(d).

第七步驟170,以型態學模組424填補晶片影像500的輪廓不完整,並移除晶片影像500中細小瑕疵511用以得到一完整晶片邊界輪廓560。如第7圖(d)所示,晶片的輪廓不完整、晶片中存在破洞且晶片影像500中有雜點,因此以閉合運算填補晶片影像500中晶片區域的破洞,再以斷開運算將晶片影像500中的雜點移除,如第7圖(e)所示,可以看到晶片的輪廓較為完整且晶片邊緣更為平滑。 In a seventh step 170, the outline of the wafer image 500 is filled in with the pattern module 424, and the fine flaw 511 in the wafer image 500 is removed to obtain a complete wafer boundary contour 560. As shown in FIG. 7(d), the outline of the wafer is incomplete, there is a hole in the wafer, and there is a noise in the wafer image 500. Therefore, the hole in the wafer area of the wafer image 500 is filled by the closing operation, and then the disconnection operation is performed. The noise in the wafer image 500 is removed. As shown in Fig. 7(e), it can be seen that the outline of the wafer is relatively complete and the edge of the wafer is smoother.

第八步驟180,利用霍夫轉換模組422找出代表晶片邊界的一直線570,計算直線570與完整晶片邊界輪廓560之間的差異用以檢測低強度瑕疵513。無瑕疵的晶片影像500其晶片邊界應為一條直線;然而當晶片影像500中存在低強度瑕疵513時,晶片影像500的晶片邊界存在缺口,因此先以肯尼邊緣偵測器模組421偵測出第7圖(e)的完整晶片邊界,如第7圖(f)所示的完整晶片邊界輪廓560。 再以霍夫轉換模組422找出最能代表晶片邊界的一條直線570為預測的晶片邊界。計算這條直線570與完整晶片邊界輪廓560之間的差異,當晶片影像500中晶片的邊界不存在瑕疵時,所偵測的完整晶片邊界輪廓560應該與預測的晶片邊緣之間差距不大,但當晶片邊界存在瑕疵時,晶片的邊界存在缺口,會與預測的晶片邊界之間有明顯的距離差距,當差距大的像素個數大於門檻值時則認為晶片邊界存在缺口,將測試晶片影像500判斷為瑕疵影像,達到低強度瑕疵513的檢測。 In an eighth step 180, the Hough conversion module 422 is used to find a line 570 representing the boundary of the wafer, and the difference between the line 570 and the full wafer boundary profile 560 is calculated to detect the low intensity 瑕疵 513. The flawless wafer image 500 should have a straight line boundary; however, when there is a low intensity 瑕疵 513 in the wafer image 500, the wafer image 500 has a gap at the wafer boundary, so the Kenny edge detector module 421 is first detected. The complete wafer boundary of Figure 7(e), complete wafer boundary profile 560 as shown in Figure 7(f). The Hough conversion module 422 then finds a line 570 that best represents the wafer boundary as the predicted wafer boundary. Calculating the difference between this line 570 and the full wafer boundary profile 560, when there is no flaw in the wafer boundary in the wafer image 500, the detected full wafer boundary profile 560 should be not much different from the predicted wafer edge. However, when there is a defect in the boundary of the wafer, there is a gap in the boundary of the wafer, and there is a significant distance difference between the boundary of the wafer and the predicted wafer boundary. When the number of pixels with a large gap is larger than the threshold value, the wafer boundary is considered to have a gap, and the wafer image will be tested. 500 is judged as a 瑕疵 image, and the detection of low intensity 瑕疵 513 is achieved.

本發明的另一實施方式是在提供一種用以執行本發明方法的晶片影像瑕疵偵測系統。晶片影像瑕疵偵測系統包含一承載平台300、一攝像機構200和一電腦裝置400。在承載平台300上放置一晶片,以攝像機構200擷取一晶片影像500,再將晶片影像500與電腦裝置400以電性連結。電腦裝置400包含一影像顯示模組410、複數個運算模組420、一資料庫430及一輸出裝置440。晶片影像500以運算模組420分析判斷後,將先前分析結果儲存於資料庫430中,並建立機器學習資料以加快往後比對速度,最後的檢測結果顯示於輸出裝置440。而運算模組420包含一肯尼邊緣偵測器模組421、一霍夫轉換模組422、一二值化模組423、一型態學模組424及一機器學習模組425。 Another embodiment of the present invention is to provide a wafer image detection system for performing the method of the present invention. The wafer image detection system includes a carrier platform 300, a camera mechanism 200, and a computer device 400. A wafer is placed on the carrying platform 300, a wafer image 500 is captured by the camera mechanism 200, and the wafer image 500 is electrically connected to the computer device 400. The computer device 400 includes an image display module 410, a plurality of computing modules 420, a database 430, and an output device 440. After the wafer image 500 is analyzed and judged by the operation module 420, the previous analysis result is stored in the database 430, and the machine learning data is established to speed up the backward comparison speed, and the final detection result is displayed on the output device 440. The computing module 420 includes a Kenny edge detector module 421, a Hough transform module 422, a binarization module 423, a type module 424, and a machine learning module 425.

本發明的再一實施方式是在提供一種用以執行本發明方法的的電腦程式產品。電腦程式產品內儲多個運算模組420,包含一肯尼邊緣偵測器模組421、一霍夫轉換模 組422、一二值化模組423、一型態學模組424及一機器學習模組425,當電腦載入這些模組並執行後,可完成晶片影像500瑕疵的偵測。 Yet another embodiment of the present invention is to provide a computer program product for performing the method of the present invention. The computer program product stores a plurality of computing modules 420, including a Kenny edge detector module 421 and a Hough transform module. The group 422, a binarization module 423, a type module 424, and a machine learning module 425 can perform detection of the wafer image 500 当 when the computer loads the modules and executes them.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

110‧‧‧第一步驟 110‧‧‧First steps

120‧‧‧第二步驟 120‧‧‧ second step

130‧‧‧第三步驟 130‧‧‧ third step

140‧‧‧第四步驟 140‧‧‧ fourth step

150‧‧‧第五步驟 150‧‧‧ fifth step

160‧‧‧第六步驟 160‧‧‧ sixth step

170‧‧‧第七步驟 170‧‧‧ seventh step

180‧‧‧第八步驟 180‧‧‧ eighth step

Claims (10)

一種偵測晶片影像瑕疵方法,包含下列步驟:第一步驟,拍攝一晶片影像;第二步驟,將該晶片影像進行水平方向影像校正;第三步驟,利用一二值化模組提取該晶片影像中高強度的一候選瑕疵;第四步驟,再使用二相異型態學模組移除一細小瑕疵;第五步驟,利用一機器學習模組以一支援向量機藉由一瑕疵特徵分類出該晶片影像中至少一光點及至少一高強度瑕疵;第六步驟,利用一霍夫轉換模組轉換找出晶片邊界,將該晶片影像以該晶片影像強度平均值區分為晶片部分和背景部分用以計算一能量圖;第七步驟,以該些型態學方法填補該晶片影像的輪廓不完整,並移除該晶片影像中該細小瑕疵用以得到一完整晶片邊界輪廓;以及第八步驟,利用該霍夫轉換模組轉換找出代表晶片邊界的一直線,計算該直線與該完整晶片邊界輪廓之間的差異用以檢測一低強度瑕疵。 A method for detecting a wafer image includes the following steps: a first step of capturing a wafer image; a second step of correcting the wafer image in a horizontal direction; and a third step of extracting the wafer image by using a binarization module a candidate for medium-high intensity; in the fourth step, the two-phase heteromorphic module is used to remove a small flaw; in the fifth step, a machine learning module is used to classify the support vector machine by a feature. At least one spot and at least one high-intensity flaw in the wafer image; in the sixth step, the wafer boundary is converted by using a Hough transform module, and the wafer image is divided into a wafer portion and a background portion by using the average image intensity of the wafer To calculate an energy map; in a seventh step, the contour of the wafer image is filled incompletely by the patterning method, and the fine flaw in the wafer image is removed to obtain a complete wafer boundary contour; and an eighth step is Using the Hough transform module to find a straight line representing the boundary of the wafer, and calculating the difference between the straight line and the boundary contour of the complete wafer for detecting Low intensity flaws. 如請求項1所述之偵測晶片影像瑕疵方法,其中,該第二步驟以一肯尼邊緣偵測器模組偵測影像邊緣,並利用該霍夫轉換模組轉換找出晶片影像中最長的一條直線並求得其角度,再利用一二維旋轉公式將該晶片影像作旋轉校 正。 The method for detecting a wafer image according to claim 1, wherein the second step detects the edge of the image by a Kenny edge detector module, and uses the Hough transform module to find the longest image in the wafer. a straight line and find its angle, and then use a two-dimensional rotation formula to rotate the wafer image positive. 如請求項1所述之偵測晶片影像瑕疵方法,其中,該些型態學模組包含斷開運算和閉合運算。 The method for detecting a wafer image according to claim 1, wherein the pattern modules comprise a disconnect operation and a close operation. 如請求項1所述之偵測晶片影像瑕疵方法,其中,該瑕疵特徵包含瑕疵強度平滑度、瑕疵紋理複雜度及瑕疵紋理結構。 The method for detecting a wafer image according to claim 1, wherein the 瑕疵 feature comprises 瑕疵 intensity smoothness, 瑕疵 texture complexity, and 瑕疵 texture structure. 如請求項1所述之偵測晶片影像瑕疵方法,其中,更包含一調整步驟在該第五步驟和該第六步驟之間進行,先移除該晶片影像中像素強度值大於該晶片影像強度平均值的像素,用於該能量圖能有效分離晶片部分和背景部分。 The method for detecting a wafer image according to claim 1, further comprising an adjusting step performed between the fifth step and the sixth step, wherein removing the pixel intensity value in the wafer image is greater than the image intensity of the wafer A pixel of the average for the energy map to effectively separate the wafer portion from the background portion. 如請求項1所述之偵測晶片影像瑕疵方法,其中,該能量圖以該晶片影像強度平均值分為較大和較小兩部分,強度較大的部分以第一顏色表示,強度較小的部分以第二顏色表示。 The method for detecting a wafer image according to claim 1, wherein the energy map is divided into two parts of a larger and a smaller part by an average value of the image intensity of the wafer, and the portion with a higher intensity is represented by a first color, and the intensity is smaller. The part is represented by the second color. 如請求項1所述之偵測晶片影像瑕疵方法,其中,該第八步驟中該直線與該晶片邊界輪廓之間差距大的一影像像素個數小於門檻值時判斷為不存在瑕疵,該直線與該晶片邊界輪廓之間差距大的該影像像素個數大於門檻值時判斷為一瑕疵影像。 The method for detecting a wafer image according to claim 1, wherein in the eighth step, the number of image pixels having a large gap between the line and the boundary contour of the wafer is less than a threshold value, and the line is determined to be absent. When the number of the image pixels having a large difference from the boundary contour of the wafer is greater than the threshold value, it is determined as a single image. 一種偵測晶片影像瑕疵系統,用於如請求項1之方法,該晶片影像瑕疵偵測系統包含:一承載平台,用以放置一晶片;一攝像機構,用以擷取一晶片影像;以及一電腦裝置,包含:一影像顯示模組;複數個運算模組用以分析判斷該晶片影像;一資料庫,用以儲存一分析結果並建立機器學習資料以加快往後比對速度;以及一輸出裝置用以顯示該分析結果。 A method for detecting a wafer image, the method of claim 1, wherein the wafer image detection system comprises: a carrier platform for placing a wafer; a camera mechanism for capturing a wafer image; and a The computer device comprises: an image display module; a plurality of computing modules for analyzing and determining the image of the wafer; a database for storing an analysis result and establishing machine learning data to speed up the backward comparison speed; and an output The device is used to display the analysis result. 如請求項8所述之偵測晶片影像瑕疵系統,其中,該些運算模組包含一肯尼邊緣偵測器模組、一霍夫轉換模組、一二值化模組、一型態學模組及一機器學習模組。 The method for detecting a wafer image defect according to claim 8, wherein the computing module comprises a Kenny edge detector module, a Hough transform module, a binarization module, and a type Module and a machine learning module. 內儲用以偵測晶片影像瑕疵之一電腦程式產品,當電腦載入一肯尼邊緣偵測器模組、一霍夫轉換模組、一二值化模組、一型態學模組及一機器學習模組並執行後,可完成請求項1所述之方法。 a computer program product for detecting wafer images, when the computer is loaded with a Kenny edge detector module, a Hough conversion module, a binary module, a type module and After a machine learning module is executed, the method described in claim 1 can be completed.
TW102133525A 2013-09-16 2013-09-16 Method of chip detects inspecting, system therefor, and computer program product thereof TWI456190B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102133525A TWI456190B (en) 2013-09-16 2013-09-16 Method of chip detects inspecting, system therefor, and computer program product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102133525A TWI456190B (en) 2013-09-16 2013-09-16 Method of chip detects inspecting, system therefor, and computer program product thereof

Publications (2)

Publication Number Publication Date
TWI456190B TWI456190B (en) 2014-10-11
TW201512649A true TW201512649A (en) 2015-04-01

Family

ID=52112292

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102133525A TWI456190B (en) 2013-09-16 2013-09-16 Method of chip detects inspecting, system therefor, and computer program product thereof

Country Status (1)

Country Link
TW (1) TWI456190B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111402204A (en) * 2020-02-26 2020-07-10 哈尔滨工业大学 Chip appearance defect detection method based on multi-order fractional order wavelet packet transformation
US20220005721A1 (en) * 2020-07-02 2022-01-06 Mpi Corporation Method of aligning wafer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11580398B2 (en) * 2016-10-14 2023-02-14 KLA-Tenor Corp. Diagnostic systems and methods for deep learning models configured for semiconductor applications
TWI608369B (en) * 2016-11-23 2017-12-11 財團法人工業技術研究院 Classification method, classification module and computer program product
CN114509446A (en) * 2020-10-23 2022-05-17 联华电子股份有限公司 Automatic detection method and system for chip corner defect
CN114170200B (en) * 2021-12-13 2023-01-20 沭阳鑫洪锐金属制品有限公司 Metal pitting defect degree evaluation method and system based on artificial intelligence
TWI843045B (en) * 2022-01-19 2024-05-21 鴻海精密工業股份有限公司 Image processing and detection method, computer device, and storage medium
CN117333467B (en) * 2023-10-16 2024-05-14 山东景耀玻璃集团有限公司 Image processing-based glass bottle body flaw identification and detection method and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI334928B (en) * 2007-04-19 2010-12-21 Au Optronics Corp Mura detection method and system
CN101995223B (en) * 2009-08-25 2013-05-08 比亚迪股份有限公司 Chip appearance detection method and system
WO2013020143A1 (en) * 2011-08-04 2013-02-07 University Of Southern California Image-based crack quantification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111402204A (en) * 2020-02-26 2020-07-10 哈尔滨工业大学 Chip appearance defect detection method based on multi-order fractional order wavelet packet transformation
CN111402204B (en) * 2020-02-26 2021-07-06 哈尔滨工业大学 Chip appearance defect detection method based on multi-order fractional order wavelet packet transformation
US20220005721A1 (en) * 2020-07-02 2022-01-06 Mpi Corporation Method of aligning wafer

Also Published As

Publication number Publication date
TWI456190B (en) 2014-10-11

Similar Documents

Publication Publication Date Title
TW201512649A (en) Method of chip detects inspecting, system therefor, and computer program product thereof
WO2023077404A1 (en) Defect detection method, apparatus and system
Shipway et al. Automated defect detection for fluorescent penetrant inspection using random forest
TWI597689B (en) Defect classification using topographical attributes
WO2021168733A1 (en) Defect detection method and apparatus for defect image, and computer-readable storage medium
TWI616823B (en) Defect classification using cad-based context attributes
CN110930390B (en) Chip pin missing detection method based on semi-supervised deep learning
TW202105549A (en) Method of defect detection on a specimen and system thereof
US11315229B2 (en) Method for training defect detector
KR20220014805A (en) Generating training data usable for examination of a semiconductor specimen
JP2019144245A (en) System and method for line defect detection with preprocessing
WO2024002187A1 (en) Defect detection method, defect detection device, and storage medium
CN110596120A (en) Glass boundary defect detection method, device, terminal and storage medium
CN105741281B (en) Method for detecting image edge based on neighborhood dispersion
TWI765442B (en) Method for defect level determination and computer readable storage medium thereof
CN113781415B (en) Defect detection method, device, equipment and medium for X-ray image
CN115830004A (en) Surface defect detection method, device, computer equipment and storage medium
CN110781913A (en) Zipper cloth belt defect detection method
CN110426395B (en) Method and device for detecting surface of solar EL battery silicon wafer
Choi et al. Deep learning based defect inspection using the intersection over minimum between search and abnormal regions
KR101782364B1 (en) Vision inspection method based on learning data
JP5405245B2 (en) Image inspection method and image inspection apparatus
CN112802022B (en) Method for intelligently detecting defective glass image, electronic device and storage medium
US11176419B1 (en) Method for labeling image
Kuo et al. Automated inspection of micro-defect recognition system for color filter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees