TW201505178A - Semiconductor device and methods for forming the same - Google Patents

Semiconductor device and methods for forming the same Download PDF

Info

Publication number
TW201505178A
TW201505178A TW102126607A TW102126607A TW201505178A TW 201505178 A TW201505178 A TW 201505178A TW 102126607 A TW102126607 A TW 102126607A TW 102126607 A TW102126607 A TW 102126607A TW 201505178 A TW201505178 A TW 201505178A
Authority
TW
Taiwan
Prior art keywords
region
trench gate
semiconductor device
substrate
gate structure
Prior art date
Application number
TW102126607A
Other languages
Chinese (zh)
Other versions
TWI511294B (en
Inventor
Hsiung-Shih Chang
Jui-Chun Chang
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW102126607A priority Critical patent/TWI511294B/en
Publication of TW201505178A publication Critical patent/TW201505178A/en
Application granted granted Critical
Publication of TWI511294B publication Critical patent/TWI511294B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor device including a substrate having an active region is disclosed. A field plate region and a bulk region are in the active region, wherein the bulk region is at a first side of the field plate region. At least one trench gate structure is disposed in the substrate corresponding to the bulk region. At least one source doped region is in the substrate corresponding to the bulk region, wherein the source doped region surrounds the trench gate structure. A drain doped region is in the substrate at a second side opposite to the first side of the field plate region, wherein an extending direction of length of the trench gate structure is perpendicular to that of the drain doped region as viewed from a top view perspective.

Description

半導體裝置及其製造方法 Semiconductor device and method of manufacturing same

本發明係有關於一種半導體裝置,特別為有關於一種具有溝槽式閘極(trench gate)之半導體裝置及其製造方法。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a trench gate and a method of fabricating the same.

高壓元件技術應用於高電壓與高功率的積體電路,傳統的功率電晶體為了達到高耐壓及高電流,驅動電流的流動由平面方向發展為垂直方向。目前發展出具有溝槽式閘極的金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor,MOSFET),能夠有效地降低導通電阻,且具有較大電流處理能力。 The high-voltage component technology is applied to a high-voltage and high-power integrated circuit. In order to achieve high withstand voltage and high current, the flow of the drive current develops from a planar direction to a vertical direction. At present, a metal oxide semiconductor field effect transistor (MOSFET) having a trench gate is developed, which can effectively reduce the on-resistance and has a large current handling capability.

第1圖係繪示出習知的具有溝槽式閘極的金屬氧化物半導體場效電晶體的平面示意圖。該金屬氧化物半導體場效電晶體包括:基板500、位於基板500內的汲極摻雜區510、溝槽式閘極結構520及源極摻雜區530。源極摻雜區530位於溝槽式閘極結構520的兩側,且源極摻雜區530與溝槽式閘極結構520彼此相連。源極摻雜區530及溝槽式閘極結構520具有相同長度,而溝槽式閘極結構520的深度大於源極摻雜區530的深度。從上視方向來看,源極摻雜區530及溝槽式閘極結構520的長度的延伸方向皆平行於汲極摻雜區510的長度的延伸方向。 該金屬氧化物半導體場效電晶體的驅動電流從汲極摻雜區510朝向源極摻雜區530及溝槽式閘極結構520的方向流動,且沿著溝槽式閘極結構520的側壁向上流向源極摻雜區510,因此從上視方向來看,該金屬氧化物半導體場效電晶體的閘極通道寬度w為溝槽式閘極結構520的長度。 Figure 1 is a schematic plan view showing a conventional MOSFET with a trench gate. The metal oxide semiconductor field effect transistor includes a substrate 500, a gate doping region 510 located in the substrate 500, a trench gate structure 520, and a source doping region 530. The source doping regions 530 are located on both sides of the trench gate structure 520, and the source doping regions 530 and the trench gate structures 520 are connected to each other. The source doped region 530 and the trench gate structure 520 have the same length, and the trench gate structure 520 has a depth greater than the depth of the source doped region 530. The direction in which the lengths of the source doping region 530 and the trench gate structure 520 extend is parallel to the extending direction of the length of the drain doping region 510. The driving current of the metal oxide semiconductor field effect transistor flows from the drain doping region 510 toward the source doping region 530 and the trench gate structure 520, and along the sidewall of the trench gate structure 520. The source is doped to the source doping region 510, so that the gate channel width w of the MOSFET is the length of the trench gate structure 520 as viewed from above.

在固定的閘極通道長度下,驅動電流的大小與上述閘極通道寬度成正比。然而,若閘極通道寬度增加,則會增加溝槽式閘極結構520的長度,進而增加半導體裝置的尺寸。 At a fixed gate channel length, the magnitude of the drive current is proportional to the width of the gate channel described above. However, if the gate channel width is increased, the length of the trench gate structure 520 is increased, thereby increasing the size of the semiconductor device.

因此,有必要尋求一種新穎的具有溝槽式閘極之半導體裝置及其製造方法,其能夠解決或改善上述的問題。 Therefore, it is necessary to find a novel semiconductor device having a trench gate and a method of fabricating the same that can solve or ameliorate the above problems.

本發明實施例係提供一種半導體裝置,包括一基板,其具有一主動區及位於主動區內的一場板區及一基體區,其中基體區位於場板區的一第一側。至少一溝槽式閘極結構位於基體區的基板內。至少一源極摻雜區位於基體區的基板內,其中源極摻雜區圍繞溝槽式閘極結構。一汲極摻雜區位於場板區的一第二側的基板內,其中第二側相對於第一側,且其中從一上視方向來看,溝槽式閘極結構的長度的延伸方向垂直於汲極摻雜區的長度的延伸方向。 Embodiments of the present invention provide a semiconductor device including a substrate having an active region and a field region and a substrate region in the active region, wherein the substrate region is located on a first side of the field plate region. At least one trench gate structure is located within the substrate of the base region. At least one source doped region is located within the substrate of the base region, wherein the source doped region surrounds the trench gate structure. a drain doped region is located in the substrate of a second side of the field plate region, wherein the second side is opposite to the first side, and wherein the length of the trench gate structure extends from a top view direction An extension direction perpendicular to the length of the drain doping region.

本發明實施例係提供一種半導體裝置的製造方法,包括提供一基板,其具有一主動區及位於主動區內的一場板區及一基體區,其中基體區位於場板區的一第一側。在基體區的基板內形成至少一溝槽式閘極結構及至少一源極摻雜區,其中源極摻雜區圍繞溝槽式閘極結構。在場板區的一第二 側的基板內形成一汲極摻雜區,其中第二側相對於第一側,且其中從一上視方向來看,溝槽式閘極結構的長度的延伸方向垂直於汲極摻雜區的長度的延伸方向。 Embodiments of the present invention provide a method of fabricating a semiconductor device, including providing a substrate having an active region and a field region and a substrate region in the active region, wherein the substrate region is located on a first side of the field plate region. At least one trench gate structure and at least one source doped region are formed in the substrate of the base region, wherein the source doped region surrounds the trench gate structure. a second in the field area Forming a drain doped region in the substrate, wherein the second side is opposite to the first side, and wherein the length of the trench gate structure extends perpendicular to the drain doping region from a top view direction The length of the extension direction.

10‧‧‧主動區 10‧‧‧active area

20‧‧‧場板區 20‧‧‧Field area

30‧‧‧基體區 30‧‧‧basal area

50‧‧‧驅動電流 50‧‧‧ drive current

100、500‧‧‧基板 100, 500‧‧‧ substrate

110‧‧‧埋入氧化層 110‧‧‧ buried oxide layer

120‧‧‧矽層 120‧‧‧矽

200、520‧‧‧溝槽式閘極結構 200, 520‧‧‧ trench gate structure

210‧‧‧溝槽 210‧‧‧ trench

220‧‧‧介電層 220‧‧‧ dielectric layer

230‧‧‧閘極電極層 230‧‧‧ gate electrode layer

240‧‧‧場氧化層 240‧‧ ‧ field oxide layer

250‧‧‧場板電極 250‧‧ ‧ field plate electrode

300、530‧‧‧源極摻雜區 300, 530‧‧‧ source doped area

400、510‧‧‧汲極摻雜區 400, 510‧‧‧汲polar doped area

W、w‧‧‧閘極通道寬度 W, w‧‧‧ gate channel width

第1圖係繪示出習知的具有溝槽式閘極的金屬氧化物半導體場效電晶體的平面示意圖。 Figure 1 is a schematic plan view showing a conventional MOSFET with a trench gate.

第2A及3A圖係繪示出根據本發明實施例之半導體裝置的製造方法的平面示意圖。 2A and 3A are plan views showing a method of fabricating a semiconductor device in accordance with an embodiment of the present invention.

第2B圖係繪示出沿著第2A圖中的剖線2B-2B’的剖面示意圖。 Fig. 2B is a schematic cross-sectional view taken along line 2B-2B' in Fig. 2A.

第2C圖係繪示出沿著第2A圖中的剖線2C-2C’的剖面示意圖。 Fig. 2C is a schematic cross-sectional view taken along line 2C-2C' in Fig. 2A.

第3B圖係繪示出沿著第3A圖中的剖線3B-3B’的剖面示意圖。 Fig. 3B is a schematic cross-sectional view taken along line 3B-3B' in Fig. 3A.

第3C圖係繪示出沿著第3A圖中的剖線3C-3C’的剖面示意圖。 Fig. 3C is a schematic cross-sectional view taken along line 3C-3C' in Fig. 3A.

以下說明本發明實施例之半導體裝置及其製造方法的製作與使用。然而,可輕易了解本發明實施例提供許多合適的發明概念而可實施於廣泛的各種特定背景。所揭示的特定實施例僅僅用於說明以特定方法製作及使用本發明,並非用以侷限本發明的範圍。再者,在本發明實施例之圖式及說明內容中係使用相同的標號來表示相同或相似的部件。 Hereinafter, the fabrication and use of the semiconductor device and the method of manufacturing the same according to embodiments of the present invention will be described. However, it will be readily understood that the embodiments of the present invention are susceptible to many specific embodiments of the invention and can The specific embodiments disclosed are merely illustrative of the invention, and are not intended to limit the scope of the invention. In the drawings and the description of the embodiments of the present invention, the same reference numerals are used to refer to the same or similar parts.

以下配合第3A至3C圖說明本發明實施例之具有溝 槽式閘極之半導體裝置,其中第3A圖係繪示出根據本發明實施例之具有溝槽式閘極之半導體裝置的平面示意圖,第3B圖係繪示出沿著第3A圖中的剖線3B-3B’的剖面示意圖,且第3C圖係繪示出沿著第3A圖中的剖線3C-3C’的剖面示意圖。 The following description of the embodiments of the present invention with the 3A to 3C drawings A semiconductor device of a trench gate, wherein FIG. 3A is a schematic plan view showing a semiconductor device having a trench gate according to an embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along line 3A A schematic cross-sectional view of line 3B-3B', and FIG. 3C is a cross-sectional view taken along line 3C-3C' of FIG. 3A.

具有溝槽式閘極之半導體裝置包括:一基板100、 至少一溝槽式閘極結構200、至少一源極摻雜區300以及一汲極摻雜區400。基板100具有一主動區10及位於主動區10內的一場板(field plate)區20及一基體區30,其中基體區30位於場板區20的一第一側。在本實施例中,基板100可為絕緣層上覆矽(silicon on insulator,SOI)基底,且基板100內包括一埋入氧化層(buried oxide,BOX)110及其上的一矽層120,如第3B及3C圖所示。在其他實施例中,基板100可為單晶矽基底、磊晶矽基底、矽鍺基底、化合物半導體基底或其他習用之半導體基板。在本實施例中,基板100的導電類型為n型,但並不限定於此。在其他實施例中,基板100的導電類型也可為p型,且可根據設計需要選擇其導電類型。 A semiconductor device having a trench gate includes: a substrate 100, At least one trench gate structure 200, at least one source doped region 300, and a drain doped region 400. The substrate 100 has an active region 10 and a field plate region 20 located in the active region 10 and a base region 30, wherein the substrate region 30 is located on a first side of the field plate region 20. In this embodiment, the substrate 100 may be a silicon on insulator (SOI) substrate, and the substrate 100 includes a buried oxide (BOX) 110 and a germanium layer 120 thereon. As shown in Figures 3B and 3C. In other embodiments, the substrate 100 can be a single crystal germanium substrate, an epitaxial germanium substrate, a germanium substrate, a compound semiconductor substrate, or other conventional semiconductor substrates. In the present embodiment, the conductivity type of the substrate 100 is n-type, but is not limited thereto. In other embodiments, the conductivity type of the substrate 100 may also be p-type, and its conductivity type may be selected according to design requirements.

至少一溝槽式閘極結構200位於基體區30的基板 100內,且包括一介電層220及一閘極電極層230。介電層220順應性地位於基板100內的一溝槽210內,且閘極電極層230位於介電層220上,並填滿溝槽210,如第3B及3C圖所示。介電層220可包括氧化物、氮化物、氮氧化物、其組合或其他合適的閘極介電材料。閘極電極層230可包括矽、多晶矽(polysilicon)或其他導電材料。在本實施例中,溝槽式閘極結構200為一長條狀 柱體,且長條狀柱體的底面具有圓角矩形之外型,如第3A圖所示。在其他實施例中,溝槽式閘極結構200的長條狀柱體的底面可具有橢圓形、矩形或多邊形之外型(未繪示)。 At least one trench gate structure 200 is located on the substrate of the base region 30 100, and includes a dielectric layer 220 and a gate electrode layer 230. The dielectric layer 220 is compliantly disposed within a trench 210 in the substrate 100, and the gate electrode layer 230 is disposed on the dielectric layer 220 and fills the trench 210 as shown in FIGS. 3B and 3C. Dielectric layer 220 can include an oxide, a nitride, an oxynitride, combinations thereof, or other suitable gate dielectric materials. The gate electrode layer 230 may comprise germanium, polysilicon or other conductive material. In this embodiment, the trench gate structure 200 is a long strip. The cylinder, and the bottom surface of the elongated cylinder has a rounded rectangular shape, as shown in Fig. 3A. In other embodiments, the bottom surface of the elongated column of the trench gate structure 200 may have an elliptical, rectangular or polygonal shape (not shown).

源極摻雜區300位於基體區30的基板100內,其中 源極摻雜區300圍繞溝槽式閘極結構200,如第3A圖所示。在本實施例中,源極摻雜區300的導電類型為n型,但並不限定於此。在其他實施例中,源極摻雜區300的導電類型也可為p型,且可根據設計需要選擇其導電類型,例如,源極摻雜區300可包括p型摻雜物(例如,硼或氟化硼)或n型摻雜物(例如,磷或砷)。在本實施例中,從上視方向來看,源極摻雜區300的邊緣與溝槽式閘極結構200的邊緣具有相同的外型,如第3A圖所示。在其他實施例中,源極摻雜區300的邊緣與溝槽式閘極結構200的邊緣可具有不同的外型(未繪示)。 The source doping region 300 is located in the substrate 100 of the base region 30, wherein The source doped region 300 surrounds the trench gate structure 200 as shown in FIG. 3A. In the present embodiment, the conductivity type of the source doping region 300 is n-type, but is not limited thereto. In other embodiments, the conductivity type of the source doping region 300 may also be p-type, and the conductivity type may be selected according to design requirements. For example, the source doping region 300 may include a p-type dopant (eg, boron). Or boron fluoride) or an n-type dopant (for example, phosphorus or arsenic). In the present embodiment, the edge of the source doping region 300 has the same shape as the edge of the trench gate structure 200 as viewed from the top direction, as shown in FIG. 3A. In other embodiments, the edge of the source doped region 300 and the edge of the trench gate structure 200 may have different shapes (not shown).

在一實施例中,具有溝槽式閘極之半導體裝置可 包括複數溝槽式閘極結構200及對應的複數源極摻雜區300,且溝槽式閘極結構200彼此間隔排列。舉例來說,具有溝槽式閘極之半導體裝置包括彼此間隔排列的兩個溝槽式閘極結構200及對應的兩個源極摻雜區300,溝槽式閘極結構200彼此可具有相同的外型,如第3A圖所示。在另一實施例中,兩個溝槽式閘極結構200彼此可具有不同的外型(未繪示)。在其他實施例中,兩個以上的溝槽式閘極結構200中可具有相同或不同的外型的溝槽式閘極結構200,且相鄰的溝槽式閘極結構200之間可具有相同或不同的間距。可以理解的是,第3A至3C圖中溝槽式閘極結構200及對應的源極摻雜區300的數量及外型僅作為範例 說明,並不限定於此,溝槽式閘極結構200及對應的源極摻雜區300的實際數量及外型取決於設計需求。 In an embodiment, a semiconductor device having a trench gate can A plurality of trench gate structures 200 and corresponding complex source doped regions 300 are included, and the trench gate structures 200 are spaced apart from each other. For example, a semiconductor device having a trench gate includes two trench gate structures 200 and two corresponding source doped regions 300 spaced apart from each other, and the trench gate structures 200 may have the same as each other. The appearance is as shown in Figure 3A. In another embodiment, the two trench gate structures 200 can have different shapes (not shown) from each other. In other embodiments, two or more trench gate structures 200 may have the same or different outer shape of the trench gate structure 200, and adjacent trench gate structures 200 may have Same or different spacing. It can be understood that the number and appearance of the trench gate structure 200 and the corresponding source doping region 300 in FIGS. 3A to 3C are only examples. The description is not limited thereto, and the actual number and appearance of the trench gate structure 200 and the corresponding source doping region 300 depend on design requirements.

汲極摻雜區400位於場板區20的一第二側的基板 100內,其中第二側相對於第一側,即汲極摻雜區400與具有溝槽式閘極結構200及源極摻雜區300的基體區30分別位於場板區20相對的兩側。每一溝槽式閘極結構200與汲極摻雜區400之間具有相同的間距。在本實施例中,汲極摻雜區400的導電類型為p型,但並不限定於此。在其他實施例中,汲極摻雜區400的導電類型也可為n型,且可根據設計需要選擇其導電類型,例如,汲極摻雜區400可包括p型摻雜物(例如,硼或氟化硼)或n型摻雜物(例如,磷或砷)。在本實施例中,從上視方向來看,溝槽式閘極結構200的長度的延伸方向(即,X方向)大體上垂直於汲極摻雜區400的長度的延伸方向(即,Y方向),如第3A圖所示。 The drain doping region 400 is located on a substrate on a second side of the field plate region 20 100, wherein the second side is opposite to the first side, that is, the drain doping region 400 and the base region 30 having the trench gate structure 200 and the source doping region 300 are respectively located on opposite sides of the field plate region 20 . Each trench gate structure 200 has the same spacing from the drain doped region 400. In the present embodiment, the conductivity type of the drain doping region 400 is p-type, but is not limited thereto. In other embodiments, the conductivity type of the drain doping region 400 may also be n-type, and the conductivity type may be selected according to design requirements. For example, the gate doping region 400 may include a p-type dopant (eg, boron). Or boron fluoride) or an n-type dopant (for example, phosphorus or arsenic). In the present embodiment, the extending direction of the length of the trench gate structure 200 (i.e., the X direction) is substantially perpendicular to the extending direction of the length of the gate doping region 400 (i.e., Y) as viewed from the top direction. Direction), as shown in Figure 3A.

在本實施例中,具有溝槽式閘極之半導體裝置更 包括一場氧化層240(例如,矽局部氧化(local oxidation of silicon,LOCOS)結構)以及一場板電極250。場氧化層240位於場板區20內的基板100內,且突出於基板100上,場板電極250位於場氧化層240上,且延伸至基板100上,如第3A及3B圖所示。 In this embodiment, the semiconductor device having the trench gate is more A field oxide layer 240 (eg, a local oxidation of silicon (LOCOS) structure) and a field plate electrode 250 are included. The field oxide layer 240 is located in the substrate 100 in the field plate region 20 and protrudes from the substrate 100. The field plate electrode 250 is disposed on the field oxide layer 240 and extends onto the substrate 100 as shown in FIGS. 3A and 3B.

具有溝槽式閘極之半導體裝置的驅動電流50從汲 極摻雜區400通過場氧化層240下方,且沿著至少一溝槽式閘極結構200的側壁向上流向對應的至少一源極摻雜區300(如第3B圖的箭號所示)。在本實施例中,具有溝槽式閘極之半導體裝 置的閘極通道寬度W為溝槽式閘極結構200的長條狀柱體的底面的1/2周長,如第3A圖所示。 Driving current 50 of a semiconductor device having a trench gate from 汲 The pole doped region 400 passes under the field oxide layer 240 and flows up along the sidewall of the at least one trench gate structure 200 to the corresponding at least one source doped region 300 (as indicated by the arrow in FIG. 3B). In this embodiment, a semiconductor package having a trench gate The width W of the gate channel is 1/2 of the bottom surface of the elongated cylinder of the trench gate structure 200, as shown in FIG. 3A.

習知的具有溝槽式閘極的金屬氧化物半導體場效 電晶體僅具有一個溝槽式閘極結構500,且溝槽式閘極結構500的長度的延伸方向平行於汲極摻雜區510的長度的延伸方向,如第1圖所示。此具有溝槽式閘極的金屬氧化物半導體場效電晶體的閘極通道寬度w為溝槽式閘極結構500的長度,若增加閘極通道寬度w,則會等比例地增加半導體裝置的面積。 Conventional metal oxide semiconductor field effect with trench gate The transistor has only one trench gate structure 500, and the length of the trench gate structure 500 extends parallel to the direction in which the length of the gate doped region 510 extends, as shown in FIG. The gate width w of the MOSFET having a trench gate is the length of the trench gate structure 500. If the gate width w is increased, the semiconductor device is proportionally increased. area.

相較於習知的具有溝槽式閘極的金屬氧化物半導 體場效電晶體,本發明實施例之半導體裝置具有單一溝槽式閘極結構200或複數彼此間隔的溝槽式閘極結構200,且溝槽式閘極結構200的長度的延伸方向係大體上垂直於汲極摻雜區400的長度的延伸方向,半導體裝置的閘極通道寬度W則為單一溝槽式閘極結構200的長條狀柱體的底面的1/2周長或複數溝槽式閘極結構200的長條狀柱體的底面的1/2周長之總和。 Compared to conventional metal oxide semiconductors with trench gates The semiconductor device of the embodiment of the present invention has a single trench gate structure 200 or a plurality of trench gate structures 200 spaced apart from each other, and the length of the trench gate structure 200 extends in a general direction. The width of the gate channel perpendicular to the length of the drain doping region 400, the gate width W of the semiconductor device is 1/2 circumference or a plurality of grooves of the bottom surface of the elongated column of the single trench gate structure 200. The sum of the 1/2 circumferences of the bottom surface of the elongated cylinder of the slotted gate structure 200.

由此可知,相較於長度的延伸方向平行於汲極摻 雜區的溝槽式閘極結構,在固定的裝置面積下,將溝槽式閘極結構配置為其長度的延伸方向大體上垂直於汲極摻雜區的長度的延伸方向時,半導體裝置內能夠形成彼此間隔排列的複數溝槽式閘極結構,使得閘極通道寬度增加為複數溝槽式閘極結構的長條狀柱體的底面的1/2周長之總和,因此可有效地利用裝置面積,進而提升驅動電流。 It can be seen that the direction of extension is parallel to the thickness of the drain The trench gate structure of the impurity region, in a fixed device area, the trench gate structure is configured such that the extending direction of the length thereof is substantially perpendicular to the extending direction of the length of the gate doping region, in the semiconductor device The plurality of trench gate structures arranged at intervals can be formed such that the width of the gate channel is increased to be 1/2 of the circumference of the bottom surface of the elongated column of the plurality of trench gate structures, thereby effectively utilizing the device area , thereby increasing the drive current.

根據本發明實施例,當溝槽式閘極結構的長度的 延伸方向大體上垂直於汲極摻雜區的長度的延伸方向,且半導 體裝置的閘極通道寬度W為單一溝槽式閘極結構的長條狀柱體的底面的1/2周長時,能夠透過增加少部分的裝置面積,大幅提高溝槽式閘極結構的閘極通道寬度,進而提升驅動電流及改善導通電阻。另外,由於半導體裝置內能夠形成彼此間隔排列的複數溝槽式閘極結構,因此可在增加少部分的裝置面積的情況下,再進一步提高驅動電流及改善導通電阻,並有效增加裝置面積的使用效率。更進一步來說,根據本發明實施例之溝槽式閘極結構,能夠在相同的所需驅動電流下,縮小閘極結構的尺寸且增加裝置面積的使用效率,進而縮小半導體裝置的尺寸。 According to an embodiment of the invention, when the length of the trench gate structure The extending direction is substantially perpendicular to the extending direction of the length of the drain doped region, and the semiconductor When the width W of the gate channel of the body device is 1/2 of the length of the bottom surface of the elongated column of the single trench gate structure, the gate area of the trench gate structure can be greatly improved by increasing the device area by a small portion. Channel width, which in turn increases drive current and improves on-resistance. In addition, since a plurality of trench gate structures spaced apart from each other can be formed in the semiconductor device, the driving current can be further improved and the on-resistance can be improved while increasing the device area, and the device area can be effectively increased. effectiveness. Furthermore, the trench gate structure according to the embodiment of the present invention can reduce the size of the gate structure and increase the use efficiency of the device area under the same required driving current, thereby reducing the size of the semiconductor device.

以下配合第2A至2C及3A至3C圖說明本發明實施 例之具有溝槽式閘極之半導體裝置的製造方法,其中第2A及3A圖係繪示出根據本發明實施例之具有溝槽式閘極之半導體裝置的製造方法的平面示意圖,且其中第2B圖係繪示出沿著第2A圖中的剖線2B-2B’的剖面示意圖,第2C圖係繪示出沿著第2A圖中的剖線2C-2C’的剖面示意圖,第3B圖係繪示出沿著第3A圖中的剖線3B-3B’的剖面示意圖,且第3C圖係繪示出沿著第3A圖中的剖線3C-3C’的剖面示意圖。 The following describes the implementation of the present invention in conjunction with FIGS. 2A to 2C and 3A to 3C. Example of a method of fabricating a semiconductor device having a trench gate, wherein FIGS. 2A and 3A are schematic plan views showing a method of fabricating a semiconductor device having a trench gate according to an embodiment of the present invention, and wherein 2B is a cross-sectional view taken along line 2B-2B' in FIG. 2A, and FIG. 2C is a cross-sectional view taken along line 2C-2C' in FIG. 2A, FIG. 3B A cross-sectional view along section line 3B-3B' in Fig. 3A is depicted, and a 3C diagram is a cross-sectional view along section line 3C-3C' in Fig. 3A.

請參照第2A至2C圖,提供一基板100,其具有一主 動區10及位於主動區10內的一場板區20及一基體區30,其中基體區30位於場板區20的一第一側。在本實施例中,基板100可為絕緣層上覆矽基底,且基板100內包括一埋入氧化層110及其上的一矽層120,如第2B及2C圖所示。在其他實施例中,基板100可為單晶矽基底、磊晶矽基底、矽鍺基底、化合物半導體 基底或其他習用之半導體基板。在本實施例中,基板100的導電類型為n型,但並不限定於此。在其他實施例中,基板100的導電類型也可為p型,且可根據設計需要選擇其導電類型。 Referring to FIGS. 2A to 2C, a substrate 100 having a main body is provided. The movable area 10 and a field area 20 and a base area 30 located in the active area 10, wherein the base area 30 is located on a first side of the field plate area 20. In this embodiment, the substrate 100 may be an insulating layer overlying the germanium substrate, and the substrate 100 includes a buried oxide layer 110 and a germanium layer 120 thereon, as shown in FIGS. 2B and 2C. In other embodiments, the substrate 100 can be a single crystal germanium substrate, an epitaxial germanium substrate, a germanium substrate, a compound semiconductor. Substrate or other conventional semiconductor substrate. In the present embodiment, the conductivity type of the substrate 100 is n-type, but is not limited thereto. In other embodiments, the conductivity type of the substrate 100 may also be p-type, and its conductivity type may be selected according to design requirements.

可透過沉積製程及微影蝕刻製程,在基板100上形 成圖案化的一硬式罩幕層(未繪示),例如氮化矽層,以暴露出場板區20的基板100。接著,進行氧化成長製程,以在場板區20的基板100內形成場氧化層240(例如,矽局部氧化結構),且突出於基板100上。 Formed on the substrate 100 through a deposition process and a photolithography process A patterned hard mask layer (not shown), such as a tantalum nitride layer, is patterned to expose the substrate 100 of the field plate region 20. Next, an oxidative growth process is performed to form a field oxide layer 240 (eg, a tantalum partial oxidation structure) in the substrate 100 of the field plate region 20, and protrudes from the substrate 100.

接著,在去除硬式罩幕層之後,可透過沉積製程 及微影蝕刻製程,在基板100上形成圖案化的另一硬式罩幕層(未繪示),以暴露出場板區20的第一側的基板100。接著,進行蝕刻製程(例如,乾蝕刻製程、濕蝕刻製程、電漿蝕刻製程、反應性離子蝕刻製程或其他習用的蝕刻製程),在場板區20的第一側(即,基體區30)的基板100內形成至少一溝槽210。舉例來說,在基板100內形成兩個溝槽210。接著,在去除硬式罩幕層之後,可透過沉積製程(例如,原子層沉積(atomic layer deposition,ALD)製程、化學氣相沉積(chemical vapor deposition,CVD)製程、物理氣相沉積(physical vapor deposition,PVD)製程、熱氧化製程或其他適合的製程),將介電材料順應性地沉積於每一溝槽210內,以對應形成一介電層220,作為閘極介電層。介電層220可包括氧化物、氮化物、氮氧化物、其組合或其他合適的閘極介電材料。 Then, after removing the hard mask layer, the deposition process can be And a lithography process, another patterned hard mask layer (not shown) is formed on the substrate 100 to expose the substrate 100 on the first side of the field plate region 20. Next, an etching process (eg, a dry etch process, a wet etch process, a plasma etch process, a reactive ion etch process, or other conventional etch process) is performed on the first side of the field plate region 20 (ie, the base region 30). At least one trench 210 is formed in the substrate 100. For example, two trenches 210 are formed within the substrate 100. Then, after removing the hard mask layer, the deposition process can be performed (for example, atomic layer deposition (ALD) process, chemical vapor deposition (CVD) process, physical vapor deposition (physical vapor deposition). , PVD) process, thermal oxidation process or other suitable process), a dielectric material is conformally deposited in each trench 210 to form a dielectric layer 220 as a gate dielectric layer. Dielectric layer 220 can include an oxide, a nitride, an oxynitride, combinations thereof, or other suitable gate dielectric materials.

接著,可透過沉積製程(例如,物理氣相沉積製程、 化學氣相沉積製程、原子層沉積製程、濺鍍製程或塗佈製程), 在每一介電層220上沉積一導電材料,並填滿對應的溝槽210,以形成閘極電極層230,進而在基體區30的基板100內形成兩個溝槽式閘極結構200,如第2B及2C圖所示。閘極電極層230可包括矽、多晶矽或其他導電材料。另外,也可透過沉積製程,在場氧化層240上形成一場板電極250,且延伸至基板100上,如第2A及2B圖所示。 Then, through a deposition process (for example, a physical vapor deposition process, Chemical vapor deposition process, atomic layer deposition process, sputtering process or coating process), Depositing a conductive material on each of the dielectric layers 220 and filling the corresponding trenches 210 to form the gate electrode layer 230, thereby forming two trench gate structures 200 in the substrate 100 of the base region 30, As shown in Figures 2B and 2C. Gate electrode layer 230 can include germanium, polysilicon or other conductive materials. Alternatively, a field plate electrode 250 may be formed on the field oxide layer 240 through the deposition process and extended onto the substrate 100 as shown in FIGS. 2A and 2B.

在本實施例中,溝槽式閘極結構200為一長條狀柱 體,且長條狀柱體的底面具有圓角矩形之外型,如第2A圖所示。在其他實施例中,溝槽式閘極結構200的長條狀柱體的底面可具有橢圓形、矩形或多邊形之外型(未繪示)。 In this embodiment, the trench gate structure 200 is a long strip. The body, and the bottom surface of the elongated column has a rounded rectangular shape, as shown in Fig. 2A. In other embodiments, the bottom surface of the elongated column of the trench gate structure 200 may have an elliptical, rectangular or polygonal shape (not shown).

根據本發明實施例,具有溝槽式閘極之半導體裝 置可包括彼此間隔排列的複數溝槽式閘極結構200。舉例來說,具有溝槽式閘極之半導體裝置包括彼此間隔排列的兩個溝槽式閘極結構200,且溝槽式閘極結構200彼此可具有相同的外型,如第2A圖所示。在另一實施例中,兩個溝槽式閘極結構200彼此可具有不同的外型(未繪示)。在其他實施例中,兩個以上的溝槽式閘極結構200中可具有相同或不同的外型的溝槽式閘極結構200,且相鄰的溝槽式閘極結構200之間可具有相同或不同的間距。可以理解的是,第2A至2C圖中溝槽式閘極結構200的數量及外型僅作為範例說明,並不限定於此,溝槽式閘極結構200的實際數量及外型取決於設計需求。 Semiconductor package with trench gate according to an embodiment of the invention The set may include a plurality of trench gate structures 200 that are spaced apart from one another. For example, a semiconductor device having a trench gate includes two trench gate structures 200 spaced apart from each other, and the trench gate structures 200 may have the same shape as each other, as shown in FIG. 2A. . In another embodiment, the two trench gate structures 200 can have different shapes (not shown) from each other. In other embodiments, two or more trench gate structures 200 may have the same or different outer shape of the trench gate structure 200, and adjacent trench gate structures 200 may have Same or different spacing. It can be understood that the number and shape of the trench gate structure 200 in FIGS. 2A to 2C are merely illustrative and not limited thereto, and the actual number and shape of the trench gate structure 200 depend on design requirements. .

請參照第3A至3C圖,可透過摻雜製程(例如,離子 佈植製程),在基體區30的基板100內形成複數源極摻雜區300,其中一個源極摻雜區300對應圍繞一個溝槽式閘極結構 200,如第3A圖所示。在本實施例中,源極摻雜區300的導電類型為n型,但並不限定於此。在其他實施例中,源極摻雜區300的導電類型也可為p型,且可根據設計需要選擇其導電類型,例如,透過p型摻雜物(例如,硼或氟化硼)、n型摻雜物(例如,磷或砷)及/或其組合進行摻雜製程。在本實施例中,從上視方向來看,源極摻雜區300的邊緣與溝槽式閘極結構200的邊緣具有相同的外型,如第3A圖所示。在其他實施例中,源極摻雜區300的邊緣與溝槽式閘極結構200的邊緣可具有不同的外型(未繪示)。 Please refer to Figures 3A to 3C for pass through doping processes (eg, ions) The implantation process) forms a plurality of source doping regions 300 in the substrate 100 of the base region 30, wherein one source doping region 300 corresponds to a trench gate structure. 200, as shown in Figure 3A. In the present embodiment, the conductivity type of the source doping region 300 is n-type, but is not limited thereto. In other embodiments, the conductivity type of the source doping region 300 may also be p-type, and the conductivity type may be selected according to design requirements, for example, through a p-type dopant (eg, boron or boron fluoride), n A dopant (eg, phosphorus or arsenic) and/or combinations thereof are subjected to a doping process. In the present embodiment, the edge of the source doping region 300 has the same shape as the edge of the trench gate structure 200 as viewed from the top direction, as shown in FIG. 3A. In other embodiments, the edge of the source doped region 300 and the edge of the trench gate structure 200 may have different shapes (not shown).

可透過摻雜製程(例如,離子佈植製程),在場板區 20的一第二側的基板100內形成一汲極摻雜區400,其中第二側相對於第一側,即汲極摻雜區400與具有溝槽式閘極結構200及源極摻雜區300的基體區30分別位於場板區20相對的兩側。在本實施例中,汲極摻雜區400的導電類型為p型,但並不限定於此。在其他實施例中,汲極摻雜區400的導電類型也可為n型,且可根據設計需要選擇其導電類型,例如,透過p型摻雜物(例如,硼或氟化硼)、n型摻雜物(例如,磷或砷)及/或其組合進行摻雜製程。每一溝槽式閘極結構200與汲極摻雜區400之間具有相同的間距。在本實施例中,從上視方向來看,溝槽式閘極結構200的長度的延伸方向(即,X方向)大體上垂直於汲極摻雜區400的長度的延伸方向(即,Y方向),如第3A圖所示。 Through the doping process (for example, ion implantation process), in the field plate area A drain doping region 400 is formed in the substrate 100 of a second side of the second side, wherein the second side is opposite to the first side, that is, the drain doping region 400 and the trench gate structure 200 and the source doping The base regions 30 of the zones 300 are located on opposite sides of the field plate region 20, respectively. In the present embodiment, the conductivity type of the drain doping region 400 is p-type, but is not limited thereto. In other embodiments, the conductivity type of the drain doping region 400 may also be n-type, and the conductivity type may be selected according to design requirements, for example, through a p-type dopant (eg, boron or boron fluoride), n A dopant (eg, phosphorus or arsenic) and/or combinations thereof are subjected to a doping process. Each trench gate structure 200 has the same spacing from the drain doped region 400. In the present embodiment, the extending direction of the length of the trench gate structure 200 (i.e., the X direction) is substantially perpendicular to the extending direction of the length of the gate doping region 400 (i.e., Y) as viewed from the top direction. Direction), as shown in Figure 3A.

具有溝槽式閘極之半導體裝置的驅動電流50從汲 極摻雜區400通過場氧化層240下方,且沿著至少一溝槽式閘極結構200的側壁向上流向對應的至少一源極摻雜區300(如第3B 圖的箭號所示)。在本實施例中,具有溝槽式閘極之半導體裝置的閘極通道寬度W為單一溝槽式閘極結構200的長條狀柱體的底面的1/2周長或複數溝槽式閘極結構200的長條狀柱體的底面的1/2周長之總和。 Driving current 50 of a semiconductor device having a trench gate from 汲 The pole doped region 400 passes under the field oxide layer 240 and flows up along the sidewall of the at least one trench gate structure 200 to the corresponding at least one source doping region 300 (eg, 3B) The arrow of the figure is shown). In the present embodiment, the gate channel width W of the semiconductor device having the trench gate is 1/2 circumference or a plurality of trench gates of the bottom surface of the elongated column of the single trench gate structure 200. The sum of the 1/2 circumferences of the bottom surface of the elongated cylinder of the pole structure 200.

相較於長度的延伸方向平行於汲極摻雜區的溝槽 式閘極結構,在固定的裝置面積下,將溝槽式閘極結構配置為其長度的延伸方向大體上垂直於汲極摻雜區的長度的延伸方向時,半導體裝置內能夠形成彼此間隔排列的複數溝槽式閘極結構,使得閘極通道寬度增加為複數溝槽式閘極結構的長條狀柱體的底面的1/2周長之總和,因此可有效地利用裝置面積,進而提升驅動電流。 The trench is parallel to the trench of the drain doping region compared to the length extending direction a gate structure in which the trench gate structure is arranged such that the extending direction of the length thereof is substantially perpendicular to the extending direction of the length of the drain doped region, and the semiconductor device can be arranged to be spaced apart from each other The plurality of trench gate structures increase the width of the gate channel to the sum of 1/2 circumference of the bottom surface of the long column of the plurality of trench gate structures, thereby effectively utilizing the device area and thereby increasing the driving current .

根據本發明實施例,當溝槽式閘極結構的長度的 延伸方向大體上垂直於汲極摻雜區的長度的延伸方向,且半導體裝置的閘極通道寬度W為單一溝槽式閘極結構的長條狀柱體的底面的1/2周長時,能夠透過增加少部分的裝置面積,大幅提高溝槽式閘極結構的閘極通道寬度,進而提升驅動電流及改善導通電阻。另外,由於半導體裝置內能夠形成彼此間隔排列的複數溝槽式閘極結構,因此可在增加少部分的裝置面積的情況下,再進一步提高驅動電流及改善導通電阻,並有效增加裝置面積的使用效率。更進一步來說,根據本發明實施例之溝槽式閘極結構,能夠在相同的所需驅動電流下,縮小閘極結構的尺寸且增加裝置面積的使用效率,進而縮小半導體裝置的尺寸。 According to an embodiment of the invention, when the length of the trench gate structure The extending direction is substantially perpendicular to the extending direction of the length of the drain doping region, and the gate channel width W of the semiconductor device is 1/2 of the bottom surface of the elongated column of the single trench gate structure, which is transparent A small part of the device area is increased, and the width of the gate channel of the trench gate structure is greatly increased, thereby increasing the driving current and improving the on-resistance. In addition, since a plurality of trench gate structures spaced apart from each other can be formed in the semiconductor device, the driving current can be further improved and the on-resistance can be improved while increasing the device area, and the device area can be effectively increased. effectiveness. Furthermore, the trench gate structure according to the embodiment of the present invention can reduce the size of the gate structure and increase the use efficiency of the device area under the same required driving current, thereby reducing the size of the semiconductor device.

本發明實施例之半導體裝置及其製造方法可應用 於橫向擴散金屬氧化物半導體電晶體(laterally diffused metal oxide semiconductor,LDMOS)、N型通道絕緣閘極雙極性電晶體(N-channel insulated gate bipolar transistor,NIGBT)等各種低電壓、高電壓及極高電壓的元件。 The semiconductor device and the method of manufacturing the same according to embodiments of the present invention are applicable Various low voltage, high voltage and high voltage such as laterally diffused metal oxide semiconductor (LDMOS) and N-channel insulated gate bipolar transistor (NIGBT) The component of the voltage.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可更動與組合上述各種實施例。 While the invention has been described above in terms of the preferred embodiments thereof, which are not intended to limit the invention, the invention may be modified and combined with the various embodiments described above without departing from the spirit and scope of the invention. example.

10‧‧‧主動區 10‧‧‧active area

20‧‧‧場板區 20‧‧‧Field area

30‧‧‧基體區 30‧‧‧basal area

100‧‧‧基板 100‧‧‧Substrate

200‧‧‧溝槽式閘極結構 200‧‧‧ Trench gate structure

210‧‧‧溝槽 210‧‧‧ trench

220‧‧‧介電層 220‧‧‧ dielectric layer

230‧‧‧閘極電極層 230‧‧‧ gate electrode layer

240‧‧‧場氧化層 240‧‧ ‧ field oxide layer

250‧‧‧場板電極 250‧‧ ‧ field plate electrode

300‧‧‧源極摻雜區 300‧‧‧ source doped area

400‧‧‧汲極摻雜區 400‧‧‧汲polar doped area

W‧‧‧閘極通道寬度 W‧‧‧ gate channel width

Claims (20)

一種半導體裝置,包括:一基板,具有一主動區及位於該主動區內的一場板區及一基體區,其中該基體區位於該場板區的一第一側;至少一溝槽式閘極結構,位於該基體區的該基板內;至少一源極摻雜區,位於該基體區的該基板內,其中該至少一源極摻雜區圍繞該至少一溝槽式閘極結構;以及一汲極摻雜區,位於該場板區的一第二側的該基板內,其中該第二側相對於該第一側,且其中從一上視方向來看,該至少一溝槽式閘極結構的長度的延伸方向垂直於該汲極摻雜區的長度的延伸方向。 A semiconductor device comprising: a substrate having an active region and a field region and a substrate region in the active region, wherein the substrate region is located on a first side of the field plate region; at least one trench gate a structure, located in the substrate of the substrate region; at least one source doped region, located in the substrate of the substrate region, wherein the at least one source doped region surrounds the at least one trench gate structure; a drain doped region in the substrate on a second side of the field plate region, wherein the second side is opposite to the first side, and wherein the at least one trench gate is viewed from a top view direction The length of the pole structure extends in a direction perpendicular to the direction in which the length of the drain doped region extends. 如申請專利範圍第1項所述之半導體裝置,其中該至少一溝槽式閘極結構為一長條狀柱體,且該柱體的一底面具有橢圓形、圓角矩形、矩形或多邊形之外型。 The semiconductor device according to claim 1, wherein the at least one trench gate structure is an elongated column, and a bottom surface of the pillar has an elliptical shape, a rounded rectangle, a rectangle or a polygon. Appearance. 如申請專利範圍第2項所述之半導體裝置,其中該至少一溝槽式閘極結構包括一閘極電極層,且其中該半導體裝置的閘極通道寬度為該底面的1/2周長。 The semiconductor device of claim 2, wherein the at least one trench gate structure comprises a gate electrode layer, and wherein the gate width of the semiconductor device is 1/2 circumference of the bottom surface. 如申請專利範圍第1項所述之半導體裝置,其中該半導體裝置包括複數溝槽式閘極結構及對應的複數源極摻雜區,且該等溝槽式閘極結構彼此間隔排列。 The semiconductor device of claim 1, wherein the semiconductor device comprises a plurality of trench gate structures and corresponding plurality of source doped regions, and the trench gate structures are spaced apart from each other. 如申請專利範圍第4項所述之半導體裝置,其中該等溝槽式閘極結構之間具有相同的間距,且每一溝槽式閘極結構與該汲極摻雜區之間具有相同的間距。 The semiconductor device of claim 4, wherein the trench gate structures have the same pitch therebetween, and each trench gate structure and the drain doped region have the same spacing. 如申請專利範圍第4項所述之半導體裝置,其中該等溝槽式 閘極結構之間具有不同的間距,且每一溝槽式閘極結構與該汲極摻雜區之間具有相同的間距。 The semiconductor device of claim 4, wherein the trenches are The gate structures have different spacings between each other, and each trench gate structure has the same spacing from the gate doped regions. 如申請專利範圍第4項所述之半導體裝置,其中該等溝槽式閘極結構具有相同的外型。 The semiconductor device of claim 4, wherein the trench gate structures have the same shape. 如申請專利範圍第4項所述之半導體裝置,其中該等溝槽式閘極結構具有不同的外型。 The semiconductor device of claim 4, wherein the trench gate structures have different shapes. 如申請專利範圍第1項所述之半導體裝置,其中該至少一溝槽式閘極結構包括:一介電層,位於該基板內的至少一溝槽內;以及一閘極電極層,位於該介電層上,且填滿該至少一溝槽。 The semiconductor device of claim 1, wherein the at least one trench gate structure comprises: a dielectric layer in at least one trench in the substrate; and a gate electrode layer located at the And filling the at least one trench on the dielectric layer. 如申請專利範圍第1項所述之半導體裝置,更包括:一場氧化層,位於該場板區內;以及一場板電極,位於該場氧化層上,且延伸至該基體區的該基板上。 The semiconductor device of claim 1, further comprising: a field oxide layer located in the field plate region; and a field plate electrode on the field oxide layer and extending onto the substrate of the substrate region. 一種半導體裝置的製造方法,包括:提供一基板,該基板具有一主動區及位於該主動區內的一場板區及一基體區,其中該基體區位於該場板區的一第一側;在該基體區的該基板內形成至少一溝槽式閘極結構及至少一源極摻雜區,其中該至少一源極摻雜區圍繞該至少一溝槽式閘極結構;以及在該場板區的一第二側的該基板內形成一汲極摻雜區,其中該第二側相對於該第一側,且其中從一上視方向來看,該至少一溝槽式閘極結構的長度的延伸方向垂直於該汲極 摻雜區的長度的延伸方向。 A method of fabricating a semiconductor device, comprising: providing a substrate having an active region and a field region and a substrate region in the active region, wherein the substrate region is located on a first side of the field plate region; Forming at least one trench gate structure and at least one source doped region in the substrate of the base region, wherein the at least one source doped region surrounds the at least one trench gate structure; and in the field plate Forming a drain doped region in the substrate on a second side of the region, wherein the second side is opposite to the first side, and wherein the at least one trench gate structure is viewed from a top view direction The extension of the length is perpendicular to the bungee The direction in which the length of the doped region extends. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該至少一溝槽式閘極結構為一長條狀柱體,且該柱體的一底面具有橢圓形、圓角矩形、矩形或多邊形之外型。 The method of manufacturing a semiconductor device according to claim 11, wherein the at least one trench gate structure is an elongated column, and a bottom surface of the pillar has an elliptical shape, a rounded rectangle, and a rectangular shape. Or a polygon type. 如申請專利範圍第12項所述之半導體裝置的製造方法,其中該至少一溝槽式閘極結構包括一閘極電極層,且其中該半導體裝置的閘極通道寬度為該底面的1/2周長。 The method of fabricating a semiconductor device according to claim 12, wherein the at least one trench gate structure comprises a gate electrode layer, and wherein a gate channel width of the semiconductor device is 1/2 of the bottom surface perimeter. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中該半導體裝置包括複數溝槽式閘極結構及對應的複數源極摻雜區,且該等溝槽式閘極結構彼此間隔排列。 The method of fabricating a semiconductor device according to claim 11, wherein the semiconductor device comprises a plurality of trench gate structures and corresponding complex source doped regions, and the trench gate structures are spaced apart from each other . 如申請專利範圍第14項所述之半導體裝置的製造方法,其中該等溝槽式閘極結構之間具有相同的間距,且每一溝槽式閘極結構與該汲極摻雜區之間具有相同的間距。 The method of fabricating a semiconductor device according to claim 14, wherein the trench gate structures have the same pitch between each trench gate structure and the drain doped region. Have the same spacing. 如申請專利範圍第14項所述之半導體裝置的製造方法,其中該等溝槽式閘極結構之間具有不同的間距,且每一溝槽式閘極結構與該汲極摻雜區之間具有相同的間距。 The method of fabricating a semiconductor device according to claim 14, wherein the trench gate structures have different pitches between each trench gate structure and the drain doped region. Have the same spacing. 如申請專利範圍第14項所述之半導體裝置的製造方法,其中該等溝槽式閘極結構具有相同的外型。 The method of fabricating a semiconductor device according to claim 14, wherein the trench gate structures have the same shape. 如申請專利範圍第14項所述之半導體裝置的製造方法,其中該等溝槽式閘極結構具有不同的外型。 The method of fabricating a semiconductor device according to claim 14, wherein the trench gate structures have different shapes. 如申請專利範圍第11項所述之半導體裝置的製造方法,其中形成該至少一溝槽式閘極結構的步驟包括:在該場板區的該第一側的該基板內形成至少一溝槽;在該至少一溝槽內形成一介電層;以及 在該介電層上形成一閘極電極層,以填滿該至少一溝槽。 The method of fabricating a semiconductor device according to claim 11, wherein the forming the at least one trench gate structure comprises: forming at least one trench in the substrate on the first side of the field plate region Forming a dielectric layer in the at least one trench; A gate electrode layer is formed on the dielectric layer to fill the at least one trench. 如申請專利範圍第11項所述之半導體裝置的製造方法,更包括:在該場板區內形成一場氧化層;以及在該場氧化層上形成一場板電極,且延伸至該基體區的該基板上。 The method of fabricating a semiconductor device according to claim 11, further comprising: forming a field oxide layer in the field plate region; and forming a field plate electrode on the field oxide layer and extending to the substrate region On the substrate.
TW102126607A 2013-07-25 2013-07-25 Semiconduvtor device and methods for forming the same TWI511294B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102126607A TWI511294B (en) 2013-07-25 2013-07-25 Semiconduvtor device and methods for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102126607A TWI511294B (en) 2013-07-25 2013-07-25 Semiconduvtor device and methods for forming the same

Publications (2)

Publication Number Publication Date
TW201505178A true TW201505178A (en) 2015-02-01
TWI511294B TWI511294B (en) 2015-12-01

Family

ID=53019009

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102126607A TWI511294B (en) 2013-07-25 2013-07-25 Semiconduvtor device and methods for forming the same

Country Status (1)

Country Link
TW (1) TWI511294B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677982B (en) * 2018-11-06 2019-11-21 旺宏電子股份有限公司 Semiconductor device and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719054B2 (en) * 2006-05-31 2010-05-18 Advanced Analogic Technologies, Inc. High-voltage lateral DMOS device
US20060273385A1 (en) * 2005-06-06 2006-12-07 M-Mos Semiconductor Sdn. Bhd. Trenched MOSFET device with contact trenches filled with tungsten plugs
JP4712459B2 (en) * 2005-07-08 2011-06-29 パナソニック株式会社 Transistor and method of operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI677982B (en) * 2018-11-06 2019-11-21 旺宏電子股份有限公司 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
TWI511294B (en) 2015-12-01

Similar Documents

Publication Publication Date Title
US8247865B2 (en) Semiconductor structure, method for operating a semiconductor structure and method for producing a semiconductor structure
US9385188B2 (en) Semiconductor device with termination region having floating electrodes in an insulating layer
KR102191220B1 (en) Integrated circuit devices including source/drain extension regions and method of forming the same
TWI503984B (en) Integrated circuit device and method of forming the same
JP5551213B2 (en) Manufacturing method of semiconductor device
JP2014135494A (en) Semiconductor element having dual parallel channel structure and method of manufacturing the same
JP2011054885A (en) Semiconductor device, and method for manufacturing semiconductor device
TWI525713B (en) Non-planar transistor fin fabrication
CN103258741A (en) Nanowire field effect transistor and forming method thereof
JP2016040807A (en) Semiconductor device
US8492830B2 (en) Multiple channel fin-FET and its manufacturing method
CN113838906B (en) LDMOS transistor and preparation method thereof
EP3933895B1 (en) Trench field effect transistor structure, and manufacturing method for same
US10896959B2 (en) Top structure of super junction MOSFETs and methods of fabrication
TWI517402B (en) Semiconductor device and methods for forming the same
CN109411536B (en) Semiconductor device having active pillars surrounded by underlying insulating structures
TWI511294B (en) Semiconduvtor device and methods for forming the same
US9048312B2 (en) Semiconductor device and method for forming the same
JP2010192691A (en) Semiconductor device
TWI689098B (en) Multi-trench mosfet and fabricating method thereof
US9773902B2 (en) Trench-gate semiconductor device and method for forming the same
US20180012990A1 (en) Super junction mosfet and method of manufacturing the same
CN104465726B (en) Semiconductor device and its manufacture method
CN107393964B (en) High-performance FINFET device and preparation method thereof
TWI527192B (en) Semiconductor structure and method for forming the same