TW201503367A - A fabrication method of a trenched power semiconductor structure - Google Patents

A fabrication method of a trenched power semiconductor structure Download PDF

Info

Publication number
TW201503367A
TW201503367A TW102123458A TW102123458A TW201503367A TW 201503367 A TW201503367 A TW 201503367A TW 102123458 A TW102123458 A TW 102123458A TW 102123458 A TW102123458 A TW 102123458A TW 201503367 A TW201503367 A TW 201503367A
Authority
TW
Taiwan
Prior art keywords
gate
forming
doped region
power semiconductor
dopant
Prior art date
Application number
TW102123458A
Other languages
Chinese (zh)
Other versions
TWI523229B (en
Inventor
Yi-Yun Tsai
Yuan-Shun Chang
Original Assignee
Circle Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Circle Semiconductor Co Ltd filed Critical Circle Semiconductor Co Ltd
Priority to TW102123458A priority Critical patent/TWI523229B/en
Publication of TW201503367A publication Critical patent/TW201503367A/en
Application granted granted Critical
Publication of TWI523229B publication Critical patent/TWI523229B/en

Links

Abstract

A fabrication method of a trenched power semiconductor structure is provided, which comprises the steps of: (a) providing a semiconductor base; (b) forming a gate mask on an upper surface of the semiconductor base; (c) forming a first doped region by implanting first impurities of a first conductive type into the semiconductor base; (d) forming gate trenches in the semiconductor base by using anisotropic etching technology and leave a portion of the first doped region by the sidewall of the gate trench; (e) forming a gate electrode structure in the gate trench; (f) forming a body layer in the semiconductor base; (g) forming a source doped region in the body layer by implanting second impurities of the first conductive type into the body layer.

Description

一種溝槽式功率半導體結構之製造方法 Method for manufacturing trench type power semiconductor structure

本發明係關於一種功率半導體結構之製造方法,尤其是一種溝槽式功率半導體結構之製造方法。 The present invention relates to a method of fabricating a power semiconductor structure, and more particularly to a method of fabricating a trench power semiconductor structure.

功率半導體元件具有低切換耗損,且驅動電路簡單之優勢,搭配快速發展之半導體製程技術,如今已成為電源控制之一個重要產品。功率半導體元件依其通道的走向,可區分為溝槽式閘極與平面式閘極兩種。溝槽式閘極功率半導體結構之通道(channel)係呈垂直晶片表面之方向,平面式閘極功率半導體結構之通道則是沿著晶片表面之方向。相較於平面式閘極功率半導體結構,溝槽式閘極功率半導體結構可以獲得更大的通道寬度,因而有利於降低通道阻抗。 Power semiconductor components have low switching losses, and the advantages of the driver circuit are simple. With the rapid development of semiconductor process technology, it has become an important product of power control. The power semiconductor components can be divided into two types: a trench gate and a planar gate according to the direction of the channel. The channel of the trench gate power semiconductor structure is in the direction of the vertical wafer surface, and the channel of the planar gate power semiconductor structure is along the surface of the wafer. Compared to planar gate power semiconductor structures, trench gate power semiconductor structures can achieve larger channel widths, thereby helping to reduce channel impedance.

第1圖係一典型之溝槽式閘極功率半導體結構之剖面示意圖。如圖中所示,溝槽式閘極功率半導體結構具有一N型重摻雜基板10,作為其汲極摻雜區。在基板10上形成有一N型磊晶層12。在N型磊晶層12內形成有複數個閘極溝槽(未標示),閘極結構16則是位於這些閘極溝槽內。在N型磊晶層12之表面區域並形成有P型之本體區14,環繞閘極結構16。源極摻雜區15係形成於本體區14內且鄰接於閘極結構16。在閘極結構16上係覆 蓋有一層間介電層17。此外,在相鄰二閘極溝槽間係形成有源極接觸窗18以裸露源極摻雜區15。源極接觸窗18的底部形成有P型重摻雜區19。源極金屬層(未圖示)則是填入此源極接觸窗18以電性連接至源極摻雜區15。 Figure 1 is a schematic cross-sectional view of a typical trench gate power semiconductor structure. As shown in the figure, the trench gate power semiconductor structure has an N-type heavily doped substrate 10 as its drain doped region. An N-type epitaxial layer 12 is formed on the substrate 10. A plurality of gate trenches (not shown) are formed in the N-type epitaxial layer 12, and the gate structures 16 are located in the gate trenches. A P-type body region 14 is formed in the surface region of the N-type epitaxial layer 12 to surround the gate structure 16. A source doped region 15 is formed in the body region 14 and adjacent to the gate structure 16. Attached to the gate structure 16 An interlayer dielectric layer 17 is covered. In addition, a source contact window 18 is formed between adjacent two gate trenches to expose the source doped region 15. A P-type heavily doped region 19 is formed at the bottom of the source contact window 18. A source metal layer (not shown) is filled in the source contact window 18 to be electrically connected to the source doping region 15.

一般而言,功率半導體元件之功率耗損可區分為導通損耗(conduction loss)與切換損耗(switching loss)兩部分。導通損耗與半導體元件之導通電阻具有正相關。切換損耗則是與電晶體元件之臨界電壓(Vth)與米勒電容(Crss)有關,臨界電壓與米勒電容之降低有助於縮短半導體元件之切換時間,以降低切換損耗。 In general, the power consumption of a power semiconductor component can be divided into two parts: conduction loss and switching loss. The conduction loss has a positive correlation with the on-resistance of the semiconductor element. The switching loss is related to the threshold voltage (Vth) of the transistor component and the Miller capacitance (Crss). The reduction of the threshold voltage and the Miller capacitance helps to shorten the switching time of the semiconductor component to reduce the switching loss.

臨界電壓之大小會受到功率半導體元件之本體區內之摻雜濃度、閘極氧化層之厚度以及閘極之構成材料等的影響。較低之本體區摻雜濃度或是較薄之閘極氧化層,均有助於降低功率半導體元件之臨界電壓。不過,較低之本體區摻雜濃度對於功率半導體元件之累增崩潰(Eas)耐壓有不利影響。較薄的閘極氧化層除了會增加製程控制的難度,同時也會導致米勒電容(也就是閘汲極電容(Cgd))的上升,不利於切換損耗。 The magnitude of the threshold voltage is affected by the doping concentration in the body region of the power semiconductor device, the thickness of the gate oxide layer, and the constituent materials of the gate. A lower bulk doping concentration or a thinner gate oxide layer helps to lower the threshold voltage of the power semiconductor component. However, the lower body region doping concentration has an adverse effect on the cumulative breakdown (Eas) withstand voltage of the power semiconductor components. The thinner gate oxide layer not only increases the difficulty of process control, but also causes the Miller capacitance (that is, the gate capacitance (Cgd)) to rise, which is not conducive to switching loss.

本發明之一主要目的係提供一種功率半導體元件,可以有效降低功率半導體元件之切換損耗,同時維持適當的累增崩潰電壓。 SUMMARY OF THE INVENTION A primary object of the present invention is to provide a power semiconductor device that can effectively reduce switching losses of power semiconductor components while maintaining an appropriate cumulative breakdown voltage.

本發明之一實施例提供一種溝槽式功率半導體結構之製造方法,至少包括下列步驟:(a)提供一半導體基材;(b)形成一閘極罩幕層於半導體基材之上表面,以定義複數個閘極溝槽之位置;(c)透過閘極罩幕層,植入一具有一第一導電型之第一摻雜物於半導 體基材內,以形成一第一摻雜區,第一摻雜區之寬度係大於閘極罩幕層之開口寬度;(d)以非等向性蝕刻方式形成閘極溝槽於半導體基材內,並保留部分第一摻雜區臨接於閘極溝槽之側壁;(e)形成一閘極結構於閘極溝槽內;(f)形成一具有一第二導電型之本體層於半導體基材內;(g)植入具有第一導電型之第二摻雜物於本體層,以形成一源極摻雜區於本體層之上部分;其中,本體層之深度係大於第一摻雜區之深度,源極摻雜區之深度係小於第一摻雜區之深度。 An embodiment of the present invention provides a method of fabricating a trench power semiconductor structure, comprising at least the steps of: (a) providing a semiconductor substrate; and (b) forming a gate mask layer on the upper surface of the semiconductor substrate, To define the position of the plurality of gate trenches; (c) implanting a first dopant having a first conductivity type into the semiconductor via the gate mask layer a first doped region is formed in the bulk substrate, the width of the first doped region is greater than the opening width of the gate mask layer; (d) the gate trench is formed on the semiconductor substrate by anisotropic etching Inside the material, and retaining a portion of the first doped region adjacent to the sidewall of the gate trench; (e) forming a gate structure in the gate trench; (f) forming a body layer having a second conductivity type And (g) implanting a second dopant having a first conductivity type on the body layer to form a source doped region on the upper portion of the body layer; wherein the depth of the body layer is greater than The depth of a doped region, the depth of the source doped region is less than the depth of the first doped region.

依據本發明之一實施例,第一摻雜物在半導體基材內之熱擴散速度不大於第二摻雜物在半導體基材內之熱擴散速度。又,就一較佳實施例而言,第一摻雜物係砷(As)。 In accordance with an embodiment of the invention, the rate of thermal diffusion of the first dopant within the semiconductor substrate is no greater than the rate of thermal diffusion of the second dopant within the semiconductor substrate. Also, in a preferred embodiment, the first dopant is arsenic (As).

依據本發明之一實施例,形成本體層與形成源極摻雜區之步驟係晚於形成閘極結構之步驟。 According to an embodiment of the invention, the step of forming the body layer and forming the source doped region is later than the step of forming the gate structure.

依據本發明之一實施例,形成本體層與形成源極摻雜區之步驟係早於形成閘極罩幕層之步驟。 According to an embodiment of the invention, the step of forming the body layer and forming the source doped region is earlier than the step of forming the gate cap layer.

依據本發明之一實施例,形成本體層之步驟係早於形成閘極罩幕層之步驟,形成源極摻雜區之步驟係晚於形成閘極溝槽之步驟。 According to an embodiment of the invention, the step of forming the body layer is earlier than the step of forming the gate mask layer, and the step of forming the source doping region is later than the step of forming the gate trench.

依據本發明之一實施例,此製造方法更包括:形成一接觸窗於相鄰之閘極結構間,以裸露本體層與源極摻雜區;以及形成一具有第二導電型之重摻雜區於接觸窗之底部。又,就一較佳實施例而言,此重摻雜區係鄰接於第一摻雜區。 According to an embodiment of the invention, the manufacturing method further includes: forming a contact window between adjacent gate structures to expose the body layer and the source doping region; and forming a heavily doped region having the second conductivity type The area is at the bottom of the contact window. Also, in a preferred embodiment, the heavily doped region is adjacent to the first doped region.

依據本發明之一實施例,第一摻雜區內之第一摻雜物之摻雜濃度係遠大於本體層內具有之第二導電型之摻雜物之摻雜濃度。 According to an embodiment of the invention, the doping concentration of the first dopant in the first doping region is much greater than the doping concentration of the dopant of the second conductivity type in the body layer.

依據本發明之一實施例,第一摻雜區之底部與本體層之底部間隔一預設距離。 According to an embodiment of the invention, the bottom of the first doped region is spaced apart from the bottom of the body layer by a predetermined distance.

依據本發明之一實施例,第一摻雜區內之第一摻雜物之摻雜濃度係小於本體層內具有之第二導電型之摻雜物之摻雜濃度。 According to an embodiment of the invention, the doping concentration of the first dopant in the first doping region is smaller than the doping concentration of the dopant of the second conductivity type in the body layer.

本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的了解。 Other objects and advantages of the present invention will become apparent from the technical features disclosed herein.

10‧‧‧基板 10‧‧‧Substrate

12‧‧‧磊晶層 12‧‧‧ epitaxial layer

14‧‧‧本體區 14‧‧‧ Body area

15‧‧‧源極摻雜區 15‧‧‧ source doped area

16‧‧‧閘極結構 16‧‧‧ gate structure

17‧‧‧層間介電層 17‧‧‧Interlayer dielectric layer

18‧‧‧源極接觸窗 18‧‧‧Source contact window

19‧‧‧重摻雜區 19‧‧‧ heavily doped area

100‧‧‧N型矽基板 100‧‧‧N type copper substrate

120,420,520‧‧‧N型磊晶層 120,420,520‧‧‧N type epitaxial layer

130,430,530‧‧‧閘極罩幕層 130,430,530‧‧‧Gate pole cover

125‧‧‧開口 125‧‧‧ openings

140,440,540‧‧‧第一摻雜區 140,440,540‧‧‧First doped area

142,242,342,442,542‧‧‧部分第一摻雜區 142,242,342,442,542‧‧‧partial first doped area

150,450,550‧‧‧閘極溝槽 150,450,550‧‧‧gate trench

162,462,562‧‧‧閘極介電層 162,462,562‧‧‧gate dielectric layer

164,464,564‧‧‧多晶矽閘極 164,464,564‧‧‧Polysilicon gate

170,370,470,570‧‧‧P型本體層 170,370,470,570‧‧‧P type body layer

180,480,580‧‧‧源極摻雜區 180,480,580‧‧‧ source doped area

185‧‧‧層間介電層 185‧‧‧Interlayer dielectric layer

190‧‧‧源極接觸窗 190‧‧‧Source contact window

192‧‧‧P型重摻雜區 192‧‧‧P type heavily doped area

195‧‧‧源極金屬層 195‧‧‧ source metal layer

第1圖係一典型之溝槽式閘極功率半導體結構之剖面示意圖。 Figure 1 is a schematic cross-sectional view of a typical trench gate power semiconductor structure.

第2A至2G圖係本發明一種溝槽式功率半導體結構之製造方法之一第一實施例。 2A to 2G are diagrams showing a first embodiment of a method of manufacturing a trench type power semiconductor structure of the present invention.

第3圖係本發明一種溝槽式功率半導體結構之製造方法所製造之溝槽式功率半導體結構之一另一實施例。 Figure 3 is another embodiment of a trench power semiconductor structure fabricated by a method of fabricating a trench power semiconductor structure in accordance with the present invention.

第4圖係本發明一種溝槽式功率半導體結構之製造方法之一第二實施例。 Figure 4 is a second embodiment of a method of fabricating a trench power semiconductor structure of the present invention.

第5A至5D圖係本發明一種溝槽式功率半導體結構之製造方法之一第三實施例。 5A to 5D are views showing a third embodiment of a method of manufacturing a trench type power semiconductor structure of the present invention.

第6A至6E圖係本發明一種溝槽式功率半導體結構之製造方法之一第四實施例。 6A to 6E are views showing a fourth embodiment of a method of manufacturing a trench type power semiconductor structure of the present invention.

第2A至2G圖係本發明一種溝槽式功率半導體結構之製造方法之一第一實施例。圖中係以一N型金氧半導體場效電晶體 (MOSFET)結構為例。不過,本發明並不限於此。本發明之技術亦可適用於P型金氧半導體場效電晶體結構或是絕緣閘極雙極電晶體(IGBT)等可控開關元件(controllable switching unit)。 2A to 2G are diagrams showing a first embodiment of a method of manufacturing a trench type power semiconductor structure of the present invention. An N-type MOSFET field effect transistor The (MOSFET) structure is taken as an example. However, the invention is not limited thereto. The technique of the present invention can also be applied to a P-type MOS field effect transistor structure or a controllable switching unit such as an insulated gate bipolar transistor (IGBT).

如第2A圖所式,首先,形成一N型磊晶層120於一N型矽基板100上,作為此功率半導體結構之一半導體基材。隨後,如第2B圖所示,形成一閘極罩幕層130於此N型磊晶層120之上表面。此閘極罩幕層130具有複數個開口125(圖中僅顯示其中之一),藉以在N型磊晶層120中定義複數個閘極溝槽之位置(圖中係以一閘極溝槽為例)。 As shown in FIG. 2A, first, an N-type epitaxial layer 120 is formed on an N-type germanium substrate 100 as a semiconductor substrate of the power semiconductor structure. Subsequently, as shown in FIG. 2B, a gate mask layer 130 is formed on the upper surface of the N-type epitaxial layer 120. The gate mask layer 130 has a plurality of openings 125 (only one of which is shown), thereby defining a plurality of gate trenches in the N-type epitaxial layer 120 (the gate trench is shown in the figure) For example).

接下來,透過閘極罩幕層130,植入N型之第一摻雜物於N型磊晶層120內,以形成一第一摻雜區140對應於閘極罩幕層130之開口125。因為離子植入製程之特性,經此植入步驟所形成之第一摻雜區140之寬度會大於閘極罩幕層130之開口125的寬度。就一較佳實施例而言,此離子植入步驟所植入之N型第一摻雜物的濃度係明顯大於N型磊晶層120本身具有之N型摻雜物的濃度。其次,為了避免所植入之第一摻雜物對於後續源極摻雜植入步驟的影響。此第一摻雜物之植入深度係大於源極摻雜物之植入深度。 Next, an N-type first dopant is implanted into the N-type epitaxial layer 120 through the gate mask layer 130 to form a first doped region 140 corresponding to the opening 125 of the gate mask layer 130. . Because of the characteristics of the ion implantation process, the width of the first doped region 140 formed through the implantation step may be greater than the width of the opening 125 of the gate mask layer 130. In a preferred embodiment, the concentration of the N-type first dopant implanted in the ion implantation step is significantly greater than the concentration of the N-type dopant inherent in the N-type epitaxial layer 120. Secondly, in order to avoid the influence of the implanted first dopant on the subsequent source doping implantation step. The implantation depth of the first dopant is greater than the implantation depth of the source dopant.

如第2C圖所示,透過閘極罩幕層130植入N型第一摻雜物以形成第一摻雜區140之步驟後,再透過閘極罩幕層130以非等向性蝕刻方式形成閘極溝槽150於N型磊晶層120內。由於第一摻雜區140之寬度係明顯大於閘極罩幕層130之開口125的寬度,因此,經此非等向性蝕刻步驟後,仍然可以保留部分第一摻雜區142臨接於閘極溝槽150之側壁。又,就一實施例而言,為防止此非等向性蝕刻步驟完全去除第一摻雜區140,可在此蝕刻步驟前先 針對所植入之第一摻雜物施加一熱擴散步驟,以擴大第一摻雜區140之範圍。 As shown in FIG. 2C, the step of implanting the N-type first dopant through the gate mask layer 130 to form the first doping region 140 is followed by the anisotropic etching through the gate mask layer 130. A gate trench 150 is formed in the N-type epitaxial layer 120. Since the width of the first doping region 140 is significantly larger than the width of the opening 125 of the gate mask layer 130, after the anisotropic etching step, a portion of the first doping region 142 can still remain adjacent to the gate. The sidewall of the pole trench 150. Moreover, in an embodiment, to prevent the anisotropic etching step from completely removing the first doping region 140, the etching step may be performed before the etching step. A thermal diffusion step is applied to the implanted first dopant to expand the extent of the first doped region 140.

接下來,如第2D圖所示,移除位於N型磊晶層120表面之閘極罩幕層130,然後,形成一閘極結構於閘極溝槽150內。此閘極結構包括一覆蓋於閘極溝槽150內側表面之閘極介電層162,以及填入此閘極溝槽150之多晶矽閘極164。本實施例係以一基本之溝槽式閘極結構為例。實則為提升功率半導體結構之效能,閘極結構可具有多種不同變形,例如具有厚度較厚之底部氧化層(bottom oxide)之閘極結構或是具有浮置多晶矽(floating poly)於多晶矽閘極下方之閘極結構。本發明所提供之技術係可應用於各種不同之閘極結構,而均能改善其效能。 Next, as shown in FIG. 2D, the gate mask layer 130 on the surface of the N-type epitaxial layer 120 is removed, and then a gate structure is formed in the gate trench 150. The gate structure includes a gate dielectric layer 162 overlying the inner surface of the gate trench 150, and a polysilicon gate 164 filling the gate trench 150. This embodiment takes a basic trench gate structure as an example. In order to improve the performance of the power semiconductor structure, the gate structure can have various deformations, such as a gate structure having a thicker bottom oxide oxide layer or a floating polysilicon under the polysilicon gate. The gate structure. The technology provided by the present invention can be applied to a variety of different gate structures, all of which can improve their performance.

然後,如第2E圖所示,以離子植入方式形成一P型本體層170於N型磊晶層120內。接下來,以離子植入方式植入N型之第二摻雜物於P型本體層170,以形成一N型源極摻雜區180於P型本體層170之上部分。其中,P型本體層170之深度係大於部分第一摻雜區142之深度,在部分第一摻雜區142下方係包覆有P型本體層170,而源極摻雜區180之深度係小於部分第一摻雜區142之深度。此離子植入步驟同時會植入P型摻雜物於部分第一摻雜區142內。在本實施例中,植入部分第一摻雜區142內之P型摻雜物的濃度已足以使部分第一摻雜區142之導電型改變為P型。 Then, as shown in FIG. 2E, a P-type body layer 170 is formed in the N-type epitaxial layer 120 by ion implantation. Next, an N-type second dopant is implanted into the P-type body layer 170 by ion implantation to form an N-type source doped region 180 over the P-type body layer 170. The depth of the P-type body layer 170 is greater than the depth of the portion of the first doping region 142, and the P-type body layer 170 is coated under the portion of the first doping region 142, and the depth of the source doping region 180 is Less than a portion of the depth of the first doped region 142. This ion implantation step simultaneously implants a P-type dopant into a portion of the first doped region 142. In this embodiment, the concentration of the P-type dopant implanted in the first doped region 142 is sufficient to change the conductivity of the portion of the first doped region 142 to the P-type.

就一較佳實施例而言,用以形成部分第一摻雜區142之N型第一摻雜物在N型磊晶層120內之熱擴散速度係不大於用以形成源極摻雜區180之N型第二摻雜物在N型磊晶層120內之熱擴散速度。就一較佳實施例而言,此源極植入步驟可選用磷(P)作為第二摻雜物,前述用以形成第一摻雜區140之植入步驟則可選用 砷(As)作為第一摻雜物。前述摻雜物之選擇係針對使用矽作為半導體材料之情形,若是使用三、五族之半導體材料,則需選用二、六族元素作為摻雜物。 In a preferred embodiment, the N-type first dopant used to form a portion of the first doped region 142 has a thermal diffusion rate in the N-type epitaxial layer 120 that is not greater than the source-doped region. The thermal diffusion rate of the N-type second dopant of 180 in the N-type epitaxial layer 120. In a preferred embodiment, the source implantation step may use phosphorus (P) as the second dopant, and the implantation step for forming the first doping region 140 may be selected. Arsenic (As) is used as the first dopant. The selection of the foregoing dopants is directed to the use of germanium as a semiconductor material. If a semiconductor material of the third or fifth family is used, a group of two or six elements is required as a dopant.

接下來,如第2F圖所示,形成一層間介電層185覆蓋多晶矽閘極164與源極摻雜區180,隨後利用微影蝕刻技術在相鄰閘極結構間形成源極接觸窗190,以裸露P型本體層170與源極摻雜區180。接下來,再以離子植入方式形成P型重摻雜區192於源極接觸窗190的底部。最後,如第2G圖所示,形成一源極金屬層195填入源極接觸窗190以電性連接源極摻雜區180。 Next, as shown in FIG. 2F, an inter-level dielectric layer 185 is formed to cover the polysilicon gate 164 and the source doping region 180, and then a source contact window 190 is formed between adjacent gate structures by using a photolithography technique. The P-type body layer 170 and the source doped region 180 are exposed. Next, a P-type heavily doped region 192 is formed by ion implantation at the bottom of the source contact window 190. Finally, as shown in FIG. 2G, a source metal layer 195 is formed to fill the source contact window 190 to electrically connect the source doping region 180.

隨著功率半導體結構之晶胞(unit cell)尺寸的縮小,相鄰二閘極溝槽150的間隔距離也隨之縮短,因此,前述植入源極接觸窗190底部之P型重摻雜區192的範圍就容易延伸至閘極溝槽150側邊,而影響通道的導通情形。透過本發明之製作方法在閘極溝槽150側邊形成部分第一摻雜區142,可防止P型重摻雜區192擴張至閘極溝槽150側邊。因此,特別是在小晶胞尺寸的情況下,部分第一摻雜區142即可能鄰接於P型重摻雜區192以維持通道的導電型。又,此部分第一摻雜區142的存在,亦有利於降低臨界電壓(threshold voltage),以減少切換耗損。因此,透過本發明之製作方法,即使使用厚度較厚的閘極介電層162,仍然可以維持原本的臨界電壓。而閘極介電層162之厚度提升,亦有助於降低閘汲極電容(Cgd)以減少切換耗損。 As the size of the unit cell of the power semiconductor structure is reduced, the separation distance of the adjacent two gate trenches 150 is also shortened. Therefore, the P-type heavily doped region implanted at the bottom of the source contact window 190 is formed. The range of 192 easily extends to the side of the gate trench 150, affecting the conduction of the channel. By forming a portion of the first doping region 142 on the side of the gate trench 150 by the fabrication method of the present invention, the P-type heavily doped region 192 can be prevented from expanding to the side of the gate trench 150. Thus, particularly in the case of small cell sizes, a portion of the first doped region 142 may be adjacent to the P-type heavily doped region 192 to maintain the conductivity type of the channel. Moreover, the presence of the portion of the first doped region 142 is also advantageous for reducing the threshold voltage to reduce switching loss. Therefore, by using the fabrication method of the present invention, even if a thick gate dielectric layer 162 is used, the original threshold voltage can be maintained. The increase in thickness of the gate dielectric layer 162 also helps to reduce the gate capacitance (Cgd) to reduce switching losses.

形成P型本體層170所植入之摻雜物(請參照第2E圖)也會進入部分第一摻雜區142而影響部分第一摻雜區142之導電型。進一步來說,若是植入部分第一摻雜區142內之P型摻雜物的摻雜濃度大於部分第一摻雜區142原本具有之N型摻雜物的摻雜濃 度,部分第一摻雜區142就會呈現P型導電型。在本實施例中,部分第一摻雜區142於第2B圖之植入步驟中所植入之N型摻雜物的摻雜濃度係小於第2E圖之植入步驟中所植入之P型摻雜物的摻雜濃度,因此,部分第一摻雜區142最終呈現P型導電型。不過,此P型部分第一摻雜區142所具有之P型摻雜的摻雜濃度係低於P型本體層170具有摻雜濃度。 The dopant implanted in the P-type body layer 170 (see FIG. 2E) also enters a portion of the first doped region 142 to affect the conductivity of the portion of the first doped region 142. Further, if the doping concentration of the P-type dopant in the implanted portion of the first doping region 142 is greater than the doping concentration of the N-type dopant originally contained in the portion of the first doping region 142 A portion of the first doped region 142 exhibits a P-type conductivity. In this embodiment, the doping concentration of the N-type dopant implanted in the implantation process of the first doping region 142 in FIG. 2B is smaller than the P implanted in the implantation step of FIG. 2E. The doping concentration of the type dopant, therefore, a portion of the first doped region 142 eventually exhibits a P-type conductivity. However, the P-type partial first doping region 142 has a P-type doping concentration lower than that of the P-type body layer 170.

第3圖係本發明一種溝槽式功率半導體結構之製造方法所製造之溝槽式功率半導體結構之另一實施例。相較於第2G圖之溝槽式功率半導體結構,本實施例在對應於第2B圖之植入步驟中,植入濃度較高之N型第一摻雜物,因此,即使再植入P型摻雜物之後,部分第一摻雜區242仍然呈現N型導電型。又,就一較佳實施例而言,部分第一摻雜區242最終具有之摻雜濃度係小於源極摻雜區180之摻雜濃度。 Figure 3 is another embodiment of a trench power semiconductor structure fabricated by a method of fabricating a trench power semiconductor structure in accordance with the present invention. Compared with the trench power semiconductor structure of FIG. 2G, this embodiment implants a higher concentration N-type first dopant in the implantation step corresponding to FIG. 2B, so even if P is implanted again After the type dopant, a portion of the first doped region 242 still exhibits an N-type conductivity. Moreover, in a preferred embodiment, a portion of the first doped region 242 ultimately has a doping concentration that is less than a doping concentration of the source doped region 180.

其次,如第2G圖所示,本發明之第一實施例所製造之溝槽式功率半導體結構之第一摻雜區下方係包覆有P型本體層170,不過,本發明並不限於此。第4圖係本發明一種溝槽式功率半導體結構之製造方法之第二實施例。第4圖係承接第2D圖之步驟。此步驟係以離子植入方式形成P型本體層370於N型磊晶層120內。如第4圖所示,本實施例之部分第一摻雜區342係延伸至P型本體層370底部下方,並且,此植入步驟所植入之P型摻雜物的摻雜濃度係大於部分第一摻雜區342原本具有之N型摻雜物的摻雜濃度。因此,位於P型本體層370內之部分第一摻雜區342係呈現輕摻雜P型導電型。此實施例之後續步驟與前述本發明第一實施例大致相同,在此不予贅述。雖然部分第一摻雜區342的底部位置可因應實際需求進行調整。 Next, as shown in FIG. 2G, the first doped region of the trench power semiconductor structure manufactured by the first embodiment of the present invention is covered with a P-type body layer 170, but the present invention is not limited thereto. . Figure 4 is a second embodiment of a method of fabricating a trench power semiconductor structure in accordance with the present invention. Figure 4 is the step of undertaking Figure 2D. This step forms a P-type body layer 370 in the N-type epitaxial layer 120 by ion implantation. As shown in FIG. 4, a portion of the first doped region 342 of the present embodiment extends below the bottom of the P-type body layer 370, and the doping concentration of the P-type dopant implanted in the implanting step is greater than Part of the first doping region 342 originally has a doping concentration of the N-type dopant. Thus, a portion of the first doped region 342 located within the P-type body layer 370 exhibits a lightly doped P-type conductivity. The subsequent steps of this embodiment are substantially the same as the foregoing first embodiment of the present invention, and are not described herein. Although the bottom position of a portion of the first doped region 342 can be adjusted according to actual needs.

不過,如第3圖所示,若是部分第一摻雜區242最終呈現N 型導電型,部分第一摻雜區242之底部就需要位於P型本體層170內,並與P型本體層170之底部間隔一預設距離,以確保功率半導體結構之正常運作。 However, as shown in FIG. 3, if part of the first doping region 242 finally presents N For the conductivity type, the bottom of the portion of the first doped region 242 needs to be located in the P-type body layer 170 and spaced apart from the bottom of the P-type body layer 170 by a predetermined distance to ensure proper operation of the power semiconductor structure.

第5A至5D圖係本發明一種溝槽式功率半導體結構之製造方法之一第三實施例。相較於本發明第一實施例中,形成P型本體層170與形成源極摻雜區180之步驟係晚於形成閘極結構之步驟。如第5A與5B圖所示,本實施例先在N型磊晶層420中製作P型本體層470與N型源極摻雜區480,然後才形成閘極罩幕層430於N型磊晶層420上。接下來,再透過閘極罩幕層430以離子植入方式形成第一摻雜區440於P型本體層470內。隨後,如第5C與5D圖所示,再進行後續閘極溝槽450與閘極結構(包含閘極介電層462與多晶矽閘極464)之製造步驟。此溝槽式功率半導體結構之後續製造步驟與前述第一實施例大致相同,在此不予贅述。 5A to 5D are views showing a third embodiment of a method of manufacturing a trench type power semiconductor structure of the present invention. In contrast to the first embodiment of the present invention, the step of forming the P-type body layer 170 and forming the source doping region 180 is later than the step of forming the gate structure. As shown in FIGS. 5A and 5B, in this embodiment, a P-type body layer 470 and an N-type source doping region 480 are first formed in the N-type epitaxial layer 420, and then the gate mask layer 430 is formed on the N-type Lei. On the layer 420. Next, the first doped region 440 is formed into the P-type body layer 470 by ion implantation through the gate mask layer 430. Subsequently, as shown in FIGS. 5C and 5D, the fabrication steps of the subsequent gate trench 450 and the gate structure (including the gate dielectric layer 462 and the polysilicon gate 464) are performed. The subsequent manufacturing steps of the trench power semiconductor structure are substantially the same as those of the first embodiment described above, and are not described herein.

其次,在前述第一實施例與第三實施例中,P型本體層170,470與源極摻雜區180,480係由二個接續的製造步驟所製造。不過,本發明並不限於此。第6A至6E圖係本發明一種溝槽式功率半導體結構之製造方法之一第四實施例。在本實施例中,如第6A與6B圖所示,P型本體層570係首先形成於N型磊晶層520內,然後再形成閘極罩幕層530於N型磊晶層520之上表面。接下來,再透過閘極罩幕層530形成第一摻雜區540於P型本體層570內。至於源極摻雜區580,如第6C至6E圖所示,則是在形成閘極溝槽550與閘極結構(包含閘極介電層562與多晶矽閘極564)之製造步驟後,再以離子植入方式形成於P型本體層570內。 Next, in the first and third embodiments described above, the P-type body layers 170, 470 and the source doped regions 180, 480 are fabricated by two successive fabrication steps. However, the invention is not limited thereto. 6A to 6E are views showing a fourth embodiment of a method of manufacturing a trench type power semiconductor structure of the present invention. In this embodiment, as shown in FIGS. 6A and 6B, the P-type body layer 570 is first formed in the N-type epitaxial layer 520, and then the gate mask layer 530 is formed on the N-type epitaxial layer 520. surface. Next, a first doped region 540 is formed in the P-type body layer 570 through the gate mask layer 530. As for the source doping region 580, as shown in FIGS. 6C to 6E, after the manufacturing steps of forming the gate trench 550 and the gate structure (including the gate dielectric layer 562 and the polysilicon gate 564), It is formed in the P-type body layer 570 by ion implantation.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此 限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。 However, the above is only a preferred embodiment of the present invention, and when The scope of the present invention is defined by the scope of the invention, and the equivalent equivalents and modifications of the present invention are still within the scope of the invention. In addition, any of the objects or advantages or features of the present invention are not required to be achieved by any embodiment or application of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.

100‧‧‧N型矽基板 100‧‧‧N type copper substrate

120‧‧‧N型磊晶層 120‧‧‧N type epitaxial layer

142‧‧‧部分第一摻雜區 142‧‧‧Partial first doped area

162‧‧‧閘極介電層 162‧‧‧ gate dielectric layer

164‧‧‧多晶矽閘極 164‧‧‧Polysilicon gate

170‧‧‧P型本體層 170‧‧‧P type body layer

180‧‧‧源極摻雜區 180‧‧‧ source doped area

185‧‧‧層間介電層 185‧‧‧Interlayer dielectric layer

192‧‧‧P型重摻雜區 192‧‧‧P type heavily doped area

195‧‧‧源極金屬層 195‧‧‧ source metal layer

Claims (11)

一種溝槽式功率半導體結構之製造方法,至少包括下列步驟:提供一半導體基材;形成一閘極罩幕層於該半導體基材之上表面,以定義複數個閘極溝槽之位置;透過該閘極罩幕層,植入一具有一第一導電型之第一摻雜物於該半導體基材內,以形成一第一摻雜區,該第一摻雜區之寬度係大於該閘極罩幕層之開口寬度;以非等向性蝕刻方式形成該些閘極溝槽於該半導體基材內,以保留部分該第一摻雜區臨接於該閘極溝槽之側壁;形成一閘極結構於該閘極溝槽內;形成一具有一第二導電型之本體層於該半導體基材內;以及植入具有該第一導電型之第二摻雜物於該本體層,以形成一源極摻雜區於該本體層之上部分;其中,該本體層之深度係不小於該第一摻雜區之深度,該源極摻雜區之深度係小於該第一摻雜區之深度。 A method of fabricating a trench power semiconductor structure includes at least the steps of: providing a semiconductor substrate; forming a gate mask layer on an upper surface of the semiconductor substrate to define a plurality of gate trench locations; The gate mask layer is implanted with a first dopant having a first conductivity type in the semiconductor substrate to form a first doped region, the first doped region having a width greater than the gate Opening width of the mask layer; forming the gate trenches in the semiconductor substrate by anisotropic etching to leave a portion of the first doping region adjacent to the sidewall of the gate trench; forming a gate structure is formed in the gate trench; a body layer having a second conductivity type is formed in the semiconductor substrate; and a second dopant having the first conductivity type is implanted in the body layer, Forming a source doped region on the upper portion of the body layer; wherein the depth of the body layer is not less than a depth of the first doped region, the depth of the source doped region is less than the first doping The depth of the area. 如申請專利範圍第1項之溝槽式功率半導體結構之製造方法,其中,該第一摻雜物在該半導體基材內之熱擴散速度不大於該第二摻雜物在該半導體基材內之熱擴散速度。 The method of fabricating a trench power semiconductor structure according to claim 1, wherein a thermal diffusion rate of the first dopant in the semiconductor substrate is not greater than the second dopant in the semiconductor substrate The rate of thermal diffusion. 如申請專利範圍第2項之溝槽式功率半導體結構之製造方法,其中,該第一摻雜物係砷(As)。 A method of fabricating a trench power semiconductor structure according to claim 2, wherein the first dopant is arsenic (As). 如申請專利範圍第1項之溝槽式功率半導體結構之製造方法,其中,形成該本體層與形成該源極摻雜區之步驟係晚於形成該閘極結構之步驟。 The method of fabricating a trench power semiconductor structure according to claim 1, wherein the step of forming the body layer and forming the source doped region is later than the step of forming the gate structure. 如申請專利範圍第1項之溝槽式功率半導體結構之製造方法,其中,形成該本體層與形成該源極摻雜區之步驟係早於形成該閘極罩幕層之步驟。 The method of fabricating a trench power semiconductor structure according to claim 1, wherein the step of forming the body layer and forming the source doping region is earlier than the step of forming the gate mask layer. 如申請專利範圍第1項之溝槽式功率半導體結構之製造方 法,其中,形成該本體層之步驟係早於形成該閘極罩幕層之步驟,形成該源極摻雜區之步驟係晚於形成該閘極溝槽之步驟。 The manufacturer of the trench power semiconductor structure as claimed in claim 1 The method of forming the body layer is earlier than the step of forming the gate mask layer, and the step of forming the source doping region is later than the step of forming the gate trench. 如申請專利範圍第1項之溝槽式功率半導體結構之製造方法,更包括:形成一接觸窗於相鄰之該閘極結構間,以裸露該本體層與該源極摻雜區;以及形成一具有該第二導電型之重摻雜區於該接觸窗之底部。 The method for fabricating a trench power semiconductor structure according to claim 1, further comprising: forming a contact window between the adjacent gate structures to expose the body layer and the source doped region; and forming A heavily doped region having the second conductivity type is at the bottom of the contact window. 如申請專利範圍第7項之溝槽式功率半導體結構之製造方法,其中,該重摻雜區係鄰接於該第一摻雜區。 The method of fabricating a trench power semiconductor structure according to claim 7, wherein the heavily doped region is adjacent to the first doped region. 如申請專利範圍第1項之溝槽式功率半導體結構之製造方法,其中,該第一摻雜區內之該第一摻雜物之摻雜濃度係遠大於該本體層內具有該第二導電型之摻雜物之摻雜濃度。 The method for manufacturing a trench power semiconductor structure according to claim 1, wherein a doping concentration of the first dopant in the first doping region is much larger than a second conductivity in the body layer. Doping concentration of the type of dopant. 如申請專利範圍第1項之溝槽式功率半導體結構之製造方法,其中,該第一摻雜區之底部與該本體層之底部間隔一預設距離。 The method of fabricating a trench power semiconductor structure according to claim 1, wherein a bottom of the first doped region is spaced apart from a bottom of the body layer by a predetermined distance. 如申請專利範圍第1項之溝槽式功率半導體結構之製造方法,其中,該第一摻雜區內之該第一摻雜物之摻雜濃度係小於該本體層內具有之該第二導電型之摻雜物之摻雜濃度。 The method for manufacturing a trench power semiconductor structure according to claim 1, wherein a doping concentration of the first dopant in the first doping region is smaller than a second conductivity in the body layer. Doping concentration of the type of dopant.
TW102123458A 2013-07-01 2013-07-01 A fabrication method of a trenched power semiconductor structure TWI523229B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102123458A TWI523229B (en) 2013-07-01 2013-07-01 A fabrication method of a trenched power semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102123458A TWI523229B (en) 2013-07-01 2013-07-01 A fabrication method of a trenched power semiconductor structure

Publications (2)

Publication Number Publication Date
TW201503367A true TW201503367A (en) 2015-01-16
TWI523229B TWI523229B (en) 2016-02-21

Family

ID=52718511

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102123458A TWI523229B (en) 2013-07-01 2013-07-01 A fabrication method of a trenched power semiconductor structure

Country Status (1)

Country Link
TW (1) TWI523229B (en)

Also Published As

Publication number Publication date
TWI523229B (en) 2016-02-21

Similar Documents

Publication Publication Date Title
TWI407564B (en) Power semiconductor with trench bottom poly and fabrication method thereof
US9837508B2 (en) Manufacturing method of trench power MOSFET
US8981462B2 (en) Semiconductor device
KR101531882B1 (en) Semiconductor device and method for manufacturing the same
US10784337B2 (en) MOSFET and a method for manufacturing the same
TWI421923B (en) Fabrication method of trenched power semiconductor device with source trench
US9853099B1 (en) Double diffused metal oxide semiconductor device and manufacturing method thereof
US20160172436A1 (en) Semiconductor device, termination structure and method of forming the same
JP2019521529A (en) POWER DEVICE AND METHOD FOR MANUFACTURING THE SAME
CN111223931B (en) Trench MOSFET and manufacturing method thereof
US8354315B2 (en) Fabrication method of a power semicondutor structure with schottky diode
US8421149B2 (en) Trench power MOSFET structure with high switching speed and fabrication method thereof
US10868115B2 (en) High voltage device and manufacturing method thereof
TWI435449B (en) Trenched power semiconductor device and fabrication method thereof
US9214531B2 (en) Trenched power MOSFET with enhanced breakdown voltage and fabrication method thereof
TWI523229B (en) A fabrication method of a trenched power semiconductor structure
TWI453913B (en) Depletion mode semiconductor device with trench gate
US9780171B2 (en) Fabricating method of lateral-diffused metal oxide semiconductor device
US9525028B1 (en) Dual-well metal oxide semiconductor (MOS) device and manufacturing method thereof
TWI557904B (en) Semiconductor device and method for fabricating the same
KR100685583B1 (en) Method for forming semiconductor device
TWI520343B (en) Double trench power semiconductor device and fabrication method thereof
US9076676B2 (en) High-voltage transistor device and production method
JP2015167253A (en) semiconductor device