TW201502245A - Green phosphor and manufacturing method thereof - Google Patents

Green phosphor and manufacturing method thereof Download PDF

Info

Publication number
TW201502245A
TW201502245A TW102124357A TW102124357A TW201502245A TW 201502245 A TW201502245 A TW 201502245A TW 102124357 A TW102124357 A TW 102124357A TW 102124357 A TW102124357 A TW 102124357A TW 201502245 A TW201502245 A TW 201502245A
Authority
TW
Taiwan
Prior art keywords
precursor
group
green fluorescent
fluorescent material
reaction
Prior art date
Application number
TW102124357A
Other languages
Chinese (zh)
Other versions
TWI604032B (en
Inventor
In-Gann Chen
Bi-Jr Li
Yun-Fang Wu
Yung-Tang Nien
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW102124357A priority Critical patent/TWI604032B/en
Publication of TW201502245A publication Critical patent/TW201502245A/en
Application granted granted Critical
Publication of TWI604032B publication Critical patent/TWI604032B/en

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

The present invention relates to a green phosphor and a manufacturing method thereof. The manufacturing method of the green phosphor comprises the following steps: (A) providing a Ca precursor, a Sc precursor, a Si precursor, a Ce precursor and a dopant precursor, wherein the dopant precursor comprises a Al precursor and a Zn precursor; (B) mixing the Ca precursor, the Sc precursor, the Si precursor, the Ce precursor and the dopant precursor to form a mixture by a vibrational milling; (C) placing the mixture in a reactor with a solid carbon source to obtain a green phosphor through a heat treatment.

Description

綠色螢光材料及其製備方法 Green fluorescent material and preparation method thereof

本發明係關於一種綠色螢光材料及其製備方法,尤指一種藉由熱碳還原法,形成主體中摻雜有Al3+或Zn2+之綠色螢光粉Ca2.955Sc2Si3O12:Ce0.03,具有高發光強度及高量子效率之特徵。 The invention relates to a green fluorescent material and a preparation method thereof, in particular to a green fluorescent powder Ca 2.955 Sc 2 Si 3 O 12 doped with Al 3+ or Zn 2+ in a main body by a thermal carbon reduction method. :Ce 0.03 , featuring high luminous intensity and high quantum efficiency.

隨著日益推動的節能減碳政策,各領域對節能設備的發展日益求精,於照明應用方面,白光發光二極體被視為新一代照明的主流。 With the increasingly promoted energy-saving and carbon-reduction policies, the development of energy-saving equipment in various fields is increasingly refined. In lighting applications, white light-emitting diodes are regarded as the mainstream of next-generation lighting.

目前白光LED主要分為下列五種系統:(1)紅藍綠三色發光二極體組成之白光發光模組;(2)藍光發光二極體搭配黃色螢光粉;(3)藍光發光二極體搭配均勻混合之紅色與綠色螢光粉;(4)紫外光發光二極體搭配均勻混合之藍色、綠色、紅色螢光粉;(5)紫外光發光二極體搭配白色螢光粉。 At present, white LEDs are mainly divided into the following five systems: (1) white light emitting modules composed of red, blue and green three-color light emitting diodes; (2) blue light emitting diodes with yellow fluorescent powder; (3) blue light emitting two The polar body is matched with the uniformly mixed red and green phosphor powder; (4) the ultraviolet light emitting diode is uniformly mixed with the blue, green and red fluorescent powder; (5) the ultraviolet light emitting diode is matched with the white fluorescent powder. .

前述方法中,以三原色LED進行混光需要複雜的驅動電源,且較難控制其顏色呈現,使得螢光粉轉換型LED為目前市場上主要的白光LED,其中又以1996年日本日亞化學公司提出以發黃光之YAG螢光粉搭配藍光LED, 為市場上常見之高效率白光LED光源。然而,YAG螢光粉搭配藍光LED使用在一般照明上存在有演色性低與色溫高的缺點,且YAG螢光粉之熱穩定性較差,在高功率長期驅動下易產生色偏問題。 In the foregoing method, mixing light with three primary color LEDs requires a complicated driving power source, and it is difficult to control the color rendering, so that the fluorescent powder conversion type LED is the main white light LED on the market, and in 1996, Japan Nichia Chemical Co., Ltd. It is proposed to use yellow-light YAG phosphor powder with blue LED. It is a high efficiency white LED light source commonly found on the market. However, the use of YAG phosphor powder with blue LED has the disadvantages of low color rendering and high color temperature in general illumination, and the thermal stability of YAG phosphor powder is poor, which is prone to color shift problem under high power long-term driving.

有鑑於此,本發明人研究一種克服以上問題之方法,藉由特殊製程使綠色螢光粉達到高發光強度、高熱穩定度以及高量子效率,故可透過搭配紅色螢光粉,以取代YAG螢光粉,以克服現今白光LED所存在的問題。 In view of this, the inventors have studied a method for overcoming the above problems, and the green phosphor powder achieves high luminous intensity, high thermal stability, and high quantum efficiency by a special process, so that the red fluorescent powder can be used in place of the YAG firefly. Light powder to overcome the problems of today's white LEDs.

本發明主要目的係提供一種新穎綠色螢光材料製備方法,必能顯著提高綠色螢光材料的熱穩定性、發光強度以及量子效率。 The main object of the present invention is to provide a novel green fluorescent material preparation method, which can significantly improve the thermal stability, luminous intensity and quantum efficiency of the green fluorescent material.

本發明另一目的係提供一種綠色螢光材料,其優異的熱穩定性及發光強度俾能結合紅色螢光粉而取代現有白光LED。 Another object of the present invention is to provide a green fluorescent material which has excellent thermal stability and luminous intensity and can replace the existing white LED in combination with red fluorescent powder.

為達上述目的,本發明提供一種綠色螢光材料製備方法,包括:(A)提供一鈣前驅物、一鈧前驅物、一矽前驅物、一鈰前驅物以及一摻雜前驅物,其中該摻雜前驅物包括一鋁(Al)前驅物或一鋅(Zn)前驅物;(B)混合該鈣前驅物、該鈧前驅物、該矽前驅物、該鈰前驅物以及該摻雜前驅物並進行震盪研磨,以形成一前驅物混合粉末,其中,當摻雜前驅物為鋁(Al)前驅物時,則鈣:鈧:矽:鈰:鋁莫耳比可為2.5~3:1.6~2:2.5~3.5:0.02~0.04:0~0.4,較佳為2.955:1.6~2:3:0.03:0~0.4,而當摻雜前驅物為鋅(Zn)前 驅物時,則鈣:鈧:矽:鈰:鋅莫耳比可為2.5~3:1.667~2:2.5~3.5:0.02~0.04:0~0.5,較佳為2.955:1.667~2:3:0.03:0~0.5;以及(C)將前述前驅物混合粉末置入含有一固態碳源之一反應裝置中,進行熱處理,以形成一綠色螢光材料。 To achieve the above object, the present invention provides a method for preparing a green fluorescent material, comprising: (A) providing a calcium precursor, a germanium precursor, a germanium precursor, a germanium precursor, and a doped precursor, wherein The doped precursor includes an aluminum (Al) precursor or a zinc (Zn) precursor; (B) mixing the calcium precursor, the ruthenium precursor, the ruthenium precursor, the ruthenium precursor, and the doped precursor And oscillating grinding to form a precursor mixed powder, wherein when the doped precursor is an aluminum (Al) precursor, the calcium: 钪: 矽: 铈: aluminum molar ratio can be 2.5~3: 1.6~ 2: 2.5~3.5: 0.02~0.04: 0~0.4, preferably 2.955:1.6~2:3:0.03:0~0.4, and before doping precursor is zinc (Zn) When driving, calcium: 钪: 矽: 铈: zinc molar ratio can be 2.5~3: 1.667~2:2.5~3.5:0.02~0.04:0~0.5, preferably 2.955:1.667~2:3: 0.03: 0 to 0.5; and (C) placing the precursor mixed powder into a reaction apparatus containing a solid carbon source and performing heat treatment to form a green fluorescent material.

上述之固態碳源無特別限制,較佳為一碳粉,藉此使綠色螢光材料具有優異的熱穩定性、發光強度及量子效率。 The solid carbon source described above is not particularly limited, and is preferably a carbon powder, whereby the green fluorescent material has excellent thermal stability, luminous intensity, and quantum efficiency.

於本發明中,上述之鈣前驅物係至少一選自由:CaB6、CaC2、CaCO3、CaC2O4、CaCl2、CaF2、Ca(NO3)2、CaO、Ca3(BO3)2、Ca3(C6H5O7)2、Ca3(PO4)2所組成之群組,較佳係至少一選自由:CaB6、CaC2、CaCO3、CaC2O4、CaCl2、CaF2所組成之群組,更佳為CaCO3。上述鈧前驅物可至少一選自由:ScB12、ScC13、ScF3、ScH3、Sc(NO3)3、Sc2O3、Sc2S3所組成之群組,較佳係至少一選自由:Sc(NO3)3、Sc2O3、Sc2S3所組成之群組,更佳係Sc2O3。上述矽前驅物可至少一選自由:SiO2、SiF4、SiC14、SiC、Si2N3所組成之群組,較佳係至少一選自由:SiO2、SiF4、SiC14所組成之群組,更佳係SiO2。上述鈰前驅物可至少一選自由:CeO2、Ce2(C2O4)3‧9H2O、Ce(SO4)2、CeCl3、Ce(NO3)3.6H2O所組成之群組,較佳係至少一選自由:CeO2、Ce2(C2O4)3‧9H2O、Ce(SO4)2所組成之群組,更佳係Ce2(C2O4)3‧9H2O。上述鋁前驅物可至少一選自由:AlCl3、AlF3、AlN、Al(NO3)3、Al(OH)3、AlPO4、Al2O3、Al2(SO4)3、Al4C3所組成之群組,較佳係至少一選自由:AlPO4、Al2O3、 Al2(SO4)3、Al4C3所組成之群組,更佳係Al2O3。上述鋅前驅物可至少一選自由:ZnCl2、ZnF2.、Zn(NO3)2、ZnO、Zn(OH)2、ZnSO4、Zn2P2O7、Zn3N2、Zn3(PO4)2所組成之群組,較佳係至少一選自由:ZnO、Zn(OH)2、ZnSO4、Zn2P2O7、Zn3N2、Zn3(PO4)2所組成之群組,更佳係ZnO。 In the present invention, the calcium precursor is at least one selected from the group consisting of CaB 6 , CaC 2 , CaCO 3 , CaC 2 O 4 , CaCl 2 , CaF 2 , Ca(NO 3 ) 2 , CaO, Ca 3 (BO 3 2 , a group consisting of Ca 3 (C 6 H 5 O 7 ) 2 and Ca 3 (PO 4 ) 2 , preferably at least one selected from the group consisting of CaB 6 , CaC 2 , CaCO 3 , CaC 2 O 4 , A group consisting of CaCl 2 and CaF 2 is more preferably CaCO 3 . The ruthenium precursor may be at least one selected from the group consisting of: ScB 12 , ScC 13 , ScF 3 , ScH 3 , Sc(NO 3 ) 3 , Sc 2 O 3 , Sc 2 S 3 , preferably at least one selected Free: a group consisting of Sc(NO 3 ) 3 , Sc 2 O 3 , and Sc 2 S 3 , more preferably Sc 2 O 3 . The at least one of the foregoing ruthenium precursors may be selected from the group consisting of SiO 2 , SiF 4 , SiC 14 , SiC, Si 2 N 3 , preferably at least one selected from the group consisting of: SiO 2 , SiF 4 , and SiC 14 . Group, more preferably SiO 2 . The at least one of the above ruthenium precursors may be selected from the group consisting of: CeO 2 , Ce 2 (C 2 O 4 ) 3 ‧9H 2 O, Ce(SO 4 ) 2 , CeCl 3 , Ce(NO 3 ) 3 . The group consisting of 6H 2 O, preferably at least one selected from the group consisting of: CeO 2 , Ce 2 (C 2 O 4 ) 3 ‧9H 2 O, Ce(SO 4 ) 2 , more preferably Ce 2 (C 2 O 4 ) 3 ‧9H 2 O. The above aluminum precursor may be at least one selected from the group consisting of: AlCl 3 , AlF 3 , AlN, Al(NO 3 ) 3 , Al(OH) 3 , AlPO 4 , Al 2 O 3 , Al 2 (SO 4 ) 3 , Al 4 C The group consisting of 3 is preferably at least one selected from the group consisting of AlPO 4 , Al 2 O 3 , Al 2 (SO 4 ) 3 , and Al 4 C 3 , more preferably Al 2 O 3 . The above zinc precursor may be at least one selected from the group consisting of: ZnCl 2 and ZnF 2 . a group consisting of Zn(NO 3 ) 2 , ZnO, Zn(OH) 2 , ZnSO 4 , Zn 2 P 2 O 7 , Zn 3 N 2 , and Zn 3 (PO 4 ) 2 , preferably at least one selected Free: Group of ZnO, Zn(OH) 2 , ZnSO 4 , Zn 2 P 2 O 7 , Zn 3 N 2 , Zn 3 (PO 4 ) 2 , more preferably ZnO.

於上述方法之步驟(C)中,該前驅物混合粉末可置入一第一反應容器中,該第一反應容器可置入含有碳粉之第二反應容器中,且該第二反應容器係置入反應裝置中,以進行熱處理。前述碳粉可加入16~20 g左右,較佳係加入18 g;熱處理溫度較佳係介於1300~1600℃,更佳係介於1400~1500℃;熱處理時間較佳係介於1~10小時,再佳係介於2~8小時,更佳係介於2~4小時,以上條件不限於此,可依情況而調整。 In the step (C) of the above method, the precursor mixed powder may be placed in a first reaction vessel, the first reaction vessel may be placed in a second reaction vessel containing carbon powder, and the second reaction vessel is It is placed in a reaction apparatus to perform heat treatment. The carbon powder may be added to about 16-20 g, preferably 18 g; the heat treatment temperature is preferably between 1300 and 1600 ° C, and the better is between 1400 and 1500 ° C; the heat treatment time is preferably between 1 and 10. Hours, then the best is between 2 and 8 hours, and the better is between 2 and 4 hours. The above conditions are not limited to this and can be adjusted according to the situation.

完成熱反應後,第二反應容器中的碳粉較佳可殘留約0~10 g,更佳殘留約4~6 g,依不同情況而有所差異。 After the completion of the thermal reaction, the carbon powder in the second reaction vessel preferably retains about 0 to 10 g, more preferably about 4 to 6 g, depending on the case.

以上述方法製得之綠色螢光材料具有下列化學式之特徵:[化學式]CaxSc2-a-2b/3AlaZnbSi3O12:Cez The green fluorescent material obtained by the above method is characterized by the following chemical formula: [Chemical Formula] Ca x Sc 2-a-2b/3 Al a Zn b Si 3 O 12 : Ce z

其中,0≦a≦0.4,0≦b≦0.5,2.95≦x+z≦3,當b=0時,0.05≦a≦0.4; 當a=0時,0.1≦b≦0.5。 Where 0 ≦ a ≦ 0.4, 0 ≦ b ≦ 0.5, 2.95 ≦ x + z ≦ 3, when b = 0, 0.05 ≦ a ≦ 0.4; When a = 0, 0.1 ≦ b ≦ 0.5.

較佳情況下,當b=0時,a=0.15;當a=0時,b=0.3。更佳情況下,以上述方法製得之綠色螢光粉化學式為Ca2.955Sc1.85Al0.15Si3O12:Ce0.03或Ca2.955Sc1.8Zn0.3Si3O12:Ce0.03Preferably, when b = 0, a = 0.15; when a = 0, b = 0.3. More preferably, the green fluorescent powder obtained by the above method has a chemical formula of Ca 2.955 Sc 1.85 Al 0.15 Si 3 O 12 :Ce 0.03 or Ca 2.955 Sc 1.8 Zn 0.3 Si 3 O 12 :Ce 0.03 .

本發明更提供一種綠色螢光材料,其化學式如下:[化學式]CaxSc2-a-2b/3AlaZnbSi3O12:Cez The present invention further provides a green fluorescent material having the following chemical formula: [Chemical Formula] Ca x Sc 2-a-2b/3 Al a Zn b Si 3 O 12 :Ce z

其中,0≦a≦0.4,0≦b≦0.5,2.95≦x+z≦3,當b=0時,0.05≦a≦0.4;當a=0時,0.1≦b≦0.5。 Where 0 ≦ a ≦ 0.4, 0 ≦ b ≦ 0.5, 2.95 ≦ x + z ≦ 3, when b = 0, 0.05 ≦ a ≦ 0.4; when a = 0, 0.1 ≦ b ≦ 0.5.

較佳情況下,於本發明之綠色螢光材料化學式中,當b=0時,a=0.15;當a=0時,b=0.3。再佳情況下,綠色螢光材料之化學式為Ca2.955Sc1.85Al0.15Si3O12:Ce0.03或Ca2.955Sc1.8Zn0.3Si3O12:Ce0.03Preferably, in the chemical formula of the green fluorescent material of the present invention, when b = 0, a = 0.15; when a = 0, b = 0.3. Further preferably, the chemical formula of the green fluorescent material is Ca 2.955 Sc 1.85 Al 0.15 Si 3 O 12 :Ce 0.03 or Ca 2.955 Sc 1.8 Zn 0.3 Si 3 O 12 :Ce 0.03 .

在此,製備上述綠色螢光材料的步驟包含:(A)提供一鈣前驅物、一鈧前驅物、一矽前驅物、一鈰前驅物以及一摻雜前驅物,其中該摻前驅物包括一鋁(Al)前驅物或一鋅(Zn)前驅物;(B)將該鈣前驅物、該鈧前驅物、該矽前驅物、該鈰前驅物以及該摻雜前驅物混合並進行震盪研磨,以形成一前驅物混合粉末,其中,當摻雜前驅物為鋁(Al) 前驅物時,鈣:鈧:矽:鈰:鋁莫耳比可為2.5~3:1.6~2:2.5~3.5:0.02~0.04:0.05~0.4,較佳為2.955:1.6~2:3:0.03:0~0.4;而當摻雜前驅物為鋅(Zn)前驅物時,鈣:鈧:矽:鈰:鋅莫耳比可為2.5~3:1.667~2:2.5~3.5:0.02~0.04:0~0.5,較佳為2.955:1.6~2:3:0.03:0~0.5;以及(C)將前驅物混合粉末置入含有一固態碳源之一反應裝置中,於1300~1500℃下熱處理2~4小時,更佳係介於1400~1500℃,以形成該綠色螢光材料。 Here, the step of preparing the green fluorescent material comprises: (A) providing a calcium precursor, a germanium precursor, a germanium precursor, a germanium precursor, and a doped precursor, wherein the doped precursor comprises a An aluminum (Al) precursor or a zinc (Zn) precursor; (B) mixing the calcium precursor, the ruthenium precursor, the ruthenium precursor, the ruthenium precursor, and the doped precursor, and oscillating and grinding, To form a precursor mixed powder, wherein when the doped precursor is aluminum (Al) For precursors, calcium: 钪: 矽: 铈: aluminum molar ratio can be 2.5~3:1.6~2:2.5~3.5:0.02~0.04:0.05~0.4, preferably 2.955:1.6~2:3:0.03 :0~0.4; When the doped precursor is zinc (Zn) precursor, calcium: 钪: 矽: 铈: zinc molar ratio can be 2.5~3: 1.667~2: 2.5~3.5: 0.02~0.04: 0~0.5, preferably 2.955:1.6~2:3:0.03:0~0.5; and (C) placing the precursor mixed powder into a reaction device containing a solid carbon source, heat treatment at 1300~1500 °C 2 to 4 hours, more preferably between 1400 and 1500 ° C to form the green fluorescent material.

在此,固態碳源無特別限制,較佳為一碳粉。 Here, the solid carbon source is not particularly limited, and is preferably a carbon powder.

上述鈣前驅物可至少一選自由:CaB6、CaC2、CaCO3、CaC2O4、CaCl2、CaF2、Ca(NO3)2、CaO、Ca3(BO3)2、Ca3(C6H5O7)2、Ca3(PO4)2所組成之群組,較佳為CaCO3。上述鈧前驅物可至少一選自由:ScB12、ScC13、ScF3、ScH3、Sc(NO3)3、Sc2O3、Sc2S3所組成之群組,較佳為Sc2O3。上述矽前驅物可至少一選自由:SiO2、SiF4、SiC14、SiC、Si2N3所組成之群組,較佳為SiO2。上述鈰前驅物係至少一選自由:Ce2(C2O4)3‧9H2O、CeO2、Ce(SO4)2、CeCl3、Ce(NO3)3.6H2O所組成之群組,較佳為Ce2(C2O4)3‧9H2O。上述鋁前驅物係至少一選自由:AlCl3、AlF3、AlN、Al(NO3)3、Al(OH)3、AlPO4、Al2O3、Al2(SO4)3、Al4C3所組成之群組,較佳為Al2O3。上述鋅前驅物係至少一選自由:ZnCl2、ZnF2.、Zn(NO3)2、ZnO、Zn(OH)2、ZnSO4、Zn2P2O7、Zn3N2、Zn3(PO4)2所組成之群組,較佳為ZnO。 The calcium precursor may be at least one selected from the group consisting of CaB 6 , CaC 2 , CaCO 3 , CaC 2 O 4 , CaCl 2 , CaF 2 , Ca(NO 3 ) 2 , CaO, Ca 3 (BO 3 ) 2 , Ca 3 ( A group consisting of C 6 H 5 O 7 ) 2 and Ca 3 (PO 4 ) 2 is preferably CaCO 3 . The ruthenium precursor may be at least one selected from the group consisting of ScB 12 , ScC 13 , ScF 3 , ScH 3 , Sc(NO 3 ) 3 , Sc 2 O 3 , Sc 2 S 3 , preferably Sc 2 O 3 . The ruthenium precursor may be at least one selected from the group consisting of SiO 2 , SiF 4 , SiC 14 , SiC, Si 2 N 3 , preferably SiO 2 . At least one of the above ruthenium precursors is selected from the group consisting of: Ce 2 (C 2 O 4 ) 3 ‧9H 2 O, CeO 2 , Ce(SO 4 ) 2 , CeCl 3 , Ce(NO 3 ) 3 . The group consisting of 6H 2 O is preferably Ce 2 (C 2 O 4 ) 3 ‧9H 2 O. At least one of the above aluminum precursors is selected from the group consisting of: AlCl 3 , AlF 3 , AlN, Al(NO 3 ) 3 , Al(OH) 3 , AlPO 4 , Al 2 O 3 , Al 2 (SO 4 ) 3 , Al 4 C The group consisting of 3 is preferably Al 2 O 3 . At least one of the above zinc precursors is selected from the group consisting of: ZnCl 2 and ZnF 2 . The group consisting of Zn(NO 3 ) 2 , ZnO, Zn(OH) 2 , ZnSO 4 , Zn 2 P 2 O 7 , Zn 3 N 2 , and Zn 3 (PO 4 ) 2 is preferably ZnO.

於上述步驟(C)中,前驅物混合粉末係置入一 第一反應容器中,且將該第一反應容器係置入含有16~20 g,較佳係18 g該碳粉之一第二反應容器,並將該第二反應容器置入該反應裝置,以進行熱處理。該熱處理條件及碳粉添加量與前述相同。完成熱反應後,第二反應容器中的碳粉較佳可殘留約0~10 g,更佳殘留約4~6 g,依不同情況而有所差異。 In the above step (C), the precursor mixed powder is placed in a In the first reaction vessel, the first reaction vessel is placed in a second reaction vessel containing 16-20 g, preferably 18 g of the carbon powder, and the second reaction vessel is placed in the reaction apparatus. For heat treatment. The heat treatment conditions and the amount of carbon powder added are the same as described above. After the completion of the thermal reaction, the carbon powder in the second reaction vessel preferably retains about 0 to 10 g, more preferably about 4 to 6 g, depending on the case.

1‧‧‧第一反應容器 1‧‧‧First Reaction Vessel

2‧‧‧碳粉 2‧‧‧Toner

3‧‧‧第二反應容器 3‧‧‧Second reaction vessel

圖1係本發明綠色螢光材料製備方法流程圖。 1 is a flow chart of a method for preparing a green fluorescent material of the present invention.

圖2係本發明反應裝置示意圖。 Figure 2 is a schematic view of a reaction apparatus of the present invention.

圖3係本發明製備例1至6綠色螢光粉末之X光繞射圖譜。 Figure 3 is an X-ray diffraction pattern of the green fluorescent powders of Preparation Examples 1 to 6 of the present invention.

圖4係本發明製備例7至12綠色螢光粉末之X光繞射圖譜。 Figure 4 is an X-ray diffraction pattern of the green fluorescent powder of Preparation Examples 7 to 12 of the present invention.

圖5係本發明製備例1至6綠色螢光粉末之FTIR圖譜。 Figure 5 is a FTIR spectrum of the green fluorescent powders of Preparation Examples 1 to 6 of the present invention.

圖6係本發明製備例7至12綠色螢光粉末之FTIR圖譜。 Figure 6 is a FTIR spectrum of the green fluorescent powder of Preparation Examples 7 to 12 of the present invention.

圖7係本發明製備例1至6綠色螢光粉末之螢光激發光譜(PLE)。 Figure 7 is a fluorescence excitation spectrum (PLE) of the green fluorescent powders of Preparation Examples 1 to 6 of the present invention.

圖8係本發明製備例1至6綠色螢光粉末之螢光放射光譜(PL)。 Figure 8 is a fluorescence emission spectrum (PL) of the green fluorescent powders of Preparation Examples 1 to 6 of the present invention.

圖9係本發明製備例7至12綠色螢光粉末之螢光激發光譜(PLE)。 Figure 9 is a fluorescence excitation spectrum (PLE) of the green fluorescent powder of Preparation Examples 7 to 12 of the present invention.

圖10係本發明製備例7至12綠色螢光粉末之螢光放射光譜(PL)。 Figure 10 is a fluorescence emission spectrum (PL) of the green fluorescent powder of Preparation Examples 7 to 12 of the present invention.

圖11係比較本發明綠色螢光粉末及商用綠色螢光粉末之熱穩定性結果圖。 Fig. 11 is a graph showing the results of thermal stability of the green fluorescent powder and the commercial green fluorescent powder of the present invention.

圖12係比較以本發明熱碳還原法及習知在大氣下進行熱處理所製得之綠色螢光粉末的發光強度比較圖。 Fig. 12 is a graph comparing the luminescence intensity of the green fluorescent powder obtained by the hot carbon reduction method of the present invention and the conventional heat treatment under the atmosphere.

以下係藉由具體實施例說明本發明之實施方式,熟習此技藝之人士可由本說明書所揭示之內容輕易地了解本發明之其他優點與功效。此外,本發明亦可藉由其他不同具體實施例加以施行或應用,在不悖離本發明之精神下進行各種修飾與變更。 The embodiments of the present invention are described below by way of specific examples, and those skilled in the art can readily appreciate the other advantages and advantages of the present invention. In addition, the present invention may be embodied or modified by various other embodiments without departing from the spirit and scope of the invention.

製備例1至6Preparation Examples 1 to 6

請參考圖1之實驗流程圖以及圖2反應裝置示意圖。首先,依化學劑量分別秤取所需之反應物至HDPE罐中S1,如表一及表二所示,以高能震盪球磨機混合15分鐘後S2,將均勻反應物粉末置入氧化鋁坩鍋1(第一反應容器)中,並將該氧化鋁坩鍋置入於鋪有20 g碳粉2之大坩鍋3(第二反應容器)中,接著將大坩鍋3置入高溫爐中進行熱碳還原反應,於1450℃下熱處理3小時(升溫速率5℃/min)S3,並自然降至室溫,隨後,將反應後之產物研磨S4,以得到所欲之綠色螢光粉末Ca2.955Sc2-aAlaSi3O12:Ce0.03 S5,其中反應結束後,碳粉殘餘量約4~6 g。 Please refer to the experimental flow chart of FIG. 1 and the schematic diagram of the reaction device of FIG. 2 . First, the required reactants were separately weighed to the S1 in the HDPE tank according to the chemical dosage. As shown in Table 1 and Table 2, the mixture was mixed in a high-energy vibrating ball mill for 15 minutes, and then the homogeneous reactant powder was placed in the alumina crucible. (first reaction vessel), and placing the alumina crucible in a large crucible 3 (second reaction vessel) covered with 20 g of carbon powder 2, and then placing the crucible 3 in a high temperature furnace The hot carbon reduction reaction is heat-treated at 1450 ° C for 3 hours (heating rate 5 ° C / min) S3, and naturally falls to room temperature, and then the product after the reaction is ground S4 to obtain the desired green fluorescent powder Ca 2.955 Sc 2-a Al a Si 3 O 12 :Ce 0.03 S5, wherein after the reaction is completed, the residual amount of the carbon powder is about 4 to 6 g.

製備例7至12Preparation Examples 7 to 12

本製備例之製備方法與製備例1相同,差別在於反應物成分及混合量如表二所示,所獲得之綠色螢光粉末表示為Ca2.955Sc2-2b/3ZnbSi3O12:Ce0.03The preparation method of this preparation example is the same as that of Preparation Example 1, except that the reactant composition and the mixing amount are as shown in Table 2. The obtained green fluorescent powder is represented by Ca 2.955 Sc 2-2b/3 Zn b Si 3 O 12 : Ce 0.03 .

測試例1Test example 1

使用X光繞射儀(Rigaku D/max IIIV)對製備例1至6之綠色螢光粉末Ca2.955Sc2-aAlaSi3O12:Ce0.03以及製備例7至12之綠色螢光粉末Ca2.955Sc2-2b/3ZnbSi3O12:Ce0.03進行成分鑑定,分別如圖3及圖4所示。於圖3結果中,製備例1至6的繞射峰位置與Ca3Sc2Si3O12(JCPDS PDF#72-1969)吻合,意即製備例1至6確實能夠合成出Ca3Sc2Si3O12,然而,當Al3+的摻雜量達到40 mol%以上時(a0.4),則會有雜相Ca3Al2Si3O12(JCPDS PDF#83-2207)生成。 The green fluorescent powder Ca 2.955 Sc 2-a Al a Si 3 O 12 :Ce 0.03 of Preparation Examples 1 to 6 and the green fluorescent powder of Preparation Examples 7 to 12 using an X-ray diffractometer (Rigaku D/max IIIV) Ca 2.955 Sc 2-2b/3 Zn b Si 3 O 12 :Ce 0.03 was identified as components, as shown in Figs. 3 and 4, respectively. In the results of Fig. 3, the diffraction peak positions of Preparation Examples 1 to 6 coincided with Ca 3 Sc 2 Si 3 O 12 (JCPDS PDF #72-1969), meaning that Preparation Examples 1 to 6 were able to synthesize Ca 3 Sc 2 . Si 3 O 12 , however, when the doping amount of Al 3+ is 40 mol% or more (a 0.4), there will be a heterogeneous phase of Ca 3 Al 2 Si 3 O 12 (JCPDS PDF #83-2207).

於圖4結果中,製備例7至12綠色螢光粉末的繞射峰位置與Ca3Sc2Si3O12(JCPDS PDF#72-1969)吻合,意即製備例7至12確實能夠合成出Ca3Sc2Si3O12,然而,當Zn2+的摻雜量達到40 mol%以上時(b0.4),則會有雜相Ca3Si3O9(JCPDS PDF#74-0874)產生。 In the results of FIG. 4, the diffraction peak positions of the green fluorescent powders of Preparation Examples 7 to 12 coincided with Ca 3 Sc 2 Si 3 O 12 (JCPDS PDF #72-1969), meaning that Preparation Examples 7 to 12 were able to be synthesized. Ca 3 Sc 2 Si 3 O 12 , however, when the doping amount of Zn 2+ is 40 mol% or more (b 0.4), there will be a heterogeneous Ca 3 Si 3 O 9 (JCPDS PDF #74-0874).

測試例2Test example 2

使用傅立葉轉換紅外線光譜儀(Jasco model-460)對製備例1至6之綠色螢光粉末Ca2.955Sc2-aAlaSi3O12:Ce0.03以及製備例7至12之綠色螢光粉末Ca2.955Sc2-2b/3ZnbSi3O12:Ce0.03進行FTIR光譜量測,掃描範圍為400~4000 cm-1,結果分別如圖5及圖6所示。 Fourier transform infrared spectroscopy (Jasco model-460) Preparation of a green fluorescent powder 1-6 of Ca 2.955 Sc 2-a Al a Si 12 3 O: Ce 0.03 phosphor and a green powder prepared in Example 7-12 of Ca 2.955 Sc 2 -2b/3 Zn b Si 3 O 12 :Ce 0.03 was measured by FTIR spectroscopy, and the scanning range was 400-4000 cm -1 . The results are shown in Fig. 5 and Fig. 6, respectively.

請參考圖5,圖5係製備例1至6綠色螢光粉末的FTIR光譜量測結果,摻雜Al3+的綠色螢光粉末可有效抑制Sc2O3殘留(如心型符號標示處),由於Sc2O3的殘留量減少,使得發光性質提昇。 Please refer to FIG. 5. FIG. 5 is a FTIR spectrum measurement result of the green fluorescent powders of Preparation Examples 1 to 6. The green fluorescent powder doped with Al 3+ can effectively suppress the residual of Sc 2 O 3 (such as the heart symbol). The luminescent property is improved due to a decrease in the residual amount of Sc 2 O 3 .

請參考圖6,圖6係製備例7至12綠色螢光粉末的FTIR光譜量測結果。摻雜Zn2+後,可有效抑制綠色螢光粉中Sc2O3的殘留,然而,當Zn2+摻雜濃度達40 mol%以上時(b0.4),會出現Ca3Si3O9的雜相,因而削弱發光強度。 Please refer to FIG. 6. FIG. 6 is a FTIR spectrum measurement result of the green fluorescent powders of Preparation Examples 7 to 12. After doping with Zn 2+ , the residual of Sc 2 O 3 in the green phosphor can be effectively suppressed. However, when the concentration of Zn 2+ is more than 40 mol% (b) 0.4), a hetero phase of Ca 3 Si 3 O 9 occurs, thereby weakening the luminescence intensity.

測試例3Test Example 3

使用螢光光譜儀(Hitachi F-7000)量測製備例1至6之綠色螢光粉末Ca2.955Sc2-aAlaSi3O12:Ce0.03以及製備例7至12之綠色螢光粉末Ca2.955Sc2-2b/3ZnbSi3O12:Ce0.03。在此,激發光光柵和放射光光柵皆設為2.5 nm,掃描速率為240 nm/min。 By fluorescence spectrometer (Hitachi F-7000) was prepared green fluorescence measurement Example 1-6 of Powder Ca 2.955 Sc 2-a Al a Si 3 O 12: Ce 0.03 phosphor and a green powder prepared in Example 7-12 of Ca 2.955 Sc 2-2b/3 Zn b Si 3 O 12 :Ce 0.03 . Here, both the excitation light grating and the emission light grating are set to 2.5 nm and the scanning rate is 240 nm/min.

圖7為製備例1至6綠色螢光粉之螢光激發光譜(PLE),由圖7結果可發現製備例1至6摻雜Al3+之綠色螢光粉並不會改變其激發峰450 nm的波長位置,且其發光波長係落於504 nm~506 nm範圍,由此可確定Al3+摻雜不會影響Ca2.955Sc2-aAlaSi3O12:Ce0.03在藍光LED上的應用性。 7 is a fluorescence excitation spectrum (PLE) of the green fluorescent powders of Preparation Examples 1 to 6. From the results of FIG. 7, it can be found that the green fluorescent powder doped with Al 3+ in Preparation Examples 1 to 6 does not change its excitation peak 450. The wavelength of nm, and its wavelength of light falls in the range of 504 nm to 506 nm, which can be determined that Al 3+ doping does not affect Ca 2.955 Sc 2-a Al a Si 3 O 12 :Ce 0.03 on blue LED Applicability.

圖8為製備例1至6綠色螢光粉之螢光放射光譜(PL),以波長為450 nm的光線激發,其放射光譜為450 nm至650 nm的寬廣波峰,摻雜Al3+後,綠色螢光粉的發光強度有所提升,尤其摻雜15 mol%(a=0.15)Al3+時,可達到最強的發光強度,此外,由圖8結果亦可發現隨著Al3+摻雜量增加,綠色螢光粉之發光波長有紅位移的現象。 Figure 8 is a fluorescence emission spectrum (PL) of the green fluorescent powders of Preparation Examples 1 to 6, excited by light having a wavelength of 450 nm, and the emission spectrum is a broad peak of 450 nm to 650 nm, and after doping with Al 3+ , The luminous intensity of green phosphor powder is improved, especially when doping 15 mol% (a=0.15) Al 3+ , the strongest luminous intensity can be achieved. In addition, the results of Fig. 8 can also be found with Al 3+ doping. As the amount increases, the wavelength of the green fluorescent powder has a red shift.

圖9為製備例7至12綠色螢光粉之螢光激發光譜(PLE),由圖9結果可發現製備例7至12摻雜Zn2+之綠色螢光粉並不會改變其激發峰450 nm的波長位置,且其發光波長係落於505 nm~506 nm範圍,由此可確定Zn2+摻雜不會影響Ca2.955Sc2-2/3bZnbSi3O12:Ce0.03在藍光LED上的應用性。 9 is a fluorescence excitation spectrum (PLE) of the green fluorescent powders of Preparation Examples 7 to 12. From the results of FIG. 9, it can be found that the green fluorescent powder doped with Zn 2+ in Preparation Examples 7 to 12 does not change its excitation peak 450. The wavelength position of nm, and its emission wavelength falls in the range of 505 nm to 506 nm, which can be determined that Zn 2+ doping does not affect Ca 2.955 Sc 2-2/3b Zn b Si 3 O 12 :Ce 0.03 in blue light Applicability on LEDs.

圖10為製備例7至12綠色螢光粉之螢光放射光譜(PL),同樣以波長為450 nm的光線激發,其放射光譜為450 nm至650 nm的寬廣波峰,摻雜Zn2+後,綠色螢光粉的發光強度有所提升,尤其摻雜30 mol%(b=0.3)Zn2+時,可達到最強的發光強度。 Figure 10 is the fluorescence emission spectrum (PL) of the green fluorescent powders of Preparation Examples 7 to 12, which are also excited by light having a wavelength of 450 nm, and the emission spectrum is a broad peak of 450 nm to 650 nm, and is doped with Zn 2+ . The luminous intensity of the green fluorescent powder is improved, especially when doping 30 mol% (b=0.3) Zn 2+ , the strongest luminous intensity can be achieved.

由測試例3之結果可了解,摻雜Al3+或Zn2+取代Sc3+不會使激發光的位置偏移,故適用於450 nm之藍光LED晶粒。 It can be understood from the results of Test Example 3 that doping Al 3+ or Zn 2+ instead of Sc 3+ does not shift the position of the excitation light, so it is suitable for a 450 nm blue LED die.

測試例4Test Example 4

使用螢光光譜儀(Hitachi F-7000)搭配積分球,對製備例1至6之綠色螢光粉末Ca2.955Sc2-aAlaSi3O12:Ce0.03以及製備例7至12之綠色螢光粉末Ca2.955Sc2-2b/3ZnbSi3O12:Ce0.03進行量子效率及吸收率量測。以450 nm藍光激發,計算其 量子效率及吸收率。 The green fluorescent powder Ca 2.955 Sc 2-a Al a Si 3 O 12 :Ce 0.03 of Preparation Examples 1 to 6 and the green fluorescence of Preparation Examples 7 to 12 were prepared using a fluorescence spectrometer (Hitachi F-7000) together with an integrating sphere. The powder Ca 2.955 Sc 2-2b/3 Zn b Si 3 O 12 :Ce 0.03 was measured for quantum efficiency and absorbance. The quantum efficiency and absorption rate were calculated by excitation at 450 nm blue light.

表3係製備例1至6熱碳還原製備下之綠色螢光粉末的量子效率量測結果。未摻雜Al3+綠色螢光粉的量子效率為47.3%,吸收率為65.1%,隨著Al3+摻雜量的增加,量子效率及吸收率亦隨之增加,尤其當Al3+摻雜量為15 mol%(a=0.15)時,其量子效率達到最高51.6%,當Al3+摻雜量為40 mol%(a=0.4)時,其吸收率達77.4%。此結果表示摻雜Al3+可有效地增加綠色螢光粉的量子效率及吸收率。 Table 3 shows the results of quantum efficiency measurement of the green fluorescent powder prepared by the preparation of hot carbon reduction in Preparation Examples 1 to 6. The quantum efficiency of undoped Al 3+ green phosphor is 47.3%, and the absorption rate is 65.1%. With the increase of Al 3+ doping amount, the quantum efficiency and absorption rate also increase, especially when Al 3+ is doped. When the amount of impurities is 15 mol% (a=0.15), the quantum efficiency reaches 51.6%. When the Al 3+ doping amount is 40 mol% (a=0.4), the absorption rate reaches 77.4%. This result indicates that doping Al 3+ can effectively increase the quantum efficiency and absorption rate of the green phosphor.

表4係製備例7至12熱碳還原製備下之綠色螢光粉末的量子效率量測結果。未摻雜Zn2+綠色螢光粉的量子效率為48.6%,吸收率為64.5%,隨著Zn2+摻雜量的增加,量子效率及吸收率亦隨之增加,尤其當Zn2+摻雜量為30 mol%(a=0.3)時,其量子效率達到最高58.0%,吸收率達到72.1%。因此,表4結果顯示摻雜Zn2+可有效地增加綠色螢光粉的量子效率及吸收率。 Table 4 shows the results of quantum efficiency measurement of the green fluorescent powder prepared by the hot carbon reduction of Preparation Examples 7 to 12. The quantum efficiency of undoped Zn 2+ green phosphor is 48.6%, and the absorption rate is 64.5%. With the increase of Zn 2+ doping amount, the quantum efficiency and absorption rate also increase, especially when Zn 2+ is mixed. When the amount of impurities is 30 mol% (a=0.3), the quantum efficiency reaches 58.0% and the absorption rate reaches 72.1%. Therefore, the results in Table 4 show that doping Zn 2+ can effectively increase the quantum efficiency and absorption rate of the green phosphor.

比較例1Comparative example 1

為證實以本發明熱碳還原法製成之綠色螢光粉具有優異的熱穩定性,故將一般市售之商用綠色螢光粉末與藉由本發明熱碳還原法製備之綠色螢光粉末Ca2.955Sc2Si3O12:Ce0.03(未摻雜Al3+或Zn2+)、Ca2.955Sc1.85Al0.15Si3O12:Ce0.03(摻雜15 mol%的Al3+)及Ca2.955Sc1.8Zn0.3Si3O12:Ce0.03(摻雜30 mol%的Zn2+)進行熱穩定性的比較,結果如圖11所示。 In order to confirm that the green phosphor powder produced by the hot carbon reduction method of the present invention has excellent thermal stability, a commercially available commercial green fluorescent powder and a green fluorescent powder Ca 2.955 prepared by the hot carbon reduction method of the present invention are used. Sc 2 Si 3 O 12 :Ce 0.03 (undoped Al 3+ or Zn 2+ ), Ca 2.955 Sc 1.85 Al 0.15 Si 3 O 12 :Ce 0.03 (doped 15 mol% of Al 3+ ) and Ca 2.955 Sc 1.8 Zn 0.3 Si 3 O 12 :Ce 0.03 (doped with 30 mol% of Zn 2+ ) was compared for thermal stability, and the results are shown in FIG.

隨著溫度提升,商用綠色螢光粉於100℃時,其發光相對強度明顯降低,至175℃時,發光相對強度降至約10%;反之以本發明熱碳還原法製成之綠色螢光粉,其熱穩定性顯著,尤其Ca2.955Sc1.8Zn0.3Si3O12:Ce0.03綠色螢光粉更具優異的熱穩定性。 As the temperature increases, the commercial green phosphor at 100 ° C, its relative intensity of light is significantly reduced, to 175 ° C, the relative intensity of the light is reduced to about 10%; otherwise, the green fluorescent light produced by the hot carbon reduction method of the present invention Powder, its thermal stability is remarkable , especially Ca 2.955 Sc 1.8 Zn 0.3 Si 3 O 12 :Ce 0.03 green phosphor has more excellent thermal stability.

比較例2Comparative example 2

為證實本發明之熱碳還原法所製成之綠色螢光粉末相較於習知大氣下進行熱處理所製備之綠色螢光粉末具有優異的發光強度提升效果,故選用相同反應材料分別由不同製備法製成綠色螢光粉,以量測個別之螢光放射光譜(PL),結果如圖12所示。 In order to confirm that the green fluorescent powder prepared by the hot carbon reduction method of the present invention has an excellent luminous intensity improvement effect compared to the green fluorescent powder prepared by heat treatment in the conventional atmosphere, the same reaction materials are separately prepared by different preparations. The method was made into a green fluorescent powder to measure individual fluorescence emission spectra (PL), and the results are shown in FIG.

以波長為450 nm的光線激發,其放射光譜為450 nm至650 nm的寬廣波峰。於大氣下進行熱處理所形成之Ca2.955Sc2Si3O12:Ce0.03綠色螢光粉,其發光相對強度值約為450(a.u.),然而,以本發明熱碳還原法製成之Ca2.955Sc2Si3O12:Ce0.03綠色螢光粉,其發光相對強度值可高達將近700(a.u.)。由此可明顯發現,反應前於坩堝中添加 碳粉,進行還原反應所獲得的綠色螢光粉末,相較於習知未添加碳粉的大氣下進行熱處理之製備方法,更具有提升Ca2.955Sc2Si3O12:Ce0.03綠色螢光粉發光強度的功效。 Excited by light with a wavelength of 450 nm, the emission spectrum is a broad peak from 450 nm to 650 nm. The Ca 2.955 Sc 2 Si 3 O 12 :Ce 0.03 green phosphor formed by heat treatment under atmospheric pressure has a relative luminescence intensity of about 450 (au), however, Ca 2.955 made by the hot carbon reduction method of the present invention. Sc 2 Si 3 O 12 :Ce 0.03 green phosphor with a relative intensity of light up to nearly 700 (au). Therefore, it is apparent that the green fluorescent powder obtained by adding the carbon powder to the crucible before the reaction and performing the reduction reaction is more improved than the conventional preparation method of heat treatment in the atmosphere without adding the carbon powder, and the Ca 2.955 Sc is further improved. 2 Si 3 O 12 :Ce 0.03 Green fluorescent powder luminous intensity effect.

上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。 The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.

1‧‧‧第一反應容器 1‧‧‧First Reaction Vessel

2‧‧‧碳粉 2‧‧‧Toner

3‧‧‧第二反應容器 3‧‧‧Second reaction vessel

Claims (17)

一種綠色螢光材料製備方法,步驟包括:(A)提供一鈣前驅物、一鈧前驅物、一矽前驅物、一鈰前驅物以及一摻雜前驅物,其中該摻雜前驅物包括一鋁(Al)前驅物或一鋅(Zn)前驅物;(B)混合該鈣前驅物、該鈧前驅物、該矽前驅物、該鈰前驅物以及該摻雜前驅物並進行震盪研磨,以形成一前驅物混合粉末,其中,當該摻雜前驅物為該鋁(Al)前驅物時,鈣:鈧:矽:鈰:鋁莫耳比為2.955:1.6~2:3:0.03:0~0.4,而當該摻雜前驅物為該鋅(Zn)前驅物時,鈣:鈧:矽:鈰:鋅莫耳比為2.955:1.667~2:3:0.03:0~0.5;以及(C)將該前驅物混合粉末置入含有一固態碳源之一反應裝置中,進行熱處理,以形成一綠色螢光材料。 A method for preparing a green fluorescent material, comprising the steps of: (A) providing a calcium precursor, a precursor, a precursor, a precursor, and a doped precursor, wherein the doped precursor comprises an aluminum (Al) a precursor or a zinc (Zn) precursor; (B) mixing the calcium precursor, the ruthenium precursor, the ruthenium precursor, the ruthenium precursor, and the doped precursor and performing oscillating grinding to form a precursor mixed powder, wherein, when the doped precursor is the aluminum (Al) precursor, the calcium: 钪: 矽: 铈: aluminum molar ratio is 2.955: 1.6~2:3:0.03:0~0.4 And when the doped precursor is the zinc (Zn) precursor, the calcium:钪:矽:铈:zinc ratio is 2.955:1.667~2:3:0.03:0~0.5; and (C) The precursor mixed powder is placed in a reaction apparatus containing a solid carbon source and heat-treated to form a green fluorescent material. 如申請專利範圍第1項所述之方法,其中該固態碳源係一碳粉。 The method of claim 1, wherein the solid carbon source is a carbon powder. 如申請專利範圍第1項所述之方法,其中該鈣前驅物係至少一選自由:CaB6、CaC2、CaCO3、CaC2O4、CaCl2、CaF2、Ca(NO3)2、CaO、Ca3(BO3)2、Ca3(C6H5O7)2、Ca3(PO4)2所組成之群組,該鈧前驅物係至少一選自由:ScB12、ScC13、ScF3、ScH3、Sc(NO3)3、Sc2O3、Sc2S3所組成之群組,該矽前驅物係至少一選自由:SiO2、SiF4、SiC14、SiC、Si2N3所組成之群組,該鈰前驅物係至少一選自由:Ce2(C2O4)3.9H2O、CeO2、Ce(SO4)2、CeCl3、Ce(NO3)3.6H2O所組成之群組,該鋁前驅物係至少一選自由:AlCl3、AlF3、AlN、Al(NO3)3、Al(OH)3、 AlPO4、Al2O3、Al2(SO4)3、Al4C3所組成之群組,該鋅前驅物係至少一選自由:ZnCl2、ZnF2.、Zn(NO3)2、ZnO、Zn(OH)2、ZnSO4、Zn2P2O7、Zn3N2、Zn3(PO4)2所組成之群組。 The method of claim 1, wherein the calcium precursor is at least one selected from the group consisting of CaB 6 , CaC 2 , CaCO 3 , CaC 2 O 4 , CaCl 2 , CaF 2 , Ca(NO 3 ) 2 , a group consisting of CaO, Ca 3 (BO 3 ) 2 , Ca 3 (C 6 H 5 O 7 ) 2 , and Ca 3 (PO 4 ) 2 , the at least one precursor selected from the group consisting of: ScB 12 , ScC 13 a group consisting of ScF 3 , ScH 3 , Sc(NO 3 ) 3 , Sc 2 O 3 , and Sc 2 S 3 , the at least one precursor selected from the group consisting of: SiO 2 , SiF 4 , SiC 14 , SiC, A group consisting of Si 2 N 3 , the at least one precursor of which is selected from the group consisting of: Ce 2 (C 2 O 4 ) 3 . 9H 2 O, CeO 2 , Ce(SO 4 ) 2 , CeCl 3 , Ce(NO 3 ) 3 . a group consisting of 6H 2 O, the aluminum precursor being at least one selected from the group consisting of: AlCl 3 , AlF 3 , AlN, Al(NO 3 ) 3 , Al(OH) 3 , AlPO 4 , Al 2 O 3 , Al 2 (SO 4 ) 3 , a group consisting of Al 4 C 3 , the zinc precursor is at least one selected from the group consisting of: ZnCl 2 , ZnF 2 . a group consisting of Zn(NO 3 ) 2 , ZnO, Zn(OH) 2 , ZnSO 4 , Zn 2 P 2 O 7 , Zn 3 N 2 , and Zn 3 (PO 4 ) 2 . 如申請專利範圍第2項所述之方法,於步驟(C)中,該前驅物混合粉末係置入一第一反應容器中,且將該第一反應容器係置入含有16~20 g該碳粉之一第二反應容器,並將該第二反應容器係置入該反應裝置中,以進行熱處理。 According to the method of claim 2, in the step (C), the precursor mixed powder is placed in a first reaction vessel, and the first reaction vessel is placed in a volume of 16-20 g. One of the second reaction vessels of the carbon powder, and the second reaction vessel is placed in the reaction apparatus for heat treatment. 如申請專利範圍第4項所述之方法,其中,該第二反應容器於反應完成後,殘留4~6 g之該碳粉。 The method of claim 4, wherein the second reaction vessel retains 4 to 6 g of the carbon powder after the reaction is completed. 如申請專利範圍第1項所述之方法,其中步驟(C)係於1300~1500℃下熱處理2~4個小時。 The method according to claim 1, wherein the step (C) is heat treatment at 1300 to 1500 ° C for 2 to 4 hours. 如申請專利範圍第1項所述之方法,其中該綠色螢光材料之化學式如下:[化學式]CaxSc2-a-2b/3AlaZnbSi3O12:Cez其中,0≦a≦0.4,0≦b≦0.5,2.95≦x+z≦3,當b=0時,0.05≦a≦0.4;當a=0時,0.1≦b≦0.5。 The method of claim 1, wherein the green fluorescent material has the following chemical formula: [Chemical Formula] Ca x Sc 2-a-2b/3 Al a Zn b Si 3 O 12 : Ce z wherein, 0≦ a ≦ 0.4, 0 ≦ b ≦ 0.5, 2.95 ≦ x + z ≦ 3, when b = 0, 0.05 ≦ a ≦ 0.4; when a = 0, 0.1 ≦ b ≦ 0.5. 如申請專利範圍第7項所述之方法,其中,當b=0時,a=0.15;當a=0時,b=0.3。 The method of claim 7, wherein a = 0.15 when b = 0; and b = 0.3 when a = 0. 如申請專利範圍第7項所述之方法,其中,該綠色螢光材料之化學式為Ca2.955Sc1.85Al0.15Si3O12:Ce0.03或Ca2.955Sc1.8Zn0.3Si5O12:Ce0.03The method of claim 7, wherein the green fluorescent material has a chemical formula of Ca 2.955 Sc 1.85 Al 0.15 Si 3 O 12 :Ce 0.03 or Ca 2.955 Sc 1.8 Zn 0.3 Si 5 O 12 :Ce 0.03 . 一種綠色螢光材料,其化學式如下:[化學式]CaxSc2-a-2b/3AlaZnbSi3O12:Cez其中,0≦a≦0.4,0≦b≦0.5,2.95≦x+z≦3,當b=0時,0.05≦a≦0.4;當a=0時,0.1≦b≦0.5。 A green fluorescent material having the following chemical formula: [Chemical Formula] Ca x Sc 2-a-2b/3 Al a Zn b Si 3 O 12 :Ce z wherein 0≦a≦0.4,0≦b≦0.5, 2.95≦ x+z≦3, when b=0, 0.05≦a≦0.4; when a=0, 0.1≦b≦0.5. 如申請專利範圍第10項所述之綠色螢光材料,其中,當b=0時,a=0.15;當a=0時,b=0.3。 The green fluorescent material according to claim 10, wherein when b=0, a=0.15; when a=0, b=0.3. 如申請專利範圍第10項所述之綠色螢光材料,其中,該綠色螢光材料之化學式為Ca2.955Sc1.85Al0.15Si3O12:Ce0.03或Ca2.955Sc1.8Zn0.3Si3O12:Ce0.03The green fluorescent material according to claim 10, wherein the green fluorescent material has a chemical formula of Ca 2.955 Sc 1.85 Al 0.15 Si 3 O 12 :Ce 0.03 or Ca 2.955 Sc 1.8 Zn 0.3 Si 3 O 12 : Ce 0.03 . 如申請專利範圍第10項所述之綠色螢光材料,其中,該螢光材料之製備步驟係包含:(A)提供一鈣前驅物、一鈧前驅物、一矽前驅物、一鈰前驅物以及一摻雜前驅物,其中該摻前驅物包括一鋁(Al)前驅物或一鋅(Zn)前驅物;(B)將該鈣前驅物、該鈧前驅物、該矽前驅物、該鈰前驅物以及該摻雜前驅物混合並進行震盪研磨,以形成一 前驅物混合粉末,其中,當該摻雜前驅物為該鋁(Al)前驅物時,鈣:鈧:矽:鈰:鋁莫耳比為2.955:1.6~2:3:0.03:0~0.4,而當該摻雜前驅物為該鋅(Zn)前驅物時,鈣:鈧:矽:鈰:鋅莫耳比為2.955:1.667~2:3:0.03:0~0.5;以及(C)將該前驅物混合粉末置入含有一固態碳源之一反應裝置中,於1300~1500℃下熱處理2~4小時,以形成該綠色螢光材料。 The green fluorescent material according to claim 10, wherein the step of preparing the fluorescent material comprises: (A) providing a calcium precursor, a precursor, a precursor, and a precursor. And a doped precursor, wherein the doped precursor comprises an aluminum (Al) precursor or a zinc (Zn) precursor; (B) the calcium precursor, the ruthenium precursor, the ruthenium precursor, the ruthenium The precursor and the doped precursor are mixed and oscillated to form a a precursor mixed powder, wherein when the doped precursor is the aluminum (Al) precursor, the calcium:钪:矽:铈: aluminum molar ratio is 2.955:1.6~2:3:0.03:0~0.4, And when the doped precursor is the zinc (Zn) precursor, the calcium:钪:矽:铈:zinc ratio is 2.955:1.667~2:3:0.03:0~0.5; and (C) The precursor mixed powder is placed in a reaction apparatus containing a solid carbon source and heat-treated at 1300 to 1500 ° C for 2 to 4 hours to form the green fluorescent material. 如申請專利範圍第13項所述之綠色螢光材料,其中該固態碳源係一碳粉。 The green fluorescent material according to claim 13, wherein the solid carbon source is a carbon powder. 如申請專利範圍第13項所述之綠色螢光材料,該鈣前驅物係至少一選自由:CaB6、CaC2、CaCO3、CaC2O4、CaCl2、CaF2、Ca(NO3)2、CaO、Ca3(BO3)2、Ca3(C6H5O7)2、Ca3(PO4)2所組成之群組,該鈧前驅物係至少一選自由:ScB12、ScC13、ScF3、ScH3、Sc(NO3)3、Sc2O3、Sc2S3所組成之群組,該矽前驅物係至少一選自由:SiO2、SiF4、SiC14、SiC、Si2N3所組成之群組,該鈰前驅物係至少一選自由:Ce2(C2O4)3.9H2O、CeO2、Ce(SO4)2、CeCl3、Ce(NO3)3.6H2O所組成之群組,該鋁前驅物係至少一選自由:AlCl3、AlF3、AlN、Al(NO3)3、Al(OH)3、AlPO4、Al2O3、Al2(SO4)3、Al4C3所組成之群組,該鋅前驅物係至少一選自由:ZnCl2、ZnF2.、Zn(NO3)2、ZnO、Zn(OH)2、ZnSO4、Zn2P2O7、Zn3N2、Zn3(PO4)2所組成之群組。 The green fluorescent material according to claim 13, wherein the calcium precursor is at least one selected from the group consisting of CaB 6 , CaC 2 , CaCO 3 , CaC 2 O 4 , CaCl 2 , CaF 2 , Ca(NO 3 ) 2 , a group consisting of CaO, Ca 3 (BO 3 ) 2 , Ca 3 (C 6 H 5 O 7 ) 2 , and Ca 3 (PO 4 ) 2 , the at least one precursor of the ruthenium precursor is selected from the group consisting of: ScB 12 , a group consisting of ScC 13 , ScF 3 , ScH 3 , Sc(NO 3 ) 3 , Sc 2 O 3 , and Sc 2 S 3 , the at least one precursor selected from the group consisting of: SiO 2 , SiF 4 , SiC 14 , A group consisting of SiC and Si 2 N 3 , the at least one precursor of which is selected from the group consisting of: Ce 2 (C 2 O 4 ) 3 . 9H 2 O, CeO 2 , Ce(SO 4 ) 2 , CeCl 3 , Ce(NO 3 ) 3 . a group consisting of 6H 2 O, the aluminum precursor being at least one selected from the group consisting of: AlCl 3 , AlF 3 , AlN, Al(NO 3 ) 3 , Al(OH) 3 , AlPO 4 , Al 2 O 3 , Al 2 (SO 4 ) 3 , a group consisting of Al 4 C 3 , the zinc precursor is at least one selected from the group consisting of: ZnCl 2 , ZnF 2 . a group consisting of Zn(NO 3 ) 2 , ZnO, Zn(OH) 2 , ZnSO 4 , Zn 2 P 2 O 7 , Zn 3 N 2 , and Zn 3 (PO 4 ) 2 . 如申請專利範圍第13項所述之綠色螢光材料,於步驟(C)中,該前驅物混合粉末係置入一第一反應容器中,且將該第一反應容器係置入含有16~20 g該碳粉之一第二反應 容器,並將該第二反應容器置入該反應裝置,以進行熱處理。 The green fluorescent material according to claim 13 , wherein in the step (C), the precursor mixed powder is placed in a first reaction container, and the first reaction container is placed in the first reaction container. 20 g of the second reaction of the toner The container is placed in the reaction apparatus for heat treatment. 如申請專利範圍第16項所述之綠色螢光材料,其中,該第二反應容器於反應完成後,殘留4~6 g之該碳粉。 The green fluorescent material according to claim 16, wherein the second reaction vessel retains 4 to 6 g of the carbon powder after the reaction is completed.
TW102124357A 2013-07-08 2013-07-08 Green phosphor and manufacturing method thereof TWI604032B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102124357A TWI604032B (en) 2013-07-08 2013-07-08 Green phosphor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102124357A TWI604032B (en) 2013-07-08 2013-07-08 Green phosphor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201502245A true TW201502245A (en) 2015-01-16
TWI604032B TWI604032B (en) 2017-11-01

Family

ID=52718285

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102124357A TWI604032B (en) 2013-07-08 2013-07-08 Green phosphor and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI604032B (en)

Also Published As

Publication number Publication date
TWI604032B (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP5600112B2 (en) Phosphor composition
JP5970534B2 (en) Oxynitride phosphor
JP6732796B2 (en) Phosphor and phosphor conversion LED
CN102433114B (en) Fluorescent powder, and preparation method and application thereof
US9890328B2 (en) Phosphor compositions and lighting apparatus thereof
US9447319B2 (en) Yellow phosphor having an increased activator concentration and a method of making a yellow phosphor
JP2016507605A (en) Phosphor
JP2005226000A (en) Nitride phosphor, manufacturing method of nitride phosphor, white light emitting element and pigment
TWI432555B (en) Aluminate phosphor
CN110205120A (en) A kind of near ultraviolet excitated mixture red fluorescence powder, preparation method and application
TWI604032B (en) Green phosphor and manufacturing method thereof
TWI493018B (en) Phosphor and light emitting device comprising the phosphor
KR101856534B1 (en) Oxinitride phosphor and light emitting device comprising the same
CN106118637A (en) A kind of fluosilicate red fluorescence powder and preparation method thereof
CN102732247A (en) Method for preparing silicate fluorescent powder and silicate fluorescent powder prepared by same
KR20130055361A (en) A zincsilicate green phosphor materials and their preparing method and applications for white-light-emitting device
KR101394618B1 (en) Red nitridebased fluorescent substance to be provided a light emitting device
CN108753290B (en) Bismuth and europium ion co-activated titanium aluminate fluorescent powder and preparation and application thereof
KR102662497B1 (en) Phosphor compositions and lighting devices thereof
CN103881719B (en) Phosphor and light emitting device
TWI428428B (en) Phosphors and light emitting device using the same
KR101639992B1 (en) Manufacturing method of oxynitride phosphor using alkaline earth metal silicates
TWI534245B (en) Phosphor material and the manufacturing method thereof
KR20190096560A (en) Titanium fluoride phosphor, light emitting device comprising the titanium fluoride phosphor and preparing method for the titanium fluoride phosphor
KR102275147B1 (en) Oxynitride-based fluorescent material and light emitting apparatus using same