TW201447352A - Antiglare hard coating film - Google Patents

Antiglare hard coating film Download PDF

Info

Publication number
TW201447352A
TW201447352A TW103114147A TW103114147A TW201447352A TW 201447352 A TW201447352 A TW 201447352A TW 103114147 A TW103114147 A TW 103114147A TW 103114147 A TW103114147 A TW 103114147A TW 201447352 A TW201447352 A TW 201447352A
Authority
TW
Taiwan
Prior art keywords
hard coat
glare hard
film
value
glare
Prior art date
Application number
TW103114147A
Other languages
Chinese (zh)
Other versions
TWI678552B (en
Inventor
Hiroki Hoshino
Tomoo Orui
Satoru Shoshi
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Publication of TW201447352A publication Critical patent/TW201447352A/en
Application granted granted Critical
Publication of TWI678552B publication Critical patent/TWI678552B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The present invention provides an antiglare hard coating film, which is an antiglare hard coating film that provides excellent writing feeling for a touch stylus and makes fingerprint attached thereto difficult to see. To solve the above issue, an antiglare hard coating film 1 is provided to serve as an antiglare hard coating film 1 for a touch panel and comprising a base material layer 11 and an antiglare hard coating layer 12 formed on a surface of the base material layer 11. In using a rigid felt core touch stylus having a tip diameter of 0.5mm, which is pressurized with a loading of 150g weight, to scan on a surface of the antiglare hard coating layer 12 at a speed of 100mm/minute, an initial value (A) and a sliding value (B) of the stylus tip resistance (mN) satisfy a relationship defined by the following formula (a): 0<=initial value (A)-sliding value (B) … (a), and also, oleic acid contact angle of the surface of the antiglare hard coating layer 12 is less than 45 DEG.

Description

防眩性硬塗薄膜 Anti-glare hard coat film

本發明是關於一種使用觸控筆的觸控面板用防眩性硬塗薄膜。 The present invention relates to an anti-glare hard coat film for a touch panel using a stylus.

近年在各種電子設備中,多使用兼具顯示裝置與輸入手段的觸控面板。該觸控面板的表面,通常為了防止損壞而設置具有硬塗層的硬塗薄膜。另外,包括觸控面板在內的各種顯示器,會反射從外部入射的光線,有難以看清顯示圖像的情況,因此有通過將硬塗薄膜的表面粗化,而使用賦予了防眩功能的防眩性硬塗薄膜的情況。 In recent years, in various electronic devices, a touch panel having both a display device and an input means has been frequently used. The surface of the touch panel is usually provided with a hard coat film having a hard coat layer in order to prevent damage. In addition, various displays including a touch panel reflect light incident from the outside, and it is difficult to see the displayed image. Therefore, the surface of the hard coat film is roughened, and the anti-glare function is imparted. The case of an anti-glare hard coat film.

如上所述的觸控面板中,除了用手指輸入以外,還有用觸控筆輸入的觸控面板,由於觸控筆比手指更小,因此可以准確輸入。但是,通常觸控面板的顯示模塊為硬質,附著有上述防眩性硬塗薄膜的觸控面板表面也同樣是硬質。因此,觸控筆的書寫感與用鉛筆或圓珠筆等在紙上書寫時的書寫感不同,難以說是良好。 In the touch panel as described above, in addition to the finger input, there is also a touch panel input by the stylus, and since the stylus is smaller than the finger, it can be accurately input. However, in general, the display module of the touch panel is rigid, and the surface of the touch panel to which the above-mentioned anti-glare hard coat film is attached is also hard. Therefore, the writing feeling of the stylus is different from the writing feeling when writing on paper with a pencil or a ballpoint pen, and it is difficult to say that it is good.

為瞭解決上述書寫感問題,專利文獻1中,通過在2個基材之間放置具有緩沖性的粘接劑層,使觸控面板具有所定的彈性變形性,來提高觸控筆的書寫感。 In order to solve the above-described problem of writing feeling, in Patent Document 1, the touch panel has a cushioning adhesive layer, and the touch panel has a predetermined elastic deformability to improve the writing feel of the stylus pen. .

【先前技術文獻】 [Previous Technical Literature]

【專利文獻】 [Patent Literature]

【專利文獻1】專利第2868686號公報 Patent Document 1 Patent No. 2868686

但是,專利文獻1中有使粘接劑層具有緩沖性的必要。因此,會受到用於該粘接劑層的材料的制約,或需要使該粘接劑層相對較厚。因此,製造過程變得複雜,同時,製造成本增加。 However, in Patent Document 1, it is necessary to make the adhesive layer have cushioning properties. Therefore, it is restricted by the material used for the adhesive layer, or the adhesive layer needs to be relatively thick. Therefore, the manufacturing process becomes complicated, and at the same time, the manufacturing cost increases.

另外,在觸控面板中,即使使用觸控筆輸入方式,也常有手碰到觸控面板的情況,因此在觸控面板的表面,一般會由於手指上的油脂而附有指紋。現有防眩性硬塗薄膜上如果附有指紋,則由於指紋過於明顯而有損外觀,同時,顯示圖像變得難以看清。 In addition, in the touch panel, even if the stylus input method is used, there is often a case where the hand touches the touch panel. Therefore, on the surface of the touch panel, a fingerprint is generally attached due to the grease on the finger. If a fingerprint is attached to the existing anti-glare hard coat film, the fingerprint is too obvious and the appearance is impaired, and at the same time, the display image becomes difficult to see.

本發明是鑒於這樣的現狀而進行的,目的在於提供一種用防眩性硬塗薄膜本身即可使觸控筆的書寫感良好,同時不易看出附著的指紋的防眩性硬塗薄膜。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an anti-glare hard coat film which can improve the writing feeling of the stylus by using the anti-glare hard coat film itself, and which is difficult to see the attached fingerprint.

為了達成上述目的,第一,本發明提供一種防眩性硬塗薄膜,其特徵在於:作為具備基材膜和設置在上述基材膜一側面上的防眩性硬塗層的觸控面板用防眩性硬塗薄膜,對上述防眩性硬塗層表面,將筆尖直徑為0.5mm的硬氈芯觸控筆,在負重150g重量的加壓下,以100mm/分的速度掃描時,筆尖阻力(mN)的初始值(A)以及滑動值(B)滿足以下算式(a)的關係:0≦初始值(A)-滑動值(B)...(a) In order to achieve the above object, the present invention provides an anti-glare hard coat film which is provided as a touch panel including a base film and an anti-glare hard coat layer provided on one surface of the base film. Anti-glare hard coating film, for the surface of the above-mentioned anti-glare hard coating layer, a hard felt core stylus with a pen tip diameter of 0.5 mm is scanned at a speed of 100 mm/min under a load of 150 g weight, the nib The initial value (A) of the resistance (mN) and the sliding value (B) satisfy the relationship of the following formula (a): 0 ≦ initial value (A) - sliding value (B) (a)

同時,上述防眩性硬塗層表面的油酸接觸角為45°以下(發明1)。 Meanwhile, the oleic acid contact angle of the surface of the above-mentioned antiglare hard coat layer is 45 or less (Invention 1).

上述發明(發明1)所述防眩性硬塗薄膜,筆尖阻力(mN)的初始值(A)以及滑動值(B)通過滿足上述關係,用防眩性硬塗薄膜本身即可使觸控筆的書寫感變得良好,另外油酸接觸角在45°以下,使附著的指紋不易被看到。 In the anti-glare hard coat film according to the invention (Invention 1), the initial value (A) of the tip resistance (mN) and the sliding value (B) satisfy the above relationship, and the hard-coated hard-coated film itself can be used for touch control. The pen's writing feel is good, and the oleic acid contact angle is below 45°, making the attached fingerprint difficult to see.

在上述發明(發明1)中,上述筆尖阻力(mN)的初始值(A)以及滑動值(B),優選為滿足以下算式(b)的關係(發明2)。 In the above invention (Invention 1), it is preferable that the initial value (A) and the sliding value (B) of the tip resistance (mN) satisfy the relationship of the following formula (b) (Invention 2).

5≦初始值(A)-滑動值(B)≦200...(b) 5≦Initial value (A)-sliding value (B)≦200...(b)

在上述發明(發明1,發明2)中,上述油酸接觸角優選為25°~45°(發明3)。 In the above invention (Invention 1, Invention 2), the oleic acid contact angle is preferably 25 to 45 (Invention 3).

在上述發明(發明1~發明3)中,上述防眩性硬塗層,優選為將含有多官能(甲基)丙烯酸酯、平均粒徑為1μm~10μm的微粒子和勻染劑的塗料組合物固化而構成(發明4)。 In the above invention (Invention 1 to Invention 3), the antiglare hard coat layer is preferably a coating composition containing a polyfunctional (meth) acrylate, fine particles having an average particle diameter of 1 μm to 10 μm, and a leveling agent. It is cured to constitute (Invention 4).

在上述發明(發明1~發明4)中,上述微粒子優選為無定形二氧化矽微粒子(發明5)。 In the above invention (Invention 1 to Invention 4), the fine particles are preferably amorphous ceria particles (Invention 5).

本發明所述防眩性硬塗薄膜書寫感良好,同時不易看到附著的指紋。 The anti-glare hard coat film of the present invention has a good writing feeling and is difficult to see attached fingerprints.

1‧‧‧防眩性硬塗薄膜 1‧‧‧Anti-glare hard coat film

11‧‧‧基材膜 11‧‧‧Base film

12‧‧‧防眩性硬塗層 12‧‧‧Anti-glare hard coating

圖1為本發明一實施形態所有關的防眩性硬塗薄膜的剖面圖。 Fig. 1 is a cross-sectional view showing an antiglare hard coat film according to an embodiment of the present invention.

圖2為顯示筆尖阻力測定結果一例(本實施形態所有關的關於防眩性硬塗薄膜的例)的圖。 FIG. 2 is a view showing an example of the measurement result of the pen tip resistance (an example of the antiglare hard coat film according to the embodiment).

圖3為顯示筆尖阻力測定結果另一例(關於一般防眩性硬塗薄膜的例)的圖。 Fig. 3 is a view showing another example of the measurement result of the tip resistance (for an example of a general anti-glare hard coat film).

以下,關於本發明的實施形態進行說明。 Hereinafter, embodiments of the present invention will be described.

如圖1所示,本實施形態所述防眩性硬塗薄膜1,由基材膜11和在基材膜11一側面上形成的防眩性硬塗層12所構成。該防眩性硬塗薄膜1,設置於使用觸控筆的觸控面板的表面。 As shown in Fig. 1, the antiglare hard coat film 1 of the present embodiment is composed of a base film 11 and an antiglare hard coat layer 12 formed on one surface of the base film 11. The anti-glare hard coat film 1 is provided on the surface of a touch panel using a stylus pen.

1.物性 Physical property

本實施形態所述防眩性硬塗薄膜1,對防眩性硬塗層12表面(與基材膜11不接觸的一側面),將筆尖直徑為0.5mm的硬氈芯觸控筆,在負重150g重量的加壓下,以100mm/分的速度掃描時筆尖阻力(mN)的初始值(A)以及滑動值(B),滿足以下算式(a)的關係。 The anti-glare hard coat film 1 of the present embodiment has a hard felt core stylus having a pen tip diameter of 0.5 mm on the surface of the anti-glare hard coat layer 12 (one side not in contact with the base film 11). The initial value (A) of the nib resistance (mN) and the sliding value (B) when scanning at a speed of 100 mm/min under a load of 150 g weight under load, satisfy the relationship of the following formula (a).

0≦初始值(A)-滑動值(B)...(a) 0≦ initial value (A)-sliding value (B)...(a)

這裏的筆尖阻力初始值(A)是指,觸控筆在開始掃描的階段中顯示的筆尖阻力的值,如圖2以及圖3所示,通常檢測為峰值。另一方面,筆尖阻力滑動值(B)是指,初始時的影響消失後在穩定掃描狀態下的筆尖阻力平均值。例如,圖2中掃描長度為10mm~40mm的筆尖阻力的平均值為滑動值(B)。另外,圖3中掃描長度為15mm~40mm的筆尖阻力的平均值為滑動值(B)。 Here, the initial value of the tip resistance (A) refers to the value of the tip resistance displayed by the stylus at the stage of starting the scanning, as shown in FIGS. 2 and 3, and is usually detected as a peak. On the other hand, the nib resistance slip value (B) is the average value of the nib resistance in the stable scanning state after the initial influence disappears. For example, the average value of the tip resistance of the scanning length of 10 mm to 40 mm in Fig. 2 is the sliding value (B). In addition, the average value of the tip resistance of the scanning length of 15 mm to 40 mm in Fig. 3 is the sliding value (B).

如上述算式(a)所示,從初始值(A)中減去滑動值(B)的值(筆尖阻力的差(A-B))為0mN以上,防眩性硬塗薄膜1,特別是無需設置具有緩沖性的粘接劑層等,用防眩性硬塗薄膜本身即可使觸控筆的書寫感變得良好。可以認為這是初始值(A)和滑動值(B)的關係,與用鉛筆在紙上書寫時的關係相近的緣故。從這樣的觀點考慮,從初始值(A)中減去滑動值(B)的值的下限值優選為5mN以上,特別優選為在10mN以上。另外,在表面不具有凹凸的一般硬塗薄膜上,觀察不到表示最高峰值的初始值(A)。另外,在一般防眩性硬塗薄膜中,如圖3所示,雖然可觀察到初始值(A),但其後筆尖阻力增加,滑動值(B)變大,因此上述筆尖阻力的差(A-B),通常顯示為負值。 As shown in the above formula (a), the value of the sliding value (B) (the difference in the tip resistance (AB)) is 0 mN or more from the initial value (A), and the anti-glare hard coat film 1 is particularly unnecessary. The cushioning adhesive layer or the like can make the writing feeling of the stylus good by using the anti-glare hard coating film itself. It can be considered that this is the relationship between the initial value (A) and the sliding value (B), which is similar to the relationship when writing with a pencil on paper. From such a viewpoint, the lower limit of the value obtained by subtracting the slip value (B) from the initial value (A) is preferably 5 mN or more, and particularly preferably 10 mN or more. Further, on the general hard coat film having no unevenness on the surface, the initial value (A) indicating the highest peak was not observed. Further, in the general anti-glare hard coat film, as shown in FIG. 3, although the initial value (A) can be observed, the nib resistance increases and the slip value (B) becomes large, so the difference in the nib resistance is ( AB), usually shown as a negative value.

另外,初始值(A)以及滑動值(B)如果滿足上述關係,則上述硬氈芯的觸控筆,即使在使用材料或筆尖直徑不同的觸控筆(例如,聚縮醛芯觸控筆)的情況時,也可確認到防眩性硬塗薄膜的書寫感提高的效果。 In addition, if the initial value (A) and the sliding value (B) satisfy the above relationship, the hard felt core stylus even uses a stylus having a different material or a nib (for example, a polyacetal core stylus) In the case of the case, the effect of improving the writing feeling of the antiglare hard coat film was also confirmed.

另一方面,從初始值(A)中減去滑動值(B)的值如果過大,則有筆尖容易磨損的問題,可能會有開始部分被卡住的感覺或發出聲音。從這樣的觀點考慮,從初始值(A)中減去滑動值(B)的值的上限值,優選為200mN以下,特別優選為150mN以下,進一步優選為100mN以下。 On the other hand, if the value of the sliding value (B) is subtracted from the initial value (A), if the value is too large, there is a problem that the tip of the pen is easily worn, and there is a possibility that the beginning portion is stuck or a sound is emitted. From such a viewpoint, the upper limit of the value of the sliding value (B) subtracted from the initial value (A) is preferably 200 mN or less, particularly preferably 150 mN or less, and more preferably 100 mN or less.

另外,上述初始值(A)優選為200mN~600mN,特別優選為240mN~500mN,進一步優選為280mN~450mN。另一方面,上述滑動值(B)優選為100mN~550mN,特別優選為150mN~490mN,進一步優選為200mN~440mN。 Further, the initial value (A) is preferably 200 mN to 600 mN, particularly preferably 240 mN to 500 mN, and still more preferably 280 mN to 450 mN. On the other hand, the sliding value (B) is preferably 100 mN to 550 mN, particularly preferably 150 mN to 490 mN, and more preferably 200 mN to 440 mN.

另外,本實施形態所述防眩性硬塗薄膜1,其防眩性硬塗層12表面的油酸接觸角為45°以下,優選為25°~45°,特別優選為30°~40°。另外,油酸接觸角是指,在防眩性硬塗層表面,將油酸的液滴在靜置狀態下,在液滴的上述硬塗層表面的接地部分的液滴接線與上述硬塗層表面構成的角度中,包含液滴的一側的角度。 Further, in the antiglare hard coat film 1 of the present embodiment, the oleic acid contact angle of the surface of the antiglare hard coat layer 12 is 45 or less, preferably 25 to 45, and particularly preferably 30 to 40. . In addition, the oleic acid contact angle means that, on the surface of the anti-glare hard coat layer, droplets of oleic acid are left in a standing state, and droplets are connected to the ground portion of the surface of the hard coat layer of the liquid droplets and the hard coat layer. The angle formed by the surface of the layer includes the angle of one side of the droplet.

防眩性硬塗薄膜1,通過油酸接觸角在45°以下,使附著的指紋不易被看到(指紋非視認性優異)。該油酸接觸角如果超過45°,則附著的指紋容易被看到,觸控面板的外觀變差,同時,顯示圖像變得不易看清。另一方面,油酸接觸角如果未滿25°,有觸控筆的筆尖容易磨損,或防眩性硬塗層12表面的抗劃傷性(鋼絲絨硬度)變差的可能。 The anti-glare hard coat film 1 has an oleic acid contact angle of 45 or less, so that the attached fingerprint is hard to be seen (the fingerprint is excellent in non-visibility). When the contact angle of the oleic acid exceeds 45°, the attached fingerprint is easily seen, the appearance of the touch panel is deteriorated, and the display image becomes difficult to see. On the other hand, if the oleic acid contact angle is less than 25°, the tip of the stylus pen may be easily worn, or the scratch resistance (steel wool hardness) of the surface of the anti-glare hard coat layer 12 may be deteriorated.

2.防眩性硬塗層 2. Anti-glare hard coating

本實施形態中防眩性硬塗薄膜1的防眩性硬塗層12,只要對筆尖阻力初始值(A)、滑動值(B)以及油酸接觸角能發揮上述物性,則在任何材料形成均可,但優選為將以下說明的塗料組合物C固化而形成。通過塗料組合物C,容易形成滿足上述物性的防眩性硬塗層12。 In the anti-glare hard coat film 1 of the anti-glare hard coat film 1 of the present embodiment, any material can be formed as long as the initial value (A), the sliding value (B), and the oleic acid contact angle of the nib resistance can exhibit the above physical properties. All may be used, but it is preferably formed by curing the coating composition C described below. By the coating composition C, it is easy to form the anti-glare hard coat layer 12 which satisfies the above physical properties.

本實施形態中的塗料組合物C,含有多官能(甲基)丙烯酸酯和平均粒徑為1μm~10μm的微粒子及勻染劑,優選為進一步含有平均粒徑為1nm~300nm的二氧化矽納米粒子。另外,本說明書中,所說的(甲基)丙烯酸酯,指丙烯酸酯以及甲基丙烯酸酯的兩方。其他的類似用語也同樣。 The coating composition C in the present embodiment contains a polyfunctional (meth) acrylate and fine particles and a leveling agent having an average particle diameter of 1 μm to 10 μm, and preferably further contains cerium oxide nanoparticles having an average particle diameter of 1 nm to 300 nm. particle. In the present specification, the term "(meth)acrylate" means both acrylate and methacrylate. The same is true for other similar terms.

(1)多官能(甲基)丙烯酸酯 (1) Polyfunctional (meth) acrylate

塗料組合物C含有多官能(甲基)丙烯酸酯作為固化性主成分。多官能(甲基)丙烯酸酯通過活性能量線的照射而架橋固化。由於將多官能(甲基)丙烯酸酯架橋,架橋密度高,因此通過使用該多官能(甲基)丙烯酸酯,所形成的防眩性硬塗層12,可得到所希望的硬度和抗劃傷性。 The coating composition C contains a polyfunctional (meth) acrylate as a curable main component. The polyfunctional (meth) acrylate is bridged and cured by irradiation of active energy rays. Since the polyfunctional (meth) acrylate is bridged and the bridging density is high, the desired hardness and scratch resistance can be obtained by using the polyfunctional (meth) acrylate to form the antiglare hard coat layer 12. Sex.

作為多官能(甲基)丙烯酸酯,例如可以舉出1,4-丁二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、羥基新戊酸新戊二醇二(甲基)丙烯酸酯、二環戊基二(甲基)丙烯酸酯、己內酯改性二環戊烯基二(甲基)丙烯酸酯、環氧乙烷改性磷酸二(甲基)丙烯酸酯、烯丙基化環己基二(甲基)丙烯酸酯、異氰脲酸酯二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、二季戊四醇三(甲基)丙烯酸酯、丙酸改性二季戊四醇三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、環氧丙烷改性三羥甲基丙烷三(甲基)丙烯酸酯、三(丙烯醯氧乙基)異氰脲酸酯、丙酸改性二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、己內酯改性二季戊四醇六(甲基)丙烯酸酯等。這些可以單獨使用一種,也可以組合兩種以上使用。 Examples of the polyfunctional (meth) acrylate include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, and neopentyl glycol di( Methyl) acrylate, polyethylene glycol di(meth) acrylate, hydroxypivalic acid neopentyl glycol di(meth) acrylate, dicyclopentyl di(meth) acrylate, caprolactone Dicyclopentenyl di(meth) acrylate, ethylene oxide modified di(meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di Methyl) acrylate, trimethylolpropane tri(meth) acrylate, dipentaerythritol tri(meth) acrylate, propionic acid modified dipentaerythritol tri(meth) acrylate, pentaerythritol tri(meth) acrylate Ester, propylene oxide modified trimethylolpropane tri(meth) acrylate, tris(propylene oxyethyl) isocyanurate, propionic acid modified dipentaerythritol penta (meth) acrylate, dipentaerythritol Hexa(meth)acrylate, caprolactone-modified dipentaerythritol hexa(meth)acrylate, and the like. These may be used alone or in combination of two or more.

從防眩性硬塗層12的抗劃傷性,以及源於與勻染劑親和性的透明性觀點考慮,多官能(甲基)丙烯酸酯的反應官能基數優選為2~10,特別優選為3~8。 The number of reactive functional groups of the polyfunctional (meth) acrylate is preferably from 2 to 10, and particularly preferably from the viewpoint of scratch resistance of the antiglare hard coat layer 12 and transparency from the affinity with the leveling agent. 3~8.

(2)微粒子 (2) Microparticles

塗料組合物C含有平均粒徑為1μm~10μm的微粒子。通過含有這樣的微粒子,所形成的防眩性硬塗層12,其表面粗糙 ,發揮防眩功能。上述微粒子的平均粒徑優選為2μm~8μm,特別優選為3μm~5μm。 The coating composition C contains fine particles having an average particle diameter of from 1 μm to 10 μm. By containing such fine particles, the formed anti-glare hard coat layer 12 has a rough surface , play anti-glare function. The average particle diameter of the fine particles is preferably 2 μm to 8 μm, and particularly preferably 3 μm to 5 μm.

另外,上述微粒子在以下算式中所示的粒徑變動係數(CV值),優選為10%~70%,特別優選為20%~60%。 Further, the particle diameter variation coefficient (CV value) shown in the following formula is preferably 10% to 70%, and particularly preferably 20% to 60%.

粒徑的變動係數(CV值)=(標准偏差粒徑/平均粒徑)×100 Particle size variation coefficient (CV value) = (standard deviation particle size / average particle diameter) × 100

上述微粒子的CV值在上述範圍,則觸控筆的書寫感變得更加良好。 When the CV value of the above fine particles is in the above range, the writing feeling of the stylus becomes more favorable.

另外,本說明書中的平均粒徑以及粒徑的變動係數(CV值),為利用鐳射衍射散射式細微性分佈測定裝置,將通過分散劑甲基乙基酮調製的5質量%濃度的分散液作為樣品,使用幾滴而測定的值。 In addition, the coefficient of variation (CV value) of the average particle diameter and the particle diameter in the present specification is a 5% by mass concentration dispersion prepared by a dispersing agent methyl ethyl ketone by a laser diffraction scattering type fineness distribution measuring apparatus. As a sample, a value measured using a few drops was used.

上述微粒子,可以為無機微粒子,也可以為有機微粒子,但從所形成的防眩性硬塗層12的硬度觀點考慮,優選為無機微粒子。作為無機微粒子,例如可以列舉由二氧化矽、氧化鋁、氧化鈦、氧化鋯、氧化錫、氧化銦、氧化鎘、氧化銻等所構成的微粒子。其中,優選二氧化矽微粒子。另外,微粒子可以單獨使用一種,也可以組合兩種以上使用。 The fine particles may be inorganic fine particles or organic fine particles, but inorganic fine particles are preferred from the viewpoint of the hardness of the antiglare hard coat layer 12 to be formed. Examples of the inorganic fine particles include fine particles composed of cerium oxide, aluminum oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, cadmium oxide, cerium oxide or the like. Among them, cerium oxide microparticles are preferred. Further, the fine particles may be used singly or in combination of two or more.

微粒子的形狀,可以為球狀等的固定形狀,但優選為無特定形狀的無定形。無定形的微粒子,比球狀的微粒子,更容易滿足上述筆尖阻力的初始值(A)與滑動值(B)的關係,觸控筆的書寫感變得更加良好。因此,上述微粒子特別優選為無定形二氧化矽微粒子。 The shape of the fine particles may be a fixed shape such as a spherical shape, but is preferably an amorphous shape having no specific shape. The amorphous microparticles are more likely to satisfy the relationship between the initial value (A) of the nib resistance and the sliding value (B) than the spherical microparticles, and the writing feeling of the stylus becomes better. Therefore, the above fine particles are particularly preferably amorphous ceria fine particles.

相對於多官能(甲基)丙烯酸酯(或其固化物)100質量份,上述微粒子的搭配比率,優選為1質量份~50質量份, 特別優選為5質量份~30質量份,進一步優選為10質量份~20質量份。上述微粒子的搭配比率在1質量份以上,則形成的防眩性硬塗層12可被賦予所希望的防眩性。另外,上述微粒子的搭配比率在50質量份以下,則塗料組合物C的塗工性變得良好,可形成膜厚度均勻的防眩性硬塗層12。 The ratio of the above fine particles is preferably from 1 part by mass to 50 parts by mass based on 100 parts by mass of the polyfunctional (meth) acrylate (or a cured product thereof). It is particularly preferably 5 parts by mass to 30 parts by mass, and more preferably 10 parts by mass to 20 parts by mass. When the mixing ratio of the fine particles is 1 part by mass or more, the formed anti-glare hard coat layer 12 can be imparted with desired anti-glare properties. In addition, when the mixing ratio of the fine particles is 50 parts by mass or less, the coating workability of the coating composition C is good, and the anti-glare hard coat layer 12 having a uniform film thickness can be formed.

(3)勻染劑 (3) Leveling agent

本實施形態所述塗料組合物C含有勻染劑。由此形成的防眩性硬塗層12沒有線紋狀缺陷或斑點等,膜厚度均勻,呈現優異的外觀。 The coating composition C of the present embodiment contains a leveling agent. The antiglare hard coat layer 12 thus formed has no line defects or spots, and the like, and has a uniform film thickness and exhibits an excellent appearance.

作為勻染劑,例如可以舉出矽酮類勻染劑、氟類勻染劑、丙烯酸類勻染劑、乙烯類勻染劑等,其中,從勻染性以及與其他成分的相溶性觀點考慮,優選矽酮類勻染劑以及氟類勻染劑。另外,勻染劑可以單獨使用一種,也可以組合兩種以上使用。 Examples of the leveling agent include an anthrone leveling agent, a fluorine leveling agent, an acrylic leveling agent, and an ethylene leveling agent. Among them, from the viewpoint of leveling property and compatibility with other components, Preferably, an anthrone leveling agent and a fluorine leveling agent are preferred. Further, the leveling agents may be used singly or in combination of two or more.

矽酮類勻染劑,優選聚二甲基矽氧烷或改性聚二甲基矽氧烷,特別優選為聚二甲基矽氧烷。另外,如果改性聚二甲基矽氧烷的改性率高,為了使發揮勻染性得到的防眩性硬塗層12的外觀變得優異,需增加其添加量。其結果,所形成的防眩性硬塗層12的滑動性變高,無法滿足上述筆尖阻力的初始值(A)與滑動值(B)的關係,有使觸控筆的書寫感下降的情況。 The anthrone leveling agent is preferably polydimethylsiloxane or modified polydimethylsiloxane, and particularly preferably polydimethyloxane. In addition, when the modified polydimethylsiloxane has a high modification rate, in order to make the appearance of the antiglare hard coat layer 12 which is obtained by leveling property excellent, it is necessary to increase the amount of addition. As a result, the slidability of the formed anti-glare hard coat layer 12 becomes high, and the relationship between the initial value (A) of the pen tip resistance and the sliding value (B) cannot be satisfied, and the writing feeling of the stylus is lowered. .

作為氟類勻染劑,可以優選列舉具有全氟烷基或氟化烯基作為主鏈或側鏈的化合物。作為市銷品,可優選列舉BYK日本公司產品BYK-340、NEOS公司產品FTERGENT650A、DIC公司產品MEGAFAC RS-75、大阪有機化學工業公司產品 V-8FM等,但並不限定於此。 As the fluorine leveling agent, a compound having a perfluoroalkyl group or a fluorinated alkenyl group as a main chain or a side chain can be preferably used. As a commercial product, BYK-340 of BYK Japan, FTERGENT650A of NEOS, MEGAFAC RS-75 of DIC, and products of Osaka Organic Chemical Industry Co., Ltd. are preferable. V-8FM, etc., but is not limited to this.

相對於多官能(甲基)丙烯酸酯(或其固化物)100質量份,矽酮類勻染劑的搭配比率,優選為0.001質量份~1.0質量份,特別優選為0.005質量份~0.8質量份,進一步優選為0.01質量份~0.1質量份。另一方面,氟類勻染劑的情況,相對於多官能(甲基)丙烯酸酯(或其固化物)100質量份,優選為0.1質量份~10質量份,特別優選為0.5質量份~5質量份,進一步優選為0.8質量份~3質量份。勻染劑的搭配比率在上述範圍,則可保持觸控筆的書寫感以及指紋非視認性良好,同時可充分獲得勻染效果。 The mixing ratio of the anthrone-based leveling agent is preferably 0.001 parts by mass to 1.0 part by mass, particularly preferably 0.005 parts by mass to 0.8 parts by mass, per 100 parts by mass of the polyfunctional (meth) acrylate (or a cured product thereof). Further, it is preferably 0.01 parts by mass to 0.1 parts by mass. On the other hand, in the case of the fluorine leveling agent, it is preferably 0.1 parts by mass to 10 parts by mass, particularly preferably 0.5 parts by mass to 5 parts by mass based on 100 parts by mass of the polyfunctional (meth) acrylate (or a cured product thereof). The part by mass is more preferably 0.8 parts by mass to 3 parts by mass. When the matching ratio of the leveling agent is in the above range, the writing feeling of the stylus and the non-visuality of the fingerprint can be maintained, and the leveling effect can be sufficiently obtained.

(4)二氧化矽納米粒子 (4) cerium oxide nanoparticles

本實施形態所述塗料組合物C,優選為含有平均粒徑為1nm~300nm的二氧化矽納米粒子。塗料組合物C通過含有這種二氧化矽納米粒子,所形成的防眩性硬塗層12的硬度提高,同時,可抑制眩光。上述二氧化矽納米粒子的平均粒徑,優選為5nm~100nm,特別優選為10nm~50nm。另外,二氧化矽納米粒子的平均粒徑為通過ZETA電位測定法而測定。 The coating composition C of the present embodiment preferably contains ceria nanoparticles having an average particle diameter of 1 nm to 300 nm. When the coating composition C contains such cerium oxide nanoparticles, the hardness of the antiglare hard coat layer 12 formed is improved, and glare can be suppressed. The average particle diameter of the above-mentioned ceria nanoparticles is preferably 5 nm to 100 nm, and particularly preferably 10 nm to 50 nm. Further, the average particle diameter of the cerium oxide nanoparticles was measured by ZETA potential measurement.

二氧化矽納米粒子,以提高分散性等為目的,也可通過有機物進行修飾。另外,二氧化矽納米粒子還優選為有機溶膠(膠體狀)的形態。通過以有機溶膠的形態,二氧化矽納米粒子的分散性變得良好,所形成的防眩性硬塗層12的均質性以及光透過性提高。 The cerium oxide nanoparticles may be modified by an organic substance for the purpose of improving dispersibility and the like. Further, the cerium oxide nanoparticles are preferably in the form of an organosol (colloidal). By dispersing the cerium oxide nanoparticles in the form of an organosol, the uniformity and light permeability of the formed anti-glare hard coat layer 12 are improved.

通過有機物進行的修飾,可使用通常的方法實施。例如,可將結構如CH2=C(CH3)COO(CH2)3Si(OCH3)3的矽烷 偶聯劑,添加到二氧化矽納米粒子的有機溶膠中,在50℃左右加溫,通過攪拌幾個小時,修飾二氧化矽粒子的表面。所使用的矽烷偶聯劑的結構以及量,可根據二氧化矽納米粒子的分散性要求程度,適當選擇。 Modification by organic matter can be carried out using a usual method. For example, a decane coupling agent having a structure such as CH 2 =C(CH 3 )COO(CH 2 ) 3 Si(OCH 3 ) 3 may be added to the organosol of the cerium oxide nanoparticles and heated at about 50 ° C. The surface of the cerium oxide particles was modified by stirring for several hours. The structure and amount of the decane coupling agent to be used can be appropriately selected depending on the degree of dispersibility of the cerium oxide nanoparticles.

作為上述有機溶膠的分散溶劑,優選與多官能(甲基)丙烯酸酯和勻染劑的相溶性以及塗層形成時的發揮性優異的甲基乙基酮、甲基異丁基酮等。 The dispersion solvent of the above-mentioned organosol is preferably methyl ethyl ketone or methyl isobutyl ketone which is excellent in compatibility with a polyfunctional (meth) acrylate and a leveling agent and exhibitability at the time of formation of a coating layer.

作為上述二氧化矽納米粒子,可使用市面銷售的產品,其中優選為使用日產化學公司產品有機二氧化矽溶膠MEK-ST、MIBK-ST等。 As the above-mentioned cerium oxide nanoparticles, commercially available products can be used. Among them, organic cerium oxide sol MEK-ST, MIBK-ST, and the like are preferably used.

相對於多官能(甲基)丙烯酸酯(或其固化物)100質量份,上述二氧化矽納米粒子的搭配比率,優選為1質量份~50質量份,特別優選為2質量份~20質量份,進一步優選為2質量份~10質量份。上述二氧化矽納米粒子的搭配比率在1質量份以上,則可良好地發揮上述效果。另一方面,二氧化矽納米粒子的搭配比率如果在50質量份以下,則會抑制二氧化矽納米粒子的凝集,可良好地保持所形成的防眩性硬塗層12的均質性以及光透過性。 The mixing ratio of the above-mentioned ceria nanoparticles is preferably from 1 part by mass to 50 parts by mass, particularly preferably from 2 parts by mass to 20 parts by mass, per 100 parts by mass of the polyfunctional (meth) acrylate (or a cured product thereof). Further, it is preferably 2 parts by mass to 10 parts by mass. When the mixing ratio of the above-mentioned ceria nanoparticles is 1 part by mass or more, the above effects can be satisfactorily exhibited. On the other hand, when the mixing ratio of the cerium oxide nanoparticles is 50 parts by mass or less, aggregation of the cerium oxide nanoparticles is suppressed, and the homogenization and light transmission of the formed anti-glare hard coat layer 12 can be favorably maintained. Sex.

(5)其他成分 (5) Other ingredients

本實施形態中的塗料組合物C,除了上述成分以外,還可含有各種添加劑。作為各種添加劑,例如可以舉出光聚合起始劑、紫外線吸收劑、氧化防止劑、光穩定劑、帶電防止劑、矽烷偶聯劑、防老化劑、熱聚合抑制劑、著色劑、表面活性劑、保存穩定劑、增塑劑、潤滑劑、消泡劑、有機填料、潤濕性改 良劑、塗層表面改性劑等。 The coating composition C in the present embodiment may contain various additives in addition to the above components. Examples of the various additives include a photopolymerization initiator, an ultraviolet absorber, an oxidation inhibitor, a photostabilizer, a charge prevention agent, a decane coupling agent, an anti-aging agent, a thermal polymerization inhibitor, a colorant, and a surfactant. , storage stabilizers, plasticizers, lubricants, defoamers, organic fillers, wettability Good agents, coating surface modifiers, etc.

作為光聚合起始劑,例如可以列舉苯偶姻、苯偶姻甲基醚、苯偶姻乙基醚、苯偶姻異丙基醚、苯偶姻正丁基醚、苯偶姻異丁基醚、苯乙酮、二甲氨基苯乙酮、2,2-二甲氧基-2-苯基苯乙酮、2,2-二乙氧基-2-苯基苯乙酮、2-羥基-2-甲基-1-苯基丙烷-1-酮、1-羥基環己基苯基酮、2-甲基-1-〔4-(甲基硫代)苯基〕-2-嗎琳-丙烷-1-酮、4-(2-羥基乙氧基)苯基-2-(羥基-2-丙基)酮、二苯甲酮、p-苯基二苯甲酮、4,4’-二乙氨基二苯甲酮、二氯二苯甲酮、2-甲基蒽醌、2-乙基蒽醌、2-叔丁基蒽醌、2-氨基蒽醌、2-甲基塞噸酮、2-乙基塞噸酮、2-氯塞噸酮、2,4-二甲基塞噸酮、2,4-二乙基塞噸酮、苄基二甲基縮酮、苯乙酮二甲基縮酮、p-二甲基氨基安息香酸酯等。這些可以單獨使用一種,也可以組合兩種以上使用。 Examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, and benzoin isobutyl group. Ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxyl -2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morphin- Propane-1-one, 4-(2-hydroxyethoxy)phenyl-2-(hydroxy-2-propyl)one, benzophenone, p-phenylbenzophenone, 4,4'- Diethylaminobenzophenone, dichlorobenzophenone, 2-methylhydrazine, 2-ethylhydrazine, 2-tert-butylhydrazine, 2-aminoindole, 2-methyl ketoxime , 2-ethyl sultone, 2-chlorosultone, 2,4-dimethyl ketoxime, 2,4-diethyl ketoxime, benzyl dimethyl ketal, acetophenone II Methyl ketal, p-dimethylaminobenzoate, and the like. These may be used alone or in combination of two or more.

相對於多官能(甲基)丙烯酸酯(或其固化物)100質量份,上述光聚合起始劑的搭配比率,通常從0.2質量份~10質量份的範圍選擇。 The ratio of the photopolymerization initiator to the above is usually from 0.2 parts by mass to 10 parts by mass based on 100 parts by mass of the polyfunctional (meth) acrylate (or a cured product thereof).

通過將以上說明的塗料組合物C在基材膜11上塗布、固化,可形成滿足上述物性的防眩性硬塗層12。 By coating and solidifying the coating composition C described above on the base film 11, an antiglare hard coat layer 12 satisfying the above physical properties can be formed.

防眩性硬塗層12的厚度,優選為1μm~15μm,特別優選為2μm~10μm。防眩性硬塗層12的厚度在上述範圍,則可有效發揮抗劃傷性以及防眩功能。 The thickness of the anti-glare hard coat layer 12 is preferably 1 μm to 15 μm, and particularly preferably 2 μm to 10 μm. When the thickness of the anti-glare hard coat layer 12 is in the above range, the scratch resistance and the anti-glare function can be effectively exhibited.

3.基材膜 3. Substrate film

作為基材膜11,只要從適宜於使用觸控筆的觸控面板用基材膜中適當選擇即可,優選為選擇與防眩性硬塗層12親和 性良好的塑料薄膜。 The substrate film 11 is preferably selected from a base film for a touch panel suitable for use with a stylus, and is preferably selected to be compatible with the anti-glare hard coat layer 12. Good plastic film.

作為上述塑膠薄膜,例如可以舉出聚對苯二甲酸乙二醇酯、聚對苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯等的聚酯薄膜;聚乙烯薄膜、聚丙烯薄膜等的聚烯烴薄膜;玻璃紙、二乙醯纖維素薄膜、三乙醯纖維素薄膜、纖維素乙醯基丁酸酯薄膜、聚氯乙烯薄膜、聚偏二氯乙烯薄膜、聚乙烯醇薄膜、乙烯-醋酸乙烯酯共聚物薄膜、聚苯乙烯薄膜、聚碳酸酯薄膜、聚甲基戊烯薄膜、聚碸薄膜、聚醚酮薄膜、聚醚碸薄膜、聚醯亞胺薄膜、氟樹脂薄膜、聚醯胺薄膜、丙烯酸樹脂薄膜、聚氨酯樹脂薄膜、降冰片烯聚合物薄膜、環烯烴類聚合物薄膜、環狀共軛二烯聚合物薄膜、乙烯基脂環烴聚合物薄膜等的塑膠薄膜,或者這些的積層薄膜。其中,從機械性強度等方面考慮,優選聚對苯二甲酸乙二醇酯薄膜、聚碳酸酯薄膜、降冰片烯聚合物薄膜等。 Examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyethylene film and polypropylene film. Polyolefin film; cellophane, diethylcellulose film, triethylene glycol film, cellulose ethoxylated butyrate film, polyvinyl chloride film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene - vinyl acetate copolymer film, polystyrene film, polycarbonate film, polymethylpentene film, polyfluorene film, polyether ketone film, polyether ruthenium film, polyimine film, fluororesin film, poly a plastic film such as a guanamine film, an acrylic resin film, a urethane resin film, a norbornene polymer film, a cycloolefin polymer film, a cyclic conjugated diene polymer film, or a vinyl alicyclic hydrocarbon polymer film, or These laminated films. Among them, a polyethylene terephthalate film, a polycarbonate film, a norbornene polymer film or the like is preferable from the viewpoint of mechanical strength and the like.

另外,上述基材膜11中,以提高與形成於其表面的層(防眩性硬塗層12、後述粘接劑層等)的密合性為目的,可根據需要,在一面或兩面進行底漆處理,根據氧化法、凹凸化法等進行表面處理。作為氧化法,例如可以列舉出電暈放電處理、鉻酸鹽處理、火焰處理、熱空氣處理、臭氧‧紫外線處理等;作為凹凸化法,例如可以列舉出噴砂法、溶劑處理法等。這些表面處理法,可根據基材膜11的種類適當選擇,但一般利用在效果和操作性等方面優異的電暈放電處理法。 In addition, in the base film 11, the adhesion to the layer formed on the surface (the anti-glare hard coat layer 12, the adhesive layer described later, etc.) may be improved, and may be carried out on one or both sides as needed. The primer treatment is carried out by a surface treatment according to an oxidation method, a roughening method, or the like. Examples of the oxidation method include a corona discharge treatment, a chromate treatment, a flame treatment, a hot air treatment, an ozone treatment, and an ultraviolet treatment. Examples of the unevenness method include a sandblasting method and a solvent treatment method. These surface treatment methods can be appropriately selected depending on the type of the base film 11, but generally, a corona discharge treatment method excellent in effects and workability is used.

基材膜11的厚度,通常為15μm~300μm左右,優選為30μm~200μm左右。 The thickness of the base film 11 is usually about 15 μm to 300 μm, preferably about 30 μm to 200 μm.

4.防眩性硬塗薄膜的製造方法 4. Method for manufacturing anti-glare hard coat film

本實施形態所述防眩性硬塗薄膜1,可以通過將防眩性硬塗層12用的塗料組合物,特別是優選塗料組合物C與根據需要含有溶劑的塗工液在基材膜11上塗布、固化,形成防眩性硬塗層12來製造。 In the anti-glare hard coat film 1 of the present embodiment, the coating composition for the anti-glare hard coat layer 12, particularly preferably the coating composition C and the coating liquid containing the solvent as needed, may be applied to the base film 11 It is coated and cured to form an anti-glare hard coat layer 12 to be produced.

溶劑可為了塗工性的改良、粘度調整、固體成分濃度的調整等而使用,如果是溶解多官能(甲基)丙烯酸酯以及勻染劑等,尤其可以無任何限制地使用。 The solvent can be used for improvement of workability, viscosity adjustment, adjustment of solid content concentration, etc., and in particular, it can be used without any limitation if the polyfunctional (meth) acrylate and the leveling agent are dissolved.

作為溶劑的具體例子,可以舉出甲醇、乙醇、異丙醇、丁醇、辛醇等的醇類;丙酮、甲基乙基酮、甲基異丁基酮、環己酮等的酮類;乙酸乙酯、乙酸丁酯、乳酸乙酯、γ-丁內酯等的酯類;乙二醇單甲醚(甲基溶纖劑)、乙二醇單乙醚(乙基溶纖劑)、二甘醇單丁醚(丁基溶纖劑)、丙二醇單甲醚等的醚類;苯,甲苯,二甲苯等的芳香烴;二甲基甲醯胺、二甲基乙醯胺、N-甲基吡咯烷酮等的醯胺類等。 Specific examples of the solvent include alcohols such as methanol, ethanol, isopropanol, butanol, and octanol; and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; Esters of ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone, etc.; ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), two An ether such as glycerol monobutyl ether (butyl cellosolve) or propylene glycol monomethyl ether; an aromatic hydrocarbon such as benzene, toluene or xylene; dimethylformamide, dimethylacetamide, N-methylpyrrolidone Such as guanamines and the like.

塗料組合物塗工液的塗布,可用通常的方法進行,例如可以利用棒塗布法、刮刀塗布法、輥塗布法、板塗布法、模具塗布法、凹板塗布法進行。如果將塗料組合物的塗工液塗布,優選為將塗膜在40℃~120℃進行30秒~5分鐘左右的乾燥。 The coating of the coating composition coating liquid can be carried out by a usual method, and can be carried out, for example, by a bar coating method, a knife coating method, a roll coating method, a sheet coating method, a die coating method, or a gravure coating method. When the coating liquid of the coating composition is applied, it is preferred to dry the coating film at 40 ° C to 120 ° C for about 30 seconds to 5 minutes.

在此,像塗料組合物C一樣,塗料組合物含有勻染劑的情況,塗布該塗料組合物的塗膜,沒有線紋狀缺陷或斑點等,因此,可形成膜厚度均勻,外觀優異的防眩性硬塗層12。 Here, as in the case of the coating composition C, when the coating composition contains a leveling agent, the coating film to which the coating composition is applied does not have line-like defects or spots, and the like, therefore, it is possible to form a film having a uniform film thickness and excellent appearance. Dizzy hard coating 12.

像塗料組合物C一樣,塗料組合物為活性能量線固 化性的情況時,塗料組合物的固化,可通過在氮氣氣氛下,在塗料組合物的塗膜上照射紫外線、電子束等的活性能量線來進行。紫外線的照射可通過高壓水銀燈、Fusion H燈、氙氣燈等進行,紫外線的照射量優選照度為50mW/cm2~1000mW/cm2、光量為50mJ/cm2~1000mJ/cm2左右。另一方面,電子束的照射可通過電子束加速器等進行,電子束的照射量優選為10krad~1000krad左右。 When the coating composition is active energy ray-curable like the coating composition C, the coating composition can be cured by irradiating ultraviolet rays, electron beams, and the like on the coating film of the coating composition under a nitrogen atmosphere. Line to carry it out. The irradiation of ultraviolet rays can be carried out by a high pressure mercury lamp, a Fusion H lamp, a xenon lamp or the like, and the irradiation amount of the ultraviolet rays is preferably from 50 mW/cm 2 to 1000 mW/cm 2 and the amount of light is from about 50 mJ/cm 2 to 1000 mJ/cm 2 . On the other hand, the irradiation of the electron beam can be performed by an electron beam accelerator or the like, and the irradiation amount of the electron beam is preferably about 10 krad to 1000 krad.

5.其他 5. Other

本實施形態所述防眩性硬塗薄膜1中,防眩性硬塗層12為最外表面,優選為具有基材膜11和防眩性硬塗層12,在防眩性硬塗層12與基材膜11之間,或與基材膜11的防眩性硬塗層12不接觸的一側的面上,具有其他層也可。例如,在與基材膜11的防眩性硬塗層12不接觸的一側的面上,可以形成粘接劑層,另外,也可以在粘接劑層上積層剝離片。 In the anti-glare hard coat film 1 of the present embodiment, the anti-glare hard coat layer 12 is the outermost surface, and preferably has the base film 11 and the anti-glare hard coat layer 12, and the anti-glare hard coat layer 12 There may be another layer on the surface on the side between the base film 11 and the anti-glare hard coat layer 12 of the base film 11. For example, an adhesive layer may be formed on the surface on the side not in contact with the anti-glare hard coat layer 12 of the base film 11, and a release sheet may be laminated on the adhesive layer.

作為構成粘接劑層的粘接劑,沒有特別的限制,可使用丙烯酸類粘接劑、橡膠類粘接劑、矽酮類粘接劑等已知的粘接劑。另外,該粘接劑層,無需具有如專利文獻1中所述的緩沖性。 The adhesive constituting the adhesive layer is not particularly limited, and a known adhesive such as an acrylic adhesive, a rubber adhesive, or an anthrone adhesive can be used. Further, the adhesive layer does not need to have cushioning properties as described in Patent Document 1.

本實施形態所述防眩性硬塗薄膜1的防眩性硬塗層12的算術平均表面照度(Ra),優選為0.01μm~10μm,特別優選為0.1μm~1μm,進一步優選為0.15μm~0.5μm。算術平均表面照度(Ra)在上述範圍,則防眩性硬塗層12可發揮優異的防眩性。另外,本說明書中的算術平均表面照度(Ra)為基於JIS B0601-1994,從使用接觸型照度計(試驗例中使用了三豐公司 產品SV3000S4)測定的照度曲線中求得。 The arithmetic mean surface illuminance (Ra) of the anti-glare hard coat layer 12 of the anti-glare hard coat film 1 of the present embodiment is preferably 0.01 μm to 10 μm, particularly preferably 0.1 μm to 1 μm, and more preferably 0.15 μm. 0.5 μm. When the arithmetic mean surface illuminance (Ra) is in the above range, the antiglare hard coat layer 12 can exhibit excellent antiglare properties. In addition, the arithmetic mean surface illuminance (Ra) in the present specification is based on JIS B0601-1994, from the use of a contact illuminometer (the test example used Mitutoyo Corporation) Product SV3000S4) was determined in the measured illuminance curve.

本實施形態所述防眩性硬塗薄膜1的防眩性硬塗層12,優選為利用# 0000的鋼絲絨,在250g/cm2的負重下,將防眩性硬塗層12在10cm來回摩擦10次不產生刮痕。通過具有這種由鋼絲絨硬度評價的抗劃傷性,將防眩性硬塗薄膜1用於觸控面板的表面時,可抑制防眩性硬塗層12上出現刮痕。 In the anti-glare hard coat layer 12 of the anti-glare hard coat film 1 of the present embodiment, it is preferable to use the steel wool of #0000 to apply the anti-glare hard coat layer 12 at 10 cm under a load of 250 g/cm 2 . Rubbing 10 times does not produce scratches. When the antiglare hard coat film 1 is used for the surface of the touch panel with such scratch resistance evaluated by the hardness of the steel wool, scratches on the antiglare hard coat layer 12 can be suppressed.

另外,本實施形態所述防眩性硬塗薄膜1的霧度值,優選為30%以下,特別優選為20%以下,進一步優選為15%以下。霧度值如果在30%以下,則可進行高清化,適宜作為觸控面板用。另外,從發揮防眩性的觀點考慮,霧度值優選為0.5%以上,特別優選為2%以上,進一步優選為6%以上。另外,霧度值為基於JIS K7136-2000所測定的值。 In addition, the haze value of the anti-glare hard coat film 1 of the present embodiment is preferably 30% or less, particularly preferably 20% or less, and further preferably 15% or less. When the haze value is 30% or less, it can be made high-definition, and it is suitable as a touch panel. Moreover, from the viewpoint of exhibiting anti-glare properties, the haze value is preferably 0.5% or more, particularly preferably 2% or more, and more preferably 6% or more. Further, the haze value is a value measured based on JIS K7136-2000.

以上說明的實施形態,是為了易於對本發明的理解而記述的,並不是對本發明進行限定而進行的記述。因此,上述實施形態中所公開的各要素,也包括屬於本發明的技術範圍的所有設計變更以及均等物。 The embodiments described above are described in order to facilitate understanding of the present invention, and are not intended to limit the present invention. Therefore, each of the elements disclosed in the above embodiments includes all design changes and equivalents belonging to the technical scope of the present invention.

例如,防眩性硬塗薄膜1中,基材膜11與防眩性硬塗層12之間也可介入其他的層。 For example, in the antiglare hard coat film 1, other layers may be interposed between the base film 11 and the antiglare hard coat layer 12.

【實施例】 [Examples]

以下,通過實施例等進一步對本發明進行具體說明,但是本發明的範圍並不受這些實施例等的限定。 The present invention will be specifically described by the following examples, but the scope of the present invention is not limited by the examples and the like.

〔實施例1〕 [Example 1]

作為多官能(甲基)丙烯酸酯,將二季戊四醇六丙烯酸酯(新中村化學公司製,NK酯A-DPH)100質量份(表示固體成分換 算值。以下,對於其他成分也同樣。);作為光聚合起始劑,將1-羥基環己基苯基酮(巴斯夫公司製,IRUGACURE 184)4.3質量份;二氧化矽微粒子(富士矽化學公司製,SYLOPHOBIC 702;平均粒徑:4.1μm,CV值48%,無定形)11質量份;作為勻染劑,將聚二甲基矽氧烷(東麗‧道康寧公司製,SH28)0.01質量份與二氧化矽納米粒子(日產化學工業公司製,MIBK-ST,平均粒徑:10nm)8.3質量份,進行混合,得到塗料組合物。將該塗料組合物用丙二醇單甲醚進行稀釋,調製固體成分濃度為30%的塗工液。 100 parts by mass of dipentaerythritol hexaacrylate (Nippon Nakamura Chemical Co., Ltd., NK ester A-DPH) as a polyfunctional (meth) acrylate (representing solid content exchange) Calculated value. Hereinafter, the same applies to other components. As a photopolymerization initiator, 4.3 parts by mass of 1-hydroxycyclohexyl phenyl ketone (IRUGACURE 184, manufactured by BASF Corporation); cerium oxide microparticles (SYLOPHOBIC 702, manufactured by Fujisawa Chemical Co., Ltd.; average particle diameter: 4.1 μm) , CV value: 48%, amorphous) 11 parts by mass; as a leveling agent, 0.01 parts by mass of polydimethylsiloxane (SH28), and cerium oxide nanoparticles (Nissan Chemical Industry Co., Ltd.) A MIBK-ST, average particle diameter: 10 nm) of 8.3 parts by mass was mixed to obtain a coating composition. The coating composition was diluted with propylene glycol monomethyl ether to prepare a coating liquid having a solid concentration of 30%.

在作為基材膜,附有易粘接層的聚酯薄膜(東洋紡公司製,COSMO SHINE A4300,厚度:125μm)的易粘接層一側的面上,將上述所得到的塗工液用Wire Bar # 10塗布,在70℃下進行1分鐘乾燥。接著,在氮氣氣氛下,使用紫外線照射裝置(EYE GRAPHIC公司製,EYE GRANTAGEECS-401GX型),在如下條件下照射紫外線,形成厚度為3μm的防眩性硬塗層,得到防眩性硬塗薄膜。 In the surface of the easy-adhesion layer of the polyester film (COSMO SHINE A4300, thickness: 125 μm, manufactured by Toyobo Co., Ltd.) which is a base film and an easy-adhesion layer, the above-mentioned coating liquid is obtained by Wire. Bar #10 coating, drying at 70 ° C for 1 minute. Then, an ultraviolet ray irradiation apparatus (EYE GRANTAGEECS-401GX type manufactured by EYE GRAPHIC Co., Ltd.) was used, and ultraviolet rays were irradiated under the following conditions to form an antiglare hard coat layer having a thickness of 3 μm to obtain an antiglare hard coat film. .

〔紫外線照射條件〕 [UV irradiation conditions]

‧光源:高壓水銀燈 ‧Light source: high pressure mercury lamp

‧燈泡功率:2kW ‧Light bulb power: 2kW

‧輸送帶速度:4.23m/min ‧ conveyor speed: 4.23m / min

‧照度:240mW/cm2 ‧ Illuminance: 240mW/cm2

‧光量:307mJ/cm2 ‧Light quantity: 307mJ/cm2

〔實施例2〕 [Example 2]

除了將勻染劑的搭配量變更為0.14質量份,形成防眩性硬 塗層外,與實施例1同樣地進行操作,製造防眩性硬塗薄膜。 In addition to changing the amount of leveling agent to 0.14 parts by mass, it forms an anti-glare hard An anti-glare hard coat film was produced in the same manner as in Example 1 except for the coating.

〔實施例3〕 [Example 3]

除了將勻染劑的搭配量變更為0.70質量份,形成防眩性硬塗層外,與實施例1同樣地進行操作,製造防眩性硬塗薄膜。 An anti-glare hard coat film was produced in the same manner as in Example 1 except that the amount of the leveling agent was changed to 0.70 parts by mass to form an anti-glare hard coat layer.

〔實施例4〕 [Example 4]

除了將紫外線反應型氟低聚物(NEOS公司製,FTERGENT650A)作為勻染劑使用,將其搭配量變更為1.4質量份,形成防眩性硬塗層外,與實施例1同樣地進行操作,製造防眩性硬塗薄膜。 In the same manner as in Example 1, except that the ultraviolet-reactive fluorine oligomer (FTERGENT 650A, manufactured by NEOS Co., Ltd.) was used as a leveling agent, and the amount thereof was changed to 1.4 parts by mass to form an antiglare hard coat layer. An anti-glare hard coat film is produced.

〔比較例1〕 [Comparative Example 1]

除了將具有丙烯醯基的聚醚改性聚二甲基矽氧烷(BYK公司製,BYK-UV3500)作為勻染劑使用,將其搭配量變更為1.4質量份,形成防眩性硬塗層外,與實施例1同樣地進行操作,製造防眩性硬塗薄膜。 In addition to the polyether-modified polydimethyl siloxane having a propylene fluorenyl group (BYK-UV3500, manufactured by BYK Co., Ltd.) was used as a leveling agent, and the amount thereof was changed to 1.4 parts by mass to form an anti-glare hard coat layer. Further, in the same manner as in Example 1, an antiglare hard coat film was produced.

〔比較例2〕 [Comparative Example 2]

除了將勻染劑的搭配量變更為1.4質量份,形成防眩性硬塗層外,與實施例1同樣地進行操作,製造防眩性硬塗薄膜。 An anti-glare hard coat film was produced in the same manner as in Example 1 except that the amount of the leveling agent was changed to 1.4 parts by mass to form an anti-glare hard coat layer.

〔比較例3〕 [Comparative Example 3]

除了將實施例1的二氧化矽微粒子變更為二氧化矽微粒子(綜研化學工程公司製,MX-300;平均粒徑:3.0μm,CV值15%,球形),將其搭配量變更為10質量份,並將塗工液塗布時的Wire Bar從# 10變為# 14,將防眩性硬塗層的膜厚度變更為5μm外,與實施例1同樣地進行操作,製造防眩性硬塗薄膜。 In addition, the cerium oxide microparticles of Example 1 were changed to cerium oxide microparticles (MX-300, manufactured by Synthetic Chemical Engineering Co., Ltd.; average particle diameter: 3.0 μm, CV value: 15%, spherical shape), and the amount thereof was changed to 10 masses. In the same manner as in Example 1, the wire bar at the time of application of the coating liquid was changed from #10 to #14, and the film thickness of the anti-glare hard coat layer was changed to 5 μm, and an anti-glare hard coat was produced. film.

〔試驗例1〕(筆尖阻力的測定) [Test Example 1] (Measurement of Tip Resistance)

對於實施例以及比較例中製造的防眩性硬塗薄膜的防眩性硬塗層表面,使用萬能試驗機(ORIENTEC公司製,TENSILON)以及觸控筆,在負重150g重量下,用觸控筆的筆尖接觸薄膜表面,以100mm/min的速度進行掃描的條件下進行試驗。然後,在得到的試驗圖表中,求出筆尖阻力的初始值(A)以及滑動值(B)。另外,計算從筆尖阻力的初始值(A)中減去滑動值(B)的值。另外,作為觸控筆,使用了筆尖為硬氈芯的觸控筆(WACOM公司製,ACK-2003,筆尖直徑:0.5mm)。將結果示於表1。 For the anti-glare hard coat surface of the anti-glare hard coat film produced in the examples and the comparative examples, a universal tester (TENSILON, manufactured by ORIENTEC Co., Ltd.) and a stylus were used, and a stylus was used under a weight of 150 g. The tip of the pen touched the surface of the film and was tested under the condition of scanning at a speed of 100 mm/min. Then, in the obtained test chart, the initial value (A) of the tip resistance and the sliding value (B) were obtained. In addition, the value of the sliding value (B) is subtracted from the initial value (A) of the tip resistance. Further, as the stylus pen, a stylus having a pen tip as a hard felt core (manufactured by WACOM Co., Ltd., ACK-2003, nib diameter: 0.5 mm) was used. The results are shown in Table 1.

〔試驗例2〕(書寫感評價) [Test Example 2] (evaluation of writing feeling)

從實施例以及比較例中製造的防眩性硬塗薄膜,將防眩性硬塗層一側朝上,載置於玻璃基板上。對該防眩性硬塗薄膜的防眩性硬塗層表面,用與試驗例1相同的觸控筆以及聚縮醛芯的觸控筆(筆尖直徑:0.4mm),分別評價書寫感。評價中,將與在5張重疊的紙(國譽科技公司製,CAMPUS NOTE A鉛線NO-201A)上,用鉛筆(三菱鉛筆公司製,MITSUBISHI PENCIL UNI B),以筆壓約150g重量書寫時的書寫感相近的作為良好,將與該書寫感差距大的作為不良。另外,評價由3人的專門小組成員進行,3人全部感覺良好時作為良好,只要有1人感覺不良時作為不良。將結果示於表1。 The antiglare hard coat film produced in the examples and the comparative examples was placed on the glass substrate with the antiglare hard coat layer side facing up. The surface of the anti-glare hard coat layer of the anti-glare hard coat film was evaluated by the same stylus as that of Test Example 1 and a stylus pen with a polyacetal core (tip diameter: 0.4 mm). In the evaluation, it will be written with a pencil (Mitsubishi Pencil Co., Ltd., MITSUBISHI PENCIL UNI B) with a weight of about 150g on a paper that is overlapped with five sheets (made by Kokuyo Technology Co., Ltd., CAMPUS NOTE A lead line NO-201A). When the writing feeling is similar, it is good, and the difference in writing feeling is large as a defect. In addition, the evaluation was performed by a panelist of three people, and it was good when all three felt good, and it was a bad as long as one person felt bad. The results are shown in Table 1.

〔試驗例3〕(油酸接觸角的測定) [Test Example 3] (Measurement of oleic acid contact angle)

實施例以及比較例中製造的防眩性硬塗薄膜的防眩性硬塗層表面的油酸接觸角,以使用全自動式接觸角測定儀(協和介面科學公司製,DM-701),在以下條件下測定。另外,油酸 使用了東京化成工業公司製造的油酸。將結果示於表1。 The oleic acid contact angle of the surface of the anti-glare hard coat layer of the anti-glare hard coat film produced in the examples and the comparative examples was measured using a fully automatic contact angle measuring instrument (DM-701, manufactured by Kyowa Interface Science Co., Ltd.). Determined under the following conditions. In addition, oleic acid Oleic acid manufactured by Tokyo Chemical Industry Co., Ltd. was used. The results are shown in Table 1.

‧油酸的液滴量:2μl ‧Low amount of oleic acid: 2μl

‧測定時間:滴下3秒後 ‧Measurement time: after 3 seconds of dripping

‧圖像分析法:θ/2法 ‧Image analysis method: θ/2 method

〔試驗例4〕(指紋非視認性評價) [Test Example 4] (Fingerprint non-visibility evaluation)

將手指接觸於在實施例以及比較例中製造的防眩性硬塗薄膜的防眩性硬塗層表面,將手指使勁按壓前後的防眩性硬塗薄膜的霧度值(%),使用霧度測量計(日本電色工業公司製,NDH2000),基於JIS K7136-2000進行測定。然後,求出從手指使勁按壓後的薄膜霧度值中,減去手指使勁按壓前的薄膜霧度值的值(霧度值差),按照以下基準進行評價。另外,評價對象的霧度值,為將3人各用手指使勁按壓1次的樣品,分別測定時的平均值。將結果示於表1。另外,將用手指使勁按壓前防眩性硬塗薄膜的霧度值全部示於表1。 The surface of the anti-glare hard coat layer of the anti-glare hard coat film produced in the examples and the comparative examples was brought into contact with the haze value (%) of the anti-glare hard coat film before and after the finger was pressed hard, and the mist was used. A measuring instrument (manufactured by Nippon Denshoku Industries Co., Ltd., NDH2000) was used for measurement based on JIS K7136-2000. Then, the value (haze value difference) of the film haze value before the finger was pressed hard was subtracted from the film haze value after the finger was pressed hard, and the evaluation was performed according to the following criteria. In addition, the haze value of the evaluation target is an average value measured when each of the three persons is pressed once with a finger. The results are shown in Table 1. In addition, the haze value of the anti-glare hard coat film which was pressed with a finger hardly is shown in Table 1.

◎:霧度值差未滿0.5 ◎: The haze value difference is less than 0.5

○:霧度值差為0.5以上1.0以下 ○: The haze value difference is 0.5 or more and 1.0 or less.

×:霧度值差超過1.0 ×: The difference in haze value exceeds 1.0

〔試驗例5〕(外觀評價) [Test Example 5] (Appearance evaluation)

對實施例以及比較例中製造的防眩性硬塗薄膜,使用3波長熒光燈,用肉眼對反射時以及透過時的外觀進行評價。評價中,將線紋狀缺陷或斑點少的作為良好,將線紋狀缺陷或斑點多的作為不良。將結果示於表1。 The antiglare hard coat film produced in the examples and the comparative examples was evaluated by visual observation of the appearance at the time of reflection and at the time of transmission using a three-wavelength fluorescent lamp. In the evaluation, the number of line-like defects or spots was small, and the number of line-like defects or spots was bad. The results are shown in Table 1.

〔試驗例6〕(表面照度的測定) [Test Example 6] (Measurement of surface illuminance)

將從實施例以及比較例中製造的防眩性硬塗薄膜的防眩 性硬塗層表面的算術平均表面照度(Ra;單位μm),基於JIS B0601-1994,以使用接觸型照度計(三豐公司製,SV3000S4)所測定的照度曲線求得。將結果示於表1。 Anti-glare of the anti-glare hard coat film produced from the examples and the comparative examples The arithmetic mean surface illuminance (Ra; unit μm) of the surface of the hard coat layer was determined based on the illuminance curve measured by a contact illuminometer (manufactured by Mitutoyo Corporation, SV3000S4) based on JIS B0601-1994. The results are shown in Table 1.

〔試驗例7〕(抗劃傷性評價:鋼絲絨硬度) [Test Example 7] (Scratch resistance evaluation: steel wool hardness)

對實施例以及比較例中製造的防眩性硬塗薄膜的防眩性硬塗層表面,使用# 0000的鋼絲絨,在250g/cm2的負重下,在10cm來回摩擦10次,將該防眩性硬塗層的表面用以下基準進行評價。 The surface of the anti-glare hard coat layer of the anti-glare hard coat film produced in the examples and the comparative examples was rubbed back and forth 10 times at 10 cm under a load of 250 g/cm 2 using steel wool of #0000. The surface of the glare hard coat layer was evaluated by the following criteria.

◎:外觀與試驗前完全沒有變化。 ◎: There was no change in appearance and test before.

○:雖然沒看到刮痕,但由於粒子的脫落,防眩性降低。 ○: Although no scratches were observed, the anti-glare property was lowered due to the falling off of the particles.

×:看到線狀的刮痕。 ×: A linear scratch was observed.

由表1可知,在實施例中製造的防眩性硬塗薄膜,書寫感良好,同時附著的指紋不易被看到,外觀以及防眩性也良好。 As is clear from Table 1, the anti-glare hard coat film produced in the examples had a good writing feeling, and the attached fingerprint was not easily seen, and the appearance and the anti-glare property were also good.

【產業上可利用性】 [Industrial Availability]

本發明的防眩性硬塗薄膜,適宜作為使用觸控筆的觸控面板的表層而使用。 The antiglare hard coat film of the present invention is suitably used as a surface layer of a touch panel using a stylus pen.

1‧‧‧防眩性硬塗薄膜 1‧‧‧Anti-glare hard coat film

11‧‧‧基材膜 11‧‧‧Base film

12‧‧‧防眩性硬塗層 12‧‧‧Anti-glare hard coating

Claims (5)

一種防眩性硬塗薄膜,其特徵在於:作為具備基材膜和在上述基材膜的一側面上形成的防眩性硬塗層的觸控面板用防眩性硬塗薄膜,對上述防眩性硬塗層表面,將筆尖直徑為0.5mm的硬氈芯觸控筆,在負重150g重量的加壓下,以100mm/分的速度掃描時筆尖阻力(mN)的初始值(A)以及滑動值(B)滿足以下算式(a)的關係:0≦初始值(A)-滑動值(B)...(a)同時,上述防眩性硬塗層表面的油酸接觸角為45°以下。 An anti-glare hard coat film which is an anti-glare hard coat film for a touch panel provided with a base film and an anti-glare hard coat layer formed on one surface of the base film, The surface of the glare hard coat layer, the initial value (A) of the tip resistance (mN) when the hard felt core stylus having a pen tip diameter of 0.5 mm is scanned at a speed of 100 mm/min under a load of 150 g weight. The sliding value (B) satisfies the relationship of the following formula (a): 0 ≦ initial value (A) - sliding value (B) (a) Meanwhile, the oleic acid contact angle of the surface of the above-mentioned anti-glare hard coat layer is 45 ° below. 根據申請專利範圍第1項所述的防眩性硬塗薄膜,其中上述筆尖阻力(mN)的初始值(A)以及滑動值(B),滿足以下算式(b)的關係:5≦初始值(A)-滑動值(B)≦200...(b)。 The anti-glare hard coat film according to the first aspect of the invention, wherein the initial value (A) of the nib resistance (mN) and the sliding value (B) satisfy the relationship of the following formula (b): 5 ≦ initial value (A) - Sliding value (B) ≦ 200... (b). 根據申請專利範圍第1項所述的防眩性硬塗薄膜,其中上述油酸接觸角為25°~45°。 The anti-glare hard coat film according to Item 1, wherein the oleic acid contact angle is 25° to 45°. 根據申請專利範圍第1項所述的防眩性硬塗薄膜,其中上述防眩性硬塗層,為將含有多官能(甲基)丙烯酸酯、平均粒徑為1μm~10μm的微粒子和勻染劑的塗料組合物固化而構成。 The anti-glare hard coat film according to the first aspect of the invention, wherein the anti-glare hard coat layer contains fine particles containing a polyfunctional (meth) acrylate and having an average particle diameter of from 1 μm to 10 μm and leveling The coating composition of the agent is cured to constitute. 根據申請專利範圍第4項所述的防眩性硬塗薄膜,其中上述微粒子為無定形二氧化矽微粒子。 The antiglare hard coat film according to Item 4 of the invention, wherein the fine particles are amorphous ceria particles.
TW103114147A 2013-05-30 2014-04-18 Anti-glare hard coating film TWI678552B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013114209A JP6189642B2 (en) 2013-05-30 2013-05-30 Touch panel
JP2013-114209 2013-05-30

Publications (2)

Publication Number Publication Date
TW201447352A true TW201447352A (en) 2014-12-16
TWI678552B TWI678552B (en) 2019-12-01

Family

ID=52097726

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103114147A TWI678552B (en) 2013-05-30 2014-04-18 Anti-glare hard coating film
TW107104985A TWI702416B (en) 2013-05-30 2014-04-18 Anti-glare hard coating film

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107104985A TWI702416B (en) 2013-05-30 2014-04-18 Anti-glare hard coating film

Country Status (4)

Country Link
JP (1) JP6189642B2 (en)
KR (1) KR102269898B1 (en)
CN (1) CN104216033B (en)
TW (2) TWI678552B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI702416B (en) * 2013-05-30 2020-08-21 日商琳得科股份有限公司 Anti-glare hard coating film
TWI706863B (en) * 2016-12-14 2020-10-11 日商琳得科股份有限公司 Film to improve writing feeling
TWI763695B (en) * 2017-02-20 2022-05-11 日商琳得科股份有限公司 Image display device with position detection function
TWI793168B (en) * 2017-11-06 2023-02-21 日商琳得科股份有限公司 coating film
TWI844510B (en) * 2016-11-16 2024-06-11 日商琳得科股份有限公司 Film for increasing a feel of writing (film for an input pen device)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6345220B2 (en) * 2016-11-16 2018-06-20 リンテック株式会社 Writing quality improvement film
JP6325637B1 (en) * 2016-11-16 2018-05-16 リンテック株式会社 Writing quality improvement film
JP2018173906A (en) * 2017-03-31 2018-11-08 リンテック株式会社 Writing feel improvement sheet
JP6626950B2 (en) * 2018-01-29 2019-12-25 住友化学株式会社 Optical laminate
JP7326734B2 (en) * 2018-12-10 2023-08-16 大日本印刷株式会社 OPTICAL LAMINATED BODY, METHOD FOR MANUFACTURING OPTICAL LAMINATED BODY, LAMINATED MEMBER, AND DISPLAY DEVICE
JP6638119B1 (en) * 2019-04-19 2020-01-29 株式会社ダイセル Surface material for pen input device
JP7241653B2 (en) * 2019-09-18 2023-03-17 株式会社ダイセル Antireflection material

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868686A (en) 1956-11-19 1959-01-13 West Laboratories Inc Iodine bromine preparations for controlling microorganisms
JPH07244552A (en) * 1994-03-02 1995-09-19 Dainippon Printing Co Ltd Surface material of tablet for pen input computer
JP2984916B2 (en) * 1997-03-24 1999-11-29 日本製紙株式会社 Hard coat film
JP4178975B2 (en) * 2002-02-04 2008-11-12 日油株式会社 Surface material for pen input device and pen input device
WO2003067416A1 (en) * 2002-02-04 2003-08-14 Nof Corporation Pen-input device surface member, and pen-input device
JP4351450B2 (en) * 2003-01-28 2009-10-28 リンテック株式会社 Method for producing hard coat film
JP4508635B2 (en) * 2003-12-26 2010-07-21 リンテック株式会社 Hard coat film for image display device
JP2006010724A (en) * 2004-06-22 2006-01-12 Nitto Denko Corp Light-diffusive antiglare film
CN100552474C (en) * 2005-07-28 2009-10-21 日油株式会社 Display is with surfacing and have the display of this surfacing
JP2007058162A (en) * 2005-07-28 2007-03-08 Nof Corp Surface material for display and display with same
US8531406B2 (en) * 2005-09-12 2013-09-10 Nitto Denko Corporation Transparent conductive film, electrode sheet for use in touch panel, and touch panel
US7796123B1 (en) * 2006-06-20 2010-09-14 Eastman Kodak Company Touchscreen with carbon nanotube conductive layers
KR101421756B1 (en) * 2006-08-18 2014-07-22 다이니폰 인사츠 가부시키가이샤 Optical laminate, polarizing plate, and image display apparatus
US8163393B2 (en) * 2007-03-19 2012-04-24 Dai Nippon Printing Co., Ltd. Anti-dazzling optical laminate
JP2009151476A (en) * 2007-12-19 2009-07-09 Nof Corp Surface material for pen input device, and pen input device having the same
JP2010231540A (en) * 2009-03-27 2010-10-14 Aica Kogyo Co Ltd Curable resin composition for information input part of information input device
US10254444B2 (en) * 2011-07-26 2019-04-09 Dai Nippon Printing Co., Ltd. Anti-glare film, polarizer and image display device
JP5774954B2 (en) * 2011-09-30 2015-09-09 東レフィルム加工株式会社 Sheet member for touch panel, touch panel and display device
CN102634267A (en) * 2012-04-12 2012-08-15 番禺南沙殷田化工有限公司 Antifouling and anti-fingerprint coating composite capable of being applied to touch screen panel and preparation method of antifouling and anti-fingerprint coating
JP6189642B2 (en) * 2013-05-30 2017-08-30 リンテック株式会社 Touch panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI702416B (en) * 2013-05-30 2020-08-21 日商琳得科股份有限公司 Anti-glare hard coating film
TWI844510B (en) * 2016-11-16 2024-06-11 日商琳得科股份有限公司 Film for increasing a feel of writing (film for an input pen device)
TWI706863B (en) * 2016-12-14 2020-10-11 日商琳得科股份有限公司 Film to improve writing feeling
TWI763695B (en) * 2017-02-20 2022-05-11 日商琳得科股份有限公司 Image display device with position detection function
TWI793168B (en) * 2017-11-06 2023-02-21 日商琳得科股份有限公司 coating film
TWI794107B (en) * 2017-11-06 2023-02-21 日商琳得科股份有限公司 coating film

Also Published As

Publication number Publication date
TWI702416B (en) 2020-08-21
JP2014232276A (en) 2014-12-11
JP6189642B2 (en) 2017-08-30
TW201819956A (en) 2018-06-01
CN104216033A (en) 2014-12-17
KR20140141440A (en) 2014-12-10
CN104216033B (en) 2018-09-04
TWI678552B (en) 2019-12-01
KR102269898B1 (en) 2021-06-25

Similar Documents

Publication Publication Date Title
TWI609902B (en) Anti-glare hard coat film
TW201447352A (en) Antiglare hard coating film
TWI626156B (en) Hard coating film and manufacturing method thereof
JP2018173906A (en) Writing feel improvement sheet
TW201819189A (en) Film for increasing a feel of writing (film for an input pen device)
WO2008146935A1 (en) Anti-glare light-transmitting hard coat film
KR20180068847A (en) Film for increasing a feel of writing
JP6805053B2 (en) Writing quality improvement sheet
JP7490016B2 (en) Coated Film
JP7265332B2 (en) touch panel
JP7146879B2 (en) Writing comfort sheet
US20210103346A1 (en) Writing feel improving sheet