TW201442854A - Composite material and fabricating method thereof - Google Patents

Composite material and fabricating method thereof Download PDF

Info

Publication number
TW201442854A
TW201442854A TW103100061A TW103100061A TW201442854A TW 201442854 A TW201442854 A TW 201442854A TW 103100061 A TW103100061 A TW 103100061A TW 103100061 A TW103100061 A TW 103100061A TW 201442854 A TW201442854 A TW 201442854A
Authority
TW
Taiwan
Prior art keywords
powder particle
composite
powder particles
composite material
powder
Prior art date
Application number
TW103100061A
Other languages
Chinese (zh)
Inventor
Re-Ching Lin
Shih-Yi Wen
Chen-Peng Hsu
Hung-Lieh Hu
wei-li Yuan
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to US14/267,919 priority Critical patent/US9231168B2/en
Publication of TW201442854A publication Critical patent/TW201442854A/en

Links

Abstract

A composite material including at least one first powder particle, and at least one second powder particle is provided, wherein the first powder particle and the second powder particle are suspended in a matrix material. The matrix material has a first density. The first powder particle has a second density greater than the first density. The second powder particle has a shell-like structure. A fabricating method of the composite material is also provided.

Description

複合材料及其製備方法 Composite material and preparation method thereof

本揭露是有關於一種由兩種以上粉體顆粒組成的複合材料及其製備方法。 The present disclosure relates to a composite material composed of two or more powder particles and a preparation method thereof.

粉體顆粒可以藉由粒徑的控制或是材質的改變來提供多種作用,再加上粉體顆粒具有加工容易的特點,使得粉體顆粒的應用領域相當的廣泛。舉例而言,油漆塗料、化妝品、清潔劑等常見物品都是利用粉體顆粒來實現其所需效果。另外,在電子產品領域中,粉體顆粒的應用更是廣泛。以發光二極體封裝結構為例,發光二極體封裝結構中所使用的波長轉換材料即為粉體顆粒。 The powder particles can provide various effects by controlling the particle size or changing the material. In addition, the powder particles have the characteristics of easy processing, and the application fields of the powder particles are quite extensive. For example, common materials such as paints, cosmetics, and detergents use powder particles to achieve their desired effects. In addition, in the field of electronic products, the application of powder particles is more extensive. Taking the light-emitting diode package structure as an example, the wavelength conversion material used in the light-emitting diode package structure is powder particles.

具體來說,發光二極體封裝結構的製作方法通常是先將發光二極體晶片配置於基座或是晶片承載部,之後,在基座上以模具灌膠的方式於發光二極體晶片上形成一波長轉換層,其中波長轉換層主要是利用膠體材料作為載體來承載粉體顆粒狀的波長轉換材料以方便灌膠步驟的進行。然而,在灌膠步驟中,粉體顆 粒狀的波長轉換材料在膠體材料中的沉降會導致波長轉換材料的分布與濃度不符預期設計,這導致發光二極體封裝結構的發光品質無法良好控制。同樣地,在其他應用中,粉體顆粒於基質材料中的沉降現象往往導致產品無法符合預期的規範。 Specifically, the method for fabricating the LED package structure is generally to first arrange the LED chip on the pedestal or the wafer carrier, and then apply the glue on the pedestal to the illuminating diode chip. A wavelength conversion layer is formed thereon, wherein the wavelength conversion layer mainly uses a colloidal material as a carrier to carry the powder particle-shaped wavelength conversion material to facilitate the step of filling the glue. However, in the step of filling, the powder The sedimentation of the granular wavelength converting material in the colloidal material causes the distribution and concentration of the wavelength converting material to be inconsistent with the intended design, which results in poor control of the illuminating quality of the light emitting diode package structure. Similarly, in other applications, the sedimentation of powder particles in the matrix material often results in products that fail to meet expected specifications.

本揭露提供一種兩種以上粉體顆粒組成的複合材料及其製備方法。 The present disclosure provides a composite material composed of two or more powder particles and a preparation method thereof.

本揭露的複合材料包括至少一第一粉體顆粒以及至少一第二粉體顆粒。第二粉體顆粒具有一殼狀結構,其中第一粉體顆粒和第二粉體顆粒分布於一基質材料中。 The composite material disclosed herein includes at least one first powder particle and at least one second powder particle. The second powder particles have a shell-like structure in which the first powder particles and the second powder particles are distributed in a matrix material.

本揭露的複合材料的製備方法之一實施例如下所述。提供至少一第一粉體顆粒提供至少一第二粉體顆粒。將第一粉體顆粒和第二粉體顆粒與一耦合劑進行混合,其中第二粉體顆粒具有一殼狀結構。接著,使第一粉體顆粒與第二粉體顆粒由耦合劑反應而成的一接合劑彼此連接成一複合顆粒。 One embodiment of the preparation method of the composite material disclosed herein is as follows. Providing at least one first powder particle provides at least one second powder particle. The first powder particles and the second powder particles are mixed with a coupling agent, wherein the second powder particles have a shell-like structure. Next, a bonding agent obtained by reacting the first powder particles and the second powder particles with a coupling agent is connected to each other to form a composite particle.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.

10‧‧‧粉體顆粒 10‧‧‧ powder particles

10A、20、20A、20B、20C、34、58‧‧‧複合顆粒 10A, 20, 20A, 20B, 20C, 34, 58‧‧‧ composite particles

12、32、42、52、132、232、332‧‧‧基質材料 12, 32, 42, 52, 132, 232, 332‧‧‧ matrix materials

14‧‧‧殼體 14‧‧‧Shell

22‧‧‧耦合劑 22‧‧‧Coupling agent

24、44、54、134、234‧‧‧第一粉體顆粒 24, 44, 54, 134, 234‧‧‧ first powder particles

26‧‧‧接合劑 26‧‧‧Connecting agent

26a‧‧‧包覆層 26a‧‧‧Cladding

28、46、56、136、236‧‧‧第二粉體顆粒 28, 46, 56, 136, 236‧‧‧ second powder particles

30、40、50、60‧‧‧複合材料 30, 40, 50, 60‧‧‧ composite materials

56A‧‧‧殼體 56A‧‧‧shell

56B‧‧‧核材料 56B‧‧‧Nuclear material

100、200、300‧‧‧發光二極體封裝結構 100, 200, 300‧‧‧Light emitting diode package structure

110、210、310‧‧‧晶片承載部 110, 210, 310‧‧‧ wafer carrier

120、220、320‧‧‧發光二極體晶片 120, 220, 320‧‧‧Light Emitter Wafer

130、230、330‧‧‧封裝材料 130, 230, 330‧‧‧Encapsulation materials

230A‧‧‧粉體集中部 230A‧‧‧Powder Concentration Department

230B‧‧‧粉體稀疏部 230B‧‧‧ powder sparse

334‧‧‧波長轉換粉體顆粒 334‧‧‧ Wavelength-converting powder particles

B‧‧‧磁場 B‧‧‧ Magnetic field

Fb‧‧‧浮力 Fb‧‧ buoyancy

Fg‧‧‧重力 Fg‧‧‧Gravity

Fh‧‧‧流體阻力 Fh‧‧‧ fluid resistance

I、II、III、IV、V、VI‧‧‧區域 I, II, III, IV, V, VI‧‧‧ areas

S01~S04‧‧‧步驟 S01~S04‧‧‧Steps

X、Y‧‧‧座標軸 X, Y‧‧‧ coordinate axis

圖1A為粉體顆粒分布於基質材料的示意圖。 Figure 1A is a schematic illustration of the distribution of powder particles to a matrix material.

圖1B為複合顆粒的示意圖。 Figure 1B is a schematic illustration of composite particles.

圖2為本揭露一實施例的複合材料的製備方法的流程示意圖。 2 is a schematic flow chart of a method for preparing a composite material according to an embodiment of the present disclosure.

圖3A至圖3B為本揭露另一實施例的複合材料的製備方法的示意圖。 3A-3B are schematic views showing a method of preparing a composite material according to another embodiment of the present disclosure.

圖4A至圖4C為數種複合材料的示意圖。 4A through 4C are schematic views of several composite materials.

圖5為本揭露一實施例的複合材料的示意圖。 FIG. 5 is a schematic view of a composite material according to an embodiment of the present disclosure.

圖6為本揭露另一實施例的複合材料的示意圖。 FIG. 6 is a schematic view of a composite material according to another embodiment of the present disclosure.

圖7為本揭露另一實施例的複合材料的示意圖。 FIG. 7 is a schematic view of a composite material according to another embodiment of the present disclosure.

圖8為本揭露再一實施例的複合材料的示意圖。 FIG. 8 is a schematic view of a composite material according to still another embodiment of the present disclosure.

圖9為一般發光二極體封裝結構的示意圖。 FIG. 9 is a schematic view of a general light emitting diode package structure.

圖10為本揭露發光二極體封裝結構的第一實施例的剖面示意圖。 FIG. 10 is a cross-sectional view showing a first embodiment of a light emitting diode package structure according to the present disclosure.

圖11為本揭露發光二極體封裝結構的第二實施例的示意圖。 FIG. 11 is a schematic diagram of a second embodiment of a light emitting diode package structure according to the present disclosure.

圖12為多組採用一般發光二極體封裝結構所發出的光於CIE色座標中的分布圖。 FIG. 12 is a distribution diagram of light emitted by a plurality of sets of light-emitting diode packages in a CIE color coordinate.

圖13為多組採用本揭露發光二極體封裝結構的第一實施例所發出的光於CIE色座標中的分布圖。 FIG. 13 is a distribution diagram of light emitted by a plurality of sets of light emitting diodes in a first embodiment using the disclosed light emitting diode package structure.

圖14為多組本揭露另一實施例,即第一粉體顆粒和第二粉體顆粒未進行結合,但皆均勻分布於基質材料的發光二極體封裝結構所發出的光於CIE色座標中的分布圖。 14 is another embodiment of the present invention, in which the first powder particles and the second powder particles are not bonded, but the light emitted from the light-emitting diode package structure uniformly distributed on the matrix material emits light at the CIE color coordinates. The distribution map in .

圖1A為粉體顆粒分布於基質材料的示意圖。請參照圖 1A,粉體顆粒10分布於基質材料12時,粉體顆粒10所受到的作用力大致包括有粉體顆粒10自身的重力Fg、基質材料12的浮力Fb以及粉體顆粒10在基質材料12中移動時所產生的流體阻力Fh。一般來說,重力Fg的方向相反於浮力Fb與流體阻力Fh的方向,而此三個作用力的總和將決定粉體顆粒10在基質材料12中下沉或是懸浮。其中,基質材料12可為一流體材料,如矽油,或一未固化的膠體材料,如矽膠,但不以此為限。 Figure 1A is a schematic illustration of the distribution of powder particles to a matrix material. Please refer to the figure 1A, when the powder particles 10 are distributed on the matrix material 12, the force applied to the powder particles 10 roughly includes the gravity Fg of the powder particles 10 itself, the buoyancy Fb of the matrix material 12, and the powder particles 10 in the matrix material 12. The fluid resistance Fh generated when moving. In general, the direction of gravity Fg is opposite to the direction of buoyancy Fb and fluid resistance Fh, and the sum of these three forces will determine whether powder particles 10 sink or float in matrix material 12. The matrix material 12 can be a fluid material such as eucalyptus oil, or an uncured colloidal material such as silicone, but not limited thereto.

粉體顆粒10的重力Fg大於浮力Fb與流體阻力Fh的總 合時,粉體顆粒10就會沉降無法懸浮於基質材料12中,這就是使用粉體顆粒10時常發生的問題。特別是,粉體顆粒10的密度大於基質材料12的密度時,上述沉降問題往往不容易克服。因此,以下將說明本揭露之一實施例中,粉體顆粒10如何克服沉降問題以及抗沉降的粉體顆粒10的應用。 The gravity Fg of the powder particles 10 is greater than the total of the buoyancy Fb and the fluid resistance Fh. At the same time, the powder particles 10 are settled and cannot be suspended in the matrix material 12, which is a problem that often occurs when the powder particles 10 are used. In particular, when the density of the powder particles 10 is greater than the density of the matrix material 12, the above-mentioned sedimentation problem is often not easily overcome. Therefore, the application of the powder particles 10 against the sedimentation problem and the anti-settling powder particles 10 in one embodiment of the present disclosure will be explained below.

以下說明都僅是基於本揭露的精神所闡述的範例,而非用來限定本揭露的具體手段與細節。 The following description is only illustrative of the examples, and is not intended to limit the specific details and details of the disclosure.

若在粉體顆粒10表面接上一個低密度的殼體14,以圖1B為例,形成一個複合顆粒10A,可以藉由調整殼體14的粒徑大小或數量多寡,進而調整此複合顆粒10A的等效密度。假設粉體顆粒10的密度為d1,重量為m1,體積為v1,並且殼體14的密度為d2,重量為m2,體積為v2,則粉體顆粒10與殼體14結合 後形成複合顆粒10A後,複合顆粒10A的等效密度為d3=(m1+m2)/(v1+v2)。也就是說,此複合顆粒10A的等效密度必定小於粉體顆粒10的密度。本實施例利用此方式進行複合顆粒的密度調整,達到平衡重力與浮力的目的。 If a low-density casing 14 is attached to the surface of the powder particles 10, as shown in FIG. 1B, a composite particle 10A is formed, and the composite particle 10A can be adjusted by adjusting the particle size or the number of the casing 14. Equivalent density. Assuming that the density of the powder particles 10 is d1, the weight is m1, the volume is v1, and the density of the casing 14 is d2, the weight is m2, and the volume is v2, the powder particles 10 are combined with the casing 14. After the composite particles 10A are formed, the equivalent density of the composite particles 10A is d3 = (m1 + m2) / (v1 + v2). That is, the equivalent density of the composite particles 10A must be smaller than the density of the powder particles 10. In this embodiment, the density adjustment of the composite particles is performed in this manner to achieve the purpose of balancing gravity and buoyancy.

具體而言,圖2為複合材料製作流程示意圖,複合材料製備方法之一實施例如下:步驟S01:將第一粉體與第二粉體均勻混合;步驟S02:將正矽酸乙酯(TEOS)和醇類溶液均勻混合,由於醇類溶液中含有水(H2O),水可以和TEOS反應,而醇類的作用是將油相的TEOS和水相的H2O均勻混合。在這樣的混合過程中,醇類並不參與反應。因此上述混合過程的反應式如下:Si(OC2H5)4+H2O→Si(OH)4+4C2H5OH Specifically, FIG. 2 is a schematic diagram of a composite material preparation process, and one embodiment of the composite material preparation method is as follows: Step S01: uniformly mixing the first powder and the second powder; Step S02: Ethyl ruthenate (TEOS) And the alcohol solution is uniformly mixed. Since the alcohol solution contains water (H 2 O), the water can react with TEOS, and the alcohol functions to uniformly mix the TEOS of the oil phase and the H 2 O of the aqueous phase. In such a mixing process, the alcohol does not participate in the reaction. Therefore, the reaction formula of the above mixing process is as follows: Si(OC 2 H 5 ) 4 +H 2 O→Si(OH) 4 +4C 2 H 5 OH

步驟S03:把S01之混合後的粉體混入TEOS與醇類溶液的混合溶液中。此時,TEOS和醇類反應生成Si(OH)4的膠體,即是許多Si(OH)4連結成的膠狀物。此時,可以進一步加入氨水使Si(OH)4加速反應成SiO2,其中氨水為催化劑而不參與反應。上述以氨水為催化劑的反應式如下:Si(OH)4+Si(OH)4→NH4OH→SiO2+H2O Step S03: The mixed powder of S01 is mixed into a mixed solution of TEOS and an alcohol solution. At this time, TEOS reacts with an alcohol to form a colloid of Si(OH) 4 , that is, a gel in which many Si(OH) 4 are bonded. At this time, ammonia water may be further added to accelerate the reaction of Si(OH) 4 into SiO 2 , wherein the ammonia water is a catalyst and does not participate in the reaction. The above reaction formula using ammonia as a catalyst is as follows: Si(OH) 4 +Si(OH) 4 →NH 4 OH→SiO 2 +H 2 O

步驟S04:利用高溫烘烤去除殘留的水(H2O)和生成的醇類(C2H5OH),形成薄膜狀的SiO2,這樣的薄膜用以接合第一粉體和第二粉體。 Step S04: removing residual water (H 2 O) and the formed alcohol (C 2 H 5 OH) by high-temperature baking to form a film-like SiO 2 , which is used to bond the first powder and the second powder. body.

圖3A至圖3B為本揭露另一實施例的複合材料的製備方 法的示意圖。請參照圖3A,本實施例提出的複合材料製備方法可以先提供一耦合劑22,並將多個第一粉體顆粒24混合於耦合劑22中。在此,耦合劑22的材質為正矽酸乙酯,但也可選用矽酸鈉(sodium silicate,Na2SiO3.nH2O)。第一粉體顆粒24的材質則可以視實際應用的需求而決定,其例如是波長轉換材料、顏料、染料或是其他粉體材料。具體而言,耦合劑(TEOS)22可以先與水、丁醇或是乙醇混合,再將第一粉體顆粒24加入混有水的耦合劑22。 耦合劑22會透過水解反應而於第一粉體顆粒24的表面形成層狀膠體以作為接合劑26,其中耦合劑22的材質為正矽酸乙酯時,接合劑26的材質為二氧化矽;其中耦合劑的水解反應可以加入催化劑氨水以加速生成二氧化矽。 3A-3B are schematic views showing a method of preparing a composite material according to another embodiment of the present disclosure. Referring to FIG. 3A, the composite material preparation method of the present embodiment may first provide a coupling agent 22 and mix a plurality of first powder particles 24 in the coupling agent 22. Here, the material of the coupling agent 22 is ethyl orthosilicate, but sodium silicate (Na 2 SiO 3 .nH 2 O) may also be used. The material of the first powder particles 24 can be determined according to the needs of practical applications, such as wavelength conversion materials, pigments, dyes or other powder materials. Specifically, the coupling agent (TEOS) 22 may be first mixed with water, butanol or ethanol, and the first powder particles 24 may be added to the water-mixed coupling agent 22. The coupling agent 22 forms a layered colloid on the surface of the first powder particles 24 as a bonding agent 26 through a hydrolysis reaction. When the material of the coupling agent 22 is ethyl orthosilicate, the bonding agent 26 is made of cerium oxide. The hydrolysis reaction of the coupling agent may be added to the catalyst ammonia water to accelerate the formation of cerium oxide.

接著,請參照圖3B,將第二粉體顆粒28添加於耦合劑 22與第一粉體顆粒24的混合物中。此時,第二粉體顆粒28可以透過接合劑26與至少一個第一粉體顆粒24接合而構成複合顆粒20。在此實施例中,第二粉體顆粒28具有殼狀結構,其可以是一殼體。在此,殼體的材質包括氧化矽、氧化鋁、氧化鈦、氧化鉻、或上述之組合。另外,在其他的實施例中,殼體內可以填充有核材料而構成第二粉體顆粒28,而核材料可以具有磁性或是可以具有電場可驅動性質。 Next, referring to FIG. 3B, the second powder particles 28 are added to the coupling agent. 22 in a mixture with the first powder particles 24. At this time, the second powder particles 28 may be bonded to the at least one first powder particles 24 through the bonding agent 26 to constitute the composite particles 20. In this embodiment, the second powder particles 28 have a shell-like structure, which may be a casing. Here, the material of the casing includes cerium oxide, aluminum oxide, titanium oxide, chromium oxide, or a combination thereof. Additionally, in other embodiments, the housing may be filled with a core material to form second powder particles 28, while the core material may be magnetic or may have electric field drivable properties.

在複合顆粒20形成之後,再進行一烘乾步驟以去除形成 的水和醇類,以獲得乾燥的複合顆粒20。具體而言,在圖3B的混合過程中,第一粉體顆粒24與第二粉體顆粒28可以依照多種 方式接合在一起,因此複合顆粒20可以具有多種態樣,其中圖4A至圖4C為數種複合顆粒的示意圖。以圖4A而言,複合顆粒20A可以由一個第一粉體顆粒24與一個第二粉體顆粒28接合而成,且接合劑26用於連接第一粉體顆粒24與第二粉體顆粒28。以圖4B而言,複合顆粒20B可以由多個第一粉體顆粒24與一個第二粉體顆粒28接合而成,且接合劑26用於連接第一粉體顆粒24與第二粉體顆粒28。以圖4C而言,複合顆粒20C由至少一個第一粉體顆粒24與至少一個第二粉體顆粒28接合而成,且接合劑26同時包覆著第一粉體顆粒24與第二粉體顆粒28而構成了複合顆粒20C的包覆層26a。也就是說,接合劑26除了可以用來連接第一粉體顆粒24與第二粉體顆粒28之外,也可以用來將第一粉體顆粒24與第二粉體顆粒28包覆在一起。 After the composite particles 20 are formed, a drying step is performed to remove the formation. The water and alcohols are obtained to obtain dried composite particles 20. Specifically, in the mixing process of FIG. 3B, the first powder particles 24 and the second powder particles 28 may be in accordance with various The modes are joined together, and thus the composite particles 20 can have a variety of aspects, with Figures 4A through 4C being schematic illustrations of several composite particles. 4A, the composite particles 20A may be joined by a first powder particle 24 and a second powder particle 28, and the bonding agent 26 is used to connect the first powder particles 24 with the second powder particles 28. . 4B, the composite particles 20B may be formed by joining a plurality of first powder particles 24 and a second powder particles 28, and the bonding agent 26 is used to connect the first powder particles 24 with the second powder particles. 28. 4C, the composite particles 20C are joined by at least one first powder particle 24 and at least one second powder particle 28, and the bonding agent 26 simultaneously coats the first powder particles 24 and the second powder. The particles 28 constitute a coating layer 26a of the composite particles 20C. That is, the bonding agent 26 can be used to bond the first powder particles 24 and the second powder particles 28 in addition to the first powder particles 24 and the second powder particles 28. .

在本實施例中,第二粉體顆粒28具有殼狀結構。特別是, 第二粉體顆粒28為中空的殼體。此時,透過第二粉體顆粒28與第一粉體顆粒24的接合,複合顆粒20、20A、20B與20C的等效密度可以小於第一粉體顆粒24本身的密度。因此,本實施例的複合顆粒20、20A、20B與20C相對於第一粉體顆粒24本身而言更容易在流體或是未固化的基質中懸浮而有利於粉體狀態的複合顆粒20、20A、20B與20C的應用。 In the present embodiment, the second powder particles 28 have a shell-like structure. especially, The second powder particles 28 are hollow shells. At this time, by the bonding of the second powder particles 28 and the first powder particles 24, the equivalent density of the composite particles 20, 20A, 20B, and 20C may be smaller than the density of the first powder particles 24 themselves. Therefore, the composite particles 20, 20A, 20B and 20C of the present embodiment are more easily suspended in a fluid or uncured matrix relative to the first powder particles 24 themselves, and are advantageous for the composite particles 20, 20A in a powder state. , 20B and 20C applications.

舉例而言,圖5為本揭露一實施例的複合材料的示意圖。 請參照圖5,本實施例的複合材料30包括多個複合顆粒34分布於一基質材料32中,其中複合顆粒34是採用前述實施例的製備方 法所製作,因此可以由複合顆粒20、20A、20B與20C至少一者構成。具體而言,各個複合顆粒34由至少一個第一粉體顆粒24與至少一個第二粉體顆粒28接合而成,其中各個第二粉體顆粒28為中空殼體。 For example, FIG. 5 is a schematic view of a composite material according to an embodiment of the present disclosure. Referring to FIG. 5, the composite material 30 of the present embodiment includes a plurality of composite particles 34 distributed in a matrix material 32, wherein the composite particles 34 are prepared by the foregoing embodiments. It is produced by the method and thus can be composed of at least one of the composite particles 20, 20A, 20B and 20C. Specifically, each composite particle 34 is formed by joining at least one first powder particle 24 and at least one second powder particle 28, wherein each second powder particle 28 is a hollow shell.

一般來說,基質材料32具有一第一密度,而第一粉體顆粒24具有一第二密度,第二密度大於第一密度。密度較大的第一粉體顆粒24混合在密度較小的基質材料32時,第一粉體顆粒24易受到重力作用(如圖1所示)而發生沉降。 Generally, the matrix material 32 has a first density and the first powder particles 24 have a second density, the second density being greater than the first density. When the denser first powder particles 24 are mixed in the less dense matrix material 32, the first powder particles 24 are susceptible to gravity (as shown in Figure 1) and settle.

在本實施例中,提供第二粉體顆粒28,其具有一中空殼體結構,當第一粉體顆粒24與第二粉體顆粒28接合成複合顆粒34時,複合顆粒34即具有一第三密度。在此,藉由調整第二粉體顆粒28的粒徑大小和數量,使第三密度約等於基質材料32的第一密度,則複合顆粒34即可均勻分布於基質材料32中,進一步改善第一粉體顆粒24於基質材料32中沉降的問題。具體而言,複合顆粒34的第三密度實質上相關於第一粉體顆粒24與第二粉體顆粒28的數量比例。 In the present embodiment, the second powder particles 28 are provided having a hollow shell structure. When the first powder particles 24 and the second powder particles 28 are joined into the composite particles 34, the composite particles 34 have a The third density. Here, by adjusting the particle size and the number of the second powder particles 28 such that the third density is approximately equal to the first density of the matrix material 32, the composite particles 34 can be uniformly distributed in the matrix material 32, further improving the A problem of sedimentation of a powder particle 24 in the matrix material 32. In particular, the third density of composite particles 34 is substantially related to the ratio of the number of first powder particles 24 to second powder particles 28.

在一實施例中,複合顆粒34可具有疏水性質,而基質材料32可為非極性或具有疏水性質,使得複合顆粒34可以均勻地分布於基質材料32中;同樣的,當複合顆粒34為親水性時,則基質材料則為非極性或具有親水性,進一步說,複合顆粒34必須和基質材料32具有相同的極性。 In one embodiment, the composite particles 34 may have hydrophobic properties, while the matrix material 32 may be non-polar or have hydrophobic properties such that the composite particles 34 may be uniformly distributed in the matrix material 32; likewise, when the composite particles 34 are hydrophilic In the case of sex, the matrix material is non-polar or hydrophilic. Further, the composite particles 34 must have the same polarity as the matrix material 32.

在一實施例中,基質材料32為一膠體材料,而第一粉體 顆粒24的材質包括一波長轉換材料,其中基質材料32具有第一密度為1g/cm3至2.5g/cm3,而第一粉體顆粒24具有第二密度範圍為2.5g/cm3至6g/cm3。為了使所有的複合顆粒34可均勻分布於基質材料32中,第二粉體顆粒28的密度範圍可以為0.01g/cm3至2g/cm3,第二粉體顆粒28在第一粉體顆粒24與第二粉體顆粒28的總(體積)量中可以佔0.5%至100%,則複合顆粒34的第三密度範圍為1g/cm3至1.5g/cm3。當然,上述材質與數值僅是舉例說明之用,並非用以限定本揭露。在其他的實施例中,第一粉體顆粒24可以是染料、顏料或是其他顆粒狀的材料。 In one embodiment, the matrix material 32 is a colloidal material, and the material of the first powder particles 24 comprises a wavelength converting material, wherein the matrix material 32 has a first density of from 1 g/cm 3 to 2.5 g/cm 3 . The first powder particles 24 have a second density ranging from 2.5 g/cm 3 to 6 g/cm 3 . In order to uniformly distribute all of the composite particles 34 in the matrix material 32, the density of the second powder particles 28 may range from 0.01 g/cm 3 to 2 g/cm 3 , and the second powder particles 28 may be in the first powder particles. The total density (volume) of 24 and the second powder particles 28 may be from 0.5% to 100%, and the third density of the composite particles 34 may range from 1 g/cm 3 to 1.5 g/cm 3 . Of course, the above materials and numerical values are for illustrative purposes only and are not intended to limit the disclosure. In other embodiments, the first powder particles 24 can be dyes, pigments, or other particulate materials.

圖6為本揭露另一實施例的複合材料的示意圖。請參照圖6,複合材料40包含多個第一粉體顆粒44以及多個第二粉體顆粒46,第一粉體顆粒44和第二粉體顆粒46混合於一基質材料42中,基質材料42具有一第一密度,第一粉體顆粒44具有一第二密度,且第二密度大於第一密度。第二粉體顆粒46具有一殼狀結構,且第二粉體顆粒46實質上是中空殼體。 FIG. 6 is a schematic view of a composite material according to another embodiment of the present disclosure. Referring to FIG. 6, the composite material 40 includes a plurality of first powder particles 44 and a plurality of second powder particles 46. The first powder particles 44 and the second powder particles 46 are mixed in a matrix material 42. 42 has a first density, first powder particles 44 have a second density, and second density is greater than the first density. The second powder particles 46 have a shell-like structure, and the second powder particles 46 are substantially hollow shells.

根據圖1A的作用力示意圖,本實施例的第一粉體顆粒44的第二密度大於基質材料42的第一密度,所以第一粉體顆粒44易受重力作用而在基質材料42中發生沉降。第二粉體顆粒46因具有中空結構,可藉由調整第二粉體顆粒46的粒徑大小,使其等效密度不大於基質材料42而均勻分布於基質材料42中。因此,當第一粉體顆粒44於基質材料42中發生沉降時,第二粉體顆粒46可以阻擋第一粉體顆粒44的下沉,而讓第一粉體顆粒44懸浮 於基質材料42中。在本實施例中,基質材料42、第一粉體顆粒44與第二粉體顆粒46的材質與密度可以參照前述實施例的記載內容,而不另贅述。 According to the force diagram of FIG. 1A, the second density of the first powder particles 44 of the present embodiment is greater than the first density of the matrix material 42, so that the first powder particles 44 are susceptible to gravity and settle in the matrix material 42. . The second powder particles 46 have a hollow structure, and can be uniformly distributed in the matrix material 42 by adjusting the particle size of the second powder particles 46 so that the equivalent density thereof is not larger than the matrix material 42. Therefore, when the first powder particles 44 settle in the matrix material 42, the second powder particles 46 can block the sinking of the first powder particles 44, and the first powder particles 44 can be suspended. In the matrix material 42. In the present embodiment, the materials and densities of the matrix material 42, the first powder particles 44 and the second powder particles 46 can be referred to the description of the foregoing embodiments without further elaboration.

上述實施例皆以第二粉體顆粒具有中空結構為例來說 明,但本揭露並不以此為限。在其他的實施例中,第二粉體顆粒的內部可以填充有核材料,且核材料例如為磁性材料。此時,透過第二粉體顆粒與第一粉體顆粒的接合,複合顆粒可以受到磁場或是電場的作用而移動。舉例而言,圖7為本揭露另一實施例的複合材料的示意圖。請參照圖7,複合材料50包括多個第一粉體顆粒54以及多個第二粉體顆粒56,第一粉體顆粒54和第二粉體顆粒56混合於基質材料52中。基質材料52具有一第一密度,第一粉體顆粒54具有一第二密度,第二密度大於第一密度。第二粉體材料56具有一殼狀結構,並包括一殼體56A與一核材料56B,其中核材料56B填充於殼體56A內。另外,至少一個第一粉體顆粒54與至少一個第二粉體顆粒56彼此接合成複合顆粒58,其中至少一個第一粉體顆粒54與至少一個第二粉體顆粒56可以採用圖2或是圖3A至圖3B的製備方法彼此接合。 The above embodiments are all examples in which the second powder particles have a hollow structure. Ming, but this disclosure is not limited to this. In other embodiments, the interior of the second powder particles may be filled with a core material, and the core material is, for example, a magnetic material. At this time, by the bonding of the second powder particles and the first powder particles, the composite particles can be moved by the action of a magnetic field or an electric field. For example, FIG. 7 is a schematic view of a composite material according to another embodiment of the present disclosure. Referring to FIG. 7, the composite material 50 includes a plurality of first powder particles 54 and a plurality of second powder particles 56, and the first powder particles 54 and the second powder particles 56 are mixed in the matrix material 52. The matrix material 52 has a first density, the first powder particles 54 have a second density, and the second density is greater than the first density. The second powder material 56 has a shell-like structure and includes a housing 56A and a core material 56B, wherein the core material 56B is filled in the housing 56A. In addition, at least one of the first powder particles 54 and the at least one second powder particles 56 are joined to each other to form composite particles 58, wherein at least one of the first powder particles 54 and the at least one second powder particles 56 may be as shown in FIG. 2 or The preparation methods of FIGS. 3A to 3B are joined to each other.

在本實施例中,核材料56B具有磁性。因此,複合顆粒 58可以隨磁場B的施加而於基質材料42中移動。如此一來,透過磁場B的施加,無論第一粉體顆粒54與第二粉體顆粒56的密度是否小於基質材料52,第一粉體顆粒54與第二粉體顆粒56都可以懸浮或是均勻分布於基質材料52中而不沉降於底部。 In the present embodiment, the core material 56B has magnetic properties. Therefore, composite particles 58 can move in the matrix material 42 as the magnetic field B is applied. As a result, regardless of whether the density of the first powder particles 54 and the second powder particles 56 is smaller than the matrix material 52 by the application of the magnetic field B, the first powder particles 54 and the second powder particles 56 can be suspended or It is evenly distributed in the matrix material 52 without sinking to the bottom.

圖8為本揭露再一實施例的複合材料的示意圖。請參照圖8,複合材料60包括多個第一粉體顆粒54以及多個第二粉體顆粒56,第一粉體顆粒54和第二粉體顆粒56分布於基質材料52中。其中,基質材料52、第一粉體顆粒54以及第二粉體顆粒56的密度與性質可以參照圖7的相關說明,此處不再贅述。不過,本實施例的第一粉體顆粒54以及第二粉體顆粒56分別分佈於基質材料52中,而未接合在一起。 FIG. 8 is a schematic view of a composite material according to still another embodiment of the present disclosure. Referring to FIG. 8, the composite material 60 includes a plurality of first powder particles 54 and a plurality of second powder particles 56, and the first powder particles 54 and the second powder particles 56 are distributed in the matrix material 52. The density and properties of the matrix material 52, the first powder particles 54, and the second powder particles 56 can be referred to the relevant description of FIG. 7, and details are not described herein again. However, the first powder particles 54 and the second powder particles 56 of the present embodiment are respectively distributed in the matrix material 52 without being joined together.

在本實施例中,核材料56B具有磁性。因此,第二粉體顆粒56可以隨磁場B的施加而於基質材料52中移動。如此一來,透過磁場B的施加,第二粉體顆粒56可以懸浮於基質材料52中。此時,第一粉體顆粒54於沉降過程中將受到第二粉體顆粒56的阻擋,因此第一粉體顆粒54可懸浮於基質材料52中。換言之,無論第一粉體顆粒54與第二粉體顆粒56所受到的重力是否大於浮力與流體阻力的總合,第一粉體顆粒54與第二粉體顆粒56都可以在磁場B的施加下懸浮於基質材料52中而不沉降於底部。 In the present embodiment, the core material 56B has magnetic properties. Therefore, the second powder particles 56 can move in the matrix material 52 as the magnetic field B is applied. As such, the second powder particles 56 can be suspended in the matrix material 52 by the application of the magnetic field B. At this time, the first powder particles 54 are blocked by the second powder particles 56 during sedimentation, and thus the first powder particles 54 may be suspended in the matrix material 52. In other words, regardless of whether the gravity received by the first powder particles 54 and the second powder particles 56 is greater than the sum of the buoyancy and the fluid resistance, the first powder particles 54 and the second powder particles 56 can be applied to the magnetic field B. The suspension is suspended in the matrix material 52 without sinking to the bottom.

上述各實施例提出了使粉體顆粒在基質材料中不易發生沉降的方法。為了進一步闡述本揭露的精神,以下將以發光二極體封裝結構及其相關構件為例來說明複合顆粒與複合材料的應用。當然,以下應用方式僅是舉例說明之用,並非用以限定本揭露所應用的技術領域與具體條件。 Each of the above embodiments proposes a method of making the powder particles less likely to settle in the matrix material. In order to further illustrate the spirit of the present disclosure, the application of composite particles and composite materials will be described below by taking a light-emitting diode package structure and related components as an example. The following application modes are for illustrative purposes only, and are not intended to limit the technical field and specific conditions to which the disclosure is applied.

圖9為一般發光二極體封裝結構的示意圖。請參照圖9,發光二極體封裝結構300包括一晶片承載部310、一發光二極體晶 片320以及一封裝材料330。發光二極體晶片320配置於晶片承載部310,封裝材料330填充於晶片承載部310並覆蓋發光二極體晶片320。封裝材料330包括一基質材料332以及多個波長轉換粉體顆粒334,其中基質材料332可為一封裝膠體。如圖所示,波長轉換粉體顆粒334集中地分布於基質材料332底部。也就是說,波長轉換粉體顆粒334於基質材料中亦受重力作用而於基質材料332中發生沉降,導致發光二極體所發出的光線分布不均勻。 FIG. 9 is a schematic view of a general light emitting diode package structure. Referring to FIG. 9 , the LED package structure 300 includes a wafer carrying portion 310 and a light emitting diode crystal. Sheet 320 and an encapsulating material 330. The LED chip 320 is disposed on the wafer carrier 310, and the encapsulation material 330 is filled in the wafer carrier 310 and covers the LED substrate 320. The encapsulating material 330 includes a matrix material 332 and a plurality of wavelength converting powder particles 334, wherein the matrix material 332 can be an encapsulant. As shown, the wavelength converting powder particles 334 are concentratedly distributed at the bottom of the matrix material 332. That is to say, the wavelength-converting powder particles 334 are also subjected to gravity in the matrix material to settle in the matrix material 332, resulting in uneven distribution of light emitted by the light-emitting diode.

圖10為本揭露發光二極體封裝結構的第一實施例的剖面 示意圖。請參照圖10,發光二極體封裝結構100包括一晶片承載部110、一發光二極體晶片120以及一封裝材料130。發光二極體晶片120配置於晶片承載部110上。封裝材料130填充於晶片承載部110上並覆蓋發光二極體晶片120。封裝材料130包括一基質材料132、多個第一粉體顆粒134以及多個第二粉體顆粒136。第一粉體顆粒134分布於基質材料132中且第一粉體顆粒134的材質包括一波長轉換材料。第二粉體顆粒136亦分布於基質材料132中且第二粉體顆粒136具有一殼狀結構。發光二極體晶片120在此可以採用已知的方式配置於晶片承載部110上,例如可採用覆晶接合等方式。 10 is a cross section of a first embodiment of a light emitting diode package structure according to the present disclosure schematic diagram. Referring to FIG. 10 , the LED package structure 100 includes a wafer carrier 110 , a LED chip 120 , and an encapsulation material 130 . The light emitting diode chip 120 is disposed on the wafer carrying portion 110. The encapsulation material 130 is filled on the wafer carrier 110 and covers the LED wafer 120. The encapsulating material 130 includes a matrix material 132, a plurality of first powder particles 134, and a plurality of second powder particles 136. The first powder particles 134 are distributed in the matrix material 132 and the material of the first powder particles 134 includes a wavelength converting material. The second powder particles 136 are also distributed in the matrix material 132 and the second powder particles 136 have a shell-like structure. The LED wafer 120 can be disposed on the wafer carrier 110 in a known manner, for example, by flip chip bonding or the like.

在本實施例中,基質材料132為一封裝膠體材料,其材 質包括環氧樹脂、矽膠、玻璃,且基質材料132在未固化時的密度約為1g/cm3至2.5g/cm3。第一粉體顆粒134的材質包括一波長轉換材料,其密度約為2.5g/cm3至6g/cm3,大於未固化的基質材 料132的密度。若直接將第一粉體顆粒134添加於未固化的基質材料132中,第一粉體顆粒134易於基質材料132中發生沉降。 In the present embodiment, the matrix material 132 is an encapsulant material comprising epoxy resin, silicone rubber, glass, and the matrix material 132 has a density of about 1 g/cm 3 to 2.5 g/cm 3 when uncured. The material of the first powder particles 134 includes a wavelength converting material having a density of about 2.5 g/cm 3 to 6 g/cm 3 which is greater than the density of the uncured matrix material 132. If the first powder particles 134 are directly added to the uncured matrix material 132, the first powder particles 134 are liable to settle in the matrix material 132.

因此,封裝材料130更進一步包括第二粉體顆粒136,第 二粉體顆粒136具有殼狀結構,以有助於在製作過程中避免第一粉體顆粒134於基質材料132中發生沉降。第二粉體顆粒136可選擇性具有光散射或是反射性質,且對可見光而言可具有高穿透率,例如光穿透率大於70%,較佳為大於80%,以有利於發光二極體封裝結構100的光取出效率。在本實施例中,第二粉體顆粒136的粒徑範圍由0.01μm至100μm,且第二粉體顆粒136在第一粉體顆粒134與第二粉體顆粒136的總重量中佔0.5%至100%。 Therefore, the encapsulation material 130 further includes second powder particles 136, The second powder particles 136 have a shell-like structure to help prevent sedimentation of the first powder particles 134 in the matrix material 132 during the manufacturing process. The second powder particles 136 may selectively have light scattering or reflective properties, and may have high transmittance for visible light, for example, a light transmittance of more than 70%, preferably more than 80%, to facilitate light emission. The light extraction efficiency of the polar package structure 100. In the present embodiment, the second powder particles 136 have a particle diameter ranging from 0.01 μm to 100 μm, and the second powder particles 136 account for 0.5% of the total weight of the first powder particles 134 and the second powder particles 136. To 100%.

如圖10所示,為了減少或是避免第一粉體顆粒134於基 質材料132中發生沉降,第一粉體顆粒134與第二粉體顆粒136可以採用前述的方式先製備成複合顆粒,再將複合顆粒與未固化的基質材料132進行混合以形成複合材料,然後將複合材料藉由點膠或是滴入或是塗布等方式形成於發光二極體晶片120上,最後將複合材料進行固化即可形成封裝材料130。 As shown in FIG. 10, in order to reduce or avoid the first powder particles 134 on the base The sedimentation occurs in the material 132, and the first powder particles 134 and the second powder particles 136 may be first prepared into composite particles by the foregoing method, and then the composite particles are mixed with the uncured matrix material 132 to form a composite material, and then The composite material is formed on the light-emitting diode wafer 120 by dispensing or dropping or coating, and finally the composite material is cured to form the packaging material 130.

在本實施例中,第二粉體顆粒136可以如圖5所示地為 一中空殼體。當第二粉體顆粒136的材質為氧化矽時,其密度例如為0.01g/cm3至2g/cm3。此外,第一粉體顆粒134與第二粉體顆粒136所接合成的複合顆粒所具有的等效密度大約為1g/cm3至1.5g/cm3,其接近於未固化的基質材料132的密度,因此,複合顆粒可均勻分布於未固化的基質材料132中。而用來提供接合第一 粉體顆粒134和第二粉體顆粒136的接合劑對可見光可具有高穿透率,例如穿透率大於70%,較佳為大於80%,其折射率大致與基質材料的折射率接近,例如當基質材料為一封裝膠體時,封裝膠體的折射率範圍為1.4至1.6,則接合劑的折射率範圍可為1.0至2.0。 In the present embodiment, the second powder particles 136 may be a hollow casing as shown in FIG. When the material of the second powder particles 136 is cerium oxide, the density thereof is, for example, 0.01 g/cm 3 to 2 g/cm 3 . Further, the composite particles in which the first powder particles 134 and the second powder particles 136 are joined have an equivalent density of about 1 g/cm 3 to 1.5 g/cm 3 which is close to that of the uncured matrix material 132. The density, therefore, the composite particles can be evenly distributed in the uncured matrix material 132. The bonding agent for providing the bonding of the first powder particles 134 and the second powder particles 136 may have a high transmittance to visible light, for example, a transmittance of more than 70%, preferably more than 80%, and a refractive index substantially equal to The refractive index of the matrix material is close to, for example, when the matrix material is an encapsulant, and the refractive index of the encapsulant ranges from 1.4 to 1.6, the refractive index of the bonding agent may range from 1.0 to 2.0.

在另一實施例中,第二粉體顆粒136的殼體結構中可具 一核材料,且核材料具有磁性,則複合顆粒與未固化的基質材料132混合的過程中可以施加磁場以懸浮複合顆粒,使複合顆粒可均勻分布於基質材料132中。此時,複合顆粒的等效密度則可不限定於小於或等於未固化的基質材料132的密度。 In another embodiment, the second powder particles 136 may have a housing structure A core material, and the core material is magnetic, a magnetic field may be applied during the mixing of the composite particles with the uncured matrix material 132 to suspend the composite particles so that the composite particles are uniformly distributed in the matrix material 132. At this time, the equivalent density of the composite particles may not be limited to less than or equal to the density of the uncured matrix material 132.

另外,在其他實施例中,第一粉體顆粒134、第二粉體顆 粒136以及未固化的基質材料132也可以採用圖6或是圖8的方式來製備。 In addition, in other embodiments, the first powder particles 134 and the second powder particles The particles 136 and the uncured matrix material 132 can also be prepared in the manner of Figure 6 or Figure 8.

圖11為本揭露發光二極體封裝結構的第二實施例的示意 圖。請參照圖11,發光二極體封裝結構200包括一晶片承載部210、一發光二極體晶片220以及一封裝材料230。發光二極體晶片220配置於晶片承載部210上,封裝材料230填充於晶片承載部210並覆蓋發光二極體晶片220。封裝材料230包括一基質材料232、多個第一粉體顆粒234以及多個第二粉體顆粒236,其中,基質材料232為一封裝膠體,第一粉體顆粒234分布於基質材料232中且第一粉體顆粒234的材質包括一波長轉換材料。第二粉體顆粒236也分布於基質材料232中。同時,第二粉體顆粒236具 有一殼狀結構。 11 is a schematic view of a second embodiment of a light emitting diode package structure according to the present disclosure Figure. Referring to FIG. 11 , the LED package structure 200 includes a wafer carrier 210 , a LED chip 220 , and an encapsulation material 230 . The LED wafer 220 is disposed on the wafer carrier 210, and the encapsulation material 230 is filled in the wafer carrier 210 and covers the LED wafer 220. The encapsulating material 230 includes a matrix material 232, a plurality of first powder particles 234, and a plurality of second powder particles 236, wherein the matrix material 232 is an encapsulant, and the first powder particles 234 are distributed in the matrix material 232. The material of the first powder particles 234 includes a wavelength converting material. The second powder particles 236 are also distributed in the matrix material 232. At the same time, the second powder particles 236 have There is a shell structure.

具體而言,本實施例與圖10的實施例差異在於,本實施 例的封裝材料230具有一粉體集中部230A以及一粉體稀疏部230B,粉體稀疏部230B位於發光二極體晶片220與粉體集中部230A之間。也就是說,第一粉體顆粒234與第二粉體顆粒236在粉體集中部230A的分布密度大於在粉體稀疏部230B的分布密度。第一粉體顆粒234與第二粉體顆粒236可以透過圖2與圖3的方式製備成複合顆粒,且複合顆粒的等效密度小於基質材料232未固化時的密度。因此,複合顆粒可懸浮於未固化的基質材料232表面,而集中分布於粉體集中部230A。 Specifically, the difference between this embodiment and the embodiment of FIG. 10 is that the implementation The encapsulating material 230 of the example has a powder concentration portion 230A and a powder thinning portion 230B, and the powder thinning portion 230B is located between the light emitting diode wafer 220 and the powder concentration portion 230A. That is, the distribution density of the first powder particles 234 and the second powder particles 236 in the powder concentration portion 230A is larger than the distribution density at the powder thin portion 230B. The first powder particles 234 and the second powder particles 236 can be prepared into composite particles by the manner of FIGS. 2 and 3, and the equivalent density of the composite particles is less than the density when the matrix material 232 is not cured. Therefore, the composite particles can be suspended on the surface of the uncured matrix material 232 and concentratedly distributed in the powder concentration portion 230A.

圖12為多組採用一般發光二極體封裝結構所發出的光於 CIE色座標中的分布圖。圖13為多組採用本揭露發光二極體封裝結構第一實施例所發出的光於CIE色座標中的分布圖。圖14為多組本揭露另一實施例,即第一粉體顆粒和第二粉體顆粒未進行結合,但皆均勻分布於基質材料的發光二極體封裝結構所發出的光於CIE色座標中的分布圖。在圖12~14中,X、Y分別表示座標軸,三角形符號表示在基質材料固化之前,各組發光二極體封裝結構所發出的光在CIE色座標中的位置,而方形符號表示在基質材料固化之後,各組發光二極體封裝結構所發出的光在CIE色座標中的位置。 Figure 12 is a plurality of sets of light emitted by a general light-emitting diode package structure. Distribution map in the CIE color coordinates. FIG. 13 is a distribution diagram of a plurality of sets of light emitted by the first embodiment of the light emitting diode package structure in the CIE color coordinates. 14 is another embodiment of the present invention, in which the first powder particles and the second powder particles are not bonded, but the light emitted from the light-emitting diode package structure uniformly distributed on the matrix material emits light at the CIE color coordinates. The distribution map in . In Figures 12-14, X and Y respectively represent the coordinate axis, and the triangular symbol indicates the position of the light emitted by each group of light-emitting diode packages in the CIE color coordinates before the matrix material is cured, and the square symbol indicates the matrix material. After curing, the light emitted by each group of light emitting diode packages is in the CIE color coordinates.

由圖12可知,採用一般發光二極體封裝結構所發出的光 在基質材料固化前後於CIE色座標中的分布有顯著的落差。舉例 而言,固化前於CIE色座標中的分布集中在區域I,而固化後於CIE色座標中的分布集中在區域II。由圖13可知,採用本揭露發光二極體封裝結構的第一實施例所發出的光,在基質材料固化前後於CIE色座標中的分布則相對集中。如圖所示,固化前於CIE色座標中的分布集中在區域III,而固化後於CIE色座標中的分布集中在區域IV。由圖14可知,採用本揭露發光二極體封裝結構的另一實施例所發出的光,在基質材料固化前後於CIE色座標中的分布相對集中。如圖所示,固化前於CIE色座標中的分布集中在區域V,而固化後於CIE色座標中的分布集中在區域VI。由以上可得知,本揭露實施例利用第二粉體顆粒的設置來改善沉降問題的手段,可以獲得光色一致的發光二極體封裝結構。 As can be seen from FIG. 12, the light emitted by the general light emitting diode package structure is used. There is a significant drop in the distribution in the CIE color coordinates before and after curing of the matrix material. Example In contrast, the distribution in the CIE color coordinates before curing is concentrated in the region I, and the distribution in the CIE color coordinates after curing is concentrated in the region II. As can be seen from Fig. 13, the light emitted by the first embodiment of the present invention has a relatively concentrated distribution in the CIE color coordinates before and after curing of the matrix material. As shown, the distribution in the CIE color coordinates before solidification is concentrated in region III, and the distribution in the CIE color coordinates after solidification is concentrated in region IV. As can be seen from FIG. 14, the light emitted by another embodiment of the disclosed light-emitting diode package structure is relatively concentrated in the CIE color coordinates before and after the matrix material is cured. As shown, the distribution in the CIE color coordinates before solidification is concentrated in the region V, and the distribution in the CIE color coordinates after solidification is concentrated in the region VI. From the above, it can be seen that the disclosed embodiment utilizes the arrangement of the second powder particles to improve the settlement problem, and a light-emitting diode package structure having uniform light colors can be obtained.

圖12中,因為第一粉體顆粒發生沉降,發光二極體封裝 結構所發出的光的色座標從區域I偏移到區域II,造成光色的偏差。因此,為使發光二極體封裝結構所發出的光於色座標中更集中,可以使用混有複合顆粒的膠材進行補償,使原本落於色座標區域II的光色回到區域I。 In Fig. 12, because the first powder particles are settled, the light emitting diode package The color coordinates of the light emitted by the structure are shifted from region I to region II, causing a deviation in the color of the light. Therefore, in order to make the light emitted by the light-emitting diode package structure more concentrated in the color coordinates, the glue mixed with the composite particles can be used to compensate, so that the light color originally falling in the color coordinate area II returns to the region I.

綜上所述,本揭露提出將第一粉體顆粒與具有殼狀結構的第二粉體顆粒混合在一起或是接合成複合顆粒,以減少或避免第一粉體顆粒在基質材料中發生沉降。使用本揭露實施例的複合顆粒製備方法或是使用本揭露實施例的複合材料來製作發光二極體封裝結構的封裝材料有助於提升發光二極體封裝結構的光色一致性。 In summary, the present disclosure proposes mixing or combining the first powder particles with the second powder particles having a shell structure to reduce or prevent the first powder particles from settling in the matrix material. . The use of the composite particle preparation method of the disclosed embodiment or the use of the composite material of the disclosed embodiment to fabricate the package material of the light emitting diode package structure contributes to improving the color consistency of the light emitting diode package structure.

24‧‧‧第一粉體顆粒 24‧‧‧First powder particles

28‧‧‧第二粉體顆粒 28‧‧‧Second powder particles

30‧‧‧複合材料 30‧‧‧Composite materials

32‧‧‧基質材料 32‧‧‧Material materials

34‧‧‧複合顆粒 34‧‧‧Composite particles

Claims (23)

一種複合材料,包括:至少一第一粉體顆粒;以及至少一第二粉體顆粒,該至少一第二粉體顆粒具有一殼狀結構,其中該至少一第一粉體顆粒與該至少一第二粉體顆粒分布於一基質材料中。 A composite material comprising: at least one first powder particle; and at least one second powder particle, the at least one second powder particle having a shell structure, wherein the at least one first powder particle and the at least one The second powder particles are distributed in a matrix material. 如申請專利範圍第1項所述之複合材料,其中,該至少一第一粉體顆粒接合至該至少一第二粉體顆粒以形成至少一複合顆粒。 The composite material of claim 1, wherein the at least one first powder particle is bonded to the at least one second powder particle to form at least one composite particle. 如申請專利範圍第2項所述之複合材料,其中該基質材料具有一第一密度,該至少一複合顆粒具有一第二密度,該第二密度不大於該第一密度。 The composite material of claim 2, wherein the matrix material has a first density, and the at least one composite particle has a second density, the second density being no greater than the first density. 如申請專利範圍第3項所述的複合材料,其中該至少一複合顆粒的該第二密度範圍為1g/cm3至1.5g/cm3The composite material according to claim 3, wherein the second density of the at least one composite particle ranges from 1 g/cm 3 to 1.5 g/cm 3 . 如申請專利範圍第2項所述之複合材料,其中該至少一第一粉體顆粒和該至少一第二粉體顆粒藉由一接合劑進行接合。 The composite material according to claim 2, wherein the at least one first powder particle and the at least one second powder particle are joined by a bonding agent. 如申請專利範圍第5項所述的複合材料,其中該接合劑的材質包括氧化矽、矽酸鹽、氧化鈦、氧化鋅、氧化鉭、氧化鋁。 The composite material according to claim 5, wherein the material of the bonding agent comprises cerium oxide, cerium oxide, titanium oxide, zinc oxide, cerium oxide, and aluminum oxide. 如申請專利範圍第2項所述的複合材料,其中該接合劑包覆於該至少一第一粉體顆粒與該至少一第二粉體顆粒以構成該至少一複合顆粒的一包覆層。 The composite material according to claim 2, wherein the bonding agent coats the at least one first powder particle and the at least one second powder particle to form a coating layer of the at least one composite particle. 如申請專利範圍第7項所述的複合材料,其中該至少一複合顆粒和該基質材料具有相同的極性。 The composite of claim 7, wherein the at least one composite particle and the matrix material have the same polarity. 如申請專利範圍第1項所述的複合材料,其中該至少一第二粉體顆粒包括一殼體。 The composite material of claim 1, wherein the at least one second powder particle comprises a shell. 如申請專利範圍第9項所述的複合材料,其中該至少一第二粉體顆粒更包括填充於該殼體內的一核材料。 The composite material according to claim 9, wherein the at least one second powder particle further comprises a core material filled in the casing. 如申請專利範圍第10項所述的複合材料,其中該核材料具有磁性。 The composite material of claim 10, wherein the core material is magnetic. 如申請專利範圍第9項所述的複合材料,其中該殼體的材質為氧化矽、氧化鋁、氧化鈦、氧化鉻、或上述之組合。 The composite material according to claim 9, wherein the material of the casing is cerium oxide, aluminum oxide, titanium oxide, chromium oxide, or a combination thereof. 如申請專利範圍第1項所述的複合材料,其中該至少一第二粉體顆粒的粒徑大小範圍為0.01μm至100μm。 The composite material according to claim 1, wherein the at least one second powder particle has a particle size ranging from 0.01 μm to 100 μm. 如申請專利範圍第1項所述的複合材料,其中該至少一第二粉體顆粒在該至少一第一粉體顆粒與該至少一第二粉體顆粒的總重量中佔0.5%至100%。 The composite material according to claim 1, wherein the at least one second powder particle accounts for 0.5% to 100% of the total weight of the at least one first powder particle and the at least one second powder particle. . 如申請專利範圍第1項所述的複合材料,其中該至少一第一粉體顆粒的材質包括波長轉換材料、染料、顏料或上述之組合。 The composite material according to claim 1, wherein the material of the at least one first powder particle comprises a wavelength converting material, a dye, a pigment or a combination thereof. 如申請專利範圍第1項所述的複合材料,其中該至少一第二粉體顆粒具有一密度範圍為0.01g/cm3至2g/cm3The composite material according to claim 1, wherein the at least one second powder particle has a density ranging from 0.01 g/cm 3 to 2 g/cm 3 . 如申請專利範圍第1項所述的複合材料,其中該基質材料為一膠體材料。 The composite material of claim 1, wherein the matrix material is a colloidal material. 一種複合材料的製備方法,包括:提供至少一第一粉體顆粒;提供至少一第二粉體顆粒;將該至少一第一粉體顆粒和該至少一第二粉體顆粒與一耦合劑進行混合,其中該至少一第二粉體顆粒具有一殼狀結構;以及使該至少一第一粉體顆粒與該至少一第二粉體顆粒由該耦合劑反應而成的一接合劑彼此連接成一複合顆粒。 A method for preparing a composite material, comprising: providing at least one first powder particle; providing at least one second powder particle; performing the at least one first powder particle and the at least one second powder particle with a coupling agent Mixing, wherein the at least one second powder particle has a shell-like structure; and a bonding agent obtained by reacting the at least one first powder particle with the at least one second powder particle by the coupling agent is connected to each other Composite particles. 如申請專利範圍第18項所述的複合材料的製備方法,其中該耦合劑的材質包括正矽酸乙酯、矽酸鈉或其組合。 The method for preparing a composite material according to claim 18, wherein the material of the coupling agent comprises ethyl orthosilicate, sodium citrate or a combination thereof. 如申請專利範圍第18項所述的複合材料的製備方法,其中該接合劑的材質包括氧化矽、矽酸鹽、氧化鈦、氧化鋅、氧化鉭、氧化鋁或其組合。 The method for preparing a composite material according to claim 18, wherein the material of the bonding agent comprises cerium oxide, cerium silicate, titanium oxide, zinc oxide, cerium oxide, aluminum oxide or a combination thereof. 如申請專利範圍第18項所述的複合材料的製備方法,其中該耦合劑透過水解反應而形成該接合劑。 The method for producing a composite material according to claim 18, wherein the coupling agent forms a binder by a hydrolysis reaction. 如申請專利範圍第18項所述的複合材料的製備方法,更包括在形成該複合顆粒之後進行一烘乾步驟。 The method for preparing a composite material according to claim 18, further comprising performing a drying step after forming the composite particles. 如申請專利範圍第18項所述的複合材料的製備方法,其中,該至少一第二粉體顆粒在該至少一第一粉體顆粒與該至少一第二粉體顆粒的總重量中佔0.5%至10%。 The method for preparing a composite material according to claim 18, wherein the at least one second powder particle accounts for 0.5 of the total weight of the at least one first powder particle and the at least one second powder particle. % to 10%.
TW103100061A 2013-05-02 2014-01-02 Composite material and fabricating method thereof TW201442854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/267,919 US9231168B2 (en) 2013-05-02 2014-05-02 Light emitting diode package structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361818889P 2013-05-02 2013-05-02

Publications (1)

Publication Number Publication Date
TW201442854A true TW201442854A (en) 2014-11-16

Family

ID=52423188

Family Applications (3)

Application Number Title Priority Date Filing Date
TW103100061A TW201442854A (en) 2013-05-02 2014-01-02 Composite material and fabricating method thereof
TW103115348A TW201444121A (en) 2013-05-02 2014-04-29 Light emitting diode package structure
TW103115824A TW201444122A (en) 2013-05-02 2014-05-02 Fabricating method of light emitting device

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW103115348A TW201444121A (en) 2013-05-02 2014-04-29 Light emitting diode package structure
TW103115824A TW201444122A (en) 2013-05-02 2014-05-02 Fabricating method of light emitting device

Country Status (1)

Country Link
TW (3) TW201442854A (en)

Also Published As

Publication number Publication date
TW201444122A (en) 2014-11-16
TW201444121A (en) 2014-11-16

Similar Documents

Publication Publication Date Title
CN102986032B (en) Ray structure and preparation method thereof
JP2006135288A (en) White emitting diode package and its manufacturing method
TWI441361B (en) Light emitting diode packaging structure and method for fabricating the same
CN106414661A (en) Particles with quantum dots and method of making the same
CN103489996B (en) White-light LED encapsulation technique
CN106147749A (en) Fluorescent microsphere be assembled into photonic crystal, and its preparation method and application
CN102227012A (en) White light LED with uniform color temperature and high color rendering performance
CN105845812A (en) LED fluorescent glue and packaging method for improving luminescence uniformity, and LED
CN105140379B (en) One kind is in the uniform white light LED part of space multistory angle light emission color temperature and its method for packing
CN103700654A (en) LED (Light-Emitting Diode) based on COB (Chip On Board) package and manufacturing method thereof
CN103840063A (en) LED package substrate and manufacturing method thereof
WO2021232493A1 (en) Flexible color filter film and method for manufacturing same, and full-color micro light-emitting diode device
TW201135982A (en) Uniform film-layered structure that converts the wavelength of emitted light and method for forming the same
CN107910426B (en) Magnetic fluorescent powder composite material and plane coating method thereof
TWI472064B (en) Led package and the method for forming the same
CN101494271A (en) Method for manufacturing LED device and spraying equipment
CN103456871B (en) Improve the fluorescent coating structure of pc-LEDs spatial light uniformity of chromaticity
US9231168B2 (en) Light emitting diode package structure
TW201442854A (en) Composite material and fabricating method thereof
Liu et al. Simultaneously enhancing the angular-color uniformity, luminous efficiency, and reliability of white light-emitting diodes by ZnO@ SiO 2 modified silicones
CN205790054U (en) EMC upside-down mounting support adds a package lens structure
CN102185079B (en) Light Emitting Diode (LED) and manufacturing process thereof
CN104253198A (en) Fluorescent powder composite particle and preparation method and application thereof
CN108305928A (en) Wavelength convert component and light-emitting device
CN110943075B (en) Layered and zoned remote quantum dot white light LED and preparation method thereof