TW201440725A - Denoising method and apparatus of pulse wave signal and pulse oximetry - Google Patents
Denoising method and apparatus of pulse wave signal and pulse oximetry Download PDFInfo
- Publication number
- TW201440725A TW201440725A TW102116314A TW102116314A TW201440725A TW 201440725 A TW201440725 A TW 201440725A TW 102116314 A TW102116314 A TW 102116314A TW 102116314 A TW102116314 A TW 102116314A TW 201440725 A TW201440725 A TW 201440725A
- Authority
- TW
- Taiwan
- Prior art keywords
- pulse wave
- time domain
- domain signal
- wave time
- heart rate
- Prior art date
Links
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本發明涉及醫療器械領域,尤其涉及一種在低灌注情況下脈搏波信號的去噪處理方法和裝置及脈搏式血氧儀。
The invention relates to the field of medical instruments, in particular to a method and a device for denoising a pulse wave signal in a low perfusion condition and a pulse oximeter.
目前,通過光學方法實現無創檢測血氧飽和度及心率的技術在醫療領域已得到廣泛使用。隨著技術的不斷進步及發展,這種檢測血氧飽和度的設備不斷小型化,便攜式的血氧儀正得到越來越廣泛的應用。At present, techniques for non-invasive detection of blood oxygen saturation and heart rate by optical methods have been widely used in the medical field. With the continuous advancement and development of technology, this device for detecting blood oxygen saturation has been continuously miniaturized, and portable oximeters are becoming more and more widely used.
現有的脈搏式血氧儀所採用的計算方法很多,例如採用紅外光譜光電法等。但無論採用何種計算方法來獲得血氧飽和度和心率,其最基本的問題是脈搏波信號的噪聲去除。There are many calculation methods used in the existing pulse oximeter, such as infrared spectroscopy photoelectric method. But no matter what calculation method is used to obtain blood oxygen saturation and heart rate, the most basic problem is the noise removal of the pulse wave signal.
關於脈搏波信號的噪聲去除,目前主要採用以下兩類方法:1.僅在時域內進行簡單降噪處理,即採用低通、帶通、高通等常規的濾波方法對脈搏波信號進行濾波去噪,這類方法處理比較簡單,運算量較小,對硬件平臺要求較低。2.利用傅立葉變換、小波變換、自適應濾波等相對較爲複雜的算法進行去噪處理,這類方法運算量較大,對硬件平臺要求相對較高。目前,由於血氧儀小型化的需求,同時還要保證性能規格保持較高水準,因此對算法提出了較高要求,即,要求算法簡捷同時又能實現較高的性能規格。而對於上述第1類方法,由於其沒有針對不同心率進行針對性的濾波去噪,因而難以實現低灌注(脈搏搏動比較弱)下血氧飽和度和心率的準確測量。此外,對於上述第2類方法,其算法相對比較複雜,即使實現了低灌注下血氧飽和度和心率的較準確測量,但由於其對硬件平臺的要求較高,故血氧儀小型化存在很大難度。Regarding the noise removal of the pulse wave signal, the following two methods are mainly used: 1. Simple noise reduction processing is performed only in the time domain, that is, the pulse wave signal is filtered by a conventional filtering method such as low pass, band pass, and high pass. Noise, this kind of method is relatively simple to process, the amount of calculation is small, and the requirements on the hardware platform are low. 2. Denoising processing is performed by using relatively complex algorithms such as Fourier transform, wavelet transform and adaptive filtering. Such methods have a large amount of computation and relatively high requirements on the hardware platform. At present, due to the miniaturization of oximeters and the need to maintain a high level of performance specifications, high demands are placed on the algorithm, ie, the algorithm is required to be simple and at the same time achieve higher performance specifications. For the first type of method described above, since it does not perform targeted filtering and denoising for different heart rates, it is difficult to achieve accurate measurement of blood oxygen saturation and heart rate under low perfusion (weak pulse beat). In addition, for the above-mentioned Type 2 method, the algorithm is relatively complicated. Even if the blood oxygen saturation and heart rate are accurately measured under low perfusion, the oximeter is miniaturized because of its high requirements on the hardware platform. Very difficult.
因此,目前亟須一種算法簡單同時能在低灌注度情況下實現準確測量的小型血氧儀(譬如指夾式血氧儀)。
Therefore, there is currently no need for a small oximeter (such as a finger-clip oximeter) that is simple in algorithm and can achieve accurate measurement under low perfusion conditions.
本申請的一目的在於提供一種算法簡單同時能在低灌注度情況下實現準確測量的脈搏波信號的去噪處理方法和裝置及脈搏式血氧儀。An object of the present application is to provide a denoising processing method and apparatus for a pulse wave signal which is simple in algorithm and capable of accurately measuring under low perfusion condition, and a pulse oximeter.
爲了實現上述目的,本申請提供一種脈搏波信號的去噪處理方法,包括如下步驟:a.將通過對生物體組織透射光後得到的脈搏波時域信號進行歸一化;b.利用歸一化後的脈搏波時域信號的平均梯度來估算心率;c.根據所估算的心率對脈搏波時域信號進行去噪處理。In order to achieve the above object, the present application provides a method for denoising a pulse wave signal, including the following steps: a. Normalizing the pulse wave time domain signal obtained by transmitting light to the living tissue; b. Estimating the heart rate using the average gradient of the normalized pulse wave time domain signal; c. The pulse wave time domain signal is denoised according to the estimated heart rate.
優選地,在步驟b中,可以在歸一化後的脈搏波時域信號的波形內任意採樣多個脈搏波數據點,並可以利用如下公式來估算心率PR:Preferably, in step b, a plurality of pulse wave data points may be arbitrarily sampled within the waveform of the normalized pulse wave time domain signal, and the heart rate PR may be estimated using the following formula:
其中,t爲脈搏波數據點的採樣週期,單位爲毫秒,N1、N2分別爲歸一化後的脈搏波時域波形的幅值的最小值和最大值,
優選地,可以利用如下公式來計算平均梯度
其中,M爲所採樣的脈搏波數據點的數目,Xi爲第i個脈搏波數據點的值,i爲大於零小於等於M的整數。Where M is the number of sampled pulse wave data points, Xi is the value of the i-th pulse wave data point, and i is an integer greater than zero and less than or equal to M.
優選地,在步驟a之前還可以包括對脈搏波時域信號進行低通或帶通濾波處理和基線漂移處理的步驟。Preferably, the step of performing low-pass or band-pass filtering processing and baseline drift processing on the pulse wave time domain signal may also be included before step a.
優選地,步驟c中的去噪處理可以包括對脈搏波時域信號進行低通或帶通濾波處理。Preferably, the denoising process in step c may comprise low pass or band pass filtering of the pulse wave time domain signal.
本申請還提供一種脈搏波信號的去噪處理裝置,包括:歸一化模塊,對通過對生物體組織透射光後得到的脈搏波時域信號進行歸一化;心率估算模塊,利用歸一化後的脈搏波時域信號的平均梯度來估算心率;去噪處理模塊,根據所估算的心率對脈搏波時域信號進行去噪處理。The present application also provides a denoising processing device for a pulse wave signal, comprising: a normalization module that normalizes a pulse wave time domain signal obtained by transmitting light to a living tissue; a heart rate estimation module, using normalization The average gradient of the pulse wave time domain signal is used to estimate the heart rate; the denoising processing module performs denoising processing on the pulse wave time domain signal according to the estimated heart rate.
優選地,該心率估算模塊可以在歸一化後的脈搏波時域信號的波形內任意採樣多個脈搏波數據點,並利用如下公式來估算心率PR:Preferably, the heart rate estimation module can arbitrarily sample a plurality of pulse wave data points within the waveform of the normalized pulse wave time domain signal, and estimate the heart rate PR by using the following formula:
其中,t爲脈搏波數據點的採樣週期,單位爲毫秒,N1、N2分別爲歸一化後的脈搏波時域波形的幅值的最小值和最大值,
優選地,該平均梯度
其中,M爲所採樣的脈搏波數據點的數目,Xi爲第i個脈搏波數據點的值,i爲大於零小於等於M的整數。Where M is the number of sampled pulse wave data points, Xi is the value of the i-th pulse wave data point, and i is an integer greater than zero and less than or equal to M.
優選地,該去噪處理裝置還可以包括在歸一化之前對脈搏波時域信號進行低通或帶通濾波處理和基線漂移處理的預處理模塊。Preferably, the denoising processing apparatus may further comprise a pre-processing module for performing low-pass or band-pass filtering processing and baseline drift processing on the pulse wave time domain signal prior to normalization.
優選地,該去噪處理模塊可以對脈搏波時域信號進行低通或帶通濾波處理。Preferably, the denoising processing module can perform low pass or band pass filtering on the pulse wave time domain signal.
本申請還提供一種脈搏式血氧儀,包括:光電傳感器,向生物體組織發射光,接收透射過該生物體組織後的光強,並將接收的光強轉換爲電信號;A/D轉換器,將該電信號轉換爲數字化的脈搏波時域信號;以及數據處理模塊,從該A/D轉換器接收該脈搏波時域信號,並對該脈搏波時域信號進行處理以得到血氧飽和度和心率,其中該數據處理模塊包括如上所述之脈搏波信號的去噪處理裝置。The present application also provides a pulse oximeter, comprising: a photoelectric sensor that emits light to a living tissue, receives light intensity transmitted through the living tissue, and converts the received light intensity into an electrical signal; A/D conversion Transducing the electrical signal into a digitized pulse wave time domain signal; and a data processing module receiving the pulse wave time domain signal from the A/D converter and processing the pulse wave time domain signal to obtain blood oxygenation Saturation and heart rate, wherein the data processing module includes a denoising processing device for the pulse wave signal as described above.
本申請具有如下的優點:其算法簡單,同時能在低灌注度情況下實現準確測量。The application has the following advantages: the algorithm is simple, and at the same time, accurate measurement can be achieved under low perfusion conditions.
1...脈搏式血氧儀1. . . Pulse oximeter
11...光電傳感器11. . . photoelectric sensor
12...A/D轉換器12. . . A/D converter
13...數據處理模塊13. . . Data processing module
131...歸一化模塊131. . . Normalization module
132...心率估算模塊132. . . Heart rate estimation module
133...去噪處理模塊133. . . Denoising processing module
S01、S02、S03...步驟S01, S02, S03. . . step
圖1是脈搏波時域信號去噪處理的流程圖。
圖2是歸一化後的脈搏波時域波形圖。
圖3a和圖3b分別示出了原始脈搏波時域信號和根據本申請的實施例處理後的脈搏波時域信號的波形圖。
圖4是示出根據本申請的一實施例的脈搏式血氧儀的配置圖。
圖5是示出根據本申請的一實施例的數據處理模塊的配置圖。
1 is a flow chart of pulse wave time domain signal denoising processing.
2 is a normalized pulse wave time domain waveform diagram.
Figures 3a and 3b show waveform diagrams of the original pulse wave time domain signal and the pulse wave time domain signal processed in accordance with an embodiment of the present application, respectively.
4 is a configuration diagram showing a pulse oximeter according to an embodiment of the present application.
FIG. 5 is a configuration diagram showing a data processing module according to an embodiment of the present application.
體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上係當作說明之用,而非架構於限制本案。Some exemplary embodiments embodying the features and advantages of the present invention are described in detail in the following description. It is to be understood that the present invention is capable of various modifications in various aspects, and is not to be construed as a limitation.
下面將詳細描述本申請的實施例。應當注意,這裏描述的實施例僅用於舉例說明,並不用於限制本申請的範圍。Embodiments of the present application will be described in detail below. It should be noted that the embodiments described herein are for illustrative purposes only and are not intended to limit the scope of the application.
首先,將參考圖1描述對脈搏波時域信號進行去噪處理的具體流程。First, a specific flow of denoising processing of a pulse wave time domain signal will be described with reference to FIG.
在步驟S01中,將通過對生物體組織(例如,人的手指)透射光後得到的脈搏波時域信號進行歸一化;In step S01, the pulse wave time domain signal obtained by transmitting light to the living tissue (for example, a human finger) is normalized;
接著,在步驟S02,利用在步驟S01中歸一化後的脈搏波時域信號的平均梯度來估算心率;Next, in step S02, the heart rate is estimated by using the average gradient of the normalized pulse wave time domain signal in step S01;
最後,在步驟S03中,根據在步驟S02中所估算的心率對脈搏波時域信號進行去噪處理。Finally, in step S03, the pulse wave time domain signal is subjected to denoising processing based on the heart rate estimated in step S02.
接著,將參考圖4詳細描述根據本申請的一實施例的脈搏式血氧儀的配置。Next, the configuration of a pulse oximeter according to an embodiment of the present application will be described in detail with reference to FIG.
如圖4所示,脈搏式血氧儀1包括:光電傳感器11,向生物體組織發射光,接收透射過該生物體組織後的光強,並將接收的光強轉換爲電信號;A/D轉換器12,將該電信號轉換爲數字化的脈搏波時域信號;以及數據處理模塊13,從該A/D轉換器接收該脈搏波時域信號,並對該脈搏波時域信號進行處理以得到血氧飽和度和心率。As shown in FIG. 4, the pulse oximeter 1 includes a photosensor 11 that emits light to a living tissue, receives light intensity transmitted through the living tissue, and converts the received light intensity into an electrical signal; A/ D converter 12 converts the electrical signal into a digitized pulse wave time domain signal; and data processing module 13 receives the pulse wave time domain signal from the A/D converter and processes the pulse wave time domain signal To get blood oxygen saturation and heart rate.
然後,將參考圖5詳細說明根據本申請的一實施例的數據處理模塊13的配置。Then, the configuration of the data processing module 13 according to an embodiment of the present application will be described in detail with reference to FIG.
如圖5所示,數據處理模塊13包括:歸一化模塊131,對通過對生物體組織透射光後得到的脈搏波時域信號進行歸一化;心率估算模塊132,利用歸一化後的脈搏波時域信號的平均梯度來估算心率;以及去噪處理模塊133,根據所估算的心率對脈搏波時域信號進行去噪處理。As shown in FIG. 5, the data processing module 13 includes a normalization module 131 that normalizes the pulse wave time domain signal obtained by transmitting light to the living tissue; the heart rate estimation module 132 uses the normalized The average gradient of the pulse wave time domain signal is used to estimate the heart rate; and the denoising processing module 133 performs denoising processing on the pulse wave time domain signal based on the estimated heart rate.
下面將詳細描述根據本申請的一實施例對脈搏波時域信號進行去噪處理的過程。The process of denoising the pulse wave time domain signal according to an embodiment of the present application will be described in detail below.
首先,將通過對生物體組織透射光後得到的脈搏波時域信號進行第一次低通或帶通濾波處理(即,高頻去噪)和基線漂移處理。上述低通或帶通濾波處理可以消除脈搏波時域波形中的高頻噪聲,即消除脈搏波時域波形中的毛刺;而基線漂移處理可以消除脈搏波時域信號的直流波動。通過第一次低通或帶通濾波和基線漂移處理,可以使其後的粗略評價心率步驟更爲準確。First, the first low-pass or band-pass filtering process (ie, high-frequency denoising) and baseline drift processing are performed by the pulse wave time domain signal obtained by transmitting light to the living tissue. The low-pass or band-pass filtering described above can eliminate high-frequency noise in the pulse wave time domain waveform, that is, eliminate glitch in the pulse wave time domain waveform; and the baseline drift processing can eliminate the DC fluctuation of the pulse wave time domain signal. With the first low-pass or band-pass filtering and baseline drift processing, the subsequent rough evaluation of the heart rate step can be more accurate.
然後,將上述經高頻去噪和基線漂移處理後的脈搏波時域信號歸一化在一個範圍[N1,N2]之內,歸一化後的脈搏波時域信號如圖2所示。在圖2中,橫軸爲歸一化後的脈搏波時域信號的波形的採樣點,縱軸爲歸一化後的幅值(最大值爲N2,最小值爲N1)。Then, the pulse wave time domain signal processed by the high frequency denoising and baseline drift described above is normalized within a range [N1, N2], and the normalized pulse wave time domain signal is as shown in FIG. 2. In Fig. 2, the horizontal axis is the sampling point of the waveform of the normalized pulse wave time domain signal, and the vertical axis is the normalized amplitude (the maximum value is N2 and the minimum value is N1).
接著,從採樣點中任意選取M個脈搏波數據點,這M個數據點的值爲Xi(0<i≤M),並依次計算每兩個相鄰的數據點之間的梯度
設脈搏波數據採樣點的週期爲t毫秒,則1分鐘內包含的數據點個數爲60000/t。如圖2所示,在一個完整的脈搏波週期所包含的採樣點中,相鄰採樣點之間梯度的總和大約爲2(N2-N1),故一個完整的脈搏波週期所包含的採樣點個數大約爲:
最後,根據上述粗估算的心率進行針對性的低通或帶通濾波,以盡可能消除當前脈搏波數據的噪聲。Finally, targeted low pass or band pass filtering is performed based on the above rough estimated heart rate to eliminate as much noise as possible from the current pulse wave data.
下面將參考圖3a和圖3b來描述採用本申請的脈搏波時域信號去噪處理的效果。圖3a示出了灌注度爲0.1%且心率爲60的脈搏波時域信號,可以看出,該脈搏波時域信號毛刺多且起伏大。圖3b示出了經過上述具有針對性的脈搏波時域信號去噪處理過程之後的脈搏波時域波形,可以看到,利用本申請處理後的脈搏波時域波形已經較平滑,以這樣的脈搏波時域波形來準確實現血氧飽和度和心率的計算相對較容易。由此可見,通過上述的本申請的脈搏波時域信號去噪處理後,在小型化血氧儀(譬如指夾式血氧儀)中實現灌注度0.1%的準確測量是可行的。The effect of the pulse wave time domain signal denoising process using the present application will be described below with reference to Figs. 3a and 3b. Fig. 3a shows a pulse wave time domain signal with a perfusion degree of 0.1% and a heart rate of 60. It can be seen that the pulse wave time domain signal has many burrs and large fluctuations. FIG. 3b shows the pulse wave time domain waveform after the above-mentioned targeted pulse wave time domain signal denoising process. It can be seen that the pulse wave time domain waveform processed by the present application has been smoother, such that It is relatively easy to accurately calculate the oxygen saturation and heart rate in the pulse wave time domain waveform. It can be seen that, after the pulse wave time domain signal denoising process of the present application described above, it is feasible to achieve an accurate measurement of the perfusion degree of 0.1% in a miniaturized oximeter (such as a finger-clip oximeter).
上述實施例中的數據處理模塊、去噪處理裝置、歸一化模塊和心率估算模塊可以設計在單片機中,也可以集成在其它半導體芯片中。The data processing module, the denoising processing device, the normalization module and the heart rate estimation module in the above embodiments may be designed in a single chip microcomputer or integrated in other semiconductor chips.
儘管上面以示例性實施例的方式對本申請進行了詳細描述,但本申請的範圍不限於上述實施例,本領域的技術人員可以對本申請進行各種改進和變型,這些均不脫離本申請的範圍和構思。
While the present invention has been described in detail by way of example embodiments, the scope of the present application is not limited to the embodiments described above, and various modifications and changes can be made by those skilled in the art without departing from the scope of the application. Conception.
S01、S02、S03...步驟S01, S02, S03. . . step
Claims (11)
a.將通過對生物體組織透射光後得到的脈搏波時域信號進行歸一化;
b.利用歸一化後的脈搏波時域信號的平均梯度來估算心率;以及
c.根據所估算的心率對脈搏波時域信號進行去噪處理。A method for denoising a pulse wave signal, comprising the steps of:
a. Normalizing the pulse wave time domain signal obtained by transmitting light to the living tissue;
b. Estimating the heart rate using the average gradient of the normalized pulse wave time domain signal; and c. The pulse wave time domain signal is denoised according to the estimated heart rate.
其中,t爲脈搏波數據點的採樣週期,單位爲毫秒,N1、N2分別爲歸一化後的脈搏波時域波形的幅值的最小值和最大值,
Where t is the sampling period of the pulse wave data point in milliseconds, and N1 and N2 are the minimum and maximum values of the amplitude of the normalized pulse wave time domain waveform, respectively.
其中,M爲所採樣的脈搏波數據點的數目,Xi爲第i個脈搏波數據點的值,i爲大於零小於等於M的整數。The denoising processing method according to claim 2, characterized in that the average gradient is calculated by using the following formula
Where M is the number of sampled pulse wave data points, Xi is the value of the i-th pulse wave data point, and i is an integer greater than zero and less than or equal to M.
歸一化模塊,對通過對生物體組織透射光後得到的脈搏波時域信號進行歸一化;
心率估算模塊,利用歸一化後的脈搏波時域信號的平均梯度來估算心率;以及
去噪處理模塊,根據所估算的心率對脈搏波時域信號進行去噪處理。A denoising processing device for a pulse wave signal, comprising:
a normalization module that normalizes a pulse wave time domain signal obtained by transmitting light to a living tissue;
The heart rate estimation module estimates the heart rate using the average gradient of the normalized pulse wave time domain signal; and the denoising processing module performs denoising on the pulse wave time domain signal according to the estimated heart rate.
其中,t爲脈搏波數據點的採樣週期,單位爲毫秒,N1、N2分別爲歸一化後的脈搏波時域波形的幅值的最小值和最大值,
Where t is the sampling period of the pulse wave data point in milliseconds, and N1 and N2 are the minimum and maximum values of the amplitude of the normalized pulse wave time domain waveform, respectively.
其中,M爲所採樣的脈搏波數據點的數目,Xi爲第i個脈搏波數據點的值,i爲大於零小於等於M的整數。A denoising processing apparatus according to claim 7 of the patent application, characterized in that the average gradient
Where M is the number of sampled pulse wave data points, Xi is the value of the i-th pulse wave data point, and i is an integer greater than zero and less than or equal to M.
光電傳感器,向生物體組織發射光,接收透射過該生物體組織後的光強,並將接收的光強轉換爲電信號;
A/D轉換器,將該電信號轉換爲數字化的脈搏波時域信號;以及
數據處理模塊,從該A/D轉換器接收該脈搏波時域信號,並對該脈搏波時域信號進行處理以得到血氧飽和度和心率,
其中該數據處理模塊包括:如申請專利範圍第6項至第10項中任一項所述之脈搏波信號的去噪處理裝置。A pulse oximeter characterized by comprising:
a photoelectric sensor that emits light to a living tissue, receives light intensity transmitted through the living tissue, and converts the received light intensity into an electrical signal;
An A/D converter that converts the electrical signal into a digitized pulse wave time domain signal; and a data processing module that receives the pulse wave time domain signal from the A/D converter and processes the pulse wave time domain signal To get blood oxygen saturation and heart rate,
The data processing module includes: a denoising processing device for a pulse wave signal according to any one of claims 6 to 10.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310131413.9A CN104107038A (en) | 2013-04-16 | 2013-04-16 | Pulse wave signal de-noising processing method and device and pulse oximeter |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201440725A true TW201440725A (en) | 2014-11-01 |
TWI504378B TWI504378B (en) | 2015-10-21 |
Family
ID=51704165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102116314A TWI504378B (en) | 2013-04-16 | 2013-05-08 | Denoising method and apparatus of pulse wave signal and pulse oximetry |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104107038A (en) |
TW (1) | TWI504378B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9743868B2 (en) * | 2014-11-20 | 2017-08-29 | Qualcomm Incorporated | Circuitry to allow low current operation of a device capable of determining a blood property |
CN105496421A (en) * | 2016-01-11 | 2016-04-20 | 天津工业大学 | Ambient light noise removing photoelectric receiving circuit based on pulse blood oxygen saturation detection |
CN108078554A (en) * | 2018-01-05 | 2018-05-29 | 吉林大学 | A kind of human pulse ripple signal noise suppressing method |
WO2020154955A1 (en) * | 2019-01-30 | 2020-08-06 | 深圳市汇顶科技股份有限公司 | Heart rate detection method and apparatus, and electronic device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5632272A (en) * | 1991-03-07 | 1997-05-27 | Masimo Corporation | Signal processing apparatus |
US5638816A (en) * | 1995-06-07 | 1997-06-17 | Masimo Corporation | Active pulse blood constituent monitoring |
US6361501B1 (en) * | 1997-08-26 | 2002-03-26 | Seiko Epson Corporation | Pulse wave diagnosing device |
US7162288B2 (en) * | 2004-02-25 | 2007-01-09 | Nellcor Purtain Bennett Incorporated | Techniques for detecting heart pulses and reducing power consumption in sensors |
CN101176662A (en) * | 2006-11-10 | 2008-05-14 | 慈济大学 | Method for measuring heart rate |
CN101327121B (en) * | 2007-06-22 | 2010-10-13 | 香港中文大学 | Physiological parameter measurement mechanism |
CN102178536B (en) * | 2011-03-29 | 2013-04-03 | 苏州易寻传感网络科技有限公司 | Method and system for measuring oxygen saturation and heart rate |
-
2013
- 2013-04-16 CN CN201310131413.9A patent/CN104107038A/en active Pending
- 2013-05-08 TW TW102116314A patent/TWI504378B/en active
Also Published As
Publication number | Publication date |
---|---|
CN104107038A (en) | 2014-10-22 |
TWI504378B (en) | 2015-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3478166B1 (en) | On-demand heart rate estimation based on optical measurements | |
Vadrevu et al. | A robust pulse onset and peak detection method for automated PPG signal analysis system | |
JP6465899B2 (en) | Device and method for removing artifacts in physiological measurements | |
US20210128017A1 (en) | Respiratory state estimating device, portable device, wearable device, medium, respiratory state estimating method and respiratory state estimator | |
US10750982B2 (en) | Oxygen saturation measuring apparatus and oxygen saturation measuring method thereof | |
Wang et al. | Artifact reduction based on Empirical Mode Decomposition (EMD) in photoplethysmography for pulse rate detection | |
CN102631198B (en) | Dynamic spectrum data processing method based on difference value extraction | |
EP3570736B1 (en) | Determining health markers using portable devices | |
RU2010146145A (en) | NON-INVASIVE METHOD AND DEVICE FOR DETERMINING STAGES OF SURFACE AND DEEP SLEEP | |
TWI504378B (en) | Denoising method and apparatus of pulse wave signal and pulse oximetry | |
TWI505816B (en) | Detecting method and apparatus for blood oxygen saturation | |
Vinciguerra et al. | Progresses towards a processing pipeline in photoplethysmogram (PPG) based on SiPMs | |
CN101282685B (en) | Signal processing for pulse oximetry | |
Tan et al. | EMD-based electrocardiogram delineation for a wearable low-power ECG monitoring device | |
CN106073800B (en) | Method for processing dynamic spectral data and its device based on absolute difference and extraction | |
US20180338728A1 (en) | Wearable device, method and apparatus for eliminating motion interference | |
Lin et al. | A characteristic filtering method for pulse wave signal quality assessment | |
CN116502124A (en) | Pulse wave signal quality evaluation method and device and computer readable storage medium | |
JP2013106837A (en) | Heart rate detection method, heart rate detector, and mental stress measuring apparatus | |
Guo et al. | An effective photoplethysmography heart rate estimation framework integrating two-level denoising method and heart rate tracking algorithm guided by finite state machine | |
US20130211273A1 (en) | Method and apparatus for heart rate measurement | |
Sivaranjini et al. | Computationally-efficient pulse rate estimation from compressed ppg measurements for continuous vital signs monitoring | |
CN116028809A (en) | Continuous blood pressure measurement model training and measuring method and device | |
CN107405086A (en) | Determine device, assay method and program | |
US9314176B2 (en) | Apparatus and method for processing signal |