CN108078554A - A kind of human pulse ripple signal noise suppressing method - Google Patents

A kind of human pulse ripple signal noise suppressing method Download PDF

Info

Publication number
CN108078554A
CN108078554A CN201810009638.XA CN201810009638A CN108078554A CN 108078554 A CN108078554 A CN 108078554A CN 201810009638 A CN201810009638 A CN 201810009638A CN 108078554 A CN108078554 A CN 108078554A
Authority
CN
China
Prior art keywords
mrow
pulse wave
wave signal
noise
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810009638.XA
Other languages
Chinese (zh)
Inventor
李肃义
刘丽佳
吴疆
唐冰怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810009638.XA priority Critical patent/CN108078554A/en
Publication of CN108078554A publication Critical patent/CN108078554A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本发明公开了一种人体脉搏波信号噪声抑制方法,本发明为清晰显示波形形态,首先,将采集到的原始脉搏波信号幅度进行归一化处理。然后,为减少边缘效应的影响,对信号的两端进行周期延拓。最后,设计一种双重中值滤波器用于人体脉搏波信号的噪声抑制:利用第一重中值滤波器消除脉搏波信号中的高频噪声,再利用第二重中值滤波器估计信号中的低频噪声,之后从抑制高频噪声后的信号中去除估计的低频噪声以获取消噪后的信号。本发明可以抑制人体脉搏波信号中的高频噪声、基线漂移以及部分运动噪声,同时可以避免增加附加电路或使用复杂消噪算法,是一种可应用于微处理器的简单实时噪声抑制方法。

The invention discloses a human body pulse wave signal noise suppression method. In order to clearly display the waveform form, the invention firstly performs normalization processing on the collected original pulse wave signal amplitude. Then, in order to reduce the influence of the edge effect, the period extension is carried out on both ends of the signal. Finally, a double median filter is designed for noise suppression of the human pulse wave signal: the first median filter is used to eliminate the high-frequency noise in the pulse wave signal, and the second median filter is used to estimate the noise in the signal. low-frequency noise, and then remove the estimated low-frequency noise from the suppressed high-frequency noise signal to obtain a denoised signal. The invention can suppress high-frequency noise, baseline drift and part of motion noise in the pulse wave signal of the human body, and can avoid adding additional circuits or using complicated noise elimination algorithms, and is a simple real-time noise suppression method applicable to microprocessors.

Description

一种人体脉搏波信号噪声抑制方法A Noise Suppression Method for Human Pulse Wave Signal

技术领域technical field

本发明涉及一种基于双重中值滤波的实时脉搏波信号噪声抑制方法,特别适用于便携式脉搏血氧仪。The invention relates to a real-time pulse wave signal noise suppression method based on double median filtering, which is especially suitable for a portable pulse oximeter.

背景技术Background technique

人体脉搏波信号检测已被广泛应用于心血管系统、呼吸系统及血液循环系统的评估。人体脉搏波信号微弱,不可避免地会受到人体运动、粗重呼吸的干扰,从而影响信号的获取质量及后期临床生理参数计算的准确性。Human pulse wave signal detection has been widely used in the evaluation of cardiovascular system, respiratory system and blood circulation system. The human pulse wave signal is weak and will inevitably be interfered by human movement and heavy breathing, which will affect the quality of signal acquisition and the accuracy of later calculation of clinical physiological parameters.

目前,国内外的噪声抑制算法主要包括EMD消噪法、自适应滤波器消噪法、小波多分辨率分析消噪法、SVD消噪法、ICA消噪法、高阶统计消噪法以及逐周期傅立叶级数分析等,除此之外,还可以将小波消噪法集成于DSP中用于抑制工频干扰,使用加速度传感器采集信号作为运动参考以消除运动干扰,在32位ARM微控制器上实现基于轮廓分析的实时方法以检测脉搏波形的分割和伪差检测等。At present, the noise suppression algorithms at home and abroad mainly include EMD denoising method, adaptive filter denoising method, wavelet multi-resolution analysis denoising method, SVD denoising method, ICA denoising method, high-order statistical denoising method and step-by-step denoising method. Periodic Fourier series analysis, etc. In addition, wavelet denoising method can also be integrated in DSP to suppress power frequency interference, use acceleration sensor to collect signals as motion reference to eliminate motion interference, in 32-bit ARM microcontroller A real-time method based on contour analysis to detect pulse waveform segmentation and artifact detection etc.

然而,传统的基于普通微处理器的脉搏血氧仪的市场占有率较高,考虑到成本、体积、实时性和实现方式等因素,以上方法或需要增加额外的硬件电路以满足运动干扰信号的采集,或需要使用高端微控制器实现复杂消噪算法,或需要实现脉搏波信号数据传输并使用主机运行复杂的算法,不适用于便携式脉搏血氧仪的使用。因此,本发明聚焦于提供一种适用于普通微处理器的脉搏波实时噪声抑制方法。However, the market share of traditional pulse oximeters based on ordinary microprocessors is relatively high. Considering factors such as cost, volume, real-time and implementation methods, the above methods may need to add additional hardware circuits to meet the requirements of motion interference signals. Acquisition, or requires the use of high-end microcontrollers to implement complex noise reduction algorithms, or the need to implement pulse wave signal data transmission and use the host computer to run complex algorithms, which is not suitable for the use of portable pulse oximeters. Therefore, the present invention focuses on providing a pulse wave real-time noise suppression method suitable for common microprocessors.

发明内容Contents of the invention

本发明的目的是针对脉搏波信号中的噪声,提供一种基于双重中值滤波的实时消噪方法,该方法包括以下步骤:The object of the present invention is to provide a kind of real-time denoising method based on double median filtering for the noise in the pulse wave signal, and this method comprises the following steps:

(1)对原始脉搏波信号PPG进行归一化处理得到归一化处理后的脉搏波信号PPG1;(1) normalize the original pulse wave signal PPG to obtain the normalized pulse wave signal PPG1;

(2)对归一化处理后的脉搏波信号PPG 1进行周期延拓处理得到延拓处理后的脉搏波信号PPG 2;(2) Perform period extension processing on the pulse wave signal PPG 1 after the normalization processing to obtain the pulse wave signal PPG 2 after the extension processing;

(3)对延拓处理后的脉搏波信号PPG 2进行第一重中值滤波,滑动窗口大小为W1,用于抑制脉搏波信号中的高频噪声得到消除高频噪声的脉搏波信号PPG3;(3) Carry out the first heavy median filter to the pulse wave signal PPG 2 after the continuation process, the sliding window size is W1, is used for suppressing the high-frequency noise in the pulse wave signal and obtains the pulse wave signal PPG3 that eliminates the high-frequency noise;

(4)对消除高频噪声的脉搏波信号PPG 3进行第二重中值滤波,滑动窗口大小为W2,用于估计脉搏波信号中的低频噪声信号PPG 4;(4) Carry out the second heavy median filter to the pulse wave signal PPG 3 that eliminates high-frequency noise, and the sliding window size is W2, is used for estimating the low-frequency noise signal PPG 4 in the pulse wave signal;

(5)从消除高频噪声的脉搏波信号PPG 3中去除估计的低频噪声信号PPG 4,得到噪声抑制后的脉搏波信号PPG 5。(5) Remove the estimated low-frequency noise signal PPG 4 from the high-frequency noise-eliminated pulse wave signal PPG 3 to obtain a noise-suppressed pulse wave signal PPG 5 .

所述步骤(1)的归一化处理公式如下:The normalization processing formula of described step (1) is as follows:

其中,i=1,2,3…,L;L为PPG 1的数据长度,max为取最大值函数,min为取最小值函数;Wherein, i=1, 2, 3..., L; L is the data length of PPG 1, and max is the function of getting the maximum value, and min is the function of getting the minimum value;

所述步骤(2)中周期延拓长度Q取值为第二滑动窗口大小W2的二分之一,延拓公式如下:In the step (2), the value of period extension length Q is 1/2 of the second sliding window size W2, and the extension formula is as follows:

式中,L为PPG 1的数据长度,n=1,2,3…,2Q+L;In the formula, L is the data length of PPG 1, n=1, 2, 3..., 2Q+L;

所述步骤(3)的滑动窗口为78ms,并且PPG3(n)的取值为序列PPG2(i)中使得最小的值,其中,Q+1≤n≤Q+L, The sliding window of described step (3) is 78ms, and the value of PPG3(n) makes in sequence PPG2(i) The smallest value, where Q+1≤n≤Q+L,

所述步骤(4)的滑动窗口为8ms,并且PPG4(n)的取值为序列PPG3(i)中使得最小的值,其中,Q+1≤n≤Q+L, The sliding window of described step (4) is 8ms, and the value of PPG4(n) makes in sequence PPG3(i) The smallest value, where Q+1≤n≤Q+L,

所述步骤(5)具体为采用如下公式得到噪声抑制后的信号PPG5:The step (5) is specifically to use the following formula to obtain the signal PPG5 after noise suppression:

PPG5(n)=PPG3(n)-PPG4(n),Q+1≤n≤Q+L。PPG5(n)=PPG3(n)-PPG4(n), Q+1≤n≤Q+L.

本发明的有益效果:Beneficial effects of the present invention:

本发明可以抑制人体脉搏波信号中的高频噪声、基线漂移以及部分运动噪声,同时可以避免增加附加电路或使用复杂消噪算法,是一种可应用于微处理器的简单实时噪声抑制方法。The invention can suppress high-frequency noise, baseline drift and part of motion noise in the pulse wave signal of the human body, and can avoid adding additional circuits or using complicated noise elimination algorithms, and is a simple real-time noise suppression method applicable to microprocessors.

附图说明Description of drawings

图1是本发明的程序框图。Fig. 1 is a program block diagram of the present invention.

图2是本发明高频环境噪声状态下采集并经归一化处理后的脉搏波信号。Fig. 2 is the pulse wave signal collected and normalized under the condition of high-frequency environmental noise of the present invention.

图3是图2所示脉搏波信号经双重中值滤波噪声抑制后的结果。Fig. 3 is the result after the pulse wave signal shown in Fig. 2 is suppressed by double median filter noise.

图4是图2中所示脉搏波信号的频谱。FIG. 4 is a spectrum of the pulse wave signal shown in FIG. 2 .

图5是图3中所示脉搏波信号的频谱。FIG. 5 is a spectrum of the pulse wave signal shown in FIG. 3 .

图6是本发明运动状态下采集并经归一化处理后的脉搏波信号。Fig. 6 is the pulse wave signal collected and normalized in the exercise state of the present invention.

图7是图6所示脉搏波信号经双重中值滤波噪声抑制后的结果。Fig. 7 is the result of the pulse wave signal shown in Fig. 6 after double median filter noise suppression.

具体实施方式Detailed ways

本发明为清晰显示波形形态,将采集到的原始脉搏波信号幅度进行归一化处理。然后,为减少边缘效应的影响,对信号的两端进行周期延拓。最后,设计一种双重中值滤波器用于人体脉搏波信号的噪声抑制:利用第一重中值滤波器消除脉搏波信号中的高频噪声,再利用第二重中值滤波器估计信号中的低频噪声,之后从抑制高频噪声后的信号中去除估计的低频噪声以获取消噪后的信号。图1为噪声抑制方法的程序流程图。In order to clearly display the waveform form, the invention normalizes the amplitude of the collected original pulse wave signal. Then, in order to reduce the influence of the edge effect, the period extension is carried out on both ends of the signal. Finally, a double median filter is designed for noise suppression of the human pulse wave signal: the first median filter is used to eliminate the high-frequency noise in the pulse wave signal, and the second median filter is used to estimate the noise in the signal. low-frequency noise, and then remove the estimated low-frequency noise from the suppressed high-frequency noise signal to obtain a denoised signal. Figure 1 is a program flow chart of the noise suppression method.

本发明具体实施例所使用的原始脉搏波信号是通过实验获得,具体采用天津惊帆科技有限公司研制的脉搏血氧饱和度测量仪进行脉搏波信号采集,该脉搏血氧仪的采样频率为100Hz。在使用“LongDate吸合式电磁振动台”模拟高频环境噪声的条件下采集人体脉搏波信号,从中任意截取一段长度为2000个采样点的信号数据,双重中值滤波脉搏信号噪声抑制方法包括以下步骤:The original pulse wave signal used in the specific embodiment of the present invention is obtained through experiments. Specifically, the pulse oximeter developed by Tianjin Jingfan Technology Co., Ltd. is used to collect the pulse wave signal. The sampling frequency of the pulse oximeter is 100Hz . Using the "LongDate suction-type electromagnetic vibrating table" to collect human pulse wave signals under the condition of simulating high-frequency environmental noise, arbitrarily intercept a section of signal data with a length of 2000 sampling points, and the double median filter pulse signal noise suppression method includes the following steps :

(1)为清晰显示人体脉搏波信号形态,对原始脉搏波信号PPG进行归一化处理得到归一化处理后的脉搏波信号PPG 1,如图2所示,归一化公式如下:(1) In order to clearly show the shape of the human pulse wave signal, the original pulse wave signal PPG is normalized to obtain the normalized pulse wave signal PPG 1, as shown in Figure 2, and the normalization formula is as follows:

其中,i=1,2,3…,2000;max为取最大值函数,min为取最小值函数;Among them, i=1, 2, 3..., 2000; max is the function of taking the maximum value, and min is the function of taking the minimum value;

(2)为减少边缘效应的影响,对归一化处理后的脉搏波信号PPG 1两端进行周期延拓,选取延拓长度Q取值为第二滑动窗口大小W2的二分之一,即Q=W2/2=50,处理后的信号是延拓处理后的脉搏波信号PPG 2,则有:(2) In order to reduce the influence of the edge effect, period extension is performed on both ends of the normalized pulse wave signal PPG 1, and the extension length Q is selected as one-half of the second sliding window size W2, namely Q=W2/2=50, the processed signal is the pulse wave signal PPG 2 after the extension processing, then there are:

(3)选择窗口时间为78ms,根据仪器采样率为100Hz计算出第一滑动窗口大小W1=10,利用第一重滑动窗口中值滤波器消除高频噪声,处理后信号为消除高频噪声的脉搏波信号PPG3,PPG3(n)的取值为序列PPG2(i)中使得最小的值,其中51≤n≤2050,n-5≤i≤n+4;(3) select window time to be 78ms, calculate the first sliding window size W1=10 according to the instrument sampling rate of 100Hz, utilize the first heavy sliding window median filter to eliminate high-frequency noise, and the signal after processing is to eliminate high-frequency noise The value of the pulse wave signal PPG3, PPG3(n) is in the sequence PPG2(i) such that The smallest value, where 51≤n≤2050, n-5≤i≤n+4;

(4)选择窗口时间为8ms,计算出第二滑动窗口大小W2=100,利用第二重滑动窗口中值滤波器来估计低频噪声得到低频噪声信号PPG4,PPG4(n)的取值为序列PPG3(i)中使得最小的值,其中51≤n≤2050,n-50≤i≤n+49;(4) Select the window time to be 8ms, calculate the second sliding window size W2=100, utilize the second sliding window median filter to estimate the low-frequency noise and obtain the low-frequency noise signal PPG4, and the value of PPG4(n) is the sequence PPG3 (i) such that The smallest value, where 51≤n≤2050, n-50≤i≤n+49;

(5)从消除高频噪声的脉搏波信号PPG3中去除估计的低频噪声信号PPG4获得消噪后的信号,得到噪声抑制后的脉搏波信号PPG5,如图3:(5) Remove the estimated low-frequency noise signal PPG4 from the pulse wave signal PPG3 of the high-frequency noise to obtain the signal after denoising, and obtain the pulse wave signal PPG5 after the noise suppression, as shown in Figure 3:

PPG5(n)=PPG3(n)-PPG4(n),51≤n≤2050PPG5(n)=PPG3(n)-PPG4(n), 51≤n≤2050

为进一步量化评价算法,分别对图2、图3所示的脉搏波信号进行了频谱分析得到图4、图5,为便于观察,将频谱图中的频率所在坐标轴截取至0-60Hz。In order to further quantitatively evaluate the algorithm, spectrum analysis was performed on the pulse wave signals shown in Figure 2 and Figure 3 respectively to obtain Figure 4 and Figure 5. For the convenience of observation, the coordinate axis of the frequency in the spectrum diagram was intercepted to 0-60Hz.

由于脉搏波的能量通常集中在0.5-10Hz,所以从以上频谱图中不能清晰地体现对低频噪声的抑制效果。因此,在测试者站立行走的运动状态下采集人体脉搏波信号,任意截取一段长度为2000个采样点的信号数据,经步骤(1)处理后得到如图6所示的归一化后的脉搏波信号,其中主要的干扰为人体运动所导致的基线漂移低频噪声,如图中的中间曲线标记。经步骤(2)、步骤(3)、步骤(4)、步骤(5)双重中值滤波噪声抑制后的脉搏波信号如图7所示。Since the energy of the pulse wave is usually concentrated at 0.5-10Hz, the suppression effect on low-frequency noise cannot be clearly reflected from the above spectrogram. Therefore, the human body pulse wave signal is collected while the tester is standing and walking, and a section of signal data with a length of 2000 sampling points is arbitrarily intercepted. After processing in step (1), the normalized pulse wave shown in Figure 6 is obtained. Wave signal, where the main interference is the baseline drift low-frequency noise caused by human motion, as marked by the middle curve in the figure. The pulse wave signal after step (2), step (3), step (4), and step (5) double median filter noise suppression is shown in Fig. 7 .

Claims (6)

1.一种人体脉搏波信号噪声抑制方法,其特征在于:该方法包括如下步骤:1. a human body pulse wave signal noise suppression method is characterized in that: the method may further comprise the steps: (1)对原始脉搏波信号PPG进行归一化处理得到归一化处理后的脉搏波信号PPG1;(1) normalize the original pulse wave signal PPG to obtain the normalized pulse wave signal PPG1; (2)对归一化处理后的脉搏波信号PPG1进行周期延拓处理得到延拓处理后的脉搏波信号PPG2;(2) Perform period extension processing on the pulse wave signal PPG1 after the normalization processing to obtain the pulse wave signal PPG2 after the extension processing; (3)对延拓处理后的脉搏波信号PPG2进行第一重中值滤波,滑动窗口大小为W1,用于抑制脉搏波信号中的高频噪声得到消除高频噪声的脉搏波信号PPG3;(3) Carry out the first heavy median filter to the pulse wave signal PPG2 after the continuation process, the sliding window size is W1, is used for suppressing the high-frequency noise in the pulse wave signal and obtains the pulse wave signal PPG3 that eliminates the high-frequency noise; (4)对消除高频噪声的脉搏波信号PPG3进行第二重中值滤波,滑动窗口大小为W2,用于估计脉搏波信号中的低频噪声信号PPG4;(4) Carry out second heavy median filtering to the pulse wave signal PPG3 that eliminates high-frequency noise, and the sliding window size is W2, is used for estimating the low-frequency noise signal PPG4 in the pulse wave signal; (5)从消除高频噪声的脉搏波信号PPG3中去除估计的低频噪声信号PPG4,得到噪声抑制后的脉搏波信号PPG5。(5) Remove the estimated low-frequency noise signal PPG4 from the high-frequency noise-eliminated pulse wave signal PPG3 to obtain a noise-suppressed pulse wave signal PPG5. 2.根据权利要求1所述的一种人体脉搏波信号噪声抑制方法,其特征在于:所述步骤(1)的归一化处理公式如下:2. a kind of human pulse wave signal noise suppressing method according to claim 1, is characterized in that: the normalization processing formula of described step (1) is as follows: <mrow> <mi>P</mi> <mi>P</mi> <mi>G</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>P</mi> <mi>P</mi> <mi>G</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>P</mi> <mi>P</mi> <mi>G</mi> <mo>(</mo> <mi>i</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>P</mi> <mi>P</mi> <mi>G</mi> <mo>(</mo> <mi>i</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>P</mi> <mi>P</mi> <mi>G</mi> <mo>(</mo> <mi>i</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow><mi>P</mi><mi>P</mi><mi>G</mi><mn>1</mn><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>P</mi><mi>P</mi><mi>G</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>-</mo><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><mi>P</mi><mi>P</mi><mi>G</mi><mo>(</mo><mi>i</mi><mo>)</mo><mo>)</mo></mrow></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi><mrow><mo>(</mo><mi>P</mi><mi>P</mi><mi>G</mi><mo>(</mo><mi>i</mi><mo>)</mo><mo>)</mo></mrow><mo>-</mo><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><mi>P</mi><mi>P</mi><mi>G</mi><mo>(</mo><mi>i</mi><mo>)</mo><mo>)</mo></mrow></mrow></mfrac></mrow> 其中,i=1,2,3…,L;L为PPG1的数据长度,max为取最大值函数,min为取最小值函数。Among them, i=1, 2, 3..., L; L is the data length of PPG1, max is the function of obtaining the maximum value, and min is the function of obtaining the minimum value. 3.根据权利要求1所述的一种人体脉搏波信号噪声抑制方法,其特征在于:所述步骤(2)中周期延拓长度Q取值为第二滑动窗口大小W2的二分之一,延拓公式如下:3. a kind of human body pulse wave signal noise suppressing method according to claim 1 is characterized in that: in the described step (2), the period extension length Q takes a value of 1/2 of the second sliding window size W2, The continuation formula is as follows: <mrow> <mi>P</mi> <mi>P</mi> <mi>G</mi> <mn>2</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>P</mi> <mi>P</mi> <mi>G</mi> <mn>1</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>1</mn> <mo>&amp;le;</mo> <mi>n</mi> <mo>&amp;le;</mo> <mi>Q</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>P</mi> <mi>P</mi> <mi>G</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Q</mi> <mo>&lt;</mo> <mi>n</mi> <mo>&amp;le;</mo> <mi>Q</mi> <mo>+</mo> <mi>L</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>P</mi> <mi>P</mi> <mi>G</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>L</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Q</mi> <mo>+</mo> <mi>L</mi> <mo>&lt;</mo> <mi>n</mi> <mo>&amp;le;</mo> <mn>2</mn> <mi>Q</mi> <mo>+</mo> <mi>L</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><mi>P</mi><mi>P</mi><mi>G</mi><mn>2</mn><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><mi>P</mi><mi>P</mi><mi>G</mi><mn>1</mn><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo></mrow></mtd><mtd><mrow><mn>1</mn><mo>&amp;le;</mo><mi>n</mi><mo>&amp;le;</mo><mi>Q</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>P</mi><mi>P</mi><mi>G</mi><mn>1</mn><mrow><mo>(</mo><mi>n</mi><mo>-</mo><mi>Q</mi><mo>)</mo></mrow><mo>,</mo></mrow></mtd><mtd><mrow><mi>Q</mi><mo>&lt;</mo><mi>n</mi><mo>&amp;le;</mo><mi>Q</mi><mo>+</mo><mi>L</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>P</mi><mi>P</mi><mi>G</mi><mn>1</mn><mrow><mo>(</mo><mi>L</mi><mo>)</mo></mrow><mo>,</mo></mrow></mtd><mtd><mrow><mi>Q</mi><mo>+</mo><mi>L</mi><mo>&lt;</mo><mi>n</mi><mo>&amp;le;</mo><mn>2</mn><mi>Q</mi><mo>+</mo><mi>L</mi></mrow></mtd></mtr></mtable></mfenced></mrow> 式中,L为PPG1的数据长度,n=1,2,3…,2Q+L。In the formula, L is the data length of PPG1, n=1, 2, 3..., 2Q+L. 4.根据权利要求1所述的一种人体脉搏波信号噪声抑制方法,其特征在于:所述步骤(3)的滑动窗口为78ms,并且PPG3(n)的取值为序列PPG2(i)中使得最小的值,其中,Q+1≤n≤Q+L, 4. a kind of human pulse wave signal noise suppressing method according to claim 1 is characterized in that: the sliding window of described step (3) is 78ms, and the value of PPG3 (n) is in sequence PPG2 (i) make The smallest value, where Q+1≤n≤Q+L, 5.根据权利要求1所述的一种人体脉搏波信号噪声抑制方法,其特征在于:5. a kind of human pulse wave signal noise suppressing method according to claim 1, is characterized in that: 所述步骤(4)的滑动窗口为8ms,并且PPG4(n)的取值为序列PPG3(i)中使得最小的值,其中,Q+1≤n≤Q+L, The sliding window of described step (4) is 8ms, and the value of PPG4(n) makes in sequence PPG3(i) The smallest value, where Q+1≤n≤Q+L, 6.根据权利要求1所述的一种人体脉搏波信号噪声抑制方法,其特征在于:所述步骤(5)具体为采用如下公式得到噪声抑制后的信号PPG5:6. a kind of human pulse wave signal noise suppressing method according to claim 1, is characterized in that: described step (5) is specifically to adopt following formula to obtain the signal PPG5 after noise suppressing: PPG5(n)=PPG3(n)-PPG4(n),Q+1≤n≤Q+L。PPG5(n)=PPG3(n)-PPG4(n), Q+1≤n≤Q+L.
CN201810009638.XA 2018-01-05 2018-01-05 A kind of human pulse ripple signal noise suppressing method Pending CN108078554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810009638.XA CN108078554A (en) 2018-01-05 2018-01-05 A kind of human pulse ripple signal noise suppressing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810009638.XA CN108078554A (en) 2018-01-05 2018-01-05 A kind of human pulse ripple signal noise suppressing method

Publications (1)

Publication Number Publication Date
CN108078554A true CN108078554A (en) 2018-05-29

Family

ID=62179927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810009638.XA Pending CN108078554A (en) 2018-01-05 2018-01-05 A kind of human pulse ripple signal noise suppressing method

Country Status (1)

Country Link
CN (1) CN108078554A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109344809A (en) * 2018-11-21 2019-02-15 上海交通大学 An intelligent management system for household electrical appliances based on magnetic induction signals
CN110192867A (en) * 2019-06-25 2019-09-03 深圳市蓝瑞格生物医疗科技有限公司 A kind of method and system promoting measuring system measurement accuracy
CN114052688A (en) * 2021-12-07 2022-02-18 山东大学 Blood pressure monitoring device, storage medium and electronic equipment based on single-channel pulse wave
CN114912478A (en) * 2022-04-02 2022-08-16 浙江好络维医疗技术有限公司 Interference detection method for pulse wave signals
CN115192044A (en) * 2022-07-28 2022-10-18 西安交通大学 Single-target SSVEP (simple sequence order vector order) identification system and method based on data continuation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993377B2 (en) * 2002-02-22 2006-01-31 The Board Of Trustees Of The University Of Arkansas Method for diagnosing heart disease, predicting sudden death, and analyzing treatment response using multifractal analysis
CN1985764A (en) * 2005-12-23 2007-06-27 深圳迈瑞生物医疗电子股份有限公司 Blood oxygen measuring method and device capable of eliminating moving inteference
CN101099677A (en) * 2006-07-07 2008-01-09 深圳迈瑞生物医疗电子股份有限公司 Alternative current component detecting method and detecting device
CN101156771A (en) * 2007-09-28 2008-04-09 天津市先石光学技术有限公司 Method and apparatus for improving vascellum hardness measurement precision base on pulse wave frequency spectrum analysis
CN103405227A (en) * 2013-08-02 2013-11-27 重庆邮电大学 Double-layer morphological filter based electrocardiosignal preprocessing method
US20140073946A1 (en) * 2012-09-11 2014-03-13 Nellcor Puritan Bennett Llc Methods and systems for determining an algorithm setting based on a difference signal
CN104027095A (en) * 2014-06-25 2014-09-10 哈尔滨工业大学 Pulse data preprocessing method
CN104107038A (en) * 2013-04-16 2014-10-22 达尔生技股份有限公司 Pulse wave signal denoising processing method and device and pulse oximeter
CN105740845A (en) * 2016-03-02 2016-07-06 深圳竹信科技有限公司 Method and system for filtering baseline drift based on single layer morphology
CN106473750A (en) * 2016-10-08 2017-03-08 西安电子科技大学 Personal identification method based on photoplethysmographic optimal period waveform

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993377B2 (en) * 2002-02-22 2006-01-31 The Board Of Trustees Of The University Of Arkansas Method for diagnosing heart disease, predicting sudden death, and analyzing treatment response using multifractal analysis
CN1985764A (en) * 2005-12-23 2007-06-27 深圳迈瑞生物医疗电子股份有限公司 Blood oxygen measuring method and device capable of eliminating moving inteference
CN101099677A (en) * 2006-07-07 2008-01-09 深圳迈瑞生物医疗电子股份有限公司 Alternative current component detecting method and detecting device
CN101156771A (en) * 2007-09-28 2008-04-09 天津市先石光学技术有限公司 Method and apparatus for improving vascellum hardness measurement precision base on pulse wave frequency spectrum analysis
US20140073946A1 (en) * 2012-09-11 2014-03-13 Nellcor Puritan Bennett Llc Methods and systems for determining an algorithm setting based on a difference signal
CN104107038A (en) * 2013-04-16 2014-10-22 达尔生技股份有限公司 Pulse wave signal denoising processing method and device and pulse oximeter
CN103405227A (en) * 2013-08-02 2013-11-27 重庆邮电大学 Double-layer morphological filter based electrocardiosignal preprocessing method
CN104027095A (en) * 2014-06-25 2014-09-10 哈尔滨工业大学 Pulse data preprocessing method
CN105740845A (en) * 2016-03-02 2016-07-06 深圳竹信科技有限公司 Method and system for filtering baseline drift based on single layer morphology
CN106473750A (en) * 2016-10-08 2017-03-08 西安电子科技大学 Personal identification method based on photoplethysmographic optimal period waveform

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SUYI LI ET AL.: "Comparison and Noise Suppression of the Transmitted and Reflected Photoplethysmography Signals", 《BIOMED RESEARCH INTERNATIONAL》 *
张爱华等: "基于压缩感知的脉搏信号重构方法研究", 《中国医疗器械杂志》 *
杨力铭: "《时空域脉搏信号检测方法研究》", 31 December 2017, 西南交通大学出版社 *
高伟等: "基于脉搏波传导时间的血压监测方法", 《测控技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109344809A (en) * 2018-11-21 2019-02-15 上海交通大学 An intelligent management system for household electrical appliances based on magnetic induction signals
CN110192867A (en) * 2019-06-25 2019-09-03 深圳市蓝瑞格生物医疗科技有限公司 A kind of method and system promoting measuring system measurement accuracy
CN114052688A (en) * 2021-12-07 2022-02-18 山东大学 Blood pressure monitoring device, storage medium and electronic equipment based on single-channel pulse wave
CN114912478A (en) * 2022-04-02 2022-08-16 浙江好络维医疗技术有限公司 Interference detection method for pulse wave signals
CN114912478B (en) * 2022-04-02 2024-07-16 浙江好络维医疗技术有限公司 Pulse wave signal interference detection method
CN115192044A (en) * 2022-07-28 2022-10-18 西安交通大学 Single-target SSVEP (simple sequence order vector order) identification system and method based on data continuation

Similar Documents

Publication Publication Date Title
CN108078554A (en) A kind of human pulse ripple signal noise suppressing method
Sun et al. Robust heart beat detection from photoplethysmography interlaced with motion artifacts based on empirical mode decomposition
CN102697495B (en) Second-generation wavelet electromyographic signal noise eliminating method based on ensemble empirical mode decomposition
CN102499694B (en) Method for eliminating interference to blood oxygen saturation monitoring
CN104161505A (en) Motion noise interference eliminating method suitable for wearable heart rate monitoring device
Petersen et al. Removing cardiac artifacts from single-channel respiratory electromyograms
Singh et al. ECG signal denoising based on empirical mode decomposition and moving average filter
CN103829944B (en) Based on the thoracic impedance signal processing method of pattern recognition
CN108771534A (en) It is a kind of based on multi-wavelet transformation merge under pulse signal feature extracting method
CN106264505A (en) A kind of heart rate spectral peak system of selection based on support vector machine
TW201225912A (en) Method for measuring physiological parameters
CN104095640A (en) Blood oxygen saturation detection method and device
CN107361753A (en) Health state monitoring method based on pulse wave characteristic point
Tan et al. EMD-based electrocardiogram delineation for a wearable low-power ECG monitoring device
Janušauskas et al. Ensemble empirical mode decomposition based feature enhancement of cardio signals
Lin et al. Discrete-wavelet-transform-based noise reduction and R wave detection for ECG signals
CN113616194B (en) Device and method for monitoring hand tremor frequency and intensity
Huang et al. ECG baseline wander correction based on ensemble empirical mode decomposition with complementary adaptive noise
Bhogeshwar et al. To verify and compare denoising of ECG signal using various denoising algorithms of IIR and FIR filters
CN106236075A (en) One is applied to portable electrocardiograph and is surveyed Electrocardiographic noise-reduction method
TWI504378B (en) Denoising method and apparatus of pulse wave signal and pulse oximetry
CN114098690A (en) Lightweight pulse wave signal noise removal and heart rate detection method
Sugadev et al. Survey on Various noise sources in ECG signal and its Filtering Methods
CN109363646A (en) Basal plane preprocessing method and system for three-dimensional pulse wave image
Suchetha et al. Denoising and arrhythmia classification using EMD based features and neural network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180529

RJ01 Rejection of invention patent application after publication