TW201440253A - Light-emitting diode structure and method for manufacturing the same - Google Patents

Light-emitting diode structure and method for manufacturing the same Download PDF

Info

Publication number
TW201440253A
TW201440253A TW102113113A TW102113113A TW201440253A TW 201440253 A TW201440253 A TW 201440253A TW 102113113 A TW102113113 A TW 102113113A TW 102113113 A TW102113113 A TW 102113113A TW 201440253 A TW201440253 A TW 201440253A
Authority
TW
Taiwan
Prior art keywords
layer
electrical
emitting diode
light emitting
contact hole
Prior art date
Application number
TW102113113A
Other languages
Chinese (zh)
Inventor
Hsueh-Lin Lee
Chang-Hsin Chu
Yuan-Tze Chen
Chih-Kuei Hsu
Original Assignee
Chi Mei Lighting Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Lighting Tech Corp filed Critical Chi Mei Lighting Tech Corp
Priority to TW102113113A priority Critical patent/TW201440253A/en
Priority to US13/886,588 priority patent/US20130292719A1/en
Publication of TW201440253A publication Critical patent/TW201440253A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting diode structure and a method for manufacturing the same are described, which includes an insulation substrate, a plurality of light-emitting diode chips, a plurality of interconnection layers, a first conductivity type electrode pad, a second conductivity type electrode pad, an insulating reflective layer, a first conductivity type bonding pad and a second conductivity type bonding pad. Each light-emitting diode chip includes a mesa structure and a first conductivity type semiconductor layer exposed portion adjacent to each other, and a first isolation trench disposed within the mesa structure. The interconnection layers respectively connect adjacent two of the light-emitting diode chips. The first conductivity type electrode pad and the second conductivity type electrode pad electrically connect to two light-emitting diode chips respectively. The insulating reflective layer covers the interconnection layers, the mesa structures, the first conductivity type electrode pad and the second conductivity type electrode pad. The first conductivity type bonding pad and the second conductivity type bonding pad are disposed on the insulating reflective layer, and electrically connect to the first conductivity type electrode pad and the second conductivity type electrode pad respectively.

Description

發光二極體結構及其製造方法 Light-emitting diode structure and manufacturing method thereof

本發明是有關於一種發光結構,且特別是有關於一種發光二極體(LED)結構及其製造方法。 The present invention relates to a light emitting structure, and more particularly to a light emitting diode (LED) structure and a method of fabricating the same.

目前,為了提升發光二極體整體之發光效率,而發展出利用打線方式來串聯多個發光二極體晶片。由於打線方式有成本高生產良率低的問題,因此進一步發展出利用內建金屬來進行多個發光二極體晶片的串聯。 At present, in order to improve the luminous efficiency of the entire light-emitting diode, a plurality of light-emitting diode chips are connected in series by a wire bonding method. Since the wire bonding method has a problem of high cost and low production yield, it has been further developed to use a built-in metal to perform series connection of a plurality of light-emitting diode chips.

請參照第1圖,其係繪示一種傳統串聯之發光二極體結構的局部剖面圖。此傳統之串聯發光二極體結構100係利用內建金屬來串聯多個發光二極體晶片。串聯發光二極體結構100包含數個串聯之發光二極體晶片,例如發光二極體晶片106a與106b。其中,這些發光二極體晶片106a與106b設置在絕緣基板102之表面104上。相鄰之二發光二極體晶片106a與106b之間以隔離溝渠122隔開。而每個發光二極體晶片106a與106b包含依序堆疊在絕緣基板102之表面上的未摻雜半導體層108、第一電性半導體層110、主動層112、第二電性半導體層114與透明導電層116。 Please refer to FIG. 1 , which is a partial cross-sectional view showing a conventional tandem LED structure. The conventional series LED structure 100 utilizes built-in metal to connect a plurality of light emitting diode chips in series. The series light emitting diode structure 100 includes a plurality of light emitting diode chips in series, such as light emitting diode chips 106a and 106b. The light emitting diode chips 106a and 106b are disposed on the surface 104 of the insulating substrate 102. The adjacent two LED chips 106a and 106b are separated by an isolation trench 122. Each of the LED chips 106a and 106b includes an undoped semiconductor layer 108, a first electrical semiconductor layer 110, an active layer 112, and a second electrical semiconductor layer 114 which are sequentially stacked on the surface of the insulating substrate 102. Transparent conductive layer 116.

發光二極體晶片106a與106b均具有平台結構128 與第一電性半導體層110之暴露部分130。發光二極體晶片106a之第一電性電極墊118a與第二電性電極墊120a分別設於第一電性半導體層110之暴露部分130與平台結構128上。同樣地,發光二極體晶片106b之第一電性電極墊118b與第二電性電極墊120b分別設於第一電性半導體層110之暴露部分130與平台結構128上。 Light-emitting diode chips 106a and 106b each have a platform structure 128 And an exposed portion 130 of the first electrical semiconductor layer 110. The first electrical electrode pad 118a and the second electrical electrode pad 120a of the LED wafer 106a are respectively disposed on the exposed portion 130 of the first electrical semiconductor layer 110 and the platform structure 128. Similarly, the first electrical electrode pad 118b and the second electrical electrode pad 120b of the LED chip 106b are respectively disposed on the exposed portion 130 of the first electrical semiconductor layer 110 and the platform structure 128.

在發光二極體結構100中,絕緣層124覆蓋在隔離溝渠122內,且延伸於此隔離溝渠122之開口外側之發光二極體晶片106a的第一電性半導體層110、與發光二極體晶片106b的透明導電層116上,以電性隔離相鄰之二發光二極體晶片106a與106b。而為了串聯相鄰之二發光二極體晶片106a與106b,發光二極體結構100具有內連線層126。內連線層126自發光二極體晶片106a之第一電性電極墊118a上,經由位在第一電性半導體層110之暴露部分130上方與隔離溝渠122內之絕緣層124,而延伸至相鄰發光二極體晶片106b上的絕緣層124與第二電性電極墊120b上,以電性串聯相鄰之發光二極體晶片106a與106b。 In the light emitting diode structure 100, the insulating layer 124 covers the first electrical semiconductor layer 110 and the light emitting diode of the light emitting diode chip 106a extending outside the opening of the isolation trench 122 in the isolation trench 122. The transparent conductive layer 116 of the wafer 106b electrically isolates the adjacent two LED chips 106a and 106b. In order to connect adjacent two LED chips 106a and 106b in series, the LED structure 100 has an interconnect layer 126. The interconnect layer 126 extends from the first electrical electrode pad 118a of the LED substrate 106a via the insulating layer 124 located above the exposed portion 130 of the first electrical semiconductor layer 110 and the isolation trench 122 to On the insulating layer 124 on the adjacent LED wafer 106b and the second electrode pad 120b, the LED chips 106a and 106b are electrically connected in series.

由於此種串聯式之發光二極體結構100利用較高的電壓來加以驅動,因此驅動電路具有較高的效率。其次,相較於多個獨立的發光二極體晶片,串聯式之發光二極體結構100的電極墊面積小,因此發光二極體結構100具有較大的出光面積。再者,由於串聯式之發光二極體結構100的電流可分散流動於每個小發光二極體晶片,因此電流分布較單一個大面積的發光二極體晶片均勻,故串聯式之發 光二極體結構100的發光效率較佳。 Since the tandem LED structure 100 is driven with a higher voltage, the driving circuit has higher efficiency. Secondly, compared to the plurality of independent light-emitting diode chips, the electrode pad structure of the tandem light-emitting diode structure 100 is small, and thus the light-emitting diode structure 100 has a large light-emitting area. Furthermore, since the current of the tandem LED structure 100 can be dispersed and flowed to each of the small light-emitting diode wafers, the current distribution is uniformer than that of a single large-area light-emitting diode wafer, so that the serial type is emitted. The light-emitting efficiency of the photodiode structure 100 is better.

然而,由於這種傳統的串聯式發光二極體結構100的隔離溝渠122的底部需向下延伸至絕緣基板102之表面104。因此,隔離溝渠122之深寬比過高,導致絕緣層124之材料不易填入,而容易產生沉積不連續的情形,使得絕緣層124中易有破孔生成。故,後續沉積導電之內連線層126時,內連線層126之導電材料可能會填入絕緣層124之破孔中,而造成短路現象。 However, since the bottom of the isolation trench 122 of the conventional tandem LED structure 100 needs to extend down to the surface 104 of the insulating substrate 102. Therefore, the aspect ratio of the isolation trench 122 is too high, so that the material of the insulating layer 124 is not easily filled, and the deposition is likely to be discontinuous, so that the insulating layer 124 is prone to generation of broken holes. Therefore, when the conductive interconnect layer 126 is subsequently deposited, the conductive material of the interconnect layer 126 may be filled into the holes of the insulating layer 124 to cause a short circuit.

在串聯式發光二極體結構100中,只要有其中一個發光二極體晶片106a或106b有短路現象,整個串聯的發光二極體結構100就無法運轉。因此,串聯式發光二極體結構100的生產良率不佳。 In the tandem light-emitting diode structure 100, as long as one of the light-emitting diode chips 106a or 106b has a short circuit phenomenon, the entire series-connected light-emitting diode structure 100 cannot operate. Therefore, the production yield of the tandem light-emitting diode structure 100 is not good.

此外,隔離溝渠122之深寬比過高也容易使內連線層126的沉積不連續,如此一來將造成內連線層126斷線。在串聯式發光二極體結構100中,只要有其中一個發光二極體晶片106a或106b有斷線現象,整個串聯的發光二極體結構100同樣無法運轉。因此,此種串聯式發光二極體結構100的生產良率不佳。 In addition, if the aspect ratio of the isolation trench 122 is too high, the deposition of the interconnect layer 126 is liable to be discontinuous, which may cause the interconnect layer 126 to be broken. In the tandem light-emitting diode structure 100, as long as one of the light-emitting diode chips 106a or 106b is broken, the entire series-connected light-emitting diode structure 100 is also inoperable. Therefore, the production yield of such a tandem LED structure 100 is not good.

因此,本發明之一態樣就是在提供一種發光二極體結構,其由多個發光二極體晶片串聯而成,而具有排列密與高光效等優勢。 Therefore, an aspect of the present invention is to provide a light-emitting diode structure which is formed by connecting a plurality of light-emitting diode chips in series, and has the advantages of dense arrangement and high light efficiency.

本發明之另一態樣就是在提供一種發光二極體結構及其製造方法,其包含絕緣反射層覆蓋在每個發光二極 體晶片之內連線、平台結構與第一電性半導體層暴露部分上,因此可利用覆晶方式進行封裝,而達到高散熱、免打線與低熱阻等功效。 Another aspect of the present invention is to provide a light emitting diode structure and a method of fabricating the same, comprising an insulating reflective layer covering each of the light emitting diodes The inner wiring of the bulk wafer, the platform structure and the exposed portion of the first electrical semiconductor layer can be packaged by flip chip, thereby achieving high heat dissipation, no wire bonding and low thermal resistance.

本發明之又一態樣就是在提供一種發光二極體結構及其製造方法,其內連線層係從相鄰發光二極體晶片之一者的第一電性半導體層之暴露部分,直接經由另一者的平台結構的側面而延伸至此平台結構上。因此,可大幅降低內連線層之深寬比,而可有效提升內連線層沉積時之階梯覆蓋能力,進而可避免內連線層沉積時產生斷線。 Another aspect of the present invention provides a light emitting diode structure and a method of fabricating the same, wherein the interconnect layer is directly exposed from a first electrical semiconductor layer of one of the adjacent light emitting diode chips. It extends to the platform structure via the side of the platform structure of the other. Therefore, the aspect ratio of the interconnect layer can be greatly reduced, and the step coverage ability of the interconnect layer deposition can be effectively improved, thereby avoiding disconnection when the interconnect layer is deposited.

本發明之再一態樣就是在提供一種發光二極體結構及其製造方法,其發光二極體晶片之平台結構可具有梯形傾斜側面,因此可進一步提升內連線層之階梯覆蓋能力,而更有效解決內連線層斷線的問題。 A further aspect of the present invention provides a light emitting diode structure and a manufacturing method thereof, wherein the platform structure of the light emitting diode chip can have a trapezoidal inclined side surface, thereby further improving the step coverage capability of the interconnect layer. More effective in solving the problem of disconnection of the interconnect layer.

本發明之再一態樣就是在提供一種發光二極體結構及其製造方法,其發光二極體晶片之發光區域與相鄰之發光二極體晶片的第一電性半導體層之間以隔離溝渠隔開,且隔離溝渠中僅填充絕緣層而無導電材料。再加上,隔離溝渠之開口上可額外設置電流阻障層來加以電性隔絕。因此,縱使隔離溝渠內的絕緣層沉積不連續,在隔離溝渠內無導電材料的情況下,發光區域中也不會有短路的問題產生。 A further aspect of the present invention provides a light emitting diode structure and a method of fabricating the same, wherein the light emitting region of the light emitting diode chip is isolated from the first electrical semiconductor layer of the adjacent light emitting diode chip. The trenches are separated, and the isolation trench is filled with only an insulating layer and no conductive material. In addition, an additional current blocking layer may be additionally disposed on the opening of the isolation trench to be electrically isolated. Therefore, even if the deposition of the insulating layer in the isolation trench is discontinuous, there is no problem of short circuit in the light-emitting region in the case where there is no conductive material in the isolation trench.

本發明之再一態樣就是在提供一種發光二極體結構及其製造方法,其內連線層可直接從相鄰發光二極體晶片之一者上方之介電層中的接觸孔經由介電層上方延伸至 另一者上方之介電層中的接觸孔。因此,導電材料可不需要填充在相鄰二發光二極體晶片之間的隔離溝槽中,因而可解決內連線層斷線的問題。 A further aspect of the present invention provides a light emitting diode structure and a method of fabricating the same, wherein the interconnect layer can directly pass through a contact hole in a dielectric layer above one of the adjacent light emitting diode chips. Extending over the electrical layer to The contact hole in the dielectric layer above the other. Therefore, the conductive material may not need to be filled in the isolation trench between the adjacent two light-emitting diode wafers, thereby solving the problem of disconnection of the interconnect layer.

本發明之再一態樣是在提供一種發光二極體結構及其製造方法,其可有效解決短路與斷線的問題,因此可大幅提升串聯發光二極體結構之生產良率,進而可降低製作成本。 A further aspect of the present invention provides a light emitting diode structure and a manufacturing method thereof, which can effectively solve the problem of short circuit and disconnection, thereby greatly improving the production yield of the series light emitting diode structure, thereby reducing the yield. production cost.

本發明之再一態樣是在提供一種發光二極體結構及其製造方法,其可有效解決短路與斷線的問題,因此可無需仰賴逆向漏電流的檢測手段,而透過順逆向電流的檢測,即可順利確認發光二極體結構中之短路缺陷。 A further aspect of the present invention provides a light emitting diode structure and a manufacturing method thereof, which can effectively solve the problem of short circuit and disconnection, and therefore can detect the forward and reverse current without relying on the reverse leakage current detecting means. , the short-circuit defect in the structure of the light-emitting diode can be successfully confirmed.

根據本發明之上述目的,提出一種發光二極體結構。此發光二極體結構包含一絕緣基板、複數個發光二極體晶片、複數個內連線層、一第一電性電極墊、一第二電性電極墊、一絕緣反射層、一第一電性接合墊以及一第二電性接合墊。每一發光二極體晶片包含一磊晶層,此磊晶層包含依序堆疊在絕緣基板之一表面上之一第一電性半導體層、一主動層以及一第二電性半導體層,且每一發光二極體晶片包含鄰接之一平台結構與一第一電性半導體層暴露部分、以及一第一隔離溝渠,第一隔離溝渠設於平台結構中。前述之複數個內連線層分別連接發光二極體晶片之相鄰二者。第一電性電極墊及第二電性電極墊分別設於發光二極體晶片之一第一者與一第二者上,且分別與第一者之第一電性半導體層暴露部分及第二者之第二電性半導體 層電性連接。絕緣反射層覆蓋在前述之內連線層、平台結構、第一電性電極墊與第二電性電極墊上。其中,此絕緣反射層具有至少一第一貫穿孔與至少一第二貫穿孔分別暴露出部分之第一電性電極墊與第二電性電極墊。第一電性接合墊位於部分之絕緣反射層上,且經過至少一第一貫穿孔而與第一電性電極墊電性連接。第二電性接合墊位於另一部分之絕緣反射層上,並與第一電性接合墊分離,且經過至少一第二貫穿孔而與第二電性電極墊電性連接。 According to the above object of the present invention, a light emitting diode structure is proposed. The light emitting diode structure comprises an insulating substrate, a plurality of light emitting diode chips, a plurality of interconnecting layers, a first electrical electrode pad, a second electrical electrode pad, an insulating reflective layer, and a first An electrical bond pad and a second electrical bond pad. Each of the light-emitting diode chips includes an epitaxial layer, and the epitaxial layer includes a first electrical semiconductor layer, an active layer, and a second electrical semiconductor layer stacked on one surface of the insulating substrate. Each of the light emitting diode chips includes a substrate structure adjacent to the first electrical semiconductor layer and a first isolation trench, and the first isolation trench is disposed in the platform structure. The plurality of interconnecting layers are respectively connected to adjacent ones of the light emitting diode chips. The first electrical electrode pad and the second electrical electrode pad are respectively disposed on the first one and the second one of the light emitting diode chips, and respectively exposed to the first electrical semiconductor layer of the first one and the second Second electrical semiconductor Layer electrical connection. The insulating reflective layer covers the inner wiring layer, the platform structure, the first electrical electrode pad and the second electrical electrode pad. The insulating reflective layer has at least one first through hole and at least one second through hole respectively exposing a portion of the first electrical electrode pad and the second electrical electrode pad. The first electrical bonding pad is located on a portion of the insulating reflective layer and electrically connected to the first electrical electrode pad through the at least one first through hole. The second electrical bonding pad is located on the insulating reflective layer of the other portion and is separated from the first electrical bonding pad and electrically connected to the second electrical electrode pad through the at least one second through hole.

依據本發明之一實施例,上述每一發光二極體晶片更包含一絕緣層,此絕緣層填入第一隔離溝渠中,以封住第一隔離溝渠之一開口。 According to an embodiment of the invention, each of the LED chips further includes an insulating layer filled in the first isolation trench to seal an opening of the first isolation trench.

依據本發明之另一實施例,上述每一發光二極體晶片更包含一電流阻障層介於平台結構上之內連線層與絕緣層之間。 According to another embodiment of the present invention, each of the light emitting diode chips further includes a current blocking layer interposed between the interconnect layer and the insulating layer on the platform structure.

依據本發明之又一實施例,上述每一發光二極體晶片更包含一透明導電層延伸於平台結構之第二電性半導體層上,且介於平台結構上之內連線層與電流阻障層之間。 According to still another embodiment of the present invention, each of the light emitting diode chips further includes a transparent conductive layer extending on the second electrical semiconductor layer of the platform structure, and the interconnect layer and the current resistance on the platform structure. Between the barriers.

依據本發明之再一實施例,上述每一發光二極體晶片更包含一介電層設於磊晶層上,且每一發光二極體晶片設有一第一電性接觸孔與一第二電性接觸孔貫穿介電層。此外,第一隔離溝渠介於發光二極體晶片之第二電性接觸孔與相鄰之發光二極體晶片之第一電性接觸孔之間。再者,每一內連線層由每一發光二極體晶片之第二電性接觸孔中經由第一隔離溝渠上方而延伸至相鄰之發光二極體晶 片之第一電性接觸孔中。而且,絕緣反射層更覆蓋在介電層上。 According to still another embodiment of the present invention, each of the light emitting diode chips further includes a dielectric layer disposed on the epitaxial layer, and each of the light emitting diode chips is provided with a first electrical contact hole and a second Electrical contact holes extend through the dielectric layer. In addition, the first isolation trench is interposed between the second electrical contact hole of the LED chip and the first electrical contact hole of the adjacent LED chip. Furthermore, each of the interconnect layers extends from the second electrical contact hole of each of the light-emitting diode chips to the adjacent light-emitting diode crystal via the first isolation trench. The first electrical contact hole of the sheet. Moreover, the insulating reflective layer covers the dielectric layer more.

依據本發明之再一實施例,上述每一發光二極體晶片更包含一透明導電層介於介電層與磊晶層之間。其次,第一電性接觸孔之一底部暴露出第一電性半導體層暴露部分。而且,第二電性接觸孔之一底部暴露出該透明導電層。 According to still another embodiment of the present invention, each of the light emitting diode chips further includes a transparent conductive layer interposed between the dielectric layer and the epitaxial layer. Next, the exposed portion of the first electrical semiconductor layer is exposed at the bottom of one of the first electrical contact holes. Moreover, the transparent conductive layer is exposed at the bottom of one of the second electrical contact holes.

依據本發明之再一實施例,上述每一發光二極體晶片更包含至少一電流阻障層介於第二電性接觸孔之底部與磊晶層之間。 According to still another embodiment of the present invention, each of the light emitting diode chips further includes at least one current blocking layer between the bottom of the second electrical contact hole and the epitaxial layer.

依據本發明之再一實施例,在上述每一發光二極體晶片中,磊晶層具有一凹槽,凹槽之一底部暴露出第一電性半導體層暴露部分,第一電性接觸孔暴露出凹槽之底部的一部分,且介電層覆蓋在凹槽之一側壁上。 According to still another embodiment of the present invention, in each of the light emitting diode wafers, the epitaxial layer has a recess, and one of the bottoms of the recess exposes the exposed portion of the first electrical semiconductor layer, and the first electrical contact hole A portion of the bottom of the recess is exposed and a dielectric layer overlies one of the sidewalls of the recess.

依據本發明之再一實施例,上述每一發光二極體晶片更包含至少一絕緣襯層覆蓋在第一電性接觸孔之一側壁上。 According to still another embodiment of the present invention, each of the light emitting diode wafers further includes at least one insulating liner covering one of the sidewalls of the first electrical contact hole.

根據本發明之上述目的,另提出一種發光二極體結構之製造方法,包含下列步驟。提供一絕緣基板。形成一磊晶結構。其中,磊晶結構包含依序堆疊在絕緣基板之一表面上之一第一電性半導體層、一主動層與一第二電性半導體層。形成複數個第一隔離溝渠與複數個第二隔離溝渠於磊晶結構中,以定義出複數個發光二極體晶片之複數個磊晶層。其中,第一隔離溝渠分別與第二隔離溝渠鄰接。移除部分之第二電性半導體層與部分之主動層,以定義出 每一發光二極體晶片之一平台結構與一第一電性半導體層暴露部分。其中,每一發光二極體晶片包含一第一隔離溝渠,且此第一隔離溝渠設於平台結構中。形成複數個內連線層、一第一電性電極墊及一第二電性電極墊。其中,這些內連線層分別連接發光二極體晶片之相鄰二者。第一電性電極墊及第二電性電極墊分別設於這些發光二極體晶片之一第一者與一第二者上,且第一電性電極墊及該第二電性電極墊分別與第一者之第一電性半導體層暴露部分及第二者之第二電性半導體層電性連接。形成一絕緣反射層覆蓋在內連線層、平台結構、第一電性電極墊與第二電性電極墊上。其中,絕緣反射層具有至少一第一貫穿孔與至少一第二貫穿孔分別暴露出部分之第一電性電極墊與部分之第二電性電極墊。形成一第一電性接合墊於部分之絕緣反射層上。其中,第一電性接合墊經過至少一第一貫穿孔而與第一電性電極墊電性連接。形成一第二電性接合墊於另一部分之絕緣反射層上。其中,第二電性接合墊與第一電性接合墊分離。而且,第二電性接合墊經過至少一第二貫穿孔而與第二電性電極墊電性連接。 According to the above object of the present invention, there is further provided a method of fabricating a light emitting diode structure comprising the following steps. An insulating substrate is provided. An epitaxial structure is formed. The epitaxial structure includes a first electrical semiconductor layer, an active layer and a second electrical semiconductor layer stacked on one surface of the insulating substrate in sequence. A plurality of first isolation trenches and a plurality of second isolation trenches are formed in the epitaxial structure to define a plurality of epitaxial layers of the plurality of light emitting diode chips. The first isolation trenches are respectively adjacent to the second isolation trenches. Removing a portion of the second electrical semiconductor layer and a portion of the active layer to define One of the platform structures of each of the light emitting diode chips and a first electrical semiconductor layer exposed portion. Each of the light emitting diode chips includes a first isolation trench, and the first isolation trench is disposed in the platform structure. Forming a plurality of interconnect layers, a first electrical electrode pad and a second electrical electrode pad. Wherein, the interconnect layers are respectively connected to adjacent ones of the LEDs. The first electrical electrode pad and the second electrical electrode pad are respectively disposed on the first one and the second one of the light emitting diode chips, and the first electrical electrode pad and the second electrical electrode pad are respectively The first electrical semiconductor layer exposed portion of the first one and the second electrical semiconductor layer of the second one are electrically connected. An insulating reflective layer is formed to cover the inner wiring layer, the platform structure, the first electrical electrode pad and the second electrical electrode pad. The insulating reflective layer has at least one first through hole and at least one second through hole respectively exposing a portion of the first electrical electrode pad and a portion of the second electrical electrode pad. A first electrical bond pad is formed on a portion of the insulating reflective layer. The first electrical bonding pad is electrically connected to the first electrical electrode pad through the at least one first through hole. A second electrical bond pad is formed on the insulating reflective layer of the other portion. Wherein, the second electrical bonding pad is separated from the first electrical bonding pad. Moreover, the second electrical bonding pad is electrically connected to the second electrical electrode pad through the at least one second through hole.

依據本發明之一實施例,於形成第一隔離溝渠與第二隔離溝渠於磊晶結構中之後,上述發光二極體結構之製造方法更包含形成複數個介電層分別覆蓋在磊晶層上。其中,每一發光二極體晶片具有一第一電性接觸孔與一第二電性接觸孔貫穿介電層,且第一隔離溝渠介於發光二極體晶片之第二電性接觸孔與相鄰之發光二極體晶片之第一電 性接觸孔之間。 According to an embodiment of the present invention, after the forming the first isolation trench and the second isolation trench in the epitaxial structure, the manufacturing method of the LED structure further comprises forming a plurality of dielectric layers respectively covering the epitaxial layer. . Each of the LEDs has a first electrical contact hole and a second electrical contact hole extending through the dielectric layer, and the first isolation trench is interposed between the second electrical contact hole of the LED chip. The first electricity of the adjacent LED chip Sexual contact between the holes.

依據本發明之另一實施例,於形成介電層前,上述發光二極體結構之製造方法更包含:形成複數個透明導電層分別介於介電層與磊晶層之間;以及形成複數個電流阻障層分別位於磊晶層與透明導電層之間。其中,在每一發光二極體晶片中,第一電性接觸孔之一底部暴露出第一電性半導體層,且第二電性接觸孔之一底部暴露出透明導電層。這些電流阻障層之位置係對應的設置於上述之第二電性接觸孔之底部下。 According to another embodiment of the present invention, before the forming of the dielectric layer, the method for fabricating the LED structure further includes: forming a plurality of transparent conductive layers between the dielectric layer and the epitaxial layer; and forming a plurality The current blocking layers are respectively located between the epitaxial layer and the transparent conductive layer. Wherein, in each of the light emitting diode wafers, a bottom of one of the first electrical contact holes exposes the first electrical semiconductor layer, and one of the bottoms of the second electrical contact holes exposes the transparent conductive layer. The positions of the current blocking layers are correspondingly disposed under the bottom of the second electrical contact hole.

根據本發明之上述目的,又提出一種發光二極體結構。此發光二極體結構包含一絕緣基板、複數個發光二極體晶片、複數個內連線層、一第一電性電極墊、一第二電性電極墊、一絕緣層、一第一電性接合墊以及一第二電性接合墊。每一發光二極體晶片包含一磊晶層。此磊晶層包含依序堆疊在絕緣基板之一表面上之一第一電性半導體層、一主動層以及一第二電性半導體層,且每一發光二極體晶片包含鄰接之一平台結構與一第一電性半導體層暴露部分、以及一第一隔離溝渠,第一隔離溝渠設於平台結構中。前述之複數個內連線層分別連接發光二極體晶片之相鄰二者。第一電性電極墊及第二電性電極墊分別設於發光二極體晶片之第一者與第二者上,且分別與第一者之第一電性半導體層暴露部分及第二者之第二電性半導體層電性連接。絕緣層覆蓋在前述內連線層、平台結構、第一電性電極墊與第二電性電極墊上。其中,絕緣層具有至少一第 一貫穿孔與至少一第二貫穿孔分別暴露出部分之第一電性電極墊與第二電性電極墊。第一電性接合墊位於部分之絕緣層上,且經過前述至少一第一貫穿孔而與第一電性電極墊電性連接。第二電性接合墊位於另一部分之絕緣層上,並與第一電性接合墊分離,且經過前述至少一第二貫穿孔而與第二電性電極墊電性連接。 According to the above object of the present invention, a light emitting diode structure is further proposed. The light emitting diode structure comprises an insulating substrate, a plurality of light emitting diode chips, a plurality of interconnecting layers, a first electrical electrode pad, a second electrical electrode pad, an insulating layer, and a first electric a bonding pad and a second electrical bonding pad. Each of the light emitting diode chips includes an epitaxial layer. The epitaxial layer includes a first electrical semiconductor layer, an active layer, and a second electrical semiconductor layer stacked on one surface of the insulating substrate, and each of the light emitting diode chips includes a platform structure adjacent to each other. The first isolation trench is disposed in the platform structure with a first electrical semiconductor layer exposed portion and a first isolation trench. The plurality of interconnecting layers are respectively connected to adjacent ones of the light emitting diode chips. The first electrical electrode pad and the second electrical electrode pad are respectively disposed on the first and second of the LED body, and are respectively exposed to the first electrical semiconductor layer of the first one and the second The second electrical semiconductor layer is electrically connected. The insulating layer covers the inner interconnect layer, the platform structure, the first electrical electrode pad and the second electrical electrode pad. Wherein the insulating layer has at least one The first through-hole and the at least one second through-hole respectively expose a portion of the first electrical electrode pad and the second electrical electrode pad. The first electrical bonding pad is located on a portion of the insulating layer and electrically connected to the first electrical electrode pad through the at least one first through hole. The second electrical bonding pad is located on the insulating layer of the other portion and is separated from the first electrical bonding pad and electrically connected to the second electrical electrode pad through the at least one second through hole.

依據本發明之一實施例,上述之絕緣層係一布拉格反射鏡(DBR)。 According to an embodiment of the invention, the insulating layer is a Bragg mirror (DBR).

依據本發明之另一實施例,上述之發光二極體結構更包含一絕緣反射層。每一發光二極體晶片更包含一介電層設於磊晶層上。每一發光二極體晶片設有一第一電性接觸孔與一第二電性接觸孔貫穿介電層。第一隔離溝渠介於發光二極體晶片之第二電性接觸孔與相鄰之發光二極體晶片之第一電性接觸孔之間。絕緣反射層覆蓋在每一發光二極體晶片之第一電性接觸孔之一側壁、第二電性接觸孔之一側壁、與介電層之一上表面上。每一內連線層由每一發光二極體晶片之第二電性接觸孔中經由第一隔離溝渠上方而延伸至相鄰之發光二極體晶片之第一電性接觸孔中。 According to another embodiment of the present invention, the light emitting diode structure further includes an insulating reflective layer. Each of the LED chips further includes a dielectric layer disposed on the epitaxial layer. Each of the LEDs is provided with a first electrical contact hole and a second electrical contact hole through the dielectric layer. The first isolation trench is interposed between the second electrical contact hole of the LED chip and the first electrical contact hole of the adjacent LED chip. The insulating reflective layer covers one side wall of one of the first electrical contact holes of each of the light emitting diode chips, one side wall of the second electrical contact hole, and one upper surface of the dielectric layer. Each of the interconnect layers extends from the second electrical contact hole of each of the light emitting diode chips to the first electrical contact hole of the adjacent light emitting diode chip via the first isolation trench.

依據本發明之又一實施例,上述之發光二極體結構更包含一絕緣反射層。每一發光二極體晶片更包含一介電層設於磊晶層上。每一發光二極體晶片設有一第一電性接觸孔與一第二電性接觸孔貫穿介電層。第一隔離溝渠介於此發光二極體晶片之第二電性接觸孔與相鄰之發光二極體晶片之第一電性接觸孔之間。磊晶層具有一凹槽,此凹槽 之一底部暴露出第一電性半導體層暴露部分。第一電性接觸孔暴露出凹槽之底部的一部分。絕緣反射層覆蓋在每一凹槽之一側壁、與每一磊晶層之一上表面上。每一內連線層由每一發光二極體晶片之第二電性接觸孔中經由第一隔離溝渠上方而延伸至相鄰之發光二極體晶片之第一電性接觸孔中。 According to still another embodiment of the present invention, the light emitting diode structure further includes an insulating reflective layer. Each of the LED chips further includes a dielectric layer disposed on the epitaxial layer. Each of the LEDs is provided with a first electrical contact hole and a second electrical contact hole through the dielectric layer. The first isolation trench is interposed between the second electrical contact hole of the LED chip and the first electrical contact hole of the adjacent LED chip. The epitaxial layer has a groove, the groove One of the bottom portions exposes the exposed portion of the first electrical semiconductor layer. The first electrical contact hole exposes a portion of the bottom of the recess. An insulating reflective layer covers one of the sidewalls of each of the recesses and one of the upper surfaces of each of the epitaxial layers. Each of the interconnect layers extends from the second electrical contact hole of each of the light emitting diode chips to the first electrical contact hole of the adjacent light emitting diode chip via the first isolation trench.

依據本發明之再一實施例,上述之發光二極體結構更包含一絕緣反射層。每一發光二極體晶片更包含一介電層設於磊晶層上。每一發光二極體晶片設有一第一電性接觸孔與一第二電性接觸孔貫穿介電層。第一隔離溝渠介於此發光二極體晶片之第二電性接觸孔與相鄰之發光二極體晶片之第一電性接觸孔之間。磊晶層具有一凹槽,此凹槽之一底部暴露出第一電性半導體層暴露部分,第一電性接觸孔暴露出凹槽之底部的一部分。介電層覆蓋在凹槽之一側壁上。絕緣反射層覆蓋在每一磊晶層之一上表面上。每一內連線層由每一發光二極體晶片之第二電性接觸孔中經由第一隔離溝渠上方而延伸至相鄰之發光二極體晶片之第一電性接觸孔中。 According to still another embodiment of the present invention, the light emitting diode structure further includes an insulating reflective layer. Each of the LED chips further includes a dielectric layer disposed on the epitaxial layer. Each of the LEDs is provided with a first electrical contact hole and a second electrical contact hole through the dielectric layer. The first isolation trench is interposed between the second electrical contact hole of the LED chip and the first electrical contact hole of the adjacent LED chip. The epitaxial layer has a recess, a bottom of the recess exposing the exposed portion of the first electrical semiconductor layer, and the first electrical contact hole exposes a portion of the bottom of the recess. The dielectric layer covers one of the sidewalls of the recess. An insulating reflective layer covers one of the upper surfaces of each of the epitaxial layers. Each of the interconnect layers extends from the second electrical contact hole of each of the light emitting diode chips to the first electrical contact hole of the adjacent light emitting diode chip via the first isolation trench.

依據本發明之再一實施例,上述之發光二極體結構更包含一絕緣反射層。每一發光二極體晶片更包含一介電層設於磊晶層上。每一發光二極體晶片設有一第一電性接觸孔與一第二電性接觸孔貫穿介電層。第一隔離溝渠介於此發光二極體晶片之第二電性接觸孔與相鄰之發光二極體晶片之第一電性接觸孔之間。磊晶層具有一凹槽,此凹槽 之一底部暴露出第一電性半導體層暴露部分,第一電性接觸孔暴露出凹槽之底部的一部分。介電層覆蓋在凹槽之一側壁上。絕緣反射層覆蓋在每一介電層之一上表面上。每一內連線層由每一發光二極體晶片之第二電性接觸孔中經由第一隔離溝渠上方而延伸至相鄰之發光二極體晶片之第一電性接觸孔中。 According to still another embodiment of the present invention, the light emitting diode structure further includes an insulating reflective layer. Each of the LED chips further includes a dielectric layer disposed on the epitaxial layer. Each of the LEDs is provided with a first electrical contact hole and a second electrical contact hole through the dielectric layer. The first isolation trench is interposed between the second electrical contact hole of the LED chip and the first electrical contact hole of the adjacent LED chip. The epitaxial layer has a groove, the groove One of the bottom portions exposes the exposed portion of the first electrical semiconductor layer, and the first electrical contact hole exposes a portion of the bottom of the recess. The dielectric layer covers one of the sidewalls of the recess. An insulating reflective layer covers one of the upper surfaces of each of the dielectric layers. Each of the interconnect layers extends from the second electrical contact hole of each of the light emitting diode chips to the first electrical contact hole of the adjacent light emitting diode chip via the first isolation trench.

100‧‧‧發光二極體結構 100‧‧‧Lighting diode structure

102‧‧‧絕緣基板 102‧‧‧Insert substrate

104‧‧‧表面 104‧‧‧ Surface

106a‧‧‧發光二極體晶片 106a‧‧‧Light Diode Wafer

106b‧‧‧發光二極體晶片 106b‧‧‧Light Diode Wafer

108‧‧‧未摻雜半導體層 108‧‧‧Undoped semiconductor layer

110‧‧‧第一電性半導體層 110‧‧‧First electrical semiconductor layer

112‧‧‧主動層 112‧‧‧ active layer

114‧‧‧第二電性半導體層 114‧‧‧Second electrical semiconductor layer

116‧‧‧透明導電層 116‧‧‧Transparent conductive layer

118a‧‧‧第一電性電極墊 118a‧‧‧First electrical electrode pad

118b‧‧‧第一電性電極墊 118b‧‧‧First electrical electrode pad

120a‧‧‧第二電性電極墊 120a‧‧‧second electrical electrode pad

120b‧‧‧第二電性電極墊 120b‧‧‧second electrical electrode pad

122‧‧‧隔離溝渠 122‧‧‧Isolation Ditch

124‧‧‧絕緣層 124‧‧‧Insulation

126‧‧‧內連線層 126‧‧‧Internet layer

128‧‧‧平台結構 128‧‧‧ platform structure

130‧‧‧暴露部分 130‧‧‧Exposed part

200‧‧‧發光二極體結構 200‧‧‧Lighting diode structure

200a‧‧‧發光二極體結構 200a‧‧‧Lighting diode structure

200b‧‧‧發光二極體結構 200b‧‧‧Lighting diode structure

200c‧‧‧發光二極體結構 200c‧‧‧Lighting diode structure

200d‧‧‧發光二極體結構 200d‧‧‧Lighting diode structure

200e‧‧‧發光二極體結構 200e‧‧‧Lighting diode structure

200f‧‧‧發光二極體結構 200f‧‧‧Lighting diode structure

202‧‧‧絕緣基板 202‧‧‧Insert substrate

204‧‧‧表面 204‧‧‧ surface

206‧‧‧未摻雜半導體層 206‧‧‧Undoped semiconductor layer

208‧‧‧第一電性半導體層 208‧‧‧First electrical semiconductor layer

210‧‧‧主動層 210‧‧‧Active layer

212‧‧‧第二電性半導體層 212‧‧‧Second electrical semiconductor layer

214‧‧‧磊晶層 214‧‧‧ epitaxial layer

214a‧‧‧磊晶結構 214a‧‧‧ epitaxial structure

216‧‧‧隔離溝渠 216‧‧‧Isolation Ditch

218‧‧‧絕緣層 218‧‧‧Insulation

220‧‧‧絕緣反射層 220‧‧‧Insulated reflective layer

222‧‧‧電流阻障層 222‧‧‧ Current Barrier

224‧‧‧透明導電層 224‧‧‧Transparent conductive layer

226‧‧‧內連線層 226‧‧‧Interconnection layer

228‧‧‧發光二極體晶片 228‧‧‧Light Emitter Wafer

228a‧‧‧發光二極體晶片 228a‧‧‧Light Emitter Wafer

228b‧‧‧發光二極體晶片 228b‧‧‧Light Diode Wafer

228c‧‧‧發光二極體晶片 228c‧‧‧Light Emitter Wafer

228d‧‧‧發光二極體晶片 228d‧‧‧LED Diode Wafer

228e‧‧‧發光二極體晶片 228e‧‧‧Light Emitting Diode Wafer

228f‧‧‧發光二極體晶片 228f‧‧‧Light Emitting Diode Wafer

228g‧‧‧發光二極體晶片 228g‧‧‧Light Diode Wafer

228h‧‧‧發光二極體晶片 228h‧‧‧Light Diode Wafer

230‧‧‧平台結構 230‧‧‧ platform structure

232‧‧‧第二電性接合墊 232‧‧‧Second electrical bonding pads

234‧‧‧暴露部分 234‧‧‧Exposed part

236‧‧‧第二電性電極墊 236‧‧‧Second electrical electrode pad

238‧‧‧第一電性電極墊 238‧‧‧First electrical electrode pad

240‧‧‧隔離溝渠 240‧‧‧Isolation Ditch

242‧‧‧絕緣層 242‧‧‧Insulation

244‧‧‧電流阻障層 244‧‧‧ Current Barrier

246‧‧‧側面 246‧‧‧ side

248‧‧‧開口 248‧‧‧ openings

250‧‧‧開口 250‧‧‧ openings

252‧‧‧第一電性接合墊 252‧‧‧First electrical bonding pad

254‧‧‧貫穿孔 254‧‧‧through holes

256‧‧‧貫穿孔 256‧‧‧through holes

258‧‧‧測試墊 258‧‧‧ test pad

260‧‧‧貫穿孔 260‧‧‧through holes

262‧‧‧介電層 262‧‧‧ dielectric layer

264‧‧‧第一電性接觸孔 264‧‧‧First electrical contact hole

266‧‧‧第二電性接觸孔 266‧‧‧Second electrical contact hole

268‧‧‧絕緣襯層 268‧‧‧Insulation lining

270‧‧‧底部 270‧‧‧ bottom

272‧‧‧接觸插塞 272‧‧‧Contact plug

274‧‧‧接觸插塞 274‧‧‧Contact plug

276‧‧‧凹槽 276‧‧‧ Groove

278‧‧‧上表面 278‧‧‧ upper surface

280‧‧‧底部 280‧‧‧ bottom

282‧‧‧絕緣襯層 282‧‧‧Insulation lining

284‧‧‧底部 284‧‧‧ bottom

286‧‧‧絕緣襯層 286‧‧‧Insulation lining

288‧‧‧上表面 288‧‧‧ upper surface

290‧‧‧絕緣層 290‧‧‧Insulation

292‧‧‧蝕刻停止層 292‧‧‧etch stop layer

294‧‧‧硬罩幕層 294‧‧‧hard mask layer

296‧‧‧光阻層 296‧‧‧ photoresist layer

298‧‧‧光阻層 298‧‧‧ photoresist layer

300‧‧‧光阻層 300‧‧‧ photoresist layer

α‧‧‧夾角 ‧‧‧‧ angle

θ‧‧‧夾角 Θ‧‧‧ angle

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood.

第1圖係繪示一種傳統串聯之發光二極體結構的局部剖面圖。 Figure 1 is a partial cross-sectional view showing a conventional tandem LED structure.

第2圖係繪示依照本發明之一實施方式的一種發光二極體結構之上視示意圖。 2 is a top plan view showing a structure of a light emitting diode according to an embodiment of the present invention.

第3圖係繪示沿著第2圖之AA’剖面線所獲得之發光二極體結構的剖面圖。 Fig. 3 is a cross-sectional view showing the structure of the light-emitting diode obtained along the line AA' of Fig. 2;

第4圖係繪示沿著第2圖之BB’剖面線所獲得之發光二極體結構的剖面圖。 Fig. 4 is a cross-sectional view showing the structure of the light-emitting diode obtained along the line BB' of Fig. 2;

第5圖係繪示依照本發明之另一實施方式的一種發光二極體結構的剖面圖。 Figure 5 is a cross-sectional view showing a structure of a light emitting diode according to another embodiment of the present invention.

第6圖係繪示依照本發明之又一實施方式的一種發光二極體結構的剖面圖。 Figure 6 is a cross-sectional view showing a structure of a light emitting diode according to still another embodiment of the present invention.

第7圖係繪示依照本發明之再一實施方式的一種發光二極體結構的剖面圖。 Figure 7 is a cross-sectional view showing a structure of a light emitting diode according to still another embodiment of the present invention.

第8圖係繪示依照本發明之再一實施方式的一種發光二極體結構的剖面圖。 Figure 8 is a cross-sectional view showing a structure of a light-emitting diode according to still another embodiment of the present invention.

第9圖係繪示依照本發明之再一實施方式的一種發光二極體結構的剖面圖。 Figure 9 is a cross-sectional view showing a structure of a light-emitting diode according to still another embodiment of the present invention.

第10圖係繪示依照本發明之再一實施方式的一種發光二極體結構的剖面圖。 Figure 10 is a cross-sectional view showing a structure of a light emitting diode according to still another embodiment of the present invention.

第11A圖至第11G圖係繪示依照本發明之一實施方式的一種發光二極體結構之製程剖面圖。 11A through 11G are cross-sectional views showing a process of a light emitting diode structure in accordance with an embodiment of the present invention.

第12A圖至第12D圖係繪示依照本發明之另一實施方式的一種發光二極體結構之製程剖面圖。 12A to 12D are cross-sectional views showing a process of a light emitting diode structure according to another embodiment of the present invention.

第13A圖至第13C圖係繪示依照本發明之又一實施方式的一種發光二極體結構之製程剖面圖。 13A to 13C are cross-sectional views showing a process of a light emitting diode structure according to still another embodiment of the present invention.

請參照第2圖至第4圖,其中第2圖係繪示依照本發明之一實施方式的一種發光二極體結構之上視示意圖,第3圖係繪示沿著第2圖之AA’剖面線所獲得之發光二極體結構的剖面圖,第4圖係繪示沿著第2圖之BB’剖面線所獲得之發光二極體結構的剖面圖。在本實施方式中,發光二極體結構200可為高壓發光二極體(High Voltage LED;HV LED)。 Please refer to FIG. 2 to FIG. 4 , wherein FIG. 2 is a top view showing a structure of a light emitting diode according to an embodiment of the present invention, and FIG. 3 is a view along line AA of FIG. 2 . A cross-sectional view of the structure of the light-emitting diode obtained by the hatching, and FIG. 4 is a cross-sectional view showing the structure of the light-emitting diode obtained along the line BB' of FIG. In the present embodiment, the LED structure 200 can be a High Voltage LED (HV LED).

發光二極體結構200係由數個發光二極體晶片228相互串聯而成。如第2圖所示之示範實施例,發光二極體結構200係由16個發光二極體晶片228所組成。每個發光二極體晶片228之周圍均設有隔離溝渠216與240,以電性 隔離任二相鄰之發光二極體晶片228。此外,相鄰之發光二極體晶片228之間則藉由導電之內連線層226來電性連接,以將所有之發光二極體晶片228予以串聯。 The light emitting diode structure 200 is formed by connecting a plurality of light emitting diode chips 228 in series. As shown in the exemplary embodiment of FIG. 2, the LED structure 200 is comprised of 16 LED chips 228. Each of the LED chips 228 is provided with isolation trenches 216 and 240 around it for electrical Any two adjacent LED chips 228 are isolated. In addition, adjacent light-emitting diode wafers 228 are electrically connected by electrically conductive inner wiring layer 226 to connect all of the light-emitting diode wafers 228 in series.

請一併參照第2圖與第3圖,發光二極體結構200主要包含絕緣基板202、數個發光二極體晶片228、數個內連線層226、第一電性電極墊238、第二電性電極墊236、絕緣反射層220、第一電性接合墊252以及第二電性接合墊232。絕緣基板202之材料可例如為藍寶石。在一些例子中,絕緣基板202可為圖案化藍寶石基板(PSS),亦即此絕緣基板202之表面204上形成有多個圖案結構(未繪示)。藉由這些圖案結構的設置,可提升發光二極體晶片228的光取出效率。 Referring to FIG. 2 and FIG. 3 together, the LED structure 200 mainly includes an insulating substrate 202, a plurality of LED chips 228, a plurality of interconnect layers 226, and a first electrical electrode pad 238. The second electrical electrode pad 236, the insulating reflective layer 220, the first electrical bonding pad 252, and the second electrical bonding pad 232. The material of the insulating substrate 202 may be, for example, sapphire. In some examples, the insulating substrate 202 can be a patterned sapphire substrate (PSS), that is, a plurality of pattern structures (not shown) are formed on the surface 204 of the insulating substrate 202. By the arrangement of these pattern structures, the light extraction efficiency of the light-emitting diode wafer 228 can be improved.

這些發光二極體晶片228係設置在絕緣基板202之表面204上。每個發光二極體晶片228包含磊晶層214。在第3圖所示之實施例中,磊晶層214包含依序成長堆疊在絕緣基板202之表面204上的未摻雜半導體層206、第一電性半導體層208、主動層210與第二電性半導體層212。在本發明中,第一電性與第二電性為不同之電性。例如,第一電性與第二電性之其中一者為n型,另一者則為p型。在另一實施例中,磊晶層214亦可沒有包含未摻雜半導體層206。 These light emitting diode chips 228 are disposed on the surface 204 of the insulating substrate 202. Each of the light emitting diode wafers 228 includes an epitaxial layer 214. In the embodiment shown in FIG. 3, the epitaxial layer 214 includes an undoped semiconductor layer 206, a first electrical semiconductor layer 208, an active layer 210, and a second layer that are sequentially stacked on the surface 204 of the insulating substrate 202. Electrical semiconductor layer 212. In the present invention, the first electrical property and the second electrical property are different electrical properties. For example, one of the first electrical property and the second electrical property is an n-type, and the other is a p-type. In another embodiment, the epitaxial layer 214 may also not include the undoped semiconductor layer 206.

在一些例子中,主動層210可例如為多組相互交替堆疊之量子井(quantum well)和阻障層(barrier layer)所組成之多重量子井(Multiple Quantum Well;MQW)結構。在一例 子中,未摻雜半導體層206、第一電性半導體層208、主動層210與第二電性半導體層212之材料可例如為氮化鎵系列材料。 In some examples, the active layer 210 can be, for example, a multiple quantum well (MQW) structure composed of a plurality of sets of quantum wells and barrier layers stacked alternately. In one case The material of the undoped semiconductor layer 206, the first electrical semiconductor layer 208, the active layer 210 and the second electrical semiconductor layer 212 may be, for example, a gallium nitride series material.

每個發光二極體晶片228包含互相鄰接之平台結構230與暴露部分234。平台結構230包含部分之未摻雜半導體層206、部分之第一電性半導體層208、部分之主動層210與部分之第二電性半導體層212。由於,暴露部分234係在磊晶層214中定義平台結構230時,經移除一部分之第二電性半導體層212與一部分之主動層210,甚至下方之一部分的第一電性半導體層208,而暴露出第一電性半導體層208後所形成之部分。因此,暴露部分234為第一半導體層208遭暴露出的部分,且暴露部分234包含一部分的未摻雜半導體層206與一部分的第一電性半導體層208,但並未包含主動層210與第二電性半導體層212。 Each of the light emitting diode wafers 228 includes a platform structure 230 and an exposed portion 234 that abut each other. The platform structure 230 includes a portion of the undoped semiconductor layer 206, a portion of the first electrical semiconductor layer 208, a portion of the active layer 210, and a portion of the second electrical semiconductor layer 212. Since the exposed portion 234 defines the platform structure 230 in the epitaxial layer 214, a portion of the second electrical semiconductor layer 212 and a portion of the active layer 210 are removed, even a portion of the first electrically conductive semiconductor layer 208, The portion formed after exposing the first electrical semiconductor layer 208. Therefore, the exposed portion 234 is a portion of the first semiconductor layer 208 that is exposed, and the exposed portion 234 includes a portion of the undoped semiconductor layer 206 and a portion of the first electrical semiconductor layer 208, but does not include the active layer 210 and the The second electrical semiconductor layer 212.

在一實施例中,如第3圖所示,平台結構230之剖面形狀可例如呈梯形,且具有傾斜之側面246。藉由使平台結構230具有傾斜之側面246,可有利於後續內連線層226之沉積。然而,在另一實施例中,平台結構230之剖面形狀亦可呈矩形,而具有垂直之側面246。 In one embodiment, as shown in FIG. 3, the cross-sectional shape of the platform structure 230 can be, for example, trapezoidal and have a sloped side 246. By having the platform structure 230 have a sloped side 246, deposition of the subsequent interconnect layer 226 can be facilitated. However, in another embodiment, the cross-sectional shape of the platform structure 230 can also be rectangular with a vertical side 246.

每個發光二極體晶片228更包含隔離溝渠216。在發光二極體晶片228中,隔離溝渠216設置在平台結構230中,且較佳係鄰近於相鄰發光二極體晶片228之暴露部分234。在平台結構230中,隔離溝渠216自第二電性半導體層212向下朝未摻雜半導體層206延伸。在一實施例中, 隔離溝渠216之底部位於未摻雜半導體層206中。在第3圖所示之實施例中,隔離溝渠216之底部直接延伸至絕緣基板202之表面204,而暴露出絕緣基板202之表面204。在磊晶結構214沒有包含未摻雜半導體層206的實施例中,隔離溝渠216自第二電性半導體層212朝絕緣基板202之表面204延伸。因此,此實施例之隔離溝渠216的底部暴露出絕緣基板202之表面204的一部分。 Each of the LED chips 228 further includes an isolation trench 216. In the light emitting diode wafer 228, the isolation trenches 216 are disposed in the platform structure 230 and are preferably adjacent to the exposed portions 234 of the adjacent light emitting diode wafers 228. In the platform structure 230, the isolation trenches 216 extend downward from the second electrically conductive semiconductor layer 212 toward the undoped semiconductor layer 206. In an embodiment, The bottom of the isolation trench 216 is located in the undoped semiconductor layer 206. In the embodiment shown in FIG. 3, the bottom of the isolation trench 216 extends directly to the surface 204 of the insulating substrate 202 to expose the surface 204 of the insulating substrate 202. In embodiments where the epitaxial structure 214 does not include the undoped semiconductor layer 206, the isolation trench 216 extends from the second electrically conductive semiconductor layer 212 toward the surface 204 of the insulating substrate 202. Thus, the bottom of the isolation trench 216 of this embodiment exposes a portion of the surface 204 of the insulating substrate 202.

在一些實施例中,每個發光二極體晶片228更可包含絕緣層218。在發光二極體晶片228中,此絕緣層218填入隔離溝渠216中,並覆蓋絕緣基板202之表面204,且較佳係封住隔離溝渠216之開口248。如第3圖所示,絕緣層218可完全填滿隔離溝渠216。但在另一實施例中,絕緣層218亦可不填滿隔離溝渠216,例如隔離溝渠216中之絕緣層218可具有孔洞。在又一些實施例中,絕緣層218可僅填充隔離溝渠216的一部分深度。 In some embodiments, each of the light emitting diode wafers 228 may further include an insulating layer 218. In the LED array 228, the insulating layer 218 fills the isolation trench 216 and covers the surface 204 of the insulating substrate 202, and preferably seals the opening 248 of the isolation trench 216. As shown in FIG. 3, the insulating layer 218 can completely fill the isolation trench 216. In another embodiment, the insulating layer 218 may not fill the isolation trench 216. For example, the insulating layer 218 in the isolation trench 216 may have holes. In still other embodiments, the insulating layer 218 may only fill a portion of the depth of the isolation trench 216.

在一實施例中,如第3圖所示,隔離溝渠216之剖面形狀為倒梯形,以利絕緣層218沉積於隔離溝渠216中。隔離溝渠216與絕緣基板202之表面204之間的夾角θ可例如從30°至90°。在另一實施例中,隔離溝渠216之剖面形狀亦可為矩形。此外,絕緣層218之材料可例如為二氧化矽或氮化矽(SiNx)。 In one embodiment, as shown in FIG. 3, the isolation trench 216 has an inverted trapezoidal shape so that the insulating layer 218 is deposited in the isolation trench 216. The angle θ between the isolation trench 216 and the surface 204 of the insulating substrate 202 can be, for example, from 30° to 90°. In another embodiment, the cross-sectional shape of the isolation trench 216 may also be rectangular. Further, the material of the insulating layer 218 may be, for example, hafnium oxide or tantalum nitride (SiN x ).

在一實施例中,每個發光二極體晶片228亦可選擇性地包含電流阻障層222,藉以分散電流的分布。如第3圖所示,電流阻障層222設於平台結構230上,且位於隔 離溝渠216之上方,並覆蓋住絕緣層218、部分之第二電性半導體層212、以及內連線層226所在之平台結構230的側面246。 In one embodiment, each of the LED chips 228 can also optionally include a current blocking layer 222 to distribute the current distribution. As shown in FIG. 3, the current blocking layer 222 is disposed on the platform structure 230 and is located on the platform structure 230. Above the trench 216, the insulating layer 218, a portion of the second electrical semiconductor layer 212, and the side surface 246 of the platform structure 230 where the interconnect layer 226 is located are covered.

每個發光二極體晶片228更可選擇性地包含透明導電層224。透明導電層224之材料可例如為氧化銦錫(ITO)等。透明導電層224設於平台結構230上,且覆蓋在電流阻障層222上,並延伸於平台結構230之第二電性半導體層212上。在另一實施例中,透明導電層224可僅位於平台結構230之第二電性半導體層212上,但並未覆蓋在電流阻障層222上,其中內連線層226延伸覆蓋部分的透明導電層224,以利電性導通。 Each of the light emitting diode wafers 228 more selectively includes a transparent conductive layer 224. The material of the transparent conductive layer 224 may be, for example, indium tin oxide (ITO) or the like. The transparent conductive layer 224 is disposed on the platform structure 230 and covers the current blocking layer 222 and extends on the second electrical semiconductor layer 212 of the platform structure 230. In another embodiment, the transparent conductive layer 224 may be located only on the second electrical semiconductor layer 212 of the platform structure 230, but not over the current blocking layer 222, wherein the interconnect layer 226 extends over the transparent portion of the cover layer. Conductive layer 224 for electrical conduction.

在發光二極體結構200中,內連線層226分別連接相鄰之發光二極體晶片228,以電性串聯這些發光二極體晶片228。內連線層226自二相鄰發光二極體晶片228中之一發光二極體晶片228的第一電性半導體層208的暴露部分234,延伸至另一發光二極體晶片228之平台結構230上的透明導電層224。如第3圖所示,內連線層226從二相鄰發光二極體晶片228中之一發光二極體晶片228的暴露部分234,直接延伸到另一發光二極體晶片228之平台結構230的側面246上的電流阻障層222,再順著平台結構230之側面246而連接位在平台結構230上方的透明導電層224。因此,內連線層226之最低表面位於第一電性半導體層208之暴露部分234上,且與第一電性半導體層208之暴露部分234接觸。內連線層226之材料係為導電材料,可例如 為金屬。在一實施例中,內連線層226可為依序堆疊之鉻層、鉑層與金層所構成之鉻/鉑/金(Cr/Pt/Au)堆疊結構。 In the LED structure 200, the interconnect layer 226 is connected to the adjacent LED chips 228 to electrically connect the LED chips 228. The interconnect layer 226 extends from the exposed portion 234 of the first electrically conductive semiconductor layer 208 of one of the two adjacent light emitting diode wafers 228 to the planar structure of the other LED array 228. A transparent conductive layer 224 on 230. As shown in FIG. 3, the interconnect layer 226 extends directly from the exposed portion 234 of one of the two adjacent light emitting diode wafers 228 to the platform structure of the other LED array 228. The current blocking layer 222 on the side 246 of the 230 is coupled to the transparent conductive layer 224 above the platform structure 230 along the side 246 of the platform structure 230. Thus, the lowest surface of interconnect layer 226 is on exposed portion 234 of first electrically conductive semiconductor layer 208 and is in contact with exposed portion 234 of first electrically conductive semiconductor layer 208. The material of the interconnect layer 226 is a conductive material, for example For metal. In an embodiment, the interconnect layer 226 may be a chromium/platinum/gold (Cr/Pt/Au) stack structure composed of a sequentially stacked chromium layer, a platinum layer and a gold layer.

如第3圖所示,內連線層226在平台結構230上的部分覆蓋在隔離溝渠216上方之電流阻障層222與透明導電層224上。因此,電流阻障層222介於平台結構230上方之內連線層226與隔離溝渠216中之絕緣層218之間,且透明導電層224介於平台結構230上方之內連線層226與電流阻障層222之間。 As shown in FIG. 3, a portion of the interconnect layer 226 on the platform structure 230 overlies the current barrier layer 222 and the transparent conductive layer 224 over the isolation trench 216. Therefore, the current blocking layer 222 is interposed between the inner wiring layer 226 above the platform structure 230 and the insulating layer 218 in the isolation trench 216, and the transparent conductive layer 224 is interposed between the interconnecting layer 226 and the current above the platform structure 230. Between the barrier layers 222.

在一實施例中,電流阻障層222可有部分水平延伸至內連線層226之外側,以獲得更佳之電流阻障效果,並可避免大量電流由內連線層226直接向下灌注至發光二極體晶片228中而造成電流擁塞情形,進而可強迫電流經由透明導電層224而流至平台結構230中。藉此,可大幅增進發光二極體晶片228之發光效率。因此,在一較佳實施例中,透明導電層224可延伸在平台結構230上的第二電性半導體層212上。 In an embodiment, the current blocking layer 222 may have a portion extending horizontally to the outside of the interconnect layer 226 to achieve a better current blocking effect and to prevent a large amount of current from being directly poured down from the interconnect layer 226 to The current is congested in the LED 228, which in turn forces current to flow into the platform structure 230 via the transparent conductive layer 224. Thereby, the luminous efficiency of the light-emitting diode wafer 228 can be greatly improved. Thus, in a preferred embodiment, the transparent conductive layer 224 can extend over the second electrically conductive semiconductor layer 212 on the platform structure 230.

請再次參照第2圖與第3圖,第一電性電極墊238與第二電性電極墊236分別設置在發光二極體結構200之二發光二極體晶片上。舉例而言,此二發光二極體晶片分別為發光二極體晶片陣列之起始晶片與結尾晶片,即發光二極體晶片228a與228b。第一電性電極墊238及第二電性電極墊236可與內連線層226同時製作,且第一電性電極墊238及第二電性電極墊236之材料亦可與內連線層226之材料相同。第一電性電極墊238與第二電性電極墊236 之材料為導電材料,例如金屬。在一實施例中,第一電性電極墊238與第二電性電極墊236均可為依序堆疊之鉻層、鉑層與金層所構成之鉻/鉑/金堆疊結構。在發光二極體結構200中,第一電性電極墊238可位於發光二極體晶片228a之第一電性半導體層208的暴露部分234上,而與第一電性半導體層208的暴露部分234電性連接。另一方面,第二電性電極墊236可位於發光二極體晶片228b之平台結構230上的透明導電層224或第二電性半導體層212上,而與第二電性半導體層212電性連接。 Referring to FIGS. 2 and 3 again, the first electrical electrode pad 238 and the second electrical electrode pad 236 are respectively disposed on the two light emitting diode wafers of the LED structure 200. For example, the two-emitting diode wafers are the starting wafer and the ending wafer of the LED array, that is, the LED wafers 228a and 228b. The first electrical electrode pad 238 and the second electrical electrode pad 236 can be fabricated simultaneously with the interconnect layer 226, and the materials of the first electrical electrode pad 238 and the second electrical electrode pad 236 can also be connected to the interconnect layer. The material of 226 is the same. The first electrical electrode pad 238 and the second electrical electrode pad 236 The material is a conductive material such as a metal. In one embodiment, the first electrical electrode pad 238 and the second electrical electrode pad 236 may each be a chromium/platinum/gold stack structure composed of a chrome layer, a platinum layer and a gold layer stacked in sequence. In the light emitting diode structure 200, the first electrical electrode pad 238 may be located on the exposed portion 234 of the first electrical semiconductor layer 208 of the light emitting diode wafer 228a, and the exposed portion of the first electrical semiconductor layer 208. 234 electrical connection. On the other hand, the second electrical electrode pad 236 can be located on the transparent conductive layer 224 or the second electrical semiconductor layer 212 on the platform structure 230 of the LED substrate 228b, and electrically connected to the second electrical semiconductor layer 212. connection.

在一實施例中,發光二極體結構200更可包含測試墊258。此測試墊258可根據製程或產品需求而設置在所需之一或多個發光二極體晶片228上。如第2圖所示之實施例,測試墊258延伸設置相鄰兩列且彼此相鄰之二發光二極體晶片228上,即位於發光二極體晶片228a與228b之間的二發光二極體晶片228上,且與此二相鄰之發光二極體晶片228之間的內連線層226接合。 In an embodiment, the LED structure 200 may further include a test pad 258. The test pad 258 can be disposed on one or more of the desired LED chips 228 depending on the process or product requirements. As shown in the embodiment of FIG. 2, the test pad 258 extends over two adjacent two adjacent light emitting diode chips 228, that is, two light emitting diodes between the light emitting diode chips 228a and 228b. The inner wiring layer 226 is bonded to the body wafer 228 and between the two adjacent light emitting diode wafers 228.

絕緣反射層220覆蓋在發光二極體晶片228之內連線層226、平台結構230、第一電性半導體層212之暴露部分234、第一電性電極墊238與第二電性電極墊236上。絕緣反射層220可例如為一布拉格反射鏡(Distributed Bragg Reflector;DBR),在本實施例中布拉格反射鏡材料例如包含二氧化矽/二氧化鈦(SiO2/TiO2)或二氧化矽/氮化矽(SiO2/SiNX)之重複疊層,或其組合。在一實施例中,絕緣反射層220至少設有貫穿孔256與254,其中此二貫穿孔 256與254分別暴露出部分之第一電性電極墊238與部分之第二電性電極墊236。如此一來,後續形成之第一電性接合墊252與第二電性接合墊232可分別經由貫穿孔256與254,而分別與暴露出之第一電性電極墊238與第二電性電極墊236電性接合。 The insulating reflective layer 220 covers the inner wiring layer 226 of the light emitting diode wafer 228, the platform structure 230, the exposed portion 234 of the first electrical semiconductor layer 212, the first electrical electrode pad 238 and the second electrical electrode pad 236. on. The insulating reflective layer 220 may be, for example, a Bragg Reflector (DBR). In this embodiment, the Bragg mirror material comprises, for example, cerium oxide/titanium dioxide (SiO 2 /TiO 2 ) or cerium oxide/cerium nitride. Repeated laminate of (SiO 2 /SiN X ), or a combination thereof. In one embodiment, the insulating reflective layer 220 is provided with at least through holes 256 and 254, wherein the two through holes 256 and 254 respectively expose a portion of the first electrical electrode pad 238 and a portion of the second electrical electrode pad 236. As a result, the subsequently formed first electrical bond pads 252 and second electrical bond pads 232 can respectively pass through the through holes 256 and 254, respectively, and the exposed first electrical electrode pads 238 and the second electrical electrodes. Pad 236 is electrically joined.

在另一實施例中,絕緣反射層220更可根據測試墊258的設置,而對應設有貫穿孔260。此貫穿孔260可暴露出部分之測試墊258,以利後續經由此貫穿孔260而透過暴露出之測試墊258來進行發光二極體結構200的檢測。 In another embodiment, the insulating reflective layer 220 is further provided with a through hole 260 according to the setting of the test pad 258. The through hole 260 can expose a portion of the test pad 258 for subsequent detection of the LED structure 200 through the exposed test pad 258 via the through hole 260.

如第2圖所示,第一電性接合墊252與第二電性接合墊232分別位於絕緣反射層220上而形成彼此分離之二部分。也就是說,第一電性接合墊252與第二電性接合墊232彼此分離。第一電性接合墊252更經由絕緣反射層220之貫穿孔256,而與暴露出之第一電性電極墊238接觸並電性連接。另一方面,第二電性接合墊232更經由絕緣反射層220之另一貫穿孔254,而與暴露出之第二電性電極墊236接觸並電性連接。 As shown in FIG. 2, the first electrical bonding pads 252 and the second electrical bonding pads 232 are respectively disposed on the insulating reflective layer 220 to form two portions separated from each other. That is, the first electrical bond pad 252 and the second electrical bond pad 232 are separated from each other. The first electrical bonding pad 252 is further in contact with and electrically connected to the exposed first electrical electrode pad 238 via the through hole 256 of the insulating reflective layer 220. On the other hand, the second electrical bonding pad 232 is further in contact with and electrically connected to the exposed second electrical electrode pad 236 via the other through hole 254 of the insulating reflective layer 220.

請一併參照第2圖與第4圖,每個發光二極體晶片228更包含另一隔離溝渠240。此隔離溝渠240設於平台結構230外側之磊晶層214中,且與隔離溝渠216鄰接。如第2圖所示,隔離溝渠240可電性隔離相鄰二行之發光二極體晶片228。而且,不同於隔離溝渠216,隔離溝渠240上方並未覆蓋有透明導電層或內連線層等導電材料。 Referring to FIGS. 2 and 4 together, each of the LED chips 228 further includes another isolation trench 240. The isolation trench 240 is disposed in the epitaxial layer 214 outside the platform structure 230 and is adjacent to the isolation trench 216. As shown in FIG. 2, the isolation trench 240 electrically isolates two adjacent rows of LED chips 228. Moreover, unlike the isolation trench 216, the isolation trench 240 is not covered with a conductive material such as a transparent conductive layer or an interconnect layer.

隔離溝渠240自磊晶層214之第二電性半導體層 212延伸至未摻雜半導體層206。因此,隔離溝渠240之底部位於未摻雜半導體層206中。在第4圖所示之實施例中,隔離溝渠240之底部直接延伸至絕緣基板202之表面204,而暴露出絕緣基板202之表面204。在磊晶層214沒有包含未摻雜半導體層206的實施例中,隔離溝渠240自第二電性半導體層212朝絕緣基板202之表面204延伸,此時隔離溝渠240之底部暴露出絕緣基板202之表面204的一部分。 Isolation trench 240 from second electrical semiconductor layer of epitaxial layer 214 212 extends to the undoped semiconductor layer 206. Therefore, the bottom of the isolation trench 240 is located in the undoped semiconductor layer 206. In the embodiment illustrated in FIG. 4, the bottom of the isolation trench 240 extends directly to the surface 204 of the insulating substrate 202 to expose the surface 204 of the insulating substrate 202. In the embodiment in which the epitaxial layer 214 does not include the undoped semiconductor layer 206, the isolation trench 240 extends from the second electrical semiconductor layer 212 toward the surface 204 of the insulating substrate 202. At this time, the bottom of the isolation trench 240 exposes the insulating substrate 202. A portion of the surface 204.

在一些實施例中,每個發光二極體晶片228更可包另一絕緣層242。絕緣層242填入隔離溝渠240中,且較佳係封住隔離溝渠240之開口250。在一例子中,絕緣層242可完全填滿隔離溝渠240。但在另一例子中,絕緣層242亦可不填滿隔離溝渠240。此外,如第4圖所示,隔離溝渠240剖面形狀可為倒梯形,以利絕緣層242沉積於隔離溝渠240中。在一示範例子中,隔離溝渠240與絕緣基板202之表面204之間的夾角α可例如為從30°至90°。然而,在另一例子中,隔離溝渠240之剖面形狀亦可為矩形。絕緣層242之材料可例如為二氧化矽或氮化矽。 In some embodiments, each of the LED wafers 228 may further comprise another insulating layer 242. The insulating layer 242 is filled into the isolation trench 240 and preferably encloses the opening 250 of the isolation trench 240. In an example, the insulating layer 242 can completely fill the isolation trench 240. In another example, the insulating layer 242 may also not fill the isolation trench 240. In addition, as shown in FIG. 4, the isolation trench 240 may have an inverted trapezoidal shape so that the insulating layer 242 is deposited in the isolation trench 240. In an exemplary embodiment, the angle a between the isolation trench 240 and the surface 204 of the insulating substrate 202 can be, for example, from 30° to 90°. However, in another example, the cross-sectional shape of the isolation trench 240 may also be rectangular. The material of the insulating layer 242 may be, for example, hafnium oxide or tantalum nitride.

在一實施例中,每個發光二極體晶片228亦可選擇性地包含另一電流阻障層244。如第4圖所示,電流阻障層244位於隔離溝渠240之上方,且覆蓋住隔離溝渠240內之絕緣層242、與隔離溝渠240之開口250外圍之第二電性半導體層212上。絕緣反射層220亦覆蓋住隔離溝渠240上方之電流阻障層244。 In one embodiment, each of the LED chips 228 can also optionally include another current blocking layer 244. As shown in FIG. 4, the current blocking layer 244 is located above the isolation trench 240 and covers the insulating layer 242 in the isolation trench 240 and the second electrical semiconductor layer 212 on the periphery of the opening 250 of the isolation trench 240. The insulating reflective layer 220 also covers the current blocking layer 244 above the isolation trench 240.

請參照第5圖,其係繪示依照本發明之另一實施方式的一種發光二極體結構的剖面圖。此實施方式之發光二極體結構200a之架構大致上與上述實施方式之發光二極體結構200相同,二者之主要差異在於,發光二極體結構200a之每個發光二極體晶片228c更包含介電層262。 Please refer to FIG. 5, which is a cross-sectional view showing a structure of a light emitting diode according to another embodiment of the present invention. The structure of the light emitting diode structure 200a of this embodiment is substantially the same as that of the light emitting diode structure 200 of the above embodiment, and the main difference between the two is that each of the light emitting diode structures 228c of the light emitting diode structure 200a is further A dielectric layer 262 is included.

在發光二極體結構200a中,介電層262疊設在磊晶層214上。介電層262又可稱為層間介電(Interlayer Dielectric;ILD)層。介電層262之材料為絕緣材料,例如二氧化矽與氮化矽等。每個發光二極體晶片228c具有第一電性接觸孔264與第二電性接觸孔266。第一電性接觸孔264與第二電性接觸孔266均貫穿介電層262。第一電性接觸孔264從介電層262之上表面278延伸至磊晶層214之第一電性半導體層208。因此,第一電性接觸孔264之底部270暴露出部分之第一電性半導體層208。 In the light emitting diode structure 200a, a dielectric layer 262 is stacked on the epitaxial layer 214. Dielectric layer 262 may also be referred to as an interlayer dielectric (ILD) layer. The material of the dielectric layer 262 is an insulating material such as cerium oxide and tantalum nitride. Each of the light emitting diode wafers 228c has a first electrical contact hole 264 and a second electrical contact hole 266. The first electrical contact hole 264 and the second electrical contact hole 266 both penetrate the dielectric layer 262. The first electrical contact hole 264 extends from the upper surface 278 of the dielectric layer 262 to the first electrical semiconductor layer 208 of the epitaxial layer 214. Therefore, the bottom 270 of the first electrical contact hole 264 exposes a portion of the first electrical semiconductor layer 208.

在發光二極體晶片228c無透明導電層的實施例中,第二電性接觸孔266從介電層262之上表面278延伸至磊晶層214之第二電性半導體層212。亦即,第二電性接觸孔266之底部280暴露出部分之第二電性半導體層212。而在發光二極體晶片228c具有透明導電層224的實施例中,透明導電層224介於介電層262與磊晶層214之間,而第二電性接觸孔266從介電層262之上表面278僅延伸至透明導電層224。因此,第二電性接觸孔266之底部280暴露出部分之透明導電層224。在每個發光二極體晶片228c中,隔離溝渠216介於此發光二極體晶片228c之第二電性 接觸孔266與相鄰之發光二極體晶片228c的第一電性接觸孔264之間。 In embodiments in which the light emitting diode wafer 228c has no transparent conductive layer, the second electrical contact hole 266 extends from the upper surface 278 of the dielectric layer 262 to the second electrical semiconductor layer 212 of the epitaxial layer 214. That is, the bottom 280 of the second electrical contact hole 266 exposes a portion of the second electrical semiconductor layer 212. In the embodiment where the LED substrate 228c has the transparent conductive layer 224, the transparent conductive layer 224 is interposed between the dielectric layer 262 and the epitaxial layer 214, and the second electrical contact hole 266 is formed from the dielectric layer 262. Upper surface 278 extends only to transparent conductive layer 224. Therefore, the bottom 280 of the second electrical contact hole 266 exposes a portion of the transparent conductive layer 224. In each of the LED chips 228c, the isolation trench 216 is interposed between the second electrical properties of the LED chip 228c. The contact hole 266 is between the first electrical contact hole 264 of the adjacent light-emitting diode wafer 228c.

每個發光二極體晶片228c更包含絕緣襯層268。絕緣襯層268覆蓋在第一電性接觸孔264之側壁上,以電性隔離後續填入第一電性接觸孔264之內連線層226、和第一電性接觸孔264之側壁所暴露出之透明導電層224、第二電性半導體層212、主動層210與第一電性半導體層208。藉此,可避免第一電性接觸孔264內的電流流經電阻值較小之透明導電層224而到達第二電性接觸孔266,進而造成短路而無法發光。藉由絕緣襯層268的設置,可避免同一發光二極體晶片228c或相鄰之發光二極體晶片228c之第一電性半導體層208與第二電性半導體層212透過透明導電層224而直接導通。 Each of the light emitting diode wafers 228c further includes an insulating liner 268. The insulating liner 268 is covered on the sidewall of the first electrical contact hole 264 to electrically isolate the inner wiring layer 226 of the first electrical contact hole 264 and the sidewall of the first electrical contact hole 264. The transparent conductive layer 224, the second electrical semiconductor layer 212, the active layer 210 and the first electrical semiconductor layer 208 are formed. Thereby, the current in the first electrical contact hole 264 can be prevented from flowing through the transparent conductive layer 224 having a small resistance value to reach the second electrical contact hole 266, thereby causing a short circuit and failing to emit light. By the arrangement of the insulating liner 268, the first electrical semiconductor layer 208 and the second electrical semiconductor layer 212 of the same LED wafer 228c or the adjacent LED wafer 228c can be prevented from passing through the transparent conductive layer 224. Direct conduction.

每個發光二極體晶片228c更可包含絕緣襯層282。此絕緣襯層282覆蓋在第二電性接觸孔266之側壁上,以提高發光二極體晶片228c之電性可靠度。然,發光二極體晶片228c可僅包含絕緣襯層268,而無需設置絕緣襯層282。絕緣襯層268與282之材料可例如為二氧化矽或氮化矽。 Each of the light emitting diode wafers 228c may further include an insulating liner 282. The insulating liner 282 is overlaid on the sidewall of the second electrical contact hole 266 to improve the electrical reliability of the LED wafer 228c. However, the light emitting diode wafer 228c may only include the insulating liner 268 without the need to provide an insulating liner 282. The material of the insulating liners 268 and 282 may be, for example, hafnium oxide or tantalum nitride.

在另一實施方式中,發光二極體結構亦可不包含絕緣襯層。請先參照第6圖,其係繪示依照本發明之又一實施方式的一種發光二極體結構的剖面圖。在本實施方式中,發光二極體結構200b之架構大致上與上述實施方式之發光二極體結構200a的架構相同,二者的差異在於發光二 極體結構200b之發光二極體晶片228d的第一電性接觸孔264與第二電性接觸孔266內並未設有絕緣襯層。 In another embodiment, the light emitting diode structure may also not include an insulating liner. Please refer to FIG. 6, which is a cross-sectional view showing a structure of a light emitting diode according to still another embodiment of the present invention. In the present embodiment, the structure of the LED structure 200b is substantially the same as that of the LED structure 200a of the above embodiment, and the difference between the two is that the illumination is two. The first electrical contact hole 264 and the second electrical contact hole 266 of the LED body 228d of the polar body structure 200b are not provided with an insulating liner.

在發光二極體結構200b中,每個發光二極體晶片228d之磊晶層214設有凹槽276。此凹槽276自磊晶層214之第二電性半導體層212朝第一電性半導體層208延伸。凹槽276之底部284位於第一電性半導體層208中,即凹槽276之底部284暴露出第一電性半導體層208。第一電性接觸孔264與凹槽276相接。而且,介電層262之一部分覆蓋在凹槽276之側壁上,且第一電性接觸孔264之底部270暴露出凹槽276之底部284的一部分。 In the light emitting diode structure 200b, the epitaxial layer 214 of each of the light emitting diode wafers 228d is provided with a recess 276. The recess 276 extends from the second electrical semiconductor layer 212 of the epitaxial layer 214 toward the first electrical semiconductor layer 208. The bottom 284 of the recess 276 is located in the first electrically conductive semiconductor layer 208, i.e., the bottom 284 of the recess 276 exposes the first electrically conductive semiconductor layer 208. The first electrical contact hole 264 is in contact with the recess 276. Moreover, one of the dielectric layers 262 partially overlies the sidewalls of the recess 276, and the bottom 270 of the first electrical contact hole 264 exposes a portion of the bottom 284 of the recess 276.

藉由設計使介電層262延伸覆蓋在磊晶層214之凹槽276的側壁上,發光二極體結構200b無需另外設置絕緣襯層於第一電性接觸孔264之側壁上,即可達到使內連線層226與凹槽276之側壁所暴露出之磊晶層214和透明導電層224電性絕緣的效果。 By designing the dielectric layer 262 to extend over the sidewall of the recess 276 of the epitaxial layer 214, the LED structure 200b can be disposed on the sidewall of the first electrical contact hole 264 without additionally providing an insulating liner. The effect of electrically interconnecting the interconnect layer 226 and the epitaxial layer 214 and the transparent conductive layer 224 exposed by the sidewalls of the recess 276.

請再次參照第5圖,在發光二極體結構200a中,內連線層226分別對應填入一發光二極體晶片228c之第二電性接觸孔266中,並經由隔離溝渠216上方之介電層262的上表面278,而延伸並填入相鄰之發光二極體晶片228c的第一電性接觸孔264中。內連線層226填入第一電性接觸孔264與第二電性接觸孔266中的部分亦可分別稱為接觸插塞(contact plug)272與274。絕緣反射層220覆蓋在介電層262與內連線層226上。 Referring to FIG. 5 again, in the LED structure 200a, the interconnect layer 226 is respectively filled in the second electrical contact hole 266 of the LED array 228c, and is connected via the isolation trench 216. The upper surface 278 of the electrical layer 262 extends and fills the first electrical contact hole 264 of the adjacent light emitting diode wafer 228c. Portions of the interconnect layer 226 that fill the first electrical contact hole 264 and the second electrical contact hole 266 may also be referred to as contact plugs 272 and 274, respectively. The insulating reflective layer 220 covers the dielectric layer 262 and the interconnect layer 226.

如第5圖所示,在每個發光二極體晶片228c中, 電流阻障層222設於部分之磊晶層214上,且位於第二電性接觸孔266之底部280的下方。因此,電流阻障層222介於第二電性接觸孔266之底部280與磊晶層214之間。而且,透明導電層224覆蓋住電流阻障層222。 As shown in FIG. 5, in each of the light-emitting diode wafers 228c, The current blocking layer 222 is disposed on a portion of the epitaxial layer 214 and below the bottom 280 of the second electrical contact hole 266. Therefore, the current blocking layer 222 is interposed between the bottom 280 of the second electrical contact hole 266 and the epitaxial layer 214. Moreover, the transparent conductive layer 224 covers the current blocking layer 222.

藉由電流阻障層222的設置,可避免大量電流經由內連線層226之接觸插塞274而直接向下灌注至發光二極體晶片228c中而造成電流擁塞情形,進而可強迫電流經由透明導電層224而流至磊晶層214中。在一實施例中,電流阻障層222較佳係大於接觸插塞274之底部的面積,亦即電流阻障層222之範圍較佳係涵蓋接觸插塞274之整個底部,以獲得更佳之電流阻障效果。 By the arrangement of the current blocking layer 222, a large amount of current can be prevented from being directly poured down into the LED array 228c via the contact plug 274 of the interconnect layer 226, thereby causing current congestion, thereby forcing the current to pass through the transparent The conductive layer 224 flows into the epitaxial layer 214. In one embodiment, the current blocking layer 222 is preferably larger than the area of the bottom of the contact plug 274, that is, the current blocking layer 222 preferably covers the entire bottom of the contact plug 274 to obtain a better current. Barrier effect.

在另一實施例中,絕緣層218可僅填入隔離溝渠216的一部分深度,而無需使絕緣層218之上表面與磊晶層214等高。而在此實施例中,電流阻障層222可從第二電性接觸孔266之底部280的下方延伸至鄰近之絕緣溝渠216的開口248,並使電流阻障層222覆蓋住絕緣溝渠216之開口248。藉由電流阻障層222的設置,可進一步增加絕緣效果,以避免透明導電層224覆蓋到磊晶層214而造成短路。 In another embodiment, the insulating layer 218 may only fill a portion of the depth of the isolation trench 216 without the upper surface of the insulating layer 218 being as high as the epitaxial layer 214. In this embodiment, the current blocking layer 222 can extend from below the bottom 280 of the second electrical contact hole 266 to the opening 248 of the adjacent insulating trench 216, and the current blocking layer 222 covers the insulating trench 216. Opening 248. By the arrangement of the current blocking layer 222, the insulating effect can be further increased to prevent the transparent conductive layer 224 from covering the epitaxial layer 214 to cause a short circuit.

請參照第7圖,其係繪示依照本發明之再一實施方式的一種發光二極體結構的剖面圖。在本實施方式中,發光二極體結構200c之架構大致上與上述實施方式之發光二極體結構200a的架構相同,二者的差異在於發光二極體結構200c之絕緣反射層220取代發光二極體結構200a之絕緣襯層268與282。而且,絕緣反射層220覆蓋在發光二極 體晶片228e之第一電性接觸孔264的側壁、第二電性接觸孔266的側壁、與介電層262之上表面278上。此外,發光二極體結構200c更包含絕緣層290。絕緣層290覆蓋在內連線層226與絕緣反射層220上。 Please refer to FIG. 7, which is a cross-sectional view showing a structure of a light emitting diode according to still another embodiment of the present invention. In the present embodiment, the structure of the LED structure 200c is substantially the same as that of the LED structure 200a of the above embodiment, and the difference is that the insulating reflective layer 220 of the LED structure 200c replaces the LED. Insulating liners 268 and 282 of the polar body structure 200a. Moreover, the insulating reflective layer 220 covers the light emitting diode The sidewall of the first electrical contact hole 264 of the bulk wafer 228e, the sidewall of the second electrical contact hole 266, and the upper surface 278 of the dielectric layer 262. In addition, the light emitting diode structure 200c further includes an insulating layer 290. The insulating layer 290 covers the inner wiring layer 226 and the insulating reflective layer 220.

請一併參照第2圖,在發光二極體結構200c中,絕緣層290可如發光二極體結構200之絕緣反射層220般至少設有二貫穿孔,其中此二貫穿孔分別暴露出部分之第一電性電極墊238與部分之第二電性電極墊236。如此一來,後續形成之第一電性接合墊252與第二電性接合墊232可分別經由此二貫穿孔,而分別與暴露出之第一電性電極墊238與第二電性電極墊236電性接合。 Referring to FIG. 2 together, in the LED structure 200c, the insulating layer 290 can be provided with at least two through holes, such as the insulating reflective layer 220 of the LED structure 200, wherein the two through holes respectively expose portions. The first electrical electrode pad 238 and a portion of the second electrical electrode pad 236. As a result, the first electrical bonding pads 252 and the second electrical bonding pads 232 are respectively formed through the two through holes, respectively, and the exposed first electrical electrode pads 238 and the second electrical electrode pads respectively. 236 electrical engagement.

在另一實施例中,絕緣層290更可根據測試墊258的設置,而對應設有另一貫穿孔。此貫穿孔可暴露出部分之測試墊258,以利後續經由此貫穿孔而透過暴露出之測試墊258來進行發光二極體結構200c的檢測。 In another embodiment, the insulating layer 290 is further provided with another through hole according to the setting of the test pad 258. The through hole may expose a portion of the test pad 258 for subsequent detection of the light emitting diode structure 200c through the exposed test pad 258 via the through hole.

請參照第8圖,其係繪示依照本發明之再一實施方式的一種發光二極體結構的剖面圖。在本實施方式中,發光二極體結構200d之架構大致上與上述實施方式之發光二極體結構200b的架構相同,二者的差異在於發光二極體結構200d之每個發光二極體晶片228f的絕緣反射層220覆蓋在磊晶層214之凹槽276的側壁與透明導電層224的上表面288上。此外,發光二極體結構200d更包含絕緣層290。絕緣層290覆蓋在內連線層226與介電層262之上表面278上。 Please refer to FIG. 8 , which is a cross-sectional view showing a structure of a light emitting diode according to still another embodiment of the present invention. In the present embodiment, the structure of the LED structure 200d is substantially the same as that of the LED structure 200b of the above embodiment, and the difference between the two is that each LED of the LED structure 200d is different. An insulating reflective layer 220 of 228f overlies the sidewalls of the recess 276 of the epitaxial layer 214 and the upper surface 288 of the transparent conductive layer 224. In addition, the light emitting diode structure 200d further includes an insulating layer 290. The insulating layer 290 covers the inner wiring layer 226 and the upper surface 278 of the dielectric layer 262.

在此實施方式之發光二極體結構200d中,由於絕緣反射層220設置的位置較接近主動層210,因此主動層210所發出之光線不會通過介電層262。故,可減少光線被介電層262吸收的損失,而可更進一步提升發光二極體結構200d之發光效率。 In the LED structure 200d of this embodiment, since the insulating reflective layer 220 is disposed closer to the active layer 210, the light emitted by the active layer 210 does not pass through the dielectric layer 262. Therefore, the loss of light absorbed by the dielectric layer 262 can be reduced, and the luminous efficiency of the light-emitting diode structure 200d can be further improved.

請一併參照第2圖,在發光二極體結構200d中,絕緣層290可如發光二極體結構200之絕緣反射層220般至少設有二貫穿孔,其中此二貫穿孔分別暴露出部分之第一電性電極墊238與部分之第二電性電極墊236。因此,後續形成之第一電性接合墊252與第二電性接合墊232可分別經由此二貫穿孔,而分別與暴露出之第一電性電極墊238與第二電性電極墊236電性接合。 Referring to FIG. 2 together, in the LED structure 200d, the insulating layer 290 can be provided with at least two through holes, such as the insulating reflective layer 220 of the LED structure 200, wherein the two through holes respectively expose portions. The first electrical electrode pad 238 and a portion of the second electrical electrode pad 236. Therefore, the first electrical bonding pads 252 and the second electrical bonding pads 232 can be electrically connected to the exposed first and second electrical electrode pads 238 and 236, respectively. Sexual engagement.

在另一實施例中,絕緣層290更可根據測試墊258的設置,而對應設有另一貫穿孔。此貫穿孔可暴露出部分之測試墊258,以利後續經由此貫穿孔而透過暴露出之測試墊258來進行發光二極體結構200d的檢測。 In another embodiment, the insulating layer 290 is further provided with another through hole according to the setting of the test pad 258. The through hole may expose a portion of the test pad 258 for subsequent detection of the light emitting diode structure 200d through the exposed test pad 258 via the through hole.

請參照第9圖,其係繪示依照本發明之再一實施方式的一種發光二極體結構的剖面圖。在本實施方式中,發光二極體結構200e之架構大致上與上述實施方式之發光二極體結構200b的架構相同,二者的差異在於發光二極體結構200e之每個發光二極體晶片228g的絕緣反射層220覆蓋在透明導電層224的上表面288上。此外,發光二極體結構200e更包含絕緣層290。絕緣層290覆蓋在內連線層226與介電層262之上表面278上。 Please refer to FIG. 9, which is a cross-sectional view showing a structure of a light emitting diode according to still another embodiment of the present invention. In the present embodiment, the structure of the LED structure 200e is substantially the same as the structure of the LED structure 200b of the above embodiment, and the difference between the two is that each of the LEDs 200e of the LED structure 200e A 228 g of insulating reflective layer 220 overlies the upper surface 288 of the transparent conductive layer 224. In addition, the light emitting diode structure 200e further includes an insulating layer 290. The insulating layer 290 covers the inner wiring layer 226 and the upper surface 278 of the dielectric layer 262.

請一併參照第2圖,在發光二極體結構200e中,絕緣層290可如發光二極體結構200之絕緣反射層220般至少設有二貫穿孔,其中此二貫穿孔分別暴露出部分之第一電性電極墊238與部分之第二電性電極墊236。如此一來,後續形成之第一電性接合墊252與第二電性接合墊232可分別經由此二貫穿孔,而分別與暴露出之第一電性電極墊238與第二電性電極墊236電性接合。 Referring to FIG. 2 together, in the LED structure 200e, the insulating layer 290 can be provided with at least two through holes, such as the insulating reflective layer 220 of the LED structure 200, wherein the two through holes respectively expose portions. The first electrical electrode pad 238 and a portion of the second electrical electrode pad 236. As a result, the first electrical bonding pads 252 and the second electrical bonding pads 232 are respectively formed through the two through holes, respectively, and the exposed first electrical electrode pads 238 and the second electrical electrode pads respectively. 236 electrical engagement.

在另一實施例中,絕緣層290更可根據測試墊258的設置,而對應設有另一貫穿孔。此貫穿孔可暴露出部分之測試墊258,以利後續經由此貫穿孔而透過暴露出之測試墊258來進行發光二極體結構200e的檢測。 In another embodiment, the insulating layer 290 is further provided with another through hole according to the setting of the test pad 258. The through hole may expose a portion of the test pad 258 to facilitate subsequent detection of the light emitting diode structure 200e through the exposed test pad 258 via the through hole.

請參照第10圖,其係繪示依照本發明之再一實施方式的一種發光二極體結構的剖面圖。在本實施方式中,發光二極體結構200f之架構大致上與上述實施方式之發光二極體結構200b的架構相同,二者的差異在於發光二極體結構200f之每個發光二極體晶片228h的絕緣反射層220覆蓋在介電層262的上表面278上。此外,發光二極體結構200f更包含絕緣層290。絕緣層290覆蓋在內連線層226與絕緣反射層220上。 Please refer to FIG. 10, which is a cross-sectional view showing a structure of a light emitting diode according to still another embodiment of the present invention. In the present embodiment, the structure of the LED structure 200f is substantially the same as that of the LED structure 200b of the above embodiment, and the difference between the two is that each LED of the LED structure 200f is printed. An insulating reflective layer 220 of 228h overlies the upper surface 278 of the dielectric layer 262. In addition, the light emitting diode structure 200f further includes an insulating layer 290. The insulating layer 290 covers the inner wiring layer 226 and the insulating reflective layer 220.

請一併參照第2圖,在發光二極體結構200f中,絕緣層290可如發光二極體結構200之絕緣反射層220般至少設有二貫穿孔,其中此二貫穿孔分別暴露出部分之第一電性電極墊238與部分之第二電性電極墊236。如此一來,後續形成之第一電性接合墊252與第二電性接合墊232 可分別經由此二貫穿孔,而分別與暴露出之第一電性電極墊238與第二電性電極墊236電性接合。 Referring to FIG. 2 together, in the LED structure 200f, the insulating layer 290 can be provided with at least two through holes, such as the insulating reflective layer 220 of the LED structure 200, wherein the two through holes respectively expose portions. The first electrical electrode pad 238 and a portion of the second electrical electrode pad 236. As a result, the first electrical bonding pad 252 and the second electrical bonding pad 232 are formed subsequently. The first electrical electrode pad 238 and the second electrical electrode pad 236 are electrically connected to each other through the two through holes.

在另一實施例中,絕緣層290更可根據測試墊258的設置,而對應設有另一貫穿孔。此貫穿孔可暴露出部分之測試墊258,以利後續經由此貫穿孔而透過暴露出之測試墊258來進行發光二極體結構200f的檢測。 In another embodiment, the insulating layer 290 is further provided with another through hole according to the setting of the test pad 258. The through hole may expose a portion of the test pad 258 for subsequent detection of the light emitting diode structure 200f through the exposed test pad 258 via the through hole.

請參照第11A圖至第11G圖,其係繪示依照本發明之一實施方式的一種發光二極體結構之製程剖面圖。在此實施方式中,製造發光二極體結構200時,先提供絕緣基板202。再利用磊晶成長方式,例如有機金屬化學氣相沉積(MOCVD)方式,依序在絕緣基板202之表面204上形成未摻雜半導體層206、第一電性半導體層208、主動層210與第二電性半導體層212。如第11A圖所示,未摻雜半導體層206、第一電性半導體層208、主動層210與第二電性半導體層212依序堆疊而構成磊晶結構214a。在另一實施例中,磊晶結構214a亦可不包含未摻雜半導體層206。 Please refer to FIG. 11A to FIG. 11G, which are schematic cross-sectional views showing a process of a light emitting diode structure according to an embodiment of the present invention. In this embodiment, when the light emitting diode structure 200 is manufactured, the insulating substrate 202 is first provided. The undoped semiconductor layer 206, the first electrical semiconductor layer 208, the active layer 210 and the first layer are formed on the surface 204 of the insulating substrate 202 by an epitaxial growth mode, such as an organic metal chemical vapor deposition (MOCVD) method. The second electrical semiconductor layer 212. As shown in FIG. 11A, the undoped semiconductor layer 206, the first electrical semiconductor layer 208, the active layer 210, and the second electrical semiconductor layer 212 are sequentially stacked to form an epitaxial structure 214a. In another embodiment, the epitaxial structure 214a may also not include the undoped semiconductor layer 206.

接下來,利用例如沉積方式,形成蝕刻停止層292覆蓋在第二電性半導體層212上。蝕刻停止層292之材料可例如為氮化矽(SiNx)。如第11B圖所示,再利用例如沉積方式,形成硬罩幕層294覆蓋在蝕刻停止層292上。硬罩幕層294之材料可例如為鎳或二氧化矽。蝕刻停止層292可作為硬罩幕層294圖案定義時的蝕刻終點。 Next, an etch stop layer 292 is formed overlying the second electrical semiconductor layer 212 by, for example, a deposition method. The material of the etch stop layer 292 may be, for example, tantalum nitride (SiN x ). As shown in FIG. 11B, a hard mask layer 294 is formed over the etch stop layer 292 by, for example, deposition. The material of the hard mask layer 294 can be, for example, nickel or cerium oxide. The etch stop layer 292 can serve as an etch end point when the hard mask layer 294 pattern is defined.

接著,先利用例如塗布方式,形成光阻層296覆蓋在硬罩幕層294上。再利用例如微影製程,對光阻層296 進行圖案定義,以移除部分之光阻層296,而暴露出部分之硬罩幕層294,藉以在光阻層296中定義出隔離溝渠216與240之預設位置與形狀。隨後,利用例如蝕刻方式,以圖案化後之光阻層296為蝕刻罩幕,且以蝕刻停止層292為蝕刻終點,來移除硬罩幕層294的暴露部分,藉以將光阻層296中之圖案轉移至硬罩幕層294中。如此一來,可將原先定義在光阻層296中之隔離溝渠216與240的預設位置與形狀,轉移至硬罩幕層294,如第11C圖所示。 Next, a photoresist layer 296 is formed on the hard mask layer 294 by, for example, a coating method. Reusing, for example, a lithography process, the photoresist layer 296 A pattern definition is performed to remove portions of the photoresist layer 296 to expose portions of the hard mask layer 294, thereby defining the predetermined locations and shapes of the isolation trenches 216 and 240 in the photoresist layer 296. Subsequently, the exposed portion of the hard mask layer 294 is removed by, for example, etching, with the patterned photoresist layer 296 as an etch mask, and the etch stop layer 292 as the etch end, thereby placing the photoresist layer 296 therein. The pattern is transferred to the hard mask layer 294. In this way, the predetermined position and shape of the isolation trenches 216 and 240 originally defined in the photoresist layer 296 can be transferred to the hard mask layer 294 as shown in FIG. 11C.

接著,利用例如感應耦合式電漿蝕刻(ICP)方式,且以圖案化之光阻層296與硬罩幕層294為蝕刻罩幕,來蝕刻磊晶結構214a,以移除部分之第二電性半導體層212、部分之主動層210、部分之第一電性半導體層208與部分之未摻雜半導體層206,藉以將硬罩幕層294中之圖案轉移至磊晶結構214a中,而在磊晶結構214a中形成數個隔離溝渠216與240。如第2圖與第11D圖所示,隔離溝渠216分別與隔離溝渠240鄰接,且隔離溝渠216與240將磊晶結構214a定義成數個發光二極體晶片228之磊晶層214。其中,每個發光二極體晶片228包含一隔離溝渠216,而一隔離溝渠240可隔設在相鄰二行之發光二極體晶片228之間。 Next, the epitaxial structure 214a is etched by, for example, an inductively coupled plasma etching (ICP) method, and the patterned photoresist layer 296 and the hard mask layer 294 are used as an etching mask to remove a portion of the second electricity. The semiconductor layer 212, a portion of the active layer 210, a portion of the first electrical semiconductor layer 208 and a portion of the undoped semiconductor layer 206, thereby transferring the pattern in the hard mask layer 294 into the epitaxial structure 214a, A plurality of isolation trenches 216 and 240 are formed in the epitaxial structure 214a. As shown in FIGS. 2 and 11D, the isolation trenches 216 are respectively adjacent to the isolation trenches 240, and the isolation trenches 216 and 240 define the epitaxial structures 214a as the epitaxial layers 214 of the plurality of light emitting diode wafers 228. Each of the LED chips 228 includes an isolation trench 216, and an isolation trench 240 is spaced between adjacent two rows of LED chips 228.

在一實施例中,如第4圖與第11D圖所示,隔離溝渠216之底部與隔離溝渠240之底部均暴露出絕緣基板202之表面204的一部分。在另一實施例中,隔離溝渠216之底部與隔離溝渠240之底部可位於未摻雜半導體層206 中。在磊晶層214並未包含未摻雜半導體層206的實施例中,隔離溝渠216與240自第二電性半導體層212朝絕緣基板202之表面204延伸,且隔離溝渠216與240均暴露出絕緣基板202之表面204的一部分。 In one embodiment, as shown in FIGS. 4 and 11D, the bottom of the isolation trench 216 and the bottom of the isolation trench 240 expose a portion of the surface 204 of the insulating substrate 202. In another embodiment, the bottom of the isolation trench 216 and the bottom of the isolation trench 240 may be located in the undoped semiconductor layer 206. in. In embodiments where the epitaxial layer 214 does not include the undoped semiconductor layer 206, the isolation trenches 216 and 240 extend from the second electrically conductive semiconductor layer 212 toward the surface 204 of the insulating substrate 202, and the isolation trenches 216 and 240 are exposed. A portion of the surface 204 of the insulating substrate 202.

在一實施例中,如第11D圖所示,形成隔離溝渠216與240後,可移除殘留之光阻層296與硬罩幕層294,而暴露出蝕刻停止層292。在另一實施例中,蝕刻停止層292可不需要在硬罩幕層294之前形成,而可在光阻層296與硬罩幕層294移除後,再形成蝕刻停止層292覆蓋在第二電性半導體層212上。 In one embodiment, as shown in FIG. 11D, after the isolation trenches 216 and 240 are formed, the residual photoresist layer 296 and the hard mask layer 294 may be removed to expose the etch stop layer 292. In another embodiment, the etch stop layer 292 may not need to be formed before the hard mask layer 294, but after the photoresist layer 296 and the hard mask layer 294 are removed, an etch stop layer 292 is formed to cover the second On the semiconductor layer 212.

接下來,可根據產品需求,而利用例如電漿輔助化學沉積(PECVD)方式,選擇性地形成絕緣材料覆蓋在蝕刻停止層292上、以及隔離溝渠216與240中。絕緣材料可例如為二氧化矽或氮化矽。接著,在一實施例中,可利用例如回蝕刻方式,並以蝕刻停止層292為蝕刻終點,來移除蝕刻停止層292上之絕緣材料,藉以分別在隔離溝渠216與240中填入絕緣層218與242,如第11E圖與第4圖所示。在一些實施例中,可利用例如化學機械研磨(CMP)方式,來移除蝕刻停止層292上多餘之絕緣材料。此時,蝕刻停止層292作為研磨終點。 Next, an insulating material can be selectively formed over the etch stop layer 292 and the isolation trenches 216 and 240, for example, by plasma assisted chemical deposition (PECVD), depending on product requirements. The insulating material can be, for example, hafnium oxide or tantalum nitride. Next, in an embodiment, the insulating material on the etch stop layer 292 can be removed by, for example, etchback, and the etch stop layer 292 is used as an etch stop, thereby filling the isolation trenches 216 and 240 with insulating layers, respectively. 218 and 242, as shown in Figures 11E and 4. In some embodiments, excess insulating material on the etch stop layer 292 can be removed using, for example, a chemical mechanical polishing (CMP) process. At this time, the etch stop layer 292 serves as the polishing end point.

絕緣層218與242較佳係分別封住隔離溝渠216之開口248與隔離溝渠240之開口250。在一實施例中,如第11E圖所示,絕緣材料可完全填滿隔離溝渠216與240。在另一實施例中,絕緣材料亦可能沒有填滿隔離溝渠216與 240,而在隔離溝渠216與240中形成孔洞。 The insulating layers 218 and 242 preferably enclose the opening 248 of the isolation trench 216 and the opening 250 of the isolation trench 240, respectively. In one embodiment, as shown in FIG. 11E, the insulating material can completely fill the isolation trenches 216 and 240. In another embodiment, the insulating material may not fill the isolation trench 216 and 240, and holes are formed in the isolation trenches 216 and 240.

接下來,移除蝕刻停止層292,而暴露出第二電性半導體層212。在一實施例中,可直接進行發光二極體晶片228之平台定義。然,在另一實施例中,可選擇性地利用例如沉積方式,先形成電流阻障材料覆蓋在絕緣層218與242、以及第二電性半導體層212上。再利用例如微影與蝕刻方式,移除第二電性半導體層212上之電流阻障材料的一部分,藉以形成電流阻障層222與244,如第11F圖與第4圖所示。電流阻障層222覆蓋在絕緣層218上,且延伸於隔離溝渠216之開口248外側的第二電性半導體層212上。同樣地,電流阻障層244覆蓋在絕緣層242上,且延伸於隔離溝渠240之開口250外側的第二電性半導體層212上。 Next, the etch stop layer 292 is removed to expose the second electrical semiconductor layer 212. In one embodiment, the platform definition of the LED array 228 can be performed directly. However, in another embodiment, a current blocking material may be selectively formed on the insulating layers 218 and 242 and the second electrical semiconductor layer 212, for example, by a deposition method. A portion of the current blocking material on the second electrical semiconductor layer 212 is removed by, for example, lithography and etching to form current blocking layers 222 and 244, as shown in FIGS. 11F and 4. The current blocking layer 222 overlies the insulating layer 218 and extends over the second electrically conductive semiconductor layer 212 outside the opening 248 of the isolation trench 216. Similarly, current barrier layer 244 overlies insulating layer 242 and extends over second electrically conductive semiconductor layer 212 outside of opening 250 of isolation trench 240.

如第11F圖所示,在設置有電流阻障層222與244的實施例中,接著可利用例如蒸鍍或濺鍍方式,形成透明導電層224覆蓋在電流阻障層222與244、以及第二電性半導體層212上。透明導電層224之材料可例如為氧化銦錫。接下來,利用例如微影與蝕刻製程,例如感應耦合式電漿蝕刻製程,來進行每個發光二極體晶片228之平台定義。在平台定義製程中,移除部分之透明導電層224、部分之第二電性半導體層212、與部分之主動層210,甚至移除一部分之第一電性半導體層208,以暴露出部分之第一電性半導體層208,而形成每個發光二極體晶片228之平台結構230與暴露部分234。此外,如第4圖所示,平台定義製程更移除隔離溝渠240上之透明導電層224。經平台定義後,每個 發光二極體晶片228之隔離溝渠216位於平台結構230中,且透明導電層224位於平台結構230上。 As shown in FIG. 11F, in the embodiment in which the current blocking layers 222 and 244 are provided, the transparent conductive layer 224 may be formed over the current blocking layers 222 and 244, and then by, for example, evaporation or sputtering. On the second electrical semiconductor layer 212. The material of the transparent conductive layer 224 may be, for example, indium tin oxide. Next, the definition of the platform for each of the LED chips 228 is performed using, for example, a lithography and etching process, such as an inductively coupled plasma etch process. In the platform definition process, a portion of the transparent conductive layer 224, a portion of the second electrical semiconductor layer 212, a portion of the active layer 210, and even a portion of the first electrical semiconductor layer 208 are removed to expose portions of the transparent conductive layer 224. The first electrically conductive semiconductor layer 208 forms a land structure 230 and an exposed portion 234 of each of the light emitting diode wafers 228. In addition, as shown in FIG. 4, the platform definition process further removes the transparent conductive layer 224 on the isolation trench 240. After the platform is defined, each The isolation trench 216 of the LED chip 228 is located in the platform structure 230, and the transparent conductive layer 224 is located on the platform structure 230.

在另一實施例中,可先完成每個發光二極體晶片228之平台定義後,再形成電流阻障層222與244,而後再形成透明導電層224。此時,如第11G圖所示,電流阻障層222位於平台結構230上,且位於隔離溝渠216之上方,並覆蓋住絕緣層218、部分之第二電性半導體層212、以及後續形成之內連線層226所在之平台結構230之側面246。而且,透明導電層224位於平台結構230上,且覆蓋在電流阻障層222上,並延伸於平台結構230之第二電性半導體層212上。另一方面,電流阻障層244位於隔離溝渠240之上方,且覆蓋住隔離溝渠240內之絕緣層242、與隔離溝渠240之開口250外圍之第二電性半導體層212上。 In another embodiment, the current barrier layers 222 and 244 may be formed after the definition of the platform of each of the LED chips 228 is completed, and then the transparent conductive layer 224 is formed. At this time, as shown in FIG. 11G, the current blocking layer 222 is located on the platform structure 230 and above the isolation trench 216, and covers the insulating layer 218, a portion of the second electrical semiconductor layer 212, and subsequently formed. Side 246 of platform structure 230 where interconnect layer 226 is located. Moreover, the transparent conductive layer 224 is located on the platform structure 230 and overlies the current blocking layer 222 and extends over the second electrical semiconductor layer 212 of the platform structure 230. On the other hand, the current blocking layer 244 is located above the isolation trench 240 and covers the insulating layer 242 in the isolation trench 240 and the second electrical semiconductor layer 212 on the periphery of the opening 250 of the isolation trench 240.

接著,利用例如沉積方式,形成導電層覆蓋在平台結構230與第一電性半導體層208之暴露部分234上。再利用例如微影與蝕刻方式,移除部分之金屬層,而形成數個內連線層226、第一電性電極墊238與第二電性電極墊236。在另一實施例中,如第2圖所示,可在製作內連線層226時,同時製作測試墊258。內連線層226分別連接相鄰之發光二極體晶片228,以電性串聯這些發光二極體晶片228。第一電性電極墊238與第二電性電極墊236分別設置在發光二極體結構200之二發光二極體晶片上,例如分別為發光二極體晶片陣列之發光二極體晶片228b與228a。第一電性電極墊238可位於發光二極體晶片228b之第一電性 半導體層208的暴露部分234上,而與第一電性半導體層208的暴露部分234電性連接。另一方面,第二電性電極墊236可位於發光二極體晶片228a之平台結構230上的透明導電層224或第二電性半導體層212上,而與第二電性半導體層212電性連接。 Next, a conductive layer is formed overlying the exposed portions 234 of the landing structure 230 and the first electrically conductive semiconductor layer 208 by, for example, deposition. A portion of the metal layer is removed by, for example, lithography and etching to form a plurality of interconnect layers 226, a first electrical electrode pad 238, and a second electrical electrode pad 236. In another embodiment, as shown in FIG. 2, a test pad 258 can be fabricated simultaneously while the interconnect layer 226 is being formed. The interconnect layer 226 is connected to the adjacent LED chips 228 to electrically connect the LED chips 228. The first electrical electrode pad 238 and the second electrical electrode pad 236 are respectively disposed on the two LED chips of the LED structure 200, such as the LED array 228b of the LED array, respectively. 228a. The first electrical electrode pad 238 can be located at the first electrical property of the LED chip 228b. The exposed portion 234 of the semiconductor layer 208 is electrically coupled to the exposed portion 234 of the first electrically conductive semiconductor layer 208. On the other hand, the second electrical electrode pad 236 can be located on the transparent conductive layer 224 or the second electrical semiconductor layer 212 on the platform structure 230 of the LED body 228a, and electrically connected to the second electrical semiconductor layer 212. connection.

接下來,利用例如沉積方式,形成絕緣反射層220覆蓋在內連線層226、平台結構230、第一電性半導體層208之暴露部分234、第一電性電極墊238與第二電性電極墊236上。請再次參照第2圖,可利用例如圖案化技術對絕緣反射層220進行定義,以在絕緣反射層220中至少形成貫穿孔256、254與260。此三個貫穿孔256、254與260分別暴露出部分之第一電性電極墊238、部分之第二電性電極墊236與部分之測試墊258。藉由貫穿孔260的設置,可透過貫穿孔260所暴露出之測試墊258來進行發光二極體結構200的檢測。 Next, the insulating reflective layer 220 is formed to cover the inner wiring layer 226, the land structure 230, the exposed portion 234 of the first electrical semiconductor layer 208, the first electrical electrode pad 238, and the second electrical electrode by, for example, deposition. Pad 236. Referring again to FIG. 2, the insulating reflective layer 220 can be defined by, for example, a patterning technique to form at least through holes 256, 254, and 260 in the insulating reflective layer 220. The three through holes 256, 254, and 260 respectively expose a portion of the first electrical electrode pad 238, a portion of the second electrical electrode pad 236, and a portion of the test pad 258. The detection of the light-emitting diode structure 200 can be performed through the test pad 258 exposed through the through hole 260 by the provision of the through hole 260.

接下來,如第2圖與第11G圖所示,分別於絕緣反射層220之彼此分離之二部分上形成第一電性接合墊252與第二電性接合墊232,而完成串聯式發光二極體結構200。第一電性接合墊252與第二電性接合墊232彼此分離。此外,第一電性接合墊252與第二電性接合墊232可分別經由貫穿孔256與254,而分別與暴露出之第一電性電極墊238與第二電性電極墊236接觸並電性接合。 Next, as shown in FIG. 2 and FIG. 11G, the first electrical bonding pads 252 and the second electrical bonding pads 232 are respectively formed on the two separated portions of the insulating reflective layer 220, and the tandem illumination is completed. Polar body structure 200. The first electrical bond pad 252 and the second electrical bond pad 232 are separated from each other. In addition, the first electrical bonding pads 252 and the second electrical bonding pads 232 can respectively contact the exposed first electrical electrode pads 238 and the second electrical electrode pads 236 via the through holes 256 and 254, respectively. Sexual engagement.

請參照第12A圖至第12D圖,其係繪示依照本發明之另一實施方式的一種發光二極體結構之製程剖面圖。 在本實施方式中,可先根據上述實施方式之製程步驟,完成第11F圖所示之結構。接下來,形成介電材料層覆蓋在磊晶層214上方的透明導電層224上。介電材料係為絕緣材料,例如二氧化矽與氮化矽等。在一實施例中,可利用例如電漿輔助化學沉積方式來形成介電材料層,其中此介電材料層之厚度可約為2000Å至3000Å。在另一實施例中,可利用例如旋轉塗布方式來形成介電材料層,其中此介電材料層之厚度可約為2μm至3μm。 Please refer to FIG. 12A to FIG. 12D , which are cross-sectional views showing a process of a light emitting diode structure according to another embodiment of the present invention. In the present embodiment, the structure shown in FIG. 11F can be completed according to the process steps of the above embodiment. Next, a layer of dielectric material is formed overlying the transparent conductive layer 224 over the epitaxial layer 214. The dielectric material is an insulating material such as hafnium oxide and tantalum nitride. In one embodiment, the layer of dielectric material can be formed using, for example, plasma-assisted chemical deposition, wherein the thickness of the layer of dielectric material can range from about 2000 Å to about 3,000 Å. In another embodiment, the layer of dielectric material can be formed using, for example, spin coating, wherein the thickness of the layer of dielectric material can range from about 2 [mu]m to about 3 [mu]m.

接著,可根據實際製程需求,而選擇性地利用例如化學機械研磨的方式對此介電材料層進行平坦化處理,藉以獲得表面實質平坦之介電材料層。接著,如第12A圖所示,利用例如微影與蝕刻方式,例如感應耦合式電漿蝕刻方式,移除部分之介電材料層,而形成數個第一電性接觸孔264的一部分與數個第二電性接觸孔266,並形成數個介電層262。每個發光二極體晶片228c包含一介電層262,且第一電性接觸孔264之一部分與第二電性接觸孔266貫穿介電層262。 Then, the dielectric material layer can be planarized by, for example, chemical mechanical polishing according to actual process requirements, to obtain a layer of dielectric material having a substantially flat surface. Then, as shown in FIG. 12A, a portion of the dielectric material layer is removed by, for example, lithography and etching, such as inductively coupled plasma etching, to form a portion and a plurality of first electrical contact holes 264. A second electrical contact hole 266 and a plurality of dielectric layers 262 are formed. Each of the LED wafers 228c includes a dielectric layer 262, and a portion of the first electrical contact holes 264 and the second electrical contact holes 266 extend through the dielectric layer 262.

接下來,形成光阻層298覆蓋在介電層262上,並填入第一電性接觸孔264與第二電性接觸孔266中。再利用例如微影製程,對光阻層298進行圖案定義。定義光阻層298時,移除第一電性接觸孔264中之光阻層298,並暴露出第一電性接觸孔264內之透明導電層224。然後,利用例如蝕刻方式,且以圖案化後之光阻層298為蝕刻罩幕,來移除透明導電層224的暴露部分及其下方之第二電性半 導體層212、主動層210與部分之第一電性半導體層208,而完成第一電性接觸孔264。如此,完成每個發光二極體晶片228c之平台結構230與第一電性半導體層208之暴露部分234的定義。如第12B圖所示,每個發光二極體晶片228c之隔離溝渠216介於其第二電性接觸孔266與相鄰之發光二極體晶片228c的第一電性接觸孔264之間。 Next, a photoresist layer 298 is formed on the dielectric layer 262 and filled in the first electrical contact hole 264 and the second electrical contact hole 266. The photoresist layer 298 is patterned using, for example, a lithography process. When the photoresist layer 298 is defined, the photoresist layer 298 in the first electrical contact hole 264 is removed, and the transparent conductive layer 224 in the first electrical contact hole 264 is exposed. Then, the exposed portion of the transparent conductive layer 224 and the second electrical half below it are removed by, for example, etching, and using the patterned photoresist layer 298 as an etch mask. The conductor layer 212, the active layer 210 and a portion of the first electrical semiconductor layer 208 complete the first electrical contact hole 264. As such, the definition of the exposed structure 234 of the platform structure 230 and the first electrically conductive semiconductor layer 208 of each of the LED wafers 228c is completed. As shown in FIG. 12B, the isolation trench 216 of each LED wafer 228c is interposed between its second electrical contact hole 266 and the first electrical contact hole 264 of the adjacent LED wafer 228c.

如第12B圖所示,在每個發光二極體晶片228c中,第一電性接觸孔264之底部270暴露出部分之第一電性半導體層208,且位於第一電性半導體層208中。第二電性接觸孔266之底部280暴露出部分之透明導電層224。此外,電流阻障層222介於磊晶層214之第二電性半導體層212與第二電性接觸孔266之底部280之間。而透明導電層224覆蓋在電流阻障層222上,且介於磊晶層214之第二電性半導體層212與介電層262之間。在另一實施例中,發光二極體晶片228c無透明導電層,而第二電性接觸孔266之底部280暴露出部分之第二電性半導體層212。 As shown in FIG. 12B, in each of the light-emitting diode wafers 228c, the bottom 270 of the first electrical contact hole 264 exposes a portion of the first electrical semiconductor layer 208 and is located in the first electrical semiconductor layer 208. . The bottom 280 of the second electrical contact hole 266 exposes a portion of the transparent conductive layer 224. In addition, the current blocking layer 222 is between the second electrical semiconductor layer 212 of the epitaxial layer 214 and the bottom 280 of the second electrical contact hole 266. The transparent conductive layer 224 covers the current blocking layer 222 and is between the second electrical semiconductor layer 212 of the epitaxial layer 214 and the dielectric layer 262. In another embodiment, the LED wafer 228c has no transparent conductive layer, and the bottom 280 of the second electrical contact hole 266 exposes a portion of the second electrical semiconductor layer 212.

接下來,移除殘留之光阻層298,而暴露出介電層262、第一電性接觸孔264與第二電性接觸孔266。再利用例如電漿輔助化學沉積方式,形成絕緣材料層覆蓋在介電層262、及第一電性接觸孔264之側壁和底部270、與第二電性接觸孔266之側壁和底部280上。絕緣材料層之材料可例如為二氧化矽或氮化矽。接著,可利用乾蝕刻等非等向性蝕刻方式,去除介電層262之上表面278、第一電性接觸孔264之底部270以及第二電性接觸孔266之底部280 上的絕緣材料層,而在第一電性接觸孔264之側壁與第二電性接觸孔266之側壁上分別形成絕緣襯層268與282,如第12C圖所示。 Next, the residual photoresist layer 298 is removed to expose the dielectric layer 262, the first electrical contact hole 264 and the second electrical contact hole 266. The insulating material layer is formed on the sidewalls and the bottom portion 270 of the first electrical contact hole 264 and the sidewalls and the bottom portion 280 of the second electrical contact hole 266 by using, for example, plasma-assisted chemical deposition. The material of the insulating material layer may be, for example, hafnium oxide or tantalum nitride. Then, the upper surface 278 of the dielectric layer 262, the bottom 270 of the first electrical contact hole 264, and the bottom 280 of the second electrical contact hole 266 may be removed by an anisotropic etching method such as dry etching. The insulating material layer is formed on the sidewalls of the first electrical contact hole 264 and the sidewalls of the second electrical contact hole 266 to form insulating liners 268 and 282, respectively, as shown in FIG. 12C.

接著,利用例如沉積方式,形成導電層覆蓋在介電層262之上表面278上,並填入第一電性接觸孔264與第二電性接觸孔266中。請同時參照第12D圖與第2圖,再利用例如微影與蝕刻方式,移除部分之金屬層,而形成數個內連線層226、第一電性電極墊238與第二電性電極墊236。每個內連線層226填充在第一電性接觸孔264與第二電性接觸孔266中的部分亦可分別稱為接觸插塞272與274。 Then, a conductive layer is formed on the upper surface 278 of the dielectric layer 262 by using, for example, a deposition method, and is filled in the first electrical contact hole 264 and the second electrical contact hole 266. Referring to FIG. 12D and FIG. 2 simultaneously, a portion of the metal layer is removed by, for example, lithography and etching to form a plurality of interconnect layers 226, a first electrical electrode pad 238, and a second electrical electrode. Pad 236. Portions of each of the interconnect layers 226 that are filled in the first electrical contact holes 264 and the second electrical contact holes 266 may also be referred to as contact plugs 272 and 274, respectively.

接著,利用例如沉積方式,形成絕緣反射層220覆蓋在內連線層226與介電層262之上表面278上。請再次參照第2圖,可利用例如圖案化技術對絕緣反射層220進行定義,以在絕緣反射層220中至少形成貫穿孔256、254與260。此三個貫穿孔256、254與260分別暴露出部分之第一電性電極墊238、部分之第二電性電極墊236與部分之測試墊258。 Next, an insulating reflective layer 220 is formed over the inner wiring layer 226 and the upper surface 278 of the dielectric layer 262 by, for example, deposition. Referring again to FIG. 2, the insulating reflective layer 220 can be defined by, for example, a patterning technique to form at least through holes 256, 254, and 260 in the insulating reflective layer 220. The three through holes 256, 254, and 260 respectively expose a portion of the first electrical electrode pad 238, a portion of the second electrical electrode pad 236, and a portion of the test pad 258.

接下來,如第2圖與第12D圖所示,於絕緣反射層220上形成彼此分離之第一電性接合墊252與第二電性接合墊232,而完成串聯式發光二極體結構200a。第一電性接合墊252與第二電性接合墊232彼此分離。此外,第一電性接合墊252與第二電性接合墊232可分別經由貫穿孔256與254,而分別與暴露出之第一電性電極墊238與第二 電性電極墊236接觸並電性接合。 Next, as shown in FIG. 2 and FIG. 12D, the first electrical bonding pads 252 and the second electrical bonding pads 232 separated from each other are formed on the insulating reflective layer 220, and the tandem light emitting diode structure 200a is completed. . The first electrical bond pad 252 and the second electrical bond pad 232 are separated from each other. In addition, the first electrical bonding pads 252 and the second electrical bonding pads 232 can respectively pass through the through holes 256 and 254, and respectively expose the first electrical electrode pads 238 and the second The electrical electrode pads 236 are in contact and electrically coupled.

請參照第13A圖至第13C圖,其係繪示依照本發明之又一實施方式的一種發光二極體結構之製程剖面圖。在本實施方式中,可先根據上述實施方式之製程步驟,完成第11F圖所示之結構。先利用例如塗布方式,形成光阻層300覆蓋在透明導電層224上。再利用例如微影製程,對光阻層300進行圖案定義。定義光阻層300時,移除部分之光阻層300,而暴露出部分之透明導電層224,以在光阻層300中定義出凹槽276之預設位置與形狀。然後,如第13A圖所示,利用例如蝕刻方式,且以圖案化後之光阻層300為蝕刻罩幕,來移除透明導電層224的暴露部分、及其下方之部分第二電性半導體層212、部分第主動層210與部分第一電性半導體層208,以在磊晶層214中形成凹槽276。凹槽276之底部284暴露出部分之第一電性半導體層208。如此,完成每個發光二極體晶片228d之磊晶層214、平台結構230與第一電性半導體層208之暴露部分234的定義。 Please refer to FIG. 13A to FIG. 13C, which are cross-sectional views showing a process of a light emitting diode structure according to still another embodiment of the present invention. In the present embodiment, the structure shown in FIG. 11F can be completed according to the process steps of the above embodiment. The photoresist layer 300 is formed on the transparent conductive layer 224 by, for example, a coating method. The photoresist layer 300 is patterned using, for example, a lithography process. When the photoresist layer 300 is defined, a portion of the photoresist layer 300 is removed, and a portion of the transparent conductive layer 224 is exposed to define a predetermined position and shape of the recess 276 in the photoresist layer 300. Then, as shown in FIG. 13A, the exposed portion of the transparent conductive layer 224 and a portion of the second electrical semiconductor below it are removed by, for example, etching, and using the patterned photoresist layer 300 as an etching mask. The layer 212, a portion of the active layer 210 and a portion of the first electrical semiconductor layer 208 form a recess 276 in the epitaxial layer 214. The bottom 284 of the recess 276 exposes a portion of the first electrically conductive semiconductor layer 208. As such, the definition of the epitaxial layer 214, the land structure 230, and the exposed portion 234 of the first electrically conductive semiconductor layer 208 of each of the light emitting diode wafers 228d is completed.

接著,移除殘留之光阻層300而暴露出透明導電層224與凹槽276。再利用例如電漿輔助化學沉積方式或旋轉塗布方式,形成介電材料層覆蓋在透明導電層224上,並填入凹槽276中。此介電材料係為絕緣材料,例如二氧化矽與氮化矽等。介電材料層形成後,可根據實際製程需求,而選擇性地利用例如化學機械研磨的方式對此介電材料層進行平坦化處理,藉以獲得表面實質平坦之介電材料層。 Next, the residual photoresist layer 300 is removed to expose the transparent conductive layer 224 and the recess 276. The layer of dielectric material is overlaid on the transparent conductive layer 224 and filled into the recess 276 by, for example, plasma-assisted chemical deposition or spin coating. The dielectric material is an insulating material such as hafnium oxide and tantalum nitride. After the dielectric material layer is formed, the dielectric material layer may be planarized by, for example, chemical mechanical polishing according to actual process requirements, to obtain a substantially uniform surface dielectric material layer.

接著,如第13B圖所示,利用例如微影與蝕刻方式,例如感應耦合式電漿蝕刻方式,移除部分之介電材料層,而形成數個第一電性接觸孔264與數個第二電性接觸孔266,並形成數個介電層262。每個發光二極體晶片228c包含一介電層262,且第一電性接觸孔264與第二電性接觸孔266貫穿介電層262。 Then, as shown in FIG. 13B, a portion of the dielectric material layer is removed by, for example, lithography and etching, for example, inductively coupled plasma etching, to form a plurality of first electrical contact holes 264 and a plurality of Two electrical contact holes 266 and a plurality of dielectric layers 262 are formed. Each of the LED chips 228c includes a dielectric layer 262, and the first electrical contact holes 264 and the second electrical contact holes 266 extend through the dielectric layer 262.

如第13B圖所示,在每個發光二極體晶片228d中,介電層262之一部分覆蓋在凹槽276之側壁上,且第一電性接觸孔264之底部270暴露出凹槽276之底部284的一部分。第二電性接觸孔266之底部280暴露出部分之透明導電層224。在本實施方式中,由於介電層262延伸覆蓋在凹槽276之側壁上,因此發光二極體結構200b(請先參考第13C圖)無需另外設置絕緣襯層於第一電性接觸孔264之側壁上,即可使內連線層226與凹槽276之側壁所暴露出之磊晶層214和透明導電層224電性絕緣。 As shown in FIG. 13B, in each of the light-emitting diode wafers 228d, one of the dielectric layers 262 partially covers the sidewalls of the recess 276, and the bottom 270 of the first electrical contact hole 264 exposes the recess 276. Part of bottom 284. The bottom 280 of the second electrical contact hole 266 exposes a portion of the transparent conductive layer 224. In the present embodiment, since the dielectric layer 262 extends over the sidewall of the recess 276, the LED structure 200b (please refer to FIG. 13C first) does not need to additionally provide an insulating liner to the first electrical contact hole 264. The inner wiring layer 226 is electrically insulated from the epitaxial layer 214 and the transparent conductive layer 224 exposed by the sidewalls of the recess 276.

接著,利用例如沉積方式,形成導電層覆蓋在介電層262之上表面278上,並填入第一電性接觸孔264與第二電性接觸孔266中。再利用例如微影與蝕刻方式,移除部分之金屬層,而形成數個內連線層226、第一電性電極墊與第二電性電極墊(如第2圖所示之第一電性電極墊238與第二電性電極墊236),而完成串聯式發光二極體結構200b,如第13C圖所示。 Then, a conductive layer is formed on the upper surface 278 of the dielectric layer 262 by using, for example, a deposition method, and is filled in the first electrical contact hole 264 and the second electrical contact hole 266. Reusing, for example, lithography and etching, removing portions of the metal layer to form a plurality of interconnect layers 226, a first electrical electrode pad and a second electrical electrode pad (as shown in FIG. 2) The electrode pad 238 and the second electrode pad 236) complete the tandem LED structure 200b as shown in FIG. 13C.

如第13C圖所示,內連線層226從二相鄰發光二極體晶片228d中之一發光二極體晶片228d的第一電性接觸 孔264中第一電性半導體層208的暴露部分,經由相鄰之發光二極體晶片228d之隔離溝渠216上方的介電層262的上表面278,而延伸並填入此相鄰發光二極體晶片228d之第二電性接觸孔266中,而與相鄰發光二極體晶片228d之透明導電層224的暴露部分接觸。因此,內連線層226可電性連接相鄰之二發光二極體晶片228d。 As shown in FIG. 13C, the interconnect layer 226 is first electrically contacted from one of the two adjacent light emitting diode wafers 228d. The exposed portion of the first electrical semiconductor layer 208 in the hole 264 extends through the upper surface 278 of the dielectric layer 262 over the isolation trench 216 of the adjacent light-emitting diode wafer 228d and fills the adjacent light-emitting diode The second electrical contact hole 266 of the bulk wafer 228d is in contact with the exposed portion of the transparent conductive layer 224 of the adjacent light emitting diode wafer 228d. Therefore, the interconnect layer 226 can be electrically connected to the adjacent two LED chips 228d.

接著,利用例如沉積方式,形成絕緣反射層220覆蓋在內連線層226與介電層262之上表面278上。請再次參照第2圖,可利用例如圖案化技術對絕緣反射層220進行定義,以在絕緣反射層220中至少形成貫穿孔256、254與260。此三個貫穿孔256、254與260分別暴露出部分之第一電性電極墊238、部分之第二電性電極墊236與部分之測試墊258。 Next, an insulating reflective layer 220 is formed over the inner wiring layer 226 and the upper surface 278 of the dielectric layer 262 by, for example, deposition. Referring again to FIG. 2, the insulating reflective layer 220 can be defined by, for example, a patterning technique to form at least through holes 256, 254, and 260 in the insulating reflective layer 220. The three through holes 256, 254, and 260 respectively expose a portion of the first electrical electrode pad 238, a portion of the second electrical electrode pad 236, and a portion of the test pad 258.

接下來,如第2圖與第13C圖所示,分別於絕緣反射層220上形成彼此分離之第一電性接合墊252與第二電性接合墊232,而完成串聯式發光二極體結構200b。第一電性接合墊252與第二電性接合墊232彼此分離。此外,第一電性接合墊252與第二電性接合墊232可分別經由貫穿孔256與254,而分別與暴露出之第一電性電極墊238與第二電性電極墊236接觸並電性接合。 Next, as shown in FIG. 2 and FIG. 13C, the first electrical bonding pads 252 and the second electrical bonding pads 232 separated from each other are formed on the insulating reflective layer 220, respectively, and the series LED structure is completed. 200b. The first electrical bond pad 252 and the second electrical bond pad 232 are separated from each other. In addition, the first electrical bonding pads 252 and the second electrical bonding pads 232 can respectively contact the exposed first electrical electrode pads 238 and the second electrical electrode pads 236 via the through holes 256 and 254, respectively. Sexual engagement.

由上述之實施方式可知,本發明之一優點就是因為本發明之發光二極體結構係由多個發光二極體晶片串聯而成,因此具有排列密與高光效等優勢。 It can be seen from the above embodiments that one of the advantages of the present invention is that since the light emitting diode structure of the present invention is formed by connecting a plurality of light emitting diode chips in series, it has the advantages of dense arrangement and high luminous efficiency.

由上述之實施方式可知,本發明之另一優點就是因 為本發明之發光二極體結構包含絕緣反射層覆蓋在每個發光二極體晶片之內連線、平台結構與第一電性半導體層暴露部分上,因此可利用覆晶方式進行封裝,而達到高散熱、免打線與低熱阻等功效。 It can be seen from the above embodiments that another advantage of the present invention is that The light-emitting diode structure of the present invention comprises an insulating reflective layer covering the inner wiring of each of the light-emitting diode chips, the platform structure and the exposed portion of the first electrical semiconductor layer, and thus can be packaged by flip chip method. Achieve high heat dissipation, free wire and low thermal resistance.

由上述之實施方式可知,本發明之又一優點就是因為內連線層係從相鄰發光二極體晶片之一者的第一電性半導體層之暴露部分,直接經由另一者的平台結構的側面而延伸至此平台結構上,因此可大幅降低內連線層之深寬比,而可有效提升內連線層沉積時之階梯覆蓋能力,進而可避免內連線層沉積時產生斷線。 It can be seen from the above embodiments that another advantage of the present invention is that since the interconnect layer is exposed from the exposed portion of the first electrical semiconductor layer of one of the adjacent light-emitting diode chips, directly via the platform structure of the other. The side surface extends to the structure of the platform, so that the aspect ratio of the interconnect layer can be greatly reduced, and the step coverage capability of the interconnect layer deposition can be effectively improved, thereby avoiding disconnection during the deposition of the interconnect layer.

由上述之實施方式可知,本發明之再一優點就是因為發光二極體晶片之平台結構可具有梯形傾斜側面,因此可進一步提升內連線層之階梯覆蓋能力,而更有效解決內連線層斷線的問題。 It can be seen from the above embodiments that another advantage of the present invention is that since the platform structure of the LED substrate can have a trapezoidal inclined side surface, the step coverage capability of the interconnect layer can be further improved, and the interconnect layer can be more effectively solved. The problem of disconnection.

由上述之實施方式可知,本發明之再一優點就是因為發光二極體晶片之發光區域與相鄰之發光二極體晶片的第一電性半導體層之間以隔離溝渠隔開,且隔離溝渠中僅填充絕緣層而無導電材料。再加上,隔離溝渠之開口上可額外設置電流阻障層來加以電性隔絕。因此,縱使隔離溝渠內的絕緣層沉積不連續,在隔離溝渠內無導電材料的情況下,發光區域中也不會有短路的問題產生。 According to the above embodiments, another advantage of the present invention is that the light-emitting region of the LED chip and the first electrical semiconductor layer of the adjacent LED chip are separated by an isolation trench, and the isolation trench Only the insulating layer is filled without conductive material. In addition, an additional current blocking layer may be additionally disposed on the opening of the isolation trench to be electrically isolated. Therefore, even if the deposition of the insulating layer in the isolation trench is discontinuous, there is no problem of short circuit in the light-emitting region in the case where there is no conductive material in the isolation trench.

由上述之實施方式可知,本發明之再一優點就是因為內連線層可直接從相鄰發光二極體晶片之一者上方之介電層中的接觸孔經由介電層上方延伸至另一者上方之介電 層中的接觸孔。因此,導電材料可不需要填充在相鄰二發光二極體晶片之間的隔離溝槽中,因而可解決內連線層斷線的問題。 It can be seen from the above embodiments that another advantage of the present invention is that the interconnect layer can extend directly from the contact hole in the dielectric layer above one of the adjacent light-emitting diode wafers via the dielectric layer to the other. Dielectric above Contact hole in the layer. Therefore, the conductive material may not need to be filled in the isolation trench between the adjacent two light-emitting diode wafers, thereby solving the problem of disconnection of the interconnect layer.

由上述之實施方式可知,本發明之再一優點就是因為可有效解決短路與斷線的問題,因此可大幅提升串聯發光二極體結構之生產良率,進而可降低製作成本。 It can be seen from the above embodiments that another advantage of the present invention is that the problem of short circuit and disconnection can be effectively solved, so that the production yield of the series LED structure can be greatly improved, and the manufacturing cost can be reduced.

由上述之實施方式可知,本發明之再一優點就是因為可有效解決短路與斷線的問題,因此可無需仰賴逆向漏電流的檢測手段,而透過順逆向電流的檢測,即可順利確認發光二極體結構中之短路缺陷。 It can be seen from the above embodiments that another advantage of the present invention is that the problem of short circuit and disconnection can be effectively solved, so that it is possible to smoothly confirm the light emission by detecting the forward current without relying on the detection method of the reverse leakage current. Short circuit defects in the polar body structure.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何在此技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described above by way of example, it is not intended to be construed as a limitation of the scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

200‧‧‧發光二極體結構 200‧‧‧Lighting diode structure

202‧‧‧絕緣基板 202‧‧‧Insert substrate

204‧‧‧表面 204‧‧‧ surface

206‧‧‧未摻雜半導體層 206‧‧‧Undoped semiconductor layer

208‧‧‧第一電性半導體層 208‧‧‧First electrical semiconductor layer

210‧‧‧主動層 210‧‧‧Active layer

212‧‧‧第二電性半導體層 212‧‧‧Second electrical semiconductor layer

214‧‧‧磊晶層 214‧‧‧ epitaxial layer

216‧‧‧隔離溝渠 216‧‧‧Isolation Ditch

218‧‧‧絕緣層 218‧‧‧Insulation

220‧‧‧絕緣反射層 220‧‧‧Insulated reflective layer

222‧‧‧電流阻障層 222‧‧‧ Current Barrier

224‧‧‧透明導電層 224‧‧‧Transparent conductive layer

226‧‧‧內連線層 226‧‧‧Interconnection layer

228‧‧‧發光二極體晶片 228‧‧‧Light Emitter Wafer

230‧‧‧平台結構 230‧‧‧ platform structure

232‧‧‧第二電性接合墊 232‧‧‧Second electrical bonding pads

234‧‧‧暴露部分 234‧‧‧Exposed part

246‧‧‧側面 246‧‧‧ side

248‧‧‧開口 248‧‧‧ openings

θ‧‧‧夾角 Θ‧‧‧ angle

Claims (18)

一種發光二極體結構,包含:一絕緣基板;複數個發光二極體晶片,其中每一該些發光二極體晶片包含一磊晶層,該磊晶層包含依序堆疊在該絕緣基板之一表面上之一第一電性半導體層、一主動層以及一第二電性半導體層,且每一該些發光二極體晶片包含鄰接之一平台結構與一第一電性半導體層暴露部分、以及一第一隔離溝渠,該第一隔離溝渠設於該平台結構中;複數個內連線層,分別連接該些發光二極體晶片之相鄰二者;一第一電性電極墊及一第二電性電極墊分別設於該些發光二極體晶片之一第一者與一第二者上,且分別與該第一者之該第一電性半導體層暴露部分及該第二者之該第二電性半導體層電性連接;一絕緣反射層,覆蓋在該些內連線層、該些平台結構、該第一電性電極墊與該第二電性電極墊上,其中該絕緣反射層具有至少一第一貫穿孔與至少一第二貫穿孔分別暴露出部分之該第一電性電極墊與該第二電性電極墊;一第一電性接合墊,位於部分之該絕緣反射層上,且經過該至少一第一貫穿孔而與該第一電性電極墊電性連接;以及一第二電性接合墊,位於另一部分之該絕緣反射層上,並與該第一電性接合墊分離,且經過該至少一第二貫穿孔而與該第二電性電極墊電性連接。 A light emitting diode structure comprising: an insulating substrate; a plurality of light emitting diode chips, wherein each of the light emitting diode chips comprises an epitaxial layer, and the epitaxial layer comprises sequentially stacked on the insulating substrate a first electrical semiconductor layer, an active layer and a second electrical semiconductor layer on a surface, and each of the light emitting diode chips comprises a substrate structure adjacent to a first conductive semiconductor layer And a first isolation trench, the first isolation trench is disposed in the platform structure; a plurality of interconnect layers are respectively connected to adjacent ones of the light emitting diode chips; a first electrical electrode pad and a second electrical electrode pad is respectively disposed on the first one and the second one of the light emitting diode chips, and the exposed portion of the first electrical semiconductor layer and the second portion respectively of the first one The second electrical semiconductor layer is electrically connected; an insulating reflective layer covering the interconnect layers, the platform structures, the first electrical electrode pads and the second electrical electrode pads, wherein the The insulating reflective layer has at least one first through hole The at least one second through hole exposes a portion of the first electrical electrode pad and the second electrical electrode pad respectively; a first electrical bonding pad is located on the portion of the insulating reflective layer, and passes through the at least one The first electrical electrode pad is electrically connected to the first electrical electrode pad; and a second electrical bonding pad is disposed on the insulating reflective layer of the other portion and separated from the first electrical bonding pad, and passes through the at least a second through hole is electrically connected to the second electrical electrode pad. 如請求項1所述之發光二極體結構,其中每一該些發光二極體晶片更包含一絕緣層,該絕緣層填入該第一隔離溝渠中,以封住該第一隔離溝渠之一開口。 The light emitting diode structure of claim 1, wherein each of the light emitting diode chips further comprises an insulating layer filled in the first isolation trench to seal the first isolation trench An opening. 如請求項1所述之發光二極體結構,其中每一該些發光二極體晶片更包含一電流阻障層介於該平台結構上之該內連線層與該絕緣層之間。 The light emitting diode structure of claim 1, wherein each of the light emitting diode chips further comprises a current blocking layer interposed between the interconnect layer and the insulating layer on the platform structure. 如請求項3所述之發光二極體結構,其中每一該些發光二極體晶片更包含一透明導電層延伸於該平台結構之該第二電性半導體層上,且介於該平台結構上之該內連線層與該電流阻障層之間。 The light emitting diode structure of claim 3, wherein each of the light emitting diode chips further comprises a transparent conductive layer extending over the second electrical semiconductor layer of the platform structure, and the platform structure is Between the inner wiring layer and the current blocking layer. 如請求項1所述之發光二極體結構,其中每一該些發光二極體晶片更包含一介電層設於該磊晶層上,且每一該些發光二極體晶片設有一第一電性接觸孔與一第二電性接觸孔貫穿該介電層,該第一隔離溝渠介於該發光二極體晶片之該第二電性接觸孔與相鄰之該發光二極體晶片之該第一電性接觸孔之間,每一該些內連線層由每一該些發光二極體晶片之該第二電性接觸孔中經由該第一隔離溝渠上方而延伸至相鄰之該發光二極體晶片之該第一電性接觸孔中,以及該絕緣反射層更覆蓋在該介電層上。 The light emitting diode structure of claim 1, wherein each of the light emitting diode chips further comprises a dielectric layer disposed on the epitaxial layer, and each of the light emitting diode chips is provided with a first An electrical contact hole and a second electrical contact hole extend through the dielectric layer, the first isolation trench being interposed between the second electrical contact hole of the LED chip and the adjacent LED chip Between the first electrical contact holes, each of the interconnect layers extends from the second electrical contact hole of each of the light emitting diode chips to the adjacent via the first isolation trench The first electrical contact hole of the light emitting diode chip and the insulating reflective layer further cover the dielectric layer. 如請求項5所述之發光二極體結構,其中 每一該些發光二極體晶片更包含一透明導電層介於該介電層與該磊晶層之間;該第一電性接觸孔之一底部暴露出該第一電性半導體層暴露部分;以及該第二電性接觸孔之一底部暴露出該透明導電層。 The light emitting diode structure according to claim 5, wherein Each of the light emitting diode chips further includes a transparent conductive layer interposed between the dielectric layer and the epitaxial layer; a bottom portion of the first electrical contact hole exposes the exposed portion of the first electrical semiconductor layer And the bottom of one of the second electrical contact holes exposes the transparent conductive layer. 如請求項6所述之發光二極體結構,其中每一該些發光二極體晶片更包含至少一電流阻障層介於該第二電性接觸孔之該底部與該磊晶層之間。 The light emitting diode structure of claim 6, wherein each of the light emitting diode chips further comprises at least one current blocking layer between the bottom of the second electrical contact hole and the epitaxial layer . 如請求項5所述之發光二極體結構,其中在每一該些發光二極體晶片中,該磊晶層具有一凹槽,該凹槽之一底部暴露出該第一電性半導體層暴露部分,該第一電性接觸孔暴露出該凹槽之該底部的一部分,且該介電層覆蓋在該凹槽之一側壁上。 The light emitting diode structure of claim 5, wherein in each of the light emitting diode wafers, the epitaxial layer has a recess, and one of the recesses exposes the first electrical semiconductor layer And exposing a portion, the first electrical contact hole exposing a portion of the bottom of the recess, and the dielectric layer overlying a sidewall of the recess. 如請求項5所述之發光二極體結構,其中每一該些發光二極體晶片更包含至少一絕緣襯層覆蓋在該第一電性接觸孔之一側壁上。 The light-emitting diode structure of claim 5, wherein each of the light-emitting diode wafers further comprises at least one insulating liner covering one of the sidewalls of the first electrical contact hole. 一種發光二極體結構之製造方法,包含:提供一絕緣基板;形成一磊晶結構,其中該磊晶結構包含依序堆疊在該絕緣基板之一表面上之一第一電性半導體層、一主動層與一第二電性半導體層;形成複數個第一隔離溝渠與複數個第二隔離溝渠於該 磊晶結構中,以定義出複數個發光二極體晶片之複數個磊晶層,其中該些第一隔離溝渠分別與該些第二隔離溝渠鄰接;移除部分之該第二電性半導體層與部分之該主動層,以定義出每一該些發光二極體晶片之一平台結構與一第一電性半導體層暴露部分,其中每一該些發光二極體晶片包含該些第一隔離溝渠之一者,且該些第一隔離溝渠之該者設於該平台結構中;形成複數個內連線層、一第一電性電極墊及一第二電性電極墊,其中該些內連線層分別連接該些發光二極體晶片之相鄰二者,該第一電性電極墊及該第二電性電極墊分別設於該些發光二極體晶片之一第一者與一第二者上,且該第一電性電極墊及該第二電性電極墊分別與該第一者之該第一電性半導體層暴露部分及該第二者之該第二電性半導體層電性連接;形成一絕緣反射層覆蓋在該些內連線層、該些平台結構、該第一電性電極墊與該第二電性電極墊上,其中該絕緣反射層具有至少一第一貫穿孔與至少一第二貫穿孔分別暴露出部分之該第一電性電極墊與部分之該第二電性電極墊;形成一第一電性接合墊於部分之該絕緣反射層上,其中該第一電性接合墊經過該至少一第一貫穿孔而與該第一電性電極墊電性連接;以及形成一第二電性接合墊於另一部分之該絕緣反射層上,其中該第二電性接合墊與該第一電性接合墊分離,且該第二電性接合墊經過該至少一第二貫穿孔而與該第二電性電極墊電性連接。 A method for fabricating a light-emitting diode structure, comprising: providing an insulating substrate; forming an epitaxial structure, wherein the epitaxial structure comprises a first electrical semiconductor layer, one of which is sequentially stacked on one surface of the insulating substrate, An active layer and a second electrical semiconductor layer; forming a plurality of first isolation trenches and a plurality of second isolation trenches In the epitaxial structure, a plurality of epitaxial layers of the plurality of light emitting diode chips are defined, wherein the first isolation trenches are adjacent to the second isolation trenches respectively; and the second electrical semiconductor layer is removed And a portion of the active layer to define a planar structure of each of the light emitting diode chips and a first electrical semiconductor layer exposed portion, wherein each of the light emitting diode chips includes the first isolation One of the trenches, and the one of the first isolation trenches is disposed in the platform structure; forming a plurality of interconnect layers, a first electrical electrode pad and a second electrical electrode pad, wherein the inner The wiring layer is respectively connected to the adjacent ones of the LED chips, and the first electrical electrode pad and the second electrical electrode pad are respectively disposed on the first one of the light emitting diode chips and the first In the second, the first electrical electrode pad and the second electrical electrode pad are respectively exposed to the first electrical semiconductor layer of the first one and the second electrical semiconductor layer of the second Electrically connecting; forming an insulating reflective layer covering the interconnect layers, On the platform structure, the first electrical electrode pad and the second electrical electrode pad, wherein the insulating reflective layer has at least one first through hole and at least one second through hole respectively exposing a portion of the first electrical electrode a pad and a portion of the second electrical electrode pad; forming a first electrical bond pad on the portion of the insulating reflective layer, wherein the first electrical bond pad passes through the at least one first through hole and the first The electrical electrode pads are electrically connected; and a second electrical bonding pad is formed on the insulating reflective layer of the other portion, wherein the second electrical bonding pad is separated from the first electrical bonding pad, and the second electrical The bonding pad is electrically connected to the second electrical electrode pad through the at least one second through hole. 如請求項10所述之發光二極體結構之製造方法,於形成該些第一隔離溝渠與該些第二隔離溝渠於該磊晶結構中之後,更包含形成複數個介電層分別覆蓋在該些磊晶層上,其中每一該些發光二極體晶片具有一第一電性接觸孔與一第二電性接觸孔貫穿該介電層,且該第一隔離溝渠介於該發光二極體晶片之該第二電性接觸孔與相鄰之該發光二極體晶片之該第一電性接觸孔之間。 The method for fabricating the LED structure of claim 10, after forming the first isolation trench and the second isolation trench in the epitaxial structure, further comprising forming a plurality of dielectric layers respectively covering The light-emitting diodes have a first electrical contact hole and a second electrical contact hole extending through the dielectric layer, and the first isolation trench is interposed between the light-emitting diodes The second electrical contact hole of the polar body wafer is between the first electrical contact hole of the adjacent light emitting diode chip. 如請求項11所述之發光二極體結構之製造方法,於形成該些介電層前,更包含:形成複數個透明導電層分別介於該些介電層與該些磊晶層之間;以及形成複數個電流阻障層分別位於該些磊晶層與該些透明導電層之間,其中在每一該些發光二極體晶片中,該第一電性接觸孔之一底部暴露出該第一電性半導體層,且該第二電性接觸孔之一底部暴露出該透明導電層,且該些電流阻障層之位置係對應的設置於該些第二電性接觸孔之該些底部下。 The method for fabricating the LED structure of claim 11, before forming the dielectric layers, further comprising: forming a plurality of transparent conductive layers between the dielectric layers and the epitaxial layers And forming a plurality of current blocking layers respectively between the epitaxial layers and the transparent conductive layers, wherein in each of the light emitting diode wafers, one of the first electrical contact holes is exposed at the bottom The first electrically conductive layer, and the bottom of the second electrical contact hole is exposed to the bottom of the transparent conductive layer, and the positions of the current blocking layers are correspondingly disposed on the second electrical contact holes. Some bottom down. 一種發光二極體結構,包含:一絕緣基板;複數個發光二極體晶片,其中每一該些發光二極體晶片包含一磊晶層,該磊晶層包含依序堆疊在該絕緣基板之一表面上之一第一電性半導體層、一主動層以及一第二電性半導體層,且每一該些發光二極體晶片包含鄰接之一平台結構與一第一電性半導體層暴露部分、以及一第一隔離溝渠,該第 一隔離溝渠設於該平台結構中;複數個內連線層,分別連接該些發光二極體晶片之相鄰二者;一第一電性電極墊及一第二電性電極墊分別設於該些發光二極體晶片之一第一者與一第二者上,且分別與該第一者之該第一電性半導體層暴露部分及該第二者之該第二電性半導體層電性連接;一絕緣層,覆蓋在該些內連線層、該些平台結構、該第一電性電極墊與該第二電性電極墊上,其中該絕緣層具有至少一第一貫穿孔與至少一第二貫穿孔分別暴露出部分之該第一電性電極墊與該第二電性電極墊;一第一電性接合墊,位於部分之該絕緣層上,且經過該至少一第一貫穿孔而與該第一電性電極墊電性連接;以及一第二電性接合墊,位於另一部分之該絕緣層上,並與該第一電性接合墊分離,且經過該至少一第二貫穿孔而與該第二電性電極墊電性連接。 A light emitting diode structure comprising: an insulating substrate; a plurality of light emitting diode chips, wherein each of the light emitting diode chips comprises an epitaxial layer, and the epitaxial layer comprises sequentially stacked on the insulating substrate a first electrical semiconductor layer, an active layer and a second electrical semiconductor layer on a surface, and each of the light emitting diode chips comprises a substrate structure adjacent to a first conductive semiconductor layer And a first isolation trench, the first An isolation trench is disposed in the platform structure; a plurality of interconnect layers are respectively connected to adjacent ones of the LED chips; a first electrical electrode pad and a second electrical electrode pad are respectively disposed on The first one of the light emitting diode chips and the second one are electrically connected to the first electrical semiconductor layer exposed portion of the first one and the second electrical semiconductor layer of the second one An insulating layer covering the inner wiring layers, the platform structures, the first electrical electrode pads and the second electrical electrode pads, wherein the insulating layer has at least one first through hole and at least a second through hole respectively exposes a portion of the first electrical electrode pad and the second electrical electrode pad; a first electrical bonding pad is located on a portion of the insulating layer and passes through the at least one first pass The second electrical pad is electrically connected to the first electrical electrode pad; and a second electrical bonding pad is disposed on the insulating layer of the other portion and separated from the first electrical bonding pad, and passes through the at least one second The through hole is electrically connected to the second electrical electrode pad. 如請求項13所述之發光二極體結構,其中該絕緣層係一布拉格反射鏡(DBR)。 The light emitting diode structure of claim 13, wherein the insulating layer is a Bragg mirror (DBR). 如請求項13所述之發光二極體結構,更包含一絕緣反射層,其中每一該些發光二極體晶片更包含一介電層設於該磊晶層上,且每一該些發光二極體晶片設有一第一電性接觸孔與一第二電性接觸孔貫穿該介電層,該第一隔離溝渠介於該發光二極體晶片之該第二電性接觸孔與相鄰之該發光二極體 晶片之該第一電性接觸孔之間,該絕緣反射層覆蓋在每一該些發光二極體晶片之該第一電性接觸孔之一側壁、該第二電性接觸孔之一側壁、與該介電層之一上表面上,以及每一該些內連線層由每一該些發光二極體晶片之該第二電性接觸孔中經由該第一隔離溝渠上方而延伸至相鄰之該發光二極體晶片之該第一電性接觸孔中。 The light-emitting diode structure of claim 13 further comprising an insulating reflective layer, wherein each of the light-emitting diode chips further comprises a dielectric layer disposed on the epitaxial layer, and each of the light-emitting layers The diode chip is provided with a first electrical contact hole and a second electrical contact hole extending through the dielectric layer, and the first isolation trench is adjacent to the second electrical contact hole of the LED substrate. Light-emitting diode Between the first electrical contact holes of the wafer, the insulating reflective layer covers one side wall of the first electrical contact hole of each of the light emitting diode chips, and one side wall of the second electrical contact hole, And an upper surface of the dielectric layer, and each of the interconnect layers extending from the second electrical contact hole of each of the light emitting diode chips to the phase via the first isolation trench Adjacent to the first electrical contact hole of the LED chip. 如請求項13所述之發光二極體結構,更包含一絕緣反射層,其中每一該些發光二極體晶片更包含一介電層設於該磊晶層上,且每一該些發光二極體晶片設有一第一電性接觸孔與一第二電性接觸孔貫穿該介電層,該第一隔離溝渠介於該發光二極體晶片之該第二電性接觸孔與相鄰之該發光二極體晶片之該第一電性接觸孔之間,該磊晶層具有一凹槽,該凹槽之一底部暴露出該第一電性半導體層暴露部分,該第一電性接觸孔暴露出該凹槽之該底部的一部分,該絕緣反射層覆蓋在每一該些凹槽之一側壁、與每一該些磊晶層之一上表面上,以及每一該些內連線層由每一該些發光二極體晶片之該第二電性接觸孔中經由該第一隔離溝渠上方而延伸至相鄰之該發光二極體晶片之該第一電性接觸孔中。 The light-emitting diode structure of claim 13 further comprising an insulating reflective layer, wherein each of the light-emitting diode chips further comprises a dielectric layer disposed on the epitaxial layer, and each of the light-emitting layers The diode chip is provided with a first electrical contact hole and a second electrical contact hole extending through the dielectric layer, and the first isolation trench is adjacent to the second electrical contact hole of the LED substrate. Between the first electrical contact holes of the LED chip, the epitaxial layer has a recess, and one of the bottom portions exposes the exposed portion of the first electrical semiconductor layer, the first electrical property The contact hole exposes a portion of the bottom of the recess, the insulating reflective layer covering a sidewall of each of the recesses, and an upper surface of each of the epitaxial layers, and each of the interconnects The wire layer extends from the second electrical contact hole of each of the light emitting diode chips through the first isolation trench to the first electrical contact hole of the adjacent light emitting diode chip. 如請求項13所述之發光二極體結構,更包含一絕緣反射層,其中每一該些發光二極體晶片更包含一介電層設於該磊晶 層上,且每一該些發光二極體晶片設有一第一電性接觸孔與一第二電性接觸孔貫穿該介電層,該第一隔離溝渠介於該發光二極體晶片之該第二電性接觸孔與相鄰之該發光二極體晶片之該第一電性接觸孔之間,該磊晶層具有一凹槽,該凹槽之一底部暴露出該第一電性半導體層暴露部分,該第一電性接觸孔暴露出該凹槽之該底部的一部分,且該介電層覆蓋在該凹槽之一側壁上,該絕緣反射層覆蓋在每一該些磊晶層之一上表面上,以及每一該些內連線層由每一該些發光二極體晶片之該第二電性接觸孔中經由該第一隔離溝渠上方而延伸至相鄰之該發光二極體晶片之該第一電性接觸孔中。 The light emitting diode structure of claim 13, further comprising an insulating reflective layer, wherein each of the light emitting diode chips further comprises a dielectric layer disposed on the epitaxial layer a first electrical contact hole and a second electrical contact hole are formed in the dielectric layer, and the first isolation trench is interposed between the light emitting diode chip. Between the second electrical contact hole and the first electrical contact hole of the adjacent LED chip, the epitaxial layer has a recess, and one of the recess exposes the first electrical semiconductor a portion of the exposed portion of the layer exposing a portion of the bottom portion of the recess, and the dielectric layer overlying a sidewall of the recess, the insulating reflective layer covering each of the epitaxial layers And on the upper surface, and each of the interconnect layers extends from the second electrical contact hole of each of the light emitting diode chips to the adjacent one of the light through the first isolation trench The first electrical contact hole of the polar body wafer. 如請求項13所述之發光二極體結構,更包含一絕緣反射層,其中每一該些發光二極體晶片更包含一介電層設於該磊晶層上,且每一該些發光二極體晶片設有一第一電性接觸孔與一第二電性接觸孔貫穿該介電層,該第一隔離溝渠介於該發光二極體晶片之該第二電性接觸孔與相鄰之該發光二極體晶片之該第一電性接觸孔之間,該磊晶層具有一凹槽,該凹槽之一底部暴露出該第一電性半導體層暴露部分,該第一電性接觸孔暴露出該凹槽之該底部的一部分,且該介電層覆蓋在該凹槽之一側壁上,該絕緣反射層覆蓋在每一該些介電層之一上表面上,以及每一該些內連線層由每一該些發光二極體晶片之該第 二電性接觸孔中經由該第一隔離溝渠上方而延伸至相鄰之該發光二極體晶片之該第一電性接觸孔中。 The light-emitting diode structure of claim 13 further comprising an insulating reflective layer, wherein each of the light-emitting diode chips further comprises a dielectric layer disposed on the epitaxial layer, and each of the light-emitting layers The diode chip is provided with a first electrical contact hole and a second electrical contact hole extending through the dielectric layer, and the first isolation trench is adjacent to the second electrical contact hole of the LED substrate. Between the first electrical contact holes of the LED chip, the epitaxial layer has a recess, and one of the bottom portions exposes the exposed portion of the first electrical semiconductor layer, the first electrical property The contact hole exposes a portion of the bottom of the recess, and the dielectric layer covers a sidewall of the recess, the insulating reflective layer covering an upper surface of each of the dielectric layers, and each The interconnect layers are formed by each of the plurality of light emitting diode chips The two electrical contact holes extend through the first isolation trench to the first electrical contact hole of the adjacent LED chip.
TW102113113A 2012-05-04 2013-04-12 Light-emitting diode structure and method for manufacturing the same TW201440253A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102113113A TW201440253A (en) 2013-04-12 2013-04-12 Light-emitting diode structure and method for manufacturing the same
US13/886,588 US20130292719A1 (en) 2012-05-04 2013-05-03 Light-emitting diode structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102113113A TW201440253A (en) 2013-04-12 2013-04-12 Light-emitting diode structure and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW201440253A true TW201440253A (en) 2014-10-16

Family

ID=52113931

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102113113A TW201440253A (en) 2012-05-04 2013-04-12 Light-emitting diode structure and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TW201440253A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509098A (en) * 2017-08-11 2020-08-07 首尔伟傲世有限公司 Light emitting diode
TWI740233B (en) * 2019-10-12 2021-09-21 新煒科技有限公司 Heat dissipation substrate and light emitting device having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509098A (en) * 2017-08-11 2020-08-07 首尔伟傲世有限公司 Light emitting diode
TWI740233B (en) * 2019-10-12 2021-09-21 新煒科技有限公司 Heat dissipation substrate and light emitting device having the same

Similar Documents

Publication Publication Date Title
TW201407747A (en) Light-emitting diode structure and method for manufacturing the same
US20130292719A1 (en) Light-emitting diode structure and method for manufacturing the same
TWI538265B (en) Light emitting device and method of fabricating the same
TW201347141A (en) Light-emitting diode structure and method for manufacturing the same
TWI552387B (en) Method of fabricating light emitting diode package and light emitting diode device
TWI532212B (en) Semiconductor light emitting device and method for manufacturing the same
US8648369B2 (en) Light emitting device and method of fabricating the same
TWI482315B (en) Semiconductor light emitting device
TWI462282B (en) Semiconductor light source and method for fabricating the same
KR102357289B1 (en) Light emitting device
TWI569470B (en) Light emitting diode and method of fabricating the same
JP5887638B2 (en) Light emitting diode
KR20090057382A (en) Surface mountable chip
CN103855149A (en) Inverted high-voltage light-emitting diode and manufacturing method thereof
KR20160016361A (en) Light emitting diode and method of fabricating the same
CN111509097B (en) High-power semiconductor light-emitting device and preparation method thereof
US8907551B2 (en) Light emitting device package
US20240088107A1 (en) Multi wavelength light emitting device and method of fabricating the same
CN111446343B (en) Semiconductor light emitting device
CN104993031B (en) High pressure flip LED chips and its manufacture method
KR20110044188A (en) Light emitting diode with a metal reflection layer expanded and method for manufacturing the same
TW201310706A (en) Light-emitting diode structure and method for manufacturing the same
TWI642207B (en) Light-emitting device and method of forming the same
TW201032349A (en) Light-emitting diode chip, and manufacturing method and packaging method therefor
TW201440253A (en) Light-emitting diode structure and method for manufacturing the same