TW201438231A - Semiconductor structure and process thereof - Google Patents

Semiconductor structure and process thereof Download PDF

Info

Publication number
TW201438231A
TW201438231A TW102110075A TW102110075A TW201438231A TW 201438231 A TW201438231 A TW 201438231A TW 102110075 A TW102110075 A TW 102110075A TW 102110075 A TW102110075 A TW 102110075A TW 201438231 A TW201438231 A TW 201438231A
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
metal gate
semiconductor structure
metal
Prior art date
Application number
TW102110075A
Other languages
Chinese (zh)
Other versions
TWI581433B (en
Inventor
Ching-Wen Hung
Chih-Sen Huang
Po-Chao Tsao
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW102110075A priority Critical patent/TWI581433B/en
Publication of TW201438231A publication Critical patent/TW201438231A/en
Application granted granted Critical
Publication of TWI581433B publication Critical patent/TWI581433B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

A semiconductor structure includes a metal gate, a second dielectric layer and a contact plug. The metal gate is located on a substrate and in a first dielectric layer, wherein the metal gate includes a work function metal layer having a U-shaped cross-sectional profile and a low resistivity material located on the work function metal layer. The second dielectric layer is located on the metal gate and the first dielectric layer. The contact plug is located on the second dielectric layer and in a third dielectric layer, thereby a capacitor being formed. Moreover, the present invention also provides a semiconductor process formed said semiconductor structure.

Description

半導體結構及其製程 Semiconductor structure and its process

本發明係關於一種半導體結構及其製程,且特別係關於一種結合電容與電晶體的半導體結構及其製程。 The present invention relates to a semiconductor structure and a process thereof, and more particularly to a semiconductor structure incorporating a capacitor and a transistor and a process therefor.

半導體元件中之電容器通常是由兩個電極及位於二電極間之介電質所共同組成的。這種結構普遍應用在許多半導體元件上,例如,動態隨機存取記憶體(DRAM)。這種電容器的製程通常如下所述。首先,形成一導體層於底材上,定義圖案並蝕刻以形成電容器的下電極。接下來,形成一介電層於下電極之上。最後以另一個導體層覆蓋介電層即形成電容器。 The capacitor in a semiconductor component is usually composed of two electrodes and a dielectric between the two electrodes. This structure is commonly used on many semiconductor components, such as dynamic random access memory (DRAM). The process of such a capacitor is generally as follows. First, a conductor layer is formed on the substrate, a pattern is defined and etched to form the lower electrode of the capacitor. Next, a dielectric layer is formed over the lower electrode. Finally, a capacitor is formed by covering the dielectric layer with another conductor layer.

電極的材料至少包括多晶矽、多晶矽化金屬及金屬。因此,目前半導體晶圓廠所提供的電容製造方法大約有三種:金屬-介電層-金屬(Metal-insulator-Metal,MIM)電容,多晶矽-介電層-多晶矽(Poly-insulator-Poly,PIP)電容,以及金屬氧化物(Metal Oxide Semiconductor,MOS)電容,以相容於CMOS製程俾使製程之整合得以簡化。MIM電容是利用兩層金屬層來形成電極板而做成電容。PIP電容是利用兩層多晶矽層來形成電極板而做成電容。MOS電容則是將MOS的汲極及源極連接在一起,與閘極形成兩個電極板而做成電容。 The material of the electrode includes at least polycrystalline germanium, polycrystalline germanium metal, and metal. Therefore, there are currently three types of capacitor fabrication methods offered by semiconductor fabs: Metal-insulator-Metal (MIM) capacitors, poly-insulator-Poly (PIP) Capacitors, as well as Metal Oxide Semiconductor (MOS) capacitors, are compatible with CMOS processes to simplify process integration. The MIM capacitor is formed by using two metal layers to form an electrode plate. The PIP capacitor is formed by using two layers of polysilicon layers to form an electrode plate. The MOS capacitor connects the drain and source of the MOS together, and forms two electrode plates with the gate to form a capacitor.

當積體電路之積極度增加,而電路中之各半導體元件之尺寸微縮後,如何整合各電晶體元件,例如電容與電晶體等元件,俾達到所需之電容值及運算功率且又能簡化製程並降低成本等,即成為業界之重要課題。 When the positiveness of the integrated circuit is increased, and the size of each semiconductor component in the circuit is reduced, how to integrate the components of the transistor, such as a capacitor and a transistor, to achieve the required capacitance value and operation power, and to simplify Process and cost reduction have become important issues in the industry.

本發明提出一種半導體結構及其製程,其將電容之電極與電晶體之閘極及接觸插塞一起製作,以結合電晶體以及電容於同一半導體結構上,俾能簡化製程,進而降低成本。 The invention provides a semiconductor structure and a process thereof, which are prepared by combining an electrode of a capacitor with a gate of a transistor and a contact plug to combine a transistor and a capacitor on the same semiconductor structure, thereby simplifying the process and thereby reducing the cost.

本發明提供一種半導體結構,包含有一金屬閘極、一第二介電層以及一接觸插塞。金屬閘極位於一基底上以及一第一介電層中,其中金屬閘極具有一U形剖面的功函數金屬層以及一低電阻率材料位於U形剖面的功函數金屬層上。第二介電層位於金屬閘極以及第一介電層上。接觸插塞位於第二介電層上以及一第三介電層中,因而形成一電容結構。 The present invention provides a semiconductor structure including a metal gate, a second dielectric layer, and a contact plug. The metal gate is located on a substrate and a first dielectric layer, wherein the metal gate has a U-shaped work function metal layer and a low resistivity material is located on the U-shaped work function metal layer. The second dielectric layer is on the metal gate and the first dielectric layer. The contact plug is located on the second dielectric layer and in the third dielectric layer, thereby forming a capacitor structure.

本發明提供一種半導體製程,包含有下述步驟。首先,形成一第一介電層於一基底上。接著,形成一金屬閘極於第一介電層中,金屬閘極具有一U形剖面的功函數金屬層以及一低電阻率材料位於U形剖面的功函數金屬層上。接續,形成一第二介電層於金屬閘極以及第一介電層上。續之,形成一第三介電層於第二介電層上。繼之,形成一接觸插塞於第三介電層中,且位於金屬閘極的垂直方向上,因而形成一電容結構。 The present invention provides a semiconductor process comprising the steps described below. First, a first dielectric layer is formed on a substrate. Next, a metal gate is formed in the first dielectric layer, the metal gate has a U-shaped work function metal layer and a low resistivity material is located on the U-shaped work function metal layer. Successively, a second dielectric layer is formed on the metal gate and the first dielectric layer. Thereafter, a third dielectric layer is formed on the second dielectric layer. Then, a contact plug is formed in the third dielectric layer and is located in the vertical direction of the metal gate, thereby forming a capacitor structure.

基於上述,本發明提出一種半導體結構及其製程,其係將 電容結構之製程與MOS電晶體製程整合,俾使電容結構能與MOS電晶體結構能以同一製程形成,如此即可簡化製程步驟,而達到降低成本之目的。具體而言,電容結構之下電極可與MOS電晶體之金屬閘極一同形成;之後,覆蓋第二介電層於MOS電晶體以及電容結構之下電極上,以作為電容結構之絕緣層並使MOS電晶體向上絕緣;最後,電容結構之上電極則可與用以將MOS電晶體向外電連接之接觸插塞一同形成。 Based on the above, the present invention provides a semiconductor structure and a process thereof, which will The process of the capacitor structure is integrated with the MOS transistor process, so that the capacitor structure can be formed in the same process as the MOS transistor structure, so that the process steps can be simplified and the cost can be reduced. Specifically, the electrode under the capacitor structure may be formed together with the metal gate of the MOS transistor; after that, the second dielectric layer is covered on the MOS transistor and the electrode under the capacitor structure to serve as an insulating layer of the capacitor structure and The MOS transistor is insulated upward; finally, the upper electrode of the capacitor structure is formed together with a contact plug for electrically connecting the MOS transistor to the outside.

10‧‧‧絕緣結構 10‧‧‧Insulation structure

20‧‧‧MOS電晶體 20‧‧‧MOS transistor

22、42‧‧‧閘極介電層 22, 42‧‧ ‧ gate dielectric layer

24、44‧‧‧閘極電極層 24, 44‧‧ ‧ gate electrode layer

26、46‧‧‧蓋層 26, 46‧‧‧ cover

28、48‧‧‧間隙壁 28, 48‧‧ ‧ clearance

29‧‧‧源/汲極 29‧‧‧Source/Bungee

40‧‧‧犧牲電極 40‧‧‧ Sacrificial electrode

50‧‧‧接觸洞蝕刻停止層 50‧‧‧Contact hole etch stop layer

110‧‧‧基底 110‧‧‧Base

120、120’‧‧‧第一介電層 120, 120'‧‧‧ first dielectric layer

130a‧‧‧第一金屬閘極 130a‧‧‧First metal gate

130b‧‧‧金屬閘極 130b‧‧‧Metal gate

132a、132b‧‧‧U形剖面的高介電常數介電層 132a, 132b‧‧‧U-shaped high dielectric constant dielectric layer

132a’、132b’‧‧‧「一字形」剖面的高介電常數介電層 132a', 132b'‧‧‧"-shaped" high-k dielectric layer

134a、134b‧‧‧U形剖面的功函數金屬層 Work function metal layer of 134a, 134b‧‧‧ U-shaped profile

136a、136b‧‧‧低電阻率材料 136a, 136b‧‧‧ low resistivity materials

140‧‧‧第二介電層 140‧‧‧Second dielectric layer

150、150’‧‧‧第三介電層 150, 150'‧‧‧ third dielectric layer

160‧‧‧接觸插塞 160‧‧‧Contact plug

170‧‧‧第四絕緣層 170‧‧‧fourth insulation

180‧‧‧第五絕緣層 180‧‧‧ fifth insulation

A‧‧‧第一區 A‧‧‧First District

B‧‧‧第二區 B‧‧‧Second District

C1‧‧‧第一接觸插塞 C1‧‧‧first contact plug

C2、C3‧‧‧第二接觸插塞 C2, C3‧‧‧ second contact plug

C4‧‧‧內連線結構 C4‧‧‧Interconnection structure

G1、G2‧‧‧犧牲閘極 G1, G2‧‧‧ Sacrificial Gate

P‧‧‧電容結構 P‧‧‧Capacitor structure

R1、R2‧‧‧凹槽 R1, R2‧‧‧ grooves

T1、T2‧‧‧頂面 T1, T2‧‧‧ top surface

V‧‧‧接觸洞 V‧‧‧Contact hole

V1、V2‧‧‧第二接觸洞 V1, V2‧‧‧ second contact hole

第1-9圖係繪示本發明一實施例之半導體製程之剖面示意圖。 1-9 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention.

第10圖係繪示本發明一實施例之半導體製程之剖面示意圖。 Figure 10 is a cross-sectional view showing a semiconductor process in accordance with an embodiment of the present invention.

第1-9圖係繪示本發明一實施例之半導體製程之剖面示意圖。如第1圖所示,提供一基底110,其中基底110具有一第一區A以及一第二區B。在本實施例中,第一區A為一電晶體區,其為形成一MOS電晶體於其中,而第二區B為一電容區B,其為形成一電容結構於其中。本實施例係僅分別繪示一MOS電晶體於第一區A中,以及一電容結構於第二區B,以清楚並簡化揭示本發明,但其中MOS電晶體以及電容結構之個數非僅限於一個,其亦可為複數個,視實際之需要而定。基底110例如是一矽基底、一含矽基底、一三五族覆矽基底(例如GaN-on-silicon)、一石墨烯覆矽基底(graphene-on-silicon)或一矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。 1-9 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention. As shown in FIG. 1, a substrate 110 is provided in which the substrate 110 has a first region A and a second region B. In this embodiment, the first region A is a transistor region in which a MOS transistor is formed, and the second region B is a capacitor region B in which a capacitor structure is formed. In this embodiment, only one MOS transistor is respectively shown in the first region A, and a capacitor structure is in the second region B, to clearly and simplifies the disclosure, but the number of the MOS transistor and the capacitor structure is not only Limited to one, it can also be plural, depending on the actual needs. The substrate 110 is, for example, a substrate, a germanium-containing substrate, a tri-five-layer overlying substrate (eg, GaN-on-silicon), a graphene-on-silicon or a silicon-on-insulator (silicon- On-insulator, SOI) A semiconductor substrate such as a substrate.

接著,形成一絕緣結構10於第二區B之基底110中。絕 緣結構10可例如為一淺溝絕緣(shallow trench isolation,STI)結構或者其他之氧化物結構,且其可例如由一淺溝絕緣製程或其他氧化製程形成,但本發明不以此為限。如此,絕緣結構10即可將後續形成於其上之電容結構與基底110絕緣,亦或者將後續形成於電容結構旁之MOS電晶體與電容結構彼此電性絕緣。在本實施例中特別將絕緣結構10設為一塊狀絕緣結構於大部分之第二區B的基底110中,以防止後續形成之電容結構電連接至基底110而漏電,但本發明不以此為限。在其他實施例中,第二區B之基底110中之絕緣結構10亦可由複數個較小之絕緣結構組成,視需求設置。 Next, an insulating structure 10 is formed in the substrate 110 of the second region B. Absolutely The edge structure 10 can be, for example, a shallow trench isolation (STI) structure or other oxide structure, and can be formed, for example, by a shallow trench isolation process or other oxidation process, but the invention is not limited thereto. In this way, the insulating structure 10 can insulate the capacitor structure formed thereon from the substrate 110, or electrically insulate the MOS transistor and the capacitor structure formed next to the capacitor structure from each other. In the present embodiment, the insulating structure 10 is specifically formed as a block-shaped insulating structure in the base 110 of most of the second region B to prevent the subsequently formed capacitor structure from being electrically connected to the substrate 110 to leak electricity, but the present invention does not This is limited. In other embodiments, the insulating structure 10 in the substrate 110 of the second region B may also be composed of a plurality of smaller insulating structures, as desired.

而後,形成一MOS電晶體20於第一區A的基底110上,以及一犧牲電極40於第二區B的基底110上。在本實施例中,MOS電晶體20之犧牲閘極G1以及犧牲電極40係於相同製程步驟形成以簡化製程。詳細而言,可先全面依序形成一介電層(未繪示)、一電極層(未繪示)以及一蓋層(未繪示)於基底110上;然後,圖案化蓋層、電極層以及介電層,以形成堆疊的一閘極介電層22及42、一閘極電極層24及44、以及一蓋層26及46,因此形成一犧牲閘極G1以及犧牲閘極G2,其中犧牲閘極G1由下而上包含閘極介電層22、閘極電極層24以及蓋層26,而相對應的,犧牲閘極G2由下而上則包含閘極介電層42、閘極電極層44以及蓋層46。在本實施例中,犧牲閘極G2則位於絕緣結構10的正上方,俾使後續作為電容之一電極時不會漏電至基底110。接著,全面覆蓋間隙壁材料層(未繪示)於犧牲閘極G1、G2以及基底110上,並圖案化間隙壁材料層,而形成一間隙壁28於犧牲閘極G1側邊的基底110上,並同時形成一間隙壁48於犧牲閘極G2側邊的基底110上,因而形成犧牲電極40於基底110上。續之,形成一源/汲極29於間隙壁28 側邊的基底110中,以形成MOS電晶體20。 Then, a MOS transistor 20 is formed on the substrate 110 of the first region A, and a sacrificial electrode 40 is formed on the substrate 110 of the second region B. In the present embodiment, the sacrificial gate G1 of the MOS transistor 20 and the sacrificial electrode 40 are formed in the same process step to simplify the process. In detail, a dielectric layer (not shown), an electrode layer (not shown), and a cap layer (not shown) are sequentially formed on the substrate 110; then, the cap layer and the electrode are patterned. a layer and a dielectric layer to form a stacked gate dielectric layer 22 and 42, a gate electrode layer 24 and 44, and a cap layer 26 and 46, thereby forming a sacrificial gate G1 and a sacrificial gate G2, The sacrificial gate G1 includes a gate dielectric layer 22, a gate electrode layer 24, and a cap layer 26 from bottom to top. Correspondingly, the sacrificial gate G2 includes a gate dielectric layer 42 and a gate from bottom to top. The electrode layer 44 and the cap layer 46. In the present embodiment, the sacrificial gate G2 is located directly above the insulating structure 10 so that it does not leak to the substrate 110 when it is subsequently used as an electrode of the capacitor. Next, a layer of spacer material (not shown) is overlaid on the sacrificial gates G1, G2 and the substrate 110, and the spacer material layer is patterned to form a spacer 28 on the substrate 110 on the side of the sacrificial gate G1. At the same time, a spacer 48 is formed on the substrate 110 on the side of the sacrificial gate G2, thereby forming the sacrificial electrode 40 on the substrate 110. Continued, a source/drain 29 is formed on the spacer 28 The side substrate 110 is formed to form the MOS transistor 20.

更進一步而言,在進行上述步驟之間或進行完上述步驟後,可進行其他之MOS電晶體製程步驟,以進一步形成品質更佳之MOS電晶體20。例如,選擇性形成一輕摻雜源/汲極(未繪示)於犧牲閘極G1側邊的基底110中;選擇性形成磊晶結構(未繪示)於犧牲閘極G1側邊的基底110中等,並且在分別形成輕摻雜源/汲極或者磊晶結構之前,另外形成間隙壁(未繪示)於犧牲閘極G1側邊,以分別調整輕摻雜源/汲極或者磊晶結構與犧牲閘極G1之距離。MOS電晶體之製程步驟為本領域所熟知,故不再贅述。 Furthermore, after performing the above steps or after the above steps, other MOS transistor process steps can be performed to further form the MOS transistor 20 of better quality. For example, a lightly doped source/drain (not shown) is selectively formed in the substrate 110 on the side of the sacrificial gate G1; and an epitaxial structure (not shown) is selectively formed on the substrate on the side of the sacrificial gate G1. 110 is medium, and before forming a lightly doped source/drain or epitaxial structure, spacers (not shown) are additionally formed on the side of the sacrificial gate G1 to respectively adjust the lightly doped source/drain or epitaxial The distance between the structure and the sacrificial gate G1. The process steps of the MOS transistor are well known in the art and will not be described again.

接續,選擇性移除間隙壁28及48,如第2圖所示。續之,依序覆蓋一接觸洞蝕刻停止層50以及一第一介電層120’於犧牲閘極G1、犧牲閘極G2以及基底110上。接觸洞蝕刻停止層50可例如為一氮化層或者一已摻雜之氮化層等。第一介電層120’可例如為一氧化層,其可以化學氣相沈積(chemical vapor deposition,CVD)製程形成,但本發明不以此為限。繼之,可先進行一平坦化製程(未繪示),以形成平坦化的一第一介電層120,並移除位於犧牲閘極G1及G2上的接觸洞蝕刻停止層50;然後進行一蝕刻製程,移除犧牲閘極G1、犧牲閘極G2,因而形成二凹槽R1及R2,如第3圖所示。在其他實施例中,犧牲閘極G1、犧牲閘極G2之部分結構,例如蓋層26及46,可能在進行平坦化製程時即先移除。 Next, the spacers 28 and 48 are selectively removed, as shown in FIG. Then, a contact hole etch stop layer 50 and a first dielectric layer 120' are sequentially covered on the sacrificial gate G1, the sacrificial gate G2, and the substrate 110. The contact hole etch stop layer 50 can be, for example, a nitride layer or a doped nitride layer or the like. The first dielectric layer 120' may be, for example, an oxide layer, which may be formed by a chemical vapor deposition (CVD) process, but the invention is not limited thereto. Then, a planarization process (not shown) may be performed to form a planarized first dielectric layer 120, and the contact hole etch stop layer 50 on the sacrificial gates G1 and G2 is removed; An etching process removes the sacrificial gate G1 and the sacrificial gate G2, thereby forming two recesses R1 and R2, as shown in FIG. In other embodiments, portions of the sacrificial gate G1 and the sacrificial gate G2, such as the cap layers 26 and 46, may be removed prior to the planarization process.

如第4圖所示,依序覆蓋一高介電常數介電層(未繪示)、一功函數金屬層(未繪示)以及一低電阻率材料(未繪示)於凹槽R1及R2以及第一介電層120;然後,平坦化低電阻率材料、功函 數金屬層以及高介電常數介電層至暴露出第一介電層120,而形成堆疊的一U形剖面的高介電常數介電層132a及132b、一U形剖面的功函數金屬層134a及134b、以及一低電阻率材料136a及136b,分別於凹槽R1及R2中,因此,形成MOS電晶體20之一第一金屬閘極130a於第一區A之第一介電層120中,以及一金屬閘極130b於第二區B之第一介電層120中。詳細而言,第一金屬閘極130a包含一U形剖面的高介電常數介電層132a、一U形剖面的功函數金屬層134a以及一低電阻率材料136a;金屬閘極130b則包含一U形剖面的高介電常數介電層132b、一U形剖面的功函數金屬層134b以及一低電阻率材料136b。如此,本發明以相同製程即可形成金屬閘極130b以及第一金屬閘極130a,而金屬閘極130b以及第一金屬閘極130a位於同一水平面。在本實施例中,絕緣結構10位於金屬閘極130b之正下方,是以可防止電流至金屬閘極130b向下流入基底110。在本發明中,由於係以同一金屬閘極製程來同時形成第一金屬閘極130a,以及作為一電容結構之下電極的金屬閘極130b,是以其材料(與第一金屬閘極130a相同)除了符合MOS電晶體20所需之電性要求外,較佳亦可進一步考量所形成之電容結構之導電性需求以及儲存電荷之需求。另外,金屬閘極130b以及第一金屬閘極130a可更包含選擇性的阻障層(未繪示)於U形剖面的高介電常數介電層132a及132b、U形剖面的功函數金屬層134a及134b、以及低電阻率材料136a及136b之間;緩衝層(未繪示)於U形剖面的高介電常數介電層132a及132b與基底110之間。 As shown in FIG. 4, a high-k dielectric layer (not shown), a work function metal layer (not shown), and a low-resistivity material (not shown) are sequentially covered in the recess R1 and R2 and the first dielectric layer 120; then, planarizing the low resistivity material, the work function a plurality of metal layers and a high-k dielectric layer exposing the first dielectric layer 120 to form a stacked U-shaped high-k dielectric layer 132a and 132b, and a U-shaped work function metal layer 134a and 134b, and a low resistivity material 136a and 136b, respectively in the recesses R1 and R2, thereby forming a first metal gate 130a of the MOS transistor 20 in the first dielectric layer 120 of the first region A And a metal gate 130b is in the first dielectric layer 120 of the second region B. In detail, the first metal gate 130a includes a U-shaped high-k dielectric layer 132a, a U-shaped work function metal layer 134a, and a low-resistivity material 136a; the metal gate 130b includes a A high-k dielectric layer 132b having a U-shaped cross section, a work function metal layer 134b having a U-shaped cross section, and a low resistivity material 136b. Thus, in the present invention, the metal gate 130b and the first metal gate 130a can be formed in the same process, and the metal gate 130b and the first metal gate 130a are located on the same horizontal plane. In the present embodiment, the insulating structure 10 is located directly under the metal gate 130b to prevent current from flowing into the substrate 110 downwardly from the metal gate 130b. In the present invention, since the first metal gate 130a is formed simultaneously by the same metal gate process, and the metal gate 130b as an electrode under the capacitor structure is made of the same material as the first metal gate 130a. In addition to meeting the electrical requirements required for the MOS transistor 20, it is preferred to further consider the conductivity requirements of the formed capacitor structure and the need to store charge. In addition, the metal gate 130b and the first metal gate 130a may further include a selective barrier layer (not shown) in the high-k dielectric layer 132a and 132b of the U-shaped cross section, and a work function metal of the U-shaped cross section. Between the layers 134a and 134b and the low-resistivity materials 136a and 136b, a buffer layer (not shown) is disposed between the high-k dielectric layers 132a and 132b of the U-shaped cross-section and the substrate 110.

U形剖面的高介電常數介電層132a及132b可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、 氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組;U形剖面的功函數金屬層134a及134b係為一滿足電晶體所需功函數要求以及電極之導電需求的金屬,其可為單層結構或複合層結構,例如氮化鈦(titanium nitride,TiN)、碳化鈦(titanium carbide,TiC)、氮化鉭(tantalum nitride,TaN)、碳化鉭(tantalum carbide,TaC)、碳化鎢(tungsten carbide,WC)、鋁化鈦(titanium aluminide,TiAl)或氮化鋁鈦(aluminum titanium nitride,TiAlN)等;低電阻率材料136a及136b可由鋁、鎢、鈦鋁合金(TiAl)或鈷鎢磷化物(cobalt tungsten phosphide,CoWP)等所構成。 The high-k dielectric layers 132a and 132b of the U-shaped cross-section may be selected from the group consisting of hafnium oxide (HfO2), hafnium silicon oxide (HfSiO4), and hafnium silicon oxynitride (hafnium silicon oxynitride). HfSiON), Aluminum oxide (Al2O3), lanthanum oxide (La2O3), tantalum oxide (Ta2O5), yttrium oxide (Y2O3), zirconium oxide (ZrO2), barium titanate (strontium) Titanate oxide, SrTiO3), zirconium silicon oxide (ZrSiO4), hafnium zirconium oxide (HfZrO4), strontium bismuth tantalate (SrBi2Ta2O9, SBT), lead zirconate titanate Lead zirconate titanate, PbZrxTi1-xO3, PZT) and barium strontium titanate (BaxSr1-xTiO3, BST) group; U-shaped profile of the work function metal layer 134a and 134b is a crystal A metal requiring a work function requirement and an electrical conductivity requirement of the electrode, which may be a single layer structure or a composite layer structure, such as titanium nitride (TiN), titanium carbide (TiC), tantalum nitride (tantalum nitride, TaN), tantalum carbide (TaC), tungsten carbide (WC), titanium aluminide (TiAl) or aluminum titanium nitride (TiAlN); low resistivity material 136a and 136 b may be composed of aluminum, tungsten, titanium aluminum alloy (TiAl) or cobalt tungsten phosphide (CoWP).

此外,本實施例是以一後置高介電常數介電層之後閘極(Gate-Last for High-K Last)製程為例,是以本實施例如第4圖所示,具有一U形剖面的高介電常數介電層132a及132b分別圍繞U形剖面的功函數金屬層134a及134b。在其他實施例中,本發明亦可應用於一前置高介電常數介電層之後閘極(Gate-Last for High-K First)製程,因而可如第10圖所示,係繪示本發明一實施例之半導體製程之剖面示意圖。此實施例之閘極介電層22及42即為一高介電常數介電層,而不再移除;換言之,在形成凹槽R1及R2(如第3圖)時,僅蝕刻至暴露出閘極介電層22及42。然後,直接將功函 數金屬層堆疊於閘極介電層22及42上。如此,則形成具有一「一字形」剖面的高介電常數介電層132a’及132b’,分別於U形剖面的功函數金屬層134a及134b以及基底110(以及絕緣結構10)之間。但其仍是以同一金屬閘極製程來形成金屬閘極130b以及第一金屬閘極130a。 In addition, this embodiment is exemplified by a gate-Last for High-K Last process after the high-k dielectric layer is disposed, as shown in FIG. 4, which has a U-shaped cross section. The high-k dielectric layers 132a and 132b respectively surround the work function metal layers 134a and 134b of the U-shaped cross section. In other embodiments, the present invention can also be applied to a Gate-Last for High-K First process, which can be as shown in FIG. A schematic cross-sectional view of a semiconductor process in accordance with an embodiment of the invention. The gate dielectric layers 22 and 42 of this embodiment are a high-k dielectric layer and are not removed; in other words, when the recesses R1 and R2 are formed (as shown in FIG. 3), only the exposure is exposed. Gate dielectric layers 22 and 42 are exited. Then, directly put the work function A plurality of metal layers are stacked on the gate dielectric layers 22 and 42. Thus, high-k dielectric layers 132a' and 132b' having a "in-line" cross-section are formed between the work function metal layers 134a and 134b and the substrate 110 (and the insulating structure 10) of the U-shaped cross-section. However, it is still formed by the same metal gate process to form the metal gate 130b and the first metal gate 130a.

如第5圖所示,形成一第二介電層140於金屬閘極130b、第一金屬閘極130a以及第一介電層120上。第二介電層140可例如為一氮化層、一氮氧化層、一含碳的氮化矽層或一氧化層等絕緣材料層。在本實施例中,第二介電層140作為一電容結構之絕緣層,是以其介電常數等較佳為考量電容結構之電性所需而選擇例如上述所舉之絕緣材料層等。再者,第二介電層140又可將MOS電晶體與後續形成於其上之金屬內連線結構絕緣。 As shown in FIG. 5, a second dielectric layer 140 is formed on the metal gate 130b, the first metal gate 130a, and the first dielectric layer 120. The second dielectric layer 140 can be, for example, a nitride layer, an oxynitride layer, a carbon-containing tantalum nitride layer, or an oxide layer. In the present embodiment, the second dielectric layer 140 serves as an insulating layer of a capacitor structure, and is preferably selected such as the above-mentioned insulating material layer or the like in consideration of the dielectric constant and the like, preferably in consideration of the electrical properties of the capacitor structure. Furthermore, the second dielectric layer 140 in turn can insulate the MOS transistor from the metal interconnect structure subsequently formed thereon.

接著,圖案化第二介電層140以及第一介電層120,以形成複數個第一接觸洞(未繪示)於第二介電層140以及第一介電層120中;然後,將導電材料填入第一接觸洞中,以形成複數個第一接觸插塞C1於第二介電層140以及第一介電層120中,並物理性接觸MOS電晶體20的源/汲極29。第一接觸插塞C1可例如由鎢、鋁或銅等材料所組成。再者,在填入導電材料以形成第一接觸插塞C1之前,可選擇性進行一自對準金屬矽化物(salicide)製程,以形成一金屬矽化物N於第一接觸洞中之源/汲極29以及第一接觸插塞C1之間,因而可降低源/汲極29與第一接觸插塞C1之接觸阻抗。當然,在其他實施例中,可在形成源/汲極29之後隨即形成金屬矽化物於源/汲極29上,接著全面覆蓋介電層,然後才形成第一接觸洞。 Next, the second dielectric layer 140 and the first dielectric layer 120 are patterned to form a plurality of first contact holes (not shown) in the second dielectric layer 140 and the first dielectric layer 120; The conductive material is filled into the first contact hole to form a plurality of first contact plugs C1 in the second dielectric layer 140 and the first dielectric layer 120, and physically contacts the source/drain 29 of the MOS transistor 20. . The first contact plug C1 may be composed of, for example, a material such as tungsten, aluminum or copper. Furthermore, before filling the conductive material to form the first contact plug C1, a self-aligned metal salicide process may be selectively performed to form a source of the metal telluride N in the first contact hole/ The drain 29 and the first contact plug C1 are between each other, thereby reducing the contact resistance of the source/drain 29 and the first contact plug C1. Of course, in other embodiments, a metal germanide may be formed on the source/drain 29 immediately after the source/drain 29 is formed, followed by a full coverage of the dielectric layer before the first contact hole is formed.

如第6-7圖所示,形成一第三介電層150’於第二介電層140上。第三介電層150’可例如為一氧化層,其可以化學氣相沈積(chemical vapor deposition,CVD)製程形成,但本發明不以此為限。詳細而言,可先全面覆蓋一第三介電層(未繪示),再將其圖案化,而形成第三介電層150’,其具有二第二接觸洞V1以及一接觸洞V,而暴露出至少部分之第一接觸插塞C1以及部分之第二介電層140,如第6圖所示。第二介電層140可為單層或多層。在一較佳的實施例中,第二介電層140為多層,並包含對於一蝕刻製程,具有不同蝕刻率的堆疊的至少二材料層。例如,當第二介電層140為雙層,其為由下而上為堆疊的一氮化層以及一氧化層,則當進行蝕刻製程以形成第二接觸洞V1以及接觸洞V於第三介電層150’時,則可將氧化層作為蝕刻停止層,確保蝕刻製程可停在氮化層,而不致過蝕刻。如此一來,第二介電層140接觸後續形成於接觸洞V之接觸插塞的一部份的頂面T1會低於第二介電層140之位於接觸插塞旁的其他部分的頂面T2。 As shown in Figures 6-7, a third dielectric layer 150' is formed over the second dielectric layer 140. The third dielectric layer 150' may be, for example, an oxide layer, which may be formed by a chemical vapor deposition (CVD) process, but the invention is not limited thereto. In detail, a third dielectric layer (not shown) may be completely covered and then patterned to form a third dielectric layer 150 ′ having two second contact holes V1 and a contact hole V. At least a portion of the first contact plug C1 and a portion of the second dielectric layer 140 are exposed, as shown in FIG. The second dielectric layer 140 can be a single layer or multiple layers. In a preferred embodiment, the second dielectric layer 140 is a plurality of layers and includes at least two layers of material having different etch rates for an etch process. For example, when the second dielectric layer 140 is a double layer, which is a nitride layer and an oxide layer stacked from bottom to top, an etching process is performed to form a second contact hole V1 and a contact hole V in the third layer. In the case of the dielectric layer 150', the oxide layer can be used as an etch stop layer, ensuring that the etching process can be stopped in the nitride layer without over-etching. As a result, the top surface T1 of the second dielectric layer 140 contacting a portion of the contact plug formed later on the contact hole V is lower than the top surface of the second dielectric layer 140 at the other portion of the contact plug. T2.

然後,再圖案化第三介電層150’,而形成第三介電層150,其更具有二第二接觸洞V2延伸至第二介電層140,暴露出至少部分之第一金屬閘極130a以及金屬閘極130b,如第7圖所示。 Then, the third dielectric layer 150 ′ is patterned to form a third dielectric layer 150 , which further has two second contact holes V2 extending to the second dielectric layer 140 to expose at least a portion of the first metal gate. 130a and metal gate 130b, as shown in FIG.

接著,同時填入導電材料(未繪示)於接觸洞V、第二接觸洞V1以及V2中並再平坦化導電材料,以形成一接觸插塞160於第三介電層150中,其位於金屬閘極130b的垂直方向上;以及,二第二接觸插塞C2分別物理性接觸第一接觸插塞C1,二第二接觸插塞C3分別物理性接觸第一金屬閘極130a以及金屬閘極130b,如第 8圖所示。在本實施例中,以同一接觸插塞製程同時形成第二接觸插塞C2及C3,以及用以作為電容上電極的接觸插塞160。如此一來,即完成一電容結構P之製作,此電容結構P由接觸插塞160作為上電極、第二介電層140作為絕緣層以及金屬閘極130b作為下電極而構成。第二接觸插塞C3則可藉由物理性連接金屬閘極130b而將電容結構P之一端向外電連接,並且第二接觸插塞C2及C3可藉由物理性連接第一接觸插塞C1以及第一金屬閘極130a而將MOS電晶體20向外電連接。接觸插塞160以及第二接觸插塞C2及C3可例如由鋁或銅或鎢等材料所組成。在本實施例中,接觸插塞160即為作為一電容結構之上電極,是以其材料除了符合MOS電晶體20外連至其他結構所需之電性要求外,其較佳亦可進一步考量所形成之電容結構之導電性需求選用導電材質。 Then, a conductive material (not shown) is simultaneously filled in the contact hole V, the second contact holes V1 and V2 and the conductive material is planarized to form a contact plug 160 in the third dielectric layer 150, which is located at The metal gate 130b is vertically oriented; and the second contact plugs C2 are physically in contact with the first contact plugs C1, respectively, and the second contact plugs C3 are physically in contact with the first metal gates 130a and the metal gates, respectively. 130b, as in the first Figure 8 shows. In the present embodiment, the second contact plugs C2 and C3 and the contact plug 160 serving as the upper electrode of the capacitor are simultaneously formed by the same contact plug process. In this way, the fabrication of a capacitor structure P is completed. The capacitor structure P is formed by the contact plug 160 as an upper electrode, the second dielectric layer 140 as an insulating layer, and the metal gate 130b as a lower electrode. The second contact plug C3 can electrically connect one end of the capacitor structure P to the outside by physically connecting the metal gate 130b, and the second contact plugs C2 and C3 can physically connect the first contact plug C1 and The first metal gate 130a electrically connects the MOS transistor 20 to the outside. The contact plug 160 and the second contact plugs C2 and C3 may be composed of, for example, aluminum or a material such as copper or tungsten. In the present embodiment, the contact plug 160 is an upper electrode of a capacitor structure, and is preferably further considered in addition to the electrical requirements required for the material to be connected to other structures in addition to the MOS transistor 20. The conductive requirements of the formed capacitor structure are selected from conductive materials.

如第9圖所示,依序形成一第四絕緣層170以及一第五絕緣層180於第三介電層150、接觸插塞160以及第二接觸插塞C2及C3上,並且形成一內連線結構C4於第四絕緣層170以及第五絕緣層180中。詳細而言,可先全面依序覆蓋一第四絕緣層(未繪示)以及一第五絕緣層(未繪示)於第三介電層150、接觸插塞160以及第二接觸插塞C2及C3上,然後利用凹槽優先(trench first)、介層洞優先(via first)及自對準(self-aligned)等之雙鑲嵌製程,來先圖案化第五絕緣層以及第四絕緣層,而形成凹槽(未繪示)以及介層洞(未繪示)第四絕緣層170以及第五絕緣層180中。之後,填入導電材料(未繪示)於凹槽中並將導電材料平坦化,而形成內連線結構C4於第四絕緣層170以及第五絕緣層180中。內連線結構C4物理性連接接觸插塞160,而將電容結構P之一端向外電連接。再者, 內連線結構C4又物理性連接第二接觸插塞C2,將MOS電晶體20向外電連接。在本實施例中,內連線結構C4具有多個雙鑲嵌結構,但本發明不以此為限。內連線結構C4可例如由鋁或銅等材料所組成。 As shown in FIG. 9, a fourth insulating layer 170 and a fifth insulating layer 180 are sequentially formed on the third dielectric layer 150, the contact plug 160, and the second contact plugs C2 and C3, and form an inner portion. The wiring structure C4 is in the fourth insulating layer 170 and the fifth insulating layer 180. In detail, a fourth insulating layer (not shown) and a fifth insulating layer (not shown) are disposed on the third dielectric layer 150, the contact plug 160, and the second contact plug C2. And C3, and then the first insulating layer and the fourth insulating layer are patterned by a dual damascene process such as trench first, via first, and self-aligned. And forming a recess (not shown) and a via hole (not shown) in the fourth insulating layer 170 and the fifth insulating layer 180. Thereafter, a conductive material (not shown) is filled in the recess and the conductive material is planarized to form the interconnect structure C4 in the fourth insulating layer 170 and the fifth insulating layer 180. The interconnect structure C4 physically connects the contact plug 160 and electrically connects one end of the capacitor structure P to the outside. Furthermore, The interconnect structure C4 is physically connected to the second contact plug C2 to electrically connect the MOS transistor 20 to the outside. In this embodiment, the interconnect structure C4 has a plurality of dual damascene structures, but the invention is not limited thereto. The interconnect structure C4 may be composed of, for example, a material such as aluminum or copper.

綜上所述,本發明提出一種半導體結構及其製程,其係將電容結構之製程與MOS電晶體製程整合,俾使電容結構能與MOS電晶體結構能以相同製程形成,如此即可簡化製程步驟,而達到降低成本之目的。具體而言,電容結構之下電極可與MOS電晶體之金屬閘極一同形成,因而下電極之結構與金屬閘極相同,其可具有U形剖面的功函數金屬層以及低電阻率材料位於U形剖面的功函數金屬層上,且本發明所形成之電容結構之下電極會與MOS電晶體之金屬閘極位於同一水平面;之後,覆蓋第二介電層於MOS電晶體以及電容結構之下電極上,一方面可將MOS電晶體與後續形成於其上之金屬絕緣,另一方面則可作為電容結構之絕緣層;最後,電容結構之上電極則可與用以將MOS電晶體向外電連接之第二接觸插塞一同形成。 In summary, the present invention provides a semiconductor structure and a process thereof, which integrates a process of a capacitor structure with a MOS transistor process, so that a capacitor structure can be formed in the same process as a MOS transistor structure, thereby simplifying the process. Steps to achieve the goal of reducing costs. Specifically, the electrode under the capacitor structure can be formed together with the metal gate of the MOS transistor, so that the structure of the lower electrode is the same as that of the metal gate, and the work function metal layer having a U-shaped profile and the low resistivity material are located at the U The work function is formed on the metal layer, and the electrode under the capacitor structure formed by the present invention is located at the same level as the metal gate of the MOS transistor; after that, the second dielectric layer is covered under the MOS transistor and the capacitor structure On the electrode, on one hand, the MOS transistor can be insulated from the metal formed thereon, and on the other hand, it can be used as an insulating layer of the capacitor structure; finally, the upper electrode of the capacitor structure can be used to externally electrify the MOS transistor. The connected second contact plug is formed together.

10‧‧‧絕緣結構 10‧‧‧Insulation structure

20‧‧‧MOS電晶體 20‧‧‧MOS transistor

110‧‧‧基底 110‧‧‧Base

120‧‧‧第一介電層 120‧‧‧First dielectric layer

130a‧‧‧第一金屬閘極 130a‧‧‧First metal gate

130b‧‧‧金屬閘極 130b‧‧‧Metal gate

140‧‧‧第二介電層 140‧‧‧Second dielectric layer

150‧‧‧第三介電層 150‧‧‧ third dielectric layer

160‧‧‧接觸插塞 160‧‧‧Contact plug

170‧‧‧第四絕緣層 170‧‧‧fourth insulation

180‧‧‧第五絕緣層 180‧‧‧ fifth insulation

A‧‧‧第一區 A‧‧‧First District

B‧‧‧第二區 B‧‧‧Second District

C1‧‧‧第一接觸插塞 C1‧‧‧first contact plug

C2、C3‧‧‧第二接觸插塞 C2, C3‧‧‧ second contact plug

C4‧‧‧內連線結構 C4‧‧‧Interconnection structure

P‧‧‧電容結構 P‧‧‧Capacitor structure

Claims (20)

一種半導體結構,包含有:一金屬閘極位於一基底上以及一第一介電層中,其中該金屬閘極具有一U形剖面的功函數金屬層以及一低電阻率材料位於該U形剖面的功函數金屬層上;一第二介電層位於該金屬閘極以及該第一介電層上;以及一接觸插塞位於該第二介電層上以及一第三介電層中,因而形成一電容結構。 A semiconductor structure comprising: a metal gate on a substrate and a first dielectric layer, wherein the metal gate has a U-shaped work function metal layer and a low resistivity material is located in the U-shaped profile a work function metal layer; a second dielectric layer on the metal gate and the first dielectric layer; and a contact plug on the second dielectric layer and a third dielectric layer A capacitor structure is formed. 如申請專利範圍第1項所述之半導體結構,更包含:一絕緣結構,位於該基底中以及該金屬閘極的正下方。 The semiconductor structure of claim 1, further comprising: an insulating structure located in the substrate and directly under the metal gate. 如申請專利範圍第1項所述之半導體結構,其中該金屬閘極更包含一U形剖面的高介電常數介電層,位於該U形剖面的功函數金屬層下。 The semiconductor structure of claim 1, wherein the metal gate further comprises a U-shaped high-conductivity dielectric layer under the work function metal layer of the U-shaped profile. 如申請專利範圍第1項所述之半導體結構,其中該金屬閘極更包含一「一字形」剖面的高介電常數介電層,位於該U形剖面的功函數金屬層以及該基底之間。 The semiconductor structure of claim 1, wherein the metal gate further comprises a high-k dielectric layer of a "in-line" profile, located between the work function metal layer of the U-shaped profile and the substrate . 如申請專利範圍第1項所述之半導體結構,其中該U形剖面的功函數金屬層包含一氮化鈦層、一鋁鈦層或一碳化鈦層。 The semiconductor structure of claim 1, wherein the work function metal layer of the U-shaped cross section comprises a titanium nitride layer, an aluminum titanium layer or a titanium carbide layer. 如申請專利範圍第1項所述之半導體結構,其中該低電阻率材料包含鎢或鋁。 The semiconductor structure of claim 1, wherein the low resistivity material comprises tungsten or aluminum. 如申請專利範圍第1項所述之半導體結構,其中該第二介電層包含一氮化層、一氮氧化層、一含碳的氮化矽層或一氧化層。 The semiconductor structure of claim 1, wherein the second dielectric layer comprises a nitride layer, an oxynitride layer, a carbon-containing tantalum nitride layer or an oxide layer. 如申請專利範圍第1項所述之半導體結構,其中該第二介電層為單層或多層。 The semiconductor structure of claim 1, wherein the second dielectric layer is a single layer or a plurality of layers. 如申請專利範圍第1項所述之半導體結構,其中該第二介電層包含對於一蝕刻製程,具有不同蝕刻率的堆疊的二材料層。 The semiconductor structure of claim 1, wherein the second dielectric layer comprises a stacked two material layer having different etch rates for an etching process. 如申請專利範圍第1項所述之半導體結構,其中該第二介電層之接觸該接觸插塞的一部份的頂面低於該第二介電層之位於該接觸插塞旁的其他部分的頂面。 The semiconductor structure of claim 1, wherein a top surface of the second dielectric layer contacting a portion of the contact plug is lower than another portion of the second dielectric layer adjacent to the contact plug Part of the top surface. 如申請專利範圍第1項所述之半導體結構,更包含:一MOS電晶體,包含一第一金屬閘極,且該第一金屬閘極與該金屬閘極位於同一水平面。 The semiconductor structure of claim 1, further comprising: a MOS transistor comprising a first metal gate, and the first metal gate is at the same level as the metal gate. 如申請專利範圍第11項所述之半導體結構,更包含:複數個第一接觸插塞,位於該第二介電層以及該第一介電層中,且物理性接觸該MOS電晶體的一源/汲極。 The semiconductor structure of claim 11, further comprising: a plurality of first contact plugs, located in the second dielectric layer and the first dielectric layer, and physically contacting one of the MOS transistors Source / bungee. 如申請專利範圍第11項所述之半導體結構,更包含:複數個第二接觸插塞,位於該第三介電層中,且物理性接觸該金屬閘極以及該MOS電晶體。 The semiconductor structure of claim 11, further comprising: a plurality of second contact plugs located in the third dielectric layer and physically contacting the metal gate and the MOS transistor. 一種半導體製程,包含有:形成一第一介電層於一基底上; 形成一金屬閘極於該第一介電層中,該金屬閘極具有一U形剖面的功函數金屬層以及一低電阻率材料位於該U形剖面的功函數金屬層上;形成一第二介電層於該金屬閘極以及該第一介電層上;形成一第三介電層於該第二介電層上;以及形成一接觸插塞於該第三介電層中,且位於該金屬閘極的垂直方向上,因而形成一電容結構。 A semiconductor process includes: forming a first dielectric layer on a substrate; Forming a metal gate in the first dielectric layer, the metal gate has a U-shaped work function metal layer and a low resistivity material on the work function metal layer of the U-shaped profile; forming a second a dielectric layer on the metal gate and the first dielectric layer; forming a third dielectric layer on the second dielectric layer; and forming a contact plug in the third dielectric layer The metal gate is vertically oriented, thereby forming a capacitor structure. 如申請專利範圍第14項所述之半導體製程,在形成該第一介電層之前,更包含:形成一絕緣結構,於該基底中以及該金屬閘極的正下方。 The semiconductor process of claim 14, wherein before forming the first dielectric layer, further comprising: forming an insulating structure in the substrate and directly under the metal gate. 如申請專利範圍第14項所述之半導體製程,其中該金屬閘極更包含一U形剖面的高介電常數介電層或一「一字形」剖面的高介電常數介電層,位於該U形剖面的功函數金屬層以及該基底之間。 The semiconductor process of claim 14, wherein the metal gate further comprises a U-shaped high dielectric constant dielectric layer or a "in-line" high dielectric constant dielectric layer. The work function metal layer of the U-shaped profile and between the substrates. 如申請專利範圍第14項所述之半導體製程,其中該第二介電層為單層或對於同一蝕刻製程,具有不同蝕刻率的堆疊的多層。 The semiconductor process of claim 14, wherein the second dielectric layer is a single layer or a stacked plurality of layers having different etch rates for the same etching process. 如申請專利範圍第14項所述之半導體製程,其中該第二介電層之接觸該接觸插塞的一部份的頂面低於該第二介電層之位於該接觸插塞旁的其他部分的頂面。 The semiconductor process of claim 14, wherein a top surface of the second dielectric layer contacting a portion of the contact plug is lower than another portion of the second dielectric layer adjacent to the contact plug Part of the top surface. 如申請專利範圍第14項所述之半導體製程,在形成該第二介電層之前,更包含:形成一MOS電晶體於該第一介電層中,其中該MOS電晶體包 含一第一金屬閘極,與該金屬閘極同一製程形成,且位於同一水平面。 The semiconductor process of claim 14, wherein before forming the second dielectric layer, further comprising: forming a MOS transistor in the first dielectric layer, wherein the MOS transistor package A first metal gate is formed, which is formed in the same process as the metal gate and is located on the same horizontal plane. 如申請專利範圍第19項所述之半導體製程,在形成該第三介電層之後,更包含:形成複數個第二接觸插塞於該第三介電層中,分別物理性接觸該MOS電晶體以及該金屬閘極,且該些第二接觸插塞與該接觸插塞於同一製程中形成。 The semiconductor process of claim 19, after forming the third dielectric layer, further comprising: forming a plurality of second contact plugs in the third dielectric layer, respectively physically contacting the MOS a crystal and the metal gate, and the second contact plugs are formed in the same process as the contact plug.
TW102110075A 2013-03-21 2013-03-21 Semiconductor structure and process thereof TWI581433B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102110075A TWI581433B (en) 2013-03-21 2013-03-21 Semiconductor structure and process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102110075A TWI581433B (en) 2013-03-21 2013-03-21 Semiconductor structure and process thereof

Publications (2)

Publication Number Publication Date
TW201438231A true TW201438231A (en) 2014-10-01
TWI581433B TWI581433B (en) 2017-05-01

Family

ID=52113469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102110075A TWI581433B (en) 2013-03-21 2013-03-21 Semiconductor structure and process thereof

Country Status (1)

Country Link
TW (1) TWI581433B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493658B (en) * 2009-11-18 2015-07-21 United Microelectronics Corp Method of fabricating efuse, resistor and transistor
TWI524472B (en) * 2011-08-30 2016-03-01 聯華電子股份有限公司 Resistor and manufacturing method thereof

Also Published As

Publication number Publication date
TWI581433B (en) 2017-05-01

Similar Documents

Publication Publication Date Title
US10074655B2 (en) Memory device with manufacturable cylindrical storage node
US9449964B2 (en) Semiconductor process
CN103383933B (en) Semiconductor device and manufacture method thereof
US10068797B2 (en) Semiconductor process for forming plug
TWI712157B (en) Method of manufacturing memory device and memory device
TWI625826B (en) Semiconductor device structures and methods for forming the same
US8836129B1 (en) Plug structure
US20210343731A1 (en) METHOD AND STRUCTURES PERTAINING TO IMPROVED FERROELECTRIC RANDOM-ACCESS MEMORY (FeRAM)
TW201611282A (en) Semiconductor structure and process thereof
CN110690289A (en) Semiconductor device having negative capacitance using ferroelectric material
CN114765209A (en) Semiconductor memory device and method of manufacturing the same
US10937830B2 (en) Method of fabricating integrated circuit
CN111554659A (en) Plug structure and manufacturing process thereof
US20230154843A1 (en) Semiconductor Device with Integrated Metal-Insulator-Metal Capacitors
US20220139827A1 (en) Semiconductor structure and method for fabricating the same
TWI773492B (en) Integrated circuit
KR20030037215A (en) Method of fabricating semiconductor device
TWI581433B (en) Semiconductor structure and process thereof
US10283412B2 (en) Semiconductor device and fabrication method thereof
TW202147461A (en) Semiconducting metal oxide transistors having a patterned gate and methods for forming the same
TWI821535B (en) Method for fabricating semiconductor device
US20240074148A1 (en) Semiconductor device
TWI581316B (en) Method of forming metal silicide layer
TW201436209A (en) Semiconductor device and method of forming the same
JP2006318992A (en) Semiconductor device and manufacturing method therefor