TW201438177A - Memory device structure and method of manufacturing the same, and semiconductor device structure - Google Patents

Memory device structure and method of manufacturing the same, and semiconductor device structure Download PDF

Info

Publication number
TW201438177A
TW201438177A TW102111151A TW102111151A TW201438177A TW 201438177 A TW201438177 A TW 201438177A TW 102111151 A TW102111151 A TW 102111151A TW 102111151 A TW102111151 A TW 102111151A TW 201438177 A TW201438177 A TW 201438177A
Authority
TW
Taiwan
Prior art keywords
layer
bit line
memory
bit lines
contact windows
Prior art date
Application number
TW102111151A
Other languages
Chinese (zh)
Other versions
TWI520296B (en
Inventor
Cheol-Soo Park
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW102111151A priority Critical patent/TWI520296B/en
Publication of TW201438177A publication Critical patent/TW201438177A/en
Application granted granted Critical
Publication of TWI520296B publication Critical patent/TWI520296B/en

Links

Abstract

A memory device structure at least includes a plurality of memory devices and a plurality of bit lines. Each of the bit lines connects with each of the memory devices respectively, and the bit lines consist of two story parallel bit lines. Therefore, it can reduce bit line resistance by increasing the width thereof.

Description

記憶體結構及其製造方法與半導體元件 Memory structure, manufacturing method thereof and semiconductor component

本發明是有關於一種半導體元件,且特別是有關於一種能降低位元線阻值的記憶體結構及其製造方法與半導體元件。 BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a semiconductor device, and more particularly to a memory structure capable of reducing a bit line resistance, a method of fabricating the same, and a semiconductor device.

近年來記憶體元件的製程已往奈米世代發展,從早年的數百奈米製程到最近40奈米以下的製程。雖然每一個製程技術可以較前代技術增加產量,但製程良率的穩定度與元件的效率等問題卻日益困難。 In recent years, the process of memory components has been developed in the generations of the nanometer, from the hundreds of nanometer processes in the early years to the processes below 40 nanometers. Although each process technology can increase production compared to previous generation technologies, problems such as process yield stability and component efficiency are increasingly difficult.

以40奈米製程為例,因為製程之設計規範(design rule)限制,所以幾乎只能用銅製程製作位元線。而且,隨著元件尺寸縮小,位元線的片電阻不可避免地也會增加,而影響元件效率。 Taking the 40 nm process as an example, because of the design rule of the process, the bit line can be made almost exclusively by the copper process. Moreover, as the size of the device shrinks, the sheet resistance of the bit line inevitably increases, affecting the efficiency of the element.

本發明提供一種記憶體結構,能在元件尺寸縮小的同時防止位元線片電阻增加。 The present invention provides a memory structure capable of preventing an increase in bit line resistance while the component size is reduced.

本發明另提供一種記憶體結構的製造方法,能在製程之設計規範下將位元線的線寬擴大至2倍以上。 The invention further provides a method for manufacturing a memory structure, which can expand the line width of the bit line to more than 2 times under the design specification of the process.

本發明又提供一種半導體結構,可將鋁製程用於40nm世代以下的元件。 The present invention further provides a semiconductor structure that can be used for components below 40 nm generation.

本發明的記憶體結構的製造方法包括形成多個記憶體元件,然後形成多條位元線分別連接各個記憶體元件,其中所述位元線是由互相平行的雙層位元線所構成。 The method of fabricating the memory structure of the present invention includes forming a plurality of memory elements, and then forming a plurality of bit lines respectively connected to the respective memory elements, wherein the bit lines are composed of double-layer bit lines that are parallel to each other.

本發明的半導體結構包括多個半導體元件以及多條內連線。內連線分別連接各個半導體元件,且這些內連線是由互相平行的雙層導線所構成。 The semiconductor structure of the present invention includes a plurality of semiconductor elements and a plurality of interconnects. The interconnect wires are respectively connected to the respective semiconductor elements, and the interconnect wires are composed of two-layer wires which are parallel to each other.

基於上述,本發明的結構因為將互相平行的位元線分為雙層結構,所以當元件尺寸縮小的同時,位元線的線寬仍能超出製程之設計規範兩倍以上,所以可降低位元線片電阻,甚至用鋁取代40nm世代以下的銅製程。 Based on the above, the structure of the present invention divides the bit lines parallel to each other into a two-layer structure, so that when the element size is reduced, the line width of the bit line can still exceed twice the design specification of the process, so the bit can be lowered. The material of the wire is replaced by aluminum instead of the copper process of the 40nm generation.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、300‧‧‧基底 100, 300‧‧‧ base

102、302‧‧‧隔離結構 102, 302‧‧‧Isolation structure

104、304‧‧‧摻雜區 104, 304‧‧‧Doped area

106、306a、306b‧‧‧第一層位元線接觸窗 106, 306a, 306b‧‧‧ first layer bit line contact window

108‧‧‧第一接觸窗 108‧‧‧First contact window

110‧‧‧介層窗 110‧‧‧layer window

112、114、132‧‧‧介電層 112, 114, 132‧‧‧ dielectric layer

116‧‧‧阻障層 116‧‧‧Barrier layer

118、308‧‧‧蝕刻終止層 118, 308‧‧ ‧ etch stop layer

120‧‧‧氧化層 120‧‧‧Oxide layer

122、310‧‧‧第一位元線 122, 310‧‧‧ first bit line

124、312‧‧‧間隙壁 124, 312‧‧ ‧ spacer

126‧‧‧溝渠 126‧‧‧ditch

128、202、314‧‧‧襯層 128, 202, 314‧‧ ‧ lining

130、200、316‧‧‧第二層位元線接觸窗 130, 200, 316‧‧‧ second layer bit line contact window

134、318‧‧‧第二位元線 134, 318‧‧‧ second bit line

136‧‧‧罩幕層 136‧‧ ‧ cover layer

138‧‧‧雙層位元線 138‧‧‧ double-layer line

圖1A-1至圖1F-3是依照本發明的第一實施例的一種記憶體結構的製造流程示意圖。 1A-1 to 1F-3 are schematic views showing a manufacturing process of a memory structure in accordance with a first embodiment of the present invention.

圖2A-1至圖2C是依照本發明的第二實施例的一種記憶體結構的製造流程示意圖。 2A-1 to 2C are schematic views showing a manufacturing process of a memory structure in accordance with a second embodiment of the present invention.

圖3A至圖3E是依照本發明的第三實施例的一種記憶體結構的製造流程上視圖。 3A through 3E are top views of a manufacturing process of a memory structure in accordance with a third embodiment of the present invention.

圖1A-1至圖1F-3是依照本發明的第一實施例的一種記憶體結構的製造流程示意圖,而且本實施例是以NAND Flash為例,但本發明並不侷限於此。 1A-1 to 1F-3 are schematic diagrams showing a manufacturing process of a memory structure according to a first embodiment of the present invention, and the present embodiment is exemplified by NAND Flash, but the present invention is not limited thereto.

請參照圖1A-1與圖1A-2,圖1A-1是上視圖、圖1A-2是圖1A-1的II-II線段的剖面圖。在圖1A-1與圖1A-2中,基底100內有隔離結構102與作為記憶體結構之主動區的摻雜區104,由於本實施例是以NAND Flash為例,所以每一個摻雜區104代表單一記憶體元件,即記憶體串列(memory string)的一部分;如果是其他類的記憶體元件,則摻雜區104可為記憶胞的一部分。前述記憶胞或記憶體串列都屬於現有的記憶體元件,故在本實施例中不詳細說明。而在基底100上形成有多個第一層位元線接觸窗106,這些第一層位元線接觸窗106可能包括與摻雜區104直接接 觸的第一接觸窗108以及與第一接觸窗108直接接觸的介層窗110,這樣的設計有時是為了配合記憶體元件本身的結構與類型,因此本發明中的第一層位元線接觸窗106亦可只有第一接觸窗108,而無介層窗110。而且第一層位元線接觸窗106的配置是採間隔配置,亦即同一剖面上的兩兩第一層位元線接觸窗106之間是間隔著一個摻雜區104。此外,第一接觸窗108以及介層窗110都是形成在介電層112與114內,且於金屬材料的第一接觸窗108和介電層112之間、以及介層窗110與介電層114之間,均設有阻障層116(如Ti/TiN)。 1A-1 and 1A-2, FIG. 1A-1 is a top view, and FIG. 1A-2 is a cross-sectional view taken along line II-II of FIG. 1A-1. In FIG. 1A-1 and FIG. 1A-2, the substrate 100 has an isolation structure 102 and a doped region 104 as an active region of the memory structure. Since the NAND flash is taken as an example in this embodiment, each doped region is used. 104 represents a single memory component, ie, a portion of a memory string; if it is another type of memory component, the doped region 104 can be part of a memory cell. The aforementioned memory cell or memory string belongs to the existing memory element, and therefore will not be described in detail in this embodiment. A plurality of first layer bit line contact windows 106 are formed on the substrate 100. The first layer bit line contact windows 106 may include direct connection with the doped regions 104. The first contact window 108 that touches and the via window 110 that is in direct contact with the first contact window 108 are sometimes designed to match the structure and type of the memory element itself, and thus the first layer of the bit line in the present invention The contact window 106 may also have only the first contact window 108 without the via window 110. Moreover, the first layer of bit line contact windows 106 are disposed in a spaced apart configuration, that is, a doped region 104 is spaced between the two first bit line contact windows 106 on the same cross section. In addition, the first contact window 108 and the via 110 are formed in the dielectric layers 112 and 114, and between the first contact window 108 and the dielectric layer 112 of the metal material, and the via 110 and the dielectric Between the layers 114, a barrier layer 116 (such as Ti/TiN) is provided.

接著,請參照圖1B-1與圖1B-2,圖1B-1是上視圖、圖1B-2是圖1B-1的II-II線段的剖面圖。在介電層114上形成氮化矽層作為蝕刻終止層118,再對其進行圖案化,以露出第一層位元線接觸窗106。蝕刻終止層118除氮化矽以外,也可採用其他適合的材質,本發明並不限於此。 1B-1 and FIG. 1B-2, FIG. 1B-1 is a top view, and FIG. 1B-2 is a cross-sectional view taken along line II-II of FIG. 1B-1. A tantalum nitride layer is formed over the dielectric layer 114 as an etch stop layer 118, which is then patterned to expose the first layer of bit line contact windows 106. The etching stopper layer 118 may be other suitable materials in addition to tantalum nitride, and the present invention is not limited thereto.

然後,請參照圖1C-1與圖1C-2,圖1C-1是上視圖、圖1C-2是圖1C-1的II-II線段的剖面圖。在上一步驟露出的第一層位元線接觸窗106上形成由Ti/Al與氧化層120組成的疊層,再圖案化所述疊層而得到經由第一層位元線接觸窗106與摻雜區104電性相連的第一位元線122,且於第一位元線122和氧化層120之間可設有如Ti/TiN的阻障層(未繪示)。第一位元線122的配置是採間隔配置,亦即同一剖面上的兩兩第一位元線122之間是間隔著一個摻雜區104。此時,未被第一位元線122遮住的第一層位 元線接觸窗106,會在圖案化所述疊層之後露出。 1C-1 and FIG. 1C-2, FIG. 1C-1 is a top view, and FIG. 1C-2 is a cross-sectional view taken along line II-II of FIG. 1C-1. Forming a stack of Ti/Al and oxide layer 120 on the first layer of bit line contact windows 106 exposed in the previous step, and patterning the stack to obtain via the first layer of bit line contact windows 106 and The doped region 104 is electrically connected to the first bit line 122, and a barrier layer (not shown) such as Ti/TiN may be disposed between the first bit line 122 and the oxide layer 120. The configuration of the first bit line 122 is a spacing configuration, that is, a doped region 104 is spaced between the two first bit lines 122 on the same cross section. At this time, the first layer is not covered by the first bit line 122. The line contact window 106 is exposed after patterning the layer.

接著,請參照圖1D-1、圖1D-2與圖1D-3,圖1D-1是上視圖、圖1D-2是圖1D-1的II-II線段的剖面圖、圖1D-3是圖1D-1的III-III線段的剖面圖。在第一位元線122和氧化層120的側壁形成間隙壁(spacer)124之後,再用間隙壁蝕刻(如等向性蝕刻)將溝渠126內的間隙壁去除,留下溝渠126側壁的間隙壁124,並在間隙壁124之間的溝渠126內形成作為襯層128的TiN,再填入金屬鎢(W)作為第二層位元線接觸窗130,但本發明並不侷限於此,亦可使用銅接觸窗作為第二層位元線接觸窗130。隨後,可用一道圖案化製程將第二層位元線接觸窗130定義於圖1C-1露出的第一層位元線接觸窗106上,使第一層位元線接觸窗106與第二層位元線接觸窗130電性相連。 1D-1, FIG. 1D-2 and FIG. 1D-3, FIG. 1D-1 is a top view, FIG. 1D-2 is a cross-sectional view taken along line II-II of FIG. 1D-1, and FIG. A cross-sectional view taken along line III-III of Fig. 1D-1. After the spacers 124 are formed on the sidewalls of the first bit line 122 and the oxide layer 120, the spacers in the trenches 126 are removed by spacer etching (eg, isotropic etching), leaving a gap in the sidewalls of the trenches 126. The wall 124, and TiN as the lining layer 128 is formed in the trench 126 between the spacers 124, and the metal tungsten (W) is further filled as the second layer bit line contact window 130, but the present invention is not limited thereto. A copper contact window can also be used as the second level bit line contact window 130. Subsequently, the second layer bit line contact window 130 may be defined on the first layer bit line contact window 106 exposed in FIG. 1C-1 by a patterning process to make the first layer bit line contact window 106 and the second layer. The bit line contact windows 130 are electrically connected.

然後,請參照圖1E-1與圖1E-2,圖1E-1是與圖1D-2相同線段之剖面圖、圖1E-2是與圖1D-3相同線段之剖面圖。在製作第二層位元線之前,可先於蝕刻終止層118上沉積一層介電層132,並用化學機械研磨的方式將介電層磨平使得第二層位元線接觸窗130露出金屬鎢的表面,再於介電層132與第二層位元線接觸窗130上形成譬如由Ti/Al構成的第二位元線134,第二位元線134與第二層位元線接觸窗130電性接觸,並藉由第一與第二層位元線接觸窗106與130而與摻雜區104電性相連。之後,在第二位元線134上形成罩幕層136,且於第二位元線134和罩幕層136之間可設有如Ti/TiN的中間層(未繪示)。由於本實施例是以鋁層 作為第二位元線134,所以採用微影蝕刻等製程,但本發明並不侷限於此;換句話說,如果是以銅內連線作為第二位元線134,則需採用銅製程。 1E-1 and FIG. 1E-2, FIG. 1E-1 is a cross-sectional view of the same line segment as FIG. 1D-2, and FIG. 1E-2 is a cross-sectional view of the same line segment as FIG. 1D-3. Before the second layer of the bit line is formed, a dielectric layer 132 may be deposited on the etch stop layer 118, and the dielectric layer is smoothed by chemical mechanical polishing so that the second layer of the bit line contact window 130 exposes the metal tungsten. a surface, and a second bit line 134 formed of Ti/Al, such as a second bit line 134 and a second layer bit line contact window, is formed on the dielectric layer 132 and the second layer bit line contact window 130. The 130 is electrically contacted and electrically connected to the doped region 104 by the first and second bit line contact windows 106 and 130. Thereafter, a mask layer 136 is formed on the second bit line 134, and an intermediate layer (not shown) such as Ti/TiN may be disposed between the second bit line 134 and the mask layer 136. Since this embodiment is an aluminum layer As the second bit line 134, a process such as photolithography etching is employed, but the present invention is not limited thereto; in other words, if a copper interconnect is used as the second bit line 134, a copper process is required.

接著,請參照圖1F-1、圖1F-2與圖1F-3,圖1F-1是上視圖、圖1F-2是圖1F-1的II-II線段的剖面圖、圖1F-3是圖1F-1的III-III線段的剖面圖。在利用罩幕層136作為蝕刻罩幕去除圖1E-1中露出的第二位元線134之後,再將罩幕層136移除,即可得到在兩兩第一位元線122之間的上方第二位元線134。而且,因為第一位元線122與第二位元線134是互相平行的雙層位元線138,所以位元線122與134的線寬都可大於製程之設計規範(design rule)的下限(即第一層或第二層位元線接觸窗106或130之線寬),達兩倍以上,甚至是位元線122與134在布局(Layout)上有部份重疊也可行。 1F-1, FIG. 1F-2 and FIG. 1F-3, FIG. 1F-1 is a top view, FIG. 1F-2 is a cross-sectional view taken along line II-II of FIG. 1F-1, and FIG. 1F-3 is A cross-sectional view taken along line III-III of Fig. 1F-1. After the mask layer 136 is used as an etch mask to remove the second bit line 134 exposed in FIG. 1E-1, the mask layer 136 is removed to obtain a gap between the two first bit lines 122. The second bit line 134 above. Moreover, since the first bit line 122 and the second bit line 134 are double-layer bit lines 138 that are parallel to each other, the line widths of the bit lines 122 and 134 can be greater than the lower limit of the design rule of the process. (ie, the line width of the first or second layer bit line contact window 106 or 130) is more than twice, and even partial overlap of the bit lines 122 and 134 on the layout is also possible.

此外,第一實施例的製程亦可有其他替代方案。 In addition, the process of the first embodiment may have other alternatives.

圖2A-1至圖2C是依照本發明的第二實施例的一種記憶體結構的製造流程示意圖,其中的部分製程沿用第一實施例中的步驟,因此使用與第一實施例相同的元件符號來代表相同或相似的構件。 2A-1 to 2C are schematic views showing a manufacturing process of a memory structure in accordance with a second embodiment of the present invention, wherein a part of the process follows the steps in the first embodiment, and thus the same component symbols as in the first embodiment are used. To represent the same or similar components.

請參照圖2A-1與圖2A-2,圖2A-1是上視圖、圖2A-2是圖2A-1的II-II線段的剖面圖。這個步驟與第一實施例的圖1D-1類似,但是在形成間隙壁124並做完間隙壁蝕刻之後,填滿金屬鎢,並做化學機械研磨(CMP),此時會在間隙壁124之間形成第二 層位元線接觸窗200與襯層202,但此時不對第二層位元線接觸窗200進行圖案化製程。因此,圖2A-1與圖2A-2中的第二層位元線接觸窗200會填滿於間隙壁124之間的空間。 2A-1 and 2A-2, FIG. 2A-1 is a top view, and FIG. 2A-2 is a cross-sectional view taken along line II-II of FIG. 2A-1. This step is similar to that of FIG. 1D-1 of the first embodiment, but after forming the spacers 124 and performing the spacer etching, the metal tungsten is filled and chemical mechanical polishing (CMP) is performed, which is then at the spacers 124. Forming a second The layer line contacts the window 200 and the liner 202, but the second layer of the bit line contact window 200 is not patterned at this time. Therefore, the second layer bit line contact window 200 in FIGS. 2A-1 and 2A-2 fills the space between the spacers 124.

然後,請參照圖2B,其是與圖2A-2相同線段之剖面圖。於第二層位元線接觸窗200上形成譬如由Ti/Al構成的第二位元線134,第二位元線134與第二層位元線接觸窗200電性接觸,並藉由第一與第二層位元線接觸窗106與200而與摻雜區104電性相連。之後,在第二位元線134上形成罩幕層136,且於第二位元線134和罩幕層136之間可設有如Ti/TiN的中間層(未繪示)。當然,如果以銅內連線作為第二位元線134,則此時需採用銅製程。 Next, please refer to FIG. 2B, which is a cross-sectional view of the same line segment as that of FIG. 2A-2. Forming a second bit line 134, such as Ti/Al, on the second bit line contact window 200, and the second bit line 134 is in electrical contact with the second bit line contact window 200, and The first and second bit line contact windows 106 and 200 are electrically connected to the doped region 104. Thereafter, a mask layer 136 is formed on the second bit line 134, and an intermediate layer (not shown) such as Ti/TiN may be disposed between the second bit line 134 and the mask layer 136. Of course, if the copper interconnect is used as the second bit line 134, then a copper process is required.

接著,請參照圖2C,其是與圖1F-3相同線段的剖面圖。在利用罩幕層136作為蝕刻罩幕進行蝕刻製程後,再將罩幕層136移除,即可得到在兩兩第一位元線122之間的上方第二位元線134。此時,在第二位元線134下方的第二層位元線接觸窗200是與第二位元線134用同一圖案化製程形成,所以第二實施例比第一實施例至少要少一道圖案化製程。 Next, please refer to FIG. 2C, which is a cross-sectional view of the same line segment as that of FIG. 1F-3. After the etch process is performed using the mask layer 136 as an etch mask, the mask layer 136 is removed to obtain an upper second bit line 134 between the two first bit lines 122. At this time, the second layer bit line contact window 200 under the second bit line 134 is formed by the same patterning process as the second bit line 134, so the second embodiment is at least one less than the first embodiment. Patterning process.

圖3A至圖3E是依照本發明的第三實施例的一種記憶體結構的製造流程上視圖,而且本實施例是以NAND Flash為例,但本發明並不侷限於此。 3A to 3E are top views of a manufacturing process of a memory structure in accordance with a third embodiment of the present invention, and the present embodiment is exemplified by NAND Flash, but the present invention is not limited thereto.

請參照圖3A,在基底300內有隔離結構302與作為記憶體結構之主動區的摻雜區304,由於本實施例是以NAND Flash為例,所以每一個摻雜區304代表單一記憶體元件,即記憶體串列 (memory string)的一部分,如選擇閘極(select gate)的汲極;如果是其他類的記憶體元件,則摻雜區304可為記憶胞的一部分。前述記憶胞或記憶體串列都屬於現有的記憶體元件,故在本實施例中不詳細說明。 Referring to FIG. 3A, there is an isolation structure 302 and a doping region 304 as an active region of the memory structure in the substrate 300. Since the NAND flash is taken as an example in the embodiment, each doping region 304 represents a single memory device. Memory serial A portion of a (memory string), such as a drain of a select gate; if it is a memory element of another type, the doped region 304 may be part of a memory cell. The aforementioned memory cell or memory string belongs to the existing memory element, and therefore will not be described in detail in this embodiment.

然後,在基底300上形成有多個第一層位元線接觸窗306a與306b。而且第一層位元線接觸窗306a的配置是採間隔配置,亦即同一剖面上的兩兩第一層位元線接觸窗306a之間是間隔著一個摻雜區304。至於第一層位元線接觸窗306b的配置則是同一剖面上的兩兩第一層位元線接觸窗306b之間間隔著三個摻雜區304,以與後續形成的第二層位元線接觸窗接觸。另外,第一層位元線接觸窗306a與306b的詳細形成方式可參照第一實施例的圖1A-2的第一接觸窗108以及介層窗110,故在本實施例不再贅述。 Then, a plurality of first layer bit line contact windows 306a and 306b are formed on the substrate 300. Moreover, the first layer of bit line contact windows 306a is disposed in a spaced apart configuration, that is, a doped region 304 is spaced between the two first layer bit line contact windows 306a on the same cross section. As for the configuration of the first-level bit line contact window 306b, three doped regions 304 are spaced between the two first-level bit line contact windows 306b on the same cross-section to form a subsequently formed second-level bit. Line contact window contact. In addition, the first contact window 108 and the via window 110 of FIG. 1A-2 of the first embodiment can be referred to in the detailed description of the first layer of the bit line contact windows 306a and 306b.

接著,請參照圖3B,在基底300上形成氮化矽層作為蝕刻終止層308,再對其進行圖案化,以露出第一層位元線接觸窗306a與306b。蝕刻終止層308除氮化矽以外,也可採用其他適合的材質,本發明並不限於此。 Next, referring to FIG. 3B, a tantalum nitride layer is formed on the substrate 300 as an etch stop layer 308, which is then patterned to expose the first layer bit line contact windows 306a and 306b. The etch stop layer 308 may be other suitable materials in addition to tantalum nitride, and the present invention is not limited thereto.

然後,請參照圖3C,在基底300上形成覆蓋第一層位元線接觸窗306a的第一位元線310,其中第一位元線310可由Ti/Al構成,且第一位元線310上可形成有氧化層,且於第一位元線310和氧化層之間可設有如Ti/TiN的阻障層(可參照第一實施例的圖1C-2)。由於本實施例是以鋁層作為第一位元線310,故採用微影蝕刻等製程,但本發明並不侷限於此;換句話說,如果是以銅內 連線作為第一位元線310,則需採用銅製程。 Then, referring to FIG. 3C, a first bit line 310 covering the first layer bit line contact window 306a is formed on the substrate 300, wherein the first bit line 310 may be composed of Ti/Al, and the first bit line 310 An oxide layer may be formed thereon, and a barrier layer such as Ti/TiN may be disposed between the first bit line 310 and the oxide layer (refer to FIG. 1C-2 of the first embodiment). Since the present embodiment uses the aluminum layer as the first bit line 310, a process such as photolithography etching is employed, but the present invention is not limited thereto; in other words, if it is in copper As the first bit line 310, the connection requires a copper process.

接著,請參照圖3D,在第一位元線310的側壁形成間隙壁312之後,並做完間隙壁蝕刻去除底層間隙壁,此時先在間隙壁312之間沉積作為襯層314的TiN,再填入金屬鎢(W)作為第二層位元線接觸窗316,但本發明並不侷限於此,亦可使用銅接觸窗作為第二層位元線接觸窗316。隨後用化學機械研磨方式將金屬鎢及襯層TiN磨除此時會如圖3D所示,不同位置的第二層位元線接觸窗316會因為化學機械研磨後,而被介電層隔開,而不會互相接觸。 Next, referring to FIG. 3D, after the spacers 312 are formed on the sidewalls of the first bit line 310, the spacers are etched to remove the underlying spacers. At this time, TiN as the liner 314 is deposited between the spacers 312. The metal tungsten (W) is further filled as the second layer bit line contact window 316, but the present invention is not limited thereto, and a copper contact window may be used as the second layer bit line contact window 316. Subsequently, the metal tungsten and the liner TiN are removed by chemical mechanical polishing, as shown in FIG. 3D, and the second layer of the bit line contact window 316 at different positions is separated by the dielectric layer after chemical mechanical polishing. Without touching each other.

然後,請參照圖3E,在兩兩第一位元線310之間的上方形成譬如由Ti/Al構成的第二位元線318,第二位元線318與第二層位元線接觸窗316電性接觸,並藉由第一與第二層位元線接觸窗306b與316而與摻雜區304電性相連。由於本實施例是以鋁層作為第二位元線318,所以採用微影蝕刻等製程,但本發明並不侷限於此;換句話說,如果是以銅內連線作為第二位元線318,則需採用銅製程。 Then, referring to FIG. 3E, a second bit line 318, such as Ti/Al, is formed between the two first bit lines 310, and the second bit line 318 and the second bit line contact window are formed. The 316 is electrically contacted and electrically coupled to the doped region 304 by the first and second bit line contact windows 306b and 316. Since the present embodiment uses the aluminum layer as the second bit line 318, a process such as lithography etching is employed, but the present invention is not limited thereto; in other words, if the copper interconnect is used as the second bit line 318, the copper process is required.

因為第一位元線310與第二位元線318是互相平行的雙層位元線,所以位元線310與318的線寬都可大於製程之設計規範的下限(即第一層或第二層位元線接觸窗306a-b或316之線寬),達兩倍以上,甚至是位元線122與134在布局上有部份重疊也可行。 Because the first bit line 310 and the second bit line 318 are two-layer bit lines parallel to each other, the line widths of the bit lines 310 and 318 can be greater than the lower limit of the design specification of the process (ie, the first layer or the first The line width of the two-layer bit line contact window 306a-b or 316 is more than twice, and even a partial overlap of the bit lines 122 and 134 in the layout is also possible.

以上第一至第三實施例中雖以記憶體結構為主,但是本發明之應用並不限於此;亦即,本發明之雙層位元線的概念還能用於非記憶體結構的其他類半導體結構,譬如發展到奈米世代以後的製程,連接半導體元件之內連線由於彼此接近所以必須隨之縮減線寬,但一旦線寬縮減,內連線的電阻也會隨之增加,所以如將互相平行的內連線以雙層導線構成,將可在元件尺寸縮小的同時,使導線的線寬超出製程之設計規範兩倍以上,以降低內連線的片電阻,甚至用鋁取代40nm世代以下的銅製程。 Although the memory structures are mainly used in the above first to third embodiments, the application of the present invention is not limited thereto; that is, the concept of the double-layer bit line of the present invention can also be applied to other non-memory structures. Semiconductor-like structures, such as the development of the nano-generation process, the interconnects connecting the semiconductor components must be reduced in line width, but once the line width is reduced, the resistance of the interconnects will increase. If the interconnected wires are made of double-layer wires, the wire width of the wires can be reduced by more than twice the design specification of the process while the component size is reduced, so as to reduce the sheet resistance of the interconnect wires and even replace the aluminum wires. Copper process below 40nm generation.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

106‧‧‧第一層位元線接觸窗 106‧‧‧1st level line contact window

122‧‧‧第一位元線 122‧‧‧first bit line

130‧‧‧第二層位元線接觸窗 130‧‧‧Second layer bit line contact window

134‧‧‧第二位元線 134‧‧‧second bit line

Claims (19)

一種記憶體結構的製造方法,包括:形成多個記憶體元件;以及形成多條位元線分別連接各該記憶體元件,其中該些位元線是由互相平行的雙層位元線所構成。 A method of fabricating a memory structure, comprising: forming a plurality of memory elements; and forming a plurality of bit lines respectively connected to the memory elements, wherein the bit lines are formed by mutually parallel double-layer bit lines . 如申請專利範圍第1項所述的記憶體結構的製造方法,其中該些記憶體元件包括記憶胞或記憶體串列。 The method of fabricating a memory structure according to claim 1, wherein the memory elements comprise a memory cell or a memory string. 如申請專利範圍第1項所述的記憶體結構的製造方法,其中該些位元線包括鋁層或銅內連線。 The method of fabricating a memory structure according to claim 1, wherein the bit lines comprise an aluminum layer or a copper interconnect. 如申請專利範圍第1項所述的記憶體結構的製造方法,其中該些位元線的線寬大於製程之設計規範的下限。 The method of fabricating a memory structure according to claim 1, wherein the line width of the bit lines is greater than a lower limit of a design specification of the process. 如申請專利範圍第1項所述的記憶體結構的製造方法,其中形成多條位元線的方法包括:在該些記憶體元件上形成多條第一位元線;以及在兩兩該些第一位元線之間的上方形成多條第二位元線。 The method of fabricating a memory structure according to claim 1, wherein the method of forming a plurality of bit lines comprises: forming a plurality of first bit lines on the memory elements; and A plurality of second bit lines are formed above the first bit line. 如申請專利範圍第5項所述的記憶體結構的製造方法,其中在形成該些第一位元線之前更包括:形成多個第一層位元線接觸窗,用以分別與各該第一位元線電性接觸。 The method for fabricating a memory structure according to claim 5, wherein before forming the first bit lines, further comprising: forming a plurality of first layer bit line contact windows for respectively One element is electrically contacted. 如申請專利範圍第5項所述的記憶體結構的製造方法,其中在形成該些第二位元線之前更包括:於該些第一層位元線接觸窗的上方形成多個第二層位元線接觸窗,用以分別與各該第二位 元線電性接觸。 The method for fabricating a memory structure according to claim 5, wherein before forming the second bit lines, further comprising: forming a plurality of second layers above the first layer bit line contact windows Bit line contact window for each of the second bits The electrical line is electrically contacted. 如申請專利範圍第7項所述的記憶體結構的製造方法,其中形成該些第二層位元線接觸窗與形成該些第二位元線的方法是單一圖案化製程。 The method for fabricating a memory structure according to claim 7, wherein the method of forming the second layer bit line contact windows and forming the second bit lines is a single patterning process. 如申請專利範圍第7項所述的記憶體結構的製造方法,其中該些第二層位元線接觸窗包括鎢接觸窗或銅接觸窗。 The method of fabricating a memory structure according to claim 7, wherein the second layer of bit line contact windows comprises a tungsten contact window or a copper contact window. 一種半導體結構,包括:多個半導體元件;以及多條內連線,分別連接各該記憶體元件,其中該些內連線是由互相平行的雙層導線所構成。 A semiconductor structure comprising: a plurality of semiconductor elements; and a plurality of interconnect lines respectively connected to the memory elements, wherein the interconnect lines are formed by two-layer wires that are parallel to each other. 如申請專利範圍第10項所述的半導體結構,其中該些半導體元件包括記憶體元件。 The semiconductor structure of claim 10, wherein the semiconductor elements comprise memory elements. 如申請專利範圍第10項所述的半導體結構,其中該些內連線包括鋁層或銅內連線。 The semiconductor structure of claim 10, wherein the interconnects comprise an aluminum layer or a copper interconnect. 如申請專利範圍第10項所述的半導體結構,其中該些內連線的線寬大於製程之設計規範的下限。 The semiconductor structure of claim 10, wherein the line width of the interconnect lines is greater than a lower limit of a design specification of the process. 如申請專利範圍第10項所述的半導體結構,其中該些內連線中不同層的導線在布局上有部份重疊。 The semiconductor structure of claim 10, wherein the wires of the different layers of the interconnects partially overlap in layout. 如申請專利範圍第10項所述的半導體結構,其中所述雙層導線包括:多條第一導線;以及多條第二導線,位於兩兩該些第一導線之間的上方。 The semiconductor structure of claim 10, wherein the double-layer wire comprises: a plurality of first wires; and a plurality of second wires located between the two of the first wires. 如申請專利範圍第15項所述的半導體結構,更包括:多個第一層接觸窗,分別與各該第一導線電性接觸;以及多個第二層接觸窗,位於該些第一層接觸窗的上方,其中各該第二層接觸窗分別與各該第二導線電性接觸。 The semiconductor structure of claim 15, further comprising: a plurality of first layer contact windows electrically contacting each of the first wires; and a plurality of second layer contact windows located on the first layer Above the contact window, each of the second layer contact windows is in electrical contact with each of the second wires. 如申請專利範圍第16項所述的半導體結構,其中該些第二層接觸窗交錯配置。 The semiconductor structure of claim 16, wherein the second layer contact windows are staggered. 如申請專利範圍第16項所述的半導體結構,其中該些第二層接觸窗與該些第二導線是以單一圖案化製程形成的。 The semiconductor structure of claim 16, wherein the second layer contact windows and the second wires are formed by a single patterning process. 如申請專利範圍第16項所述的半導體結構,其中該些第二層接觸窗包括鎢接觸窗或銅接觸窗。 The semiconductor structure of claim 16, wherein the second layer contact windows comprise tungsten contact windows or copper contact windows.
TW102111151A 2013-03-28 2013-03-28 Memory device structure and method of manufacturing the same, and semiconductor device structure TWI520296B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102111151A TWI520296B (en) 2013-03-28 2013-03-28 Memory device structure and method of manufacturing the same, and semiconductor device structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102111151A TWI520296B (en) 2013-03-28 2013-03-28 Memory device structure and method of manufacturing the same, and semiconductor device structure

Publications (2)

Publication Number Publication Date
TW201438177A true TW201438177A (en) 2014-10-01
TWI520296B TWI520296B (en) 2016-02-01

Family

ID=52113462

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102111151A TWI520296B (en) 2013-03-28 2013-03-28 Memory device structure and method of manufacturing the same, and semiconductor device structure

Country Status (1)

Country Link
TW (1) TWI520296B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10074605B2 (en) 2016-06-30 2018-09-11 Taiwan Semiconductor Manufacturing Co., Ltd. Memory cell and array structure having a plurality of bit lines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10074605B2 (en) 2016-06-30 2018-09-11 Taiwan Semiconductor Manufacturing Co., Ltd. Memory cell and array structure having a plurality of bit lines
TWI651833B (en) * 2016-06-30 2019-02-21 台灣積體電路製造股份有限公司 Memory component
US10522462B2 (en) 2016-06-30 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array structure having multiple bit lines

Also Published As

Publication number Publication date
TWI520296B (en) 2016-02-01

Similar Documents

Publication Publication Date Title
KR102270361B1 (en) Method for fabricating a semiconductor device
KR100902581B1 (en) Stack capacitor in semiconductor device and the Method for forming the same
US9196609B2 (en) Semiconductor device
KR100816754B1 (en) Method for forming patterns of the semiconductor device
TWI462188B (en) Semiconductor devices having through-contacts and related fabrication methods
KR20130096540A (en) Wiring line structure and method of forming the same
JP2012199381A (en) Semiconductor device and method of manufacturing the same
TWI538024B (en) Semiconductor device and method of fabricating the same
TW201603190A (en) Semiconductor device and method of fabricating thereof
CN112567514A (en) Memory structure and forming method thereof
TWI565004B (en) Dynamic random access memory and method of manufacturing the same
TWI557914B (en) Semiconductor element and manufacturing method thereof
TWI555119B (en) Method for manufacturing structure having air gap
CN104377202A (en) Embedded storage component and manufacturing method thereof
TWI520296B (en) Memory device structure and method of manufacturing the same, and semiconductor device structure
TWI543304B (en) Embedded memory device and method of fabricating the same
TWI451533B (en) Method of forming embedded flash memory
TWI469269B (en) Method of forming word line of embedded flash memory
CN102789985A (en) Semiconductor apparatus and manufacturing method thereof
CN104112713B (en) Memory construction and its manufacture method and semiconductor element
CN105336676B (en) The forming method of contact plunger
KR101128905B1 (en) Method for manufacturing the semiconductor device
US9349813B2 (en) Method for fabricating semiconductor device
TWI495089B (en) Semiconductor memory array structure
CN110085569B (en) Semiconductor structure and manufacturing method thereof