TW201436448A - Motor control apparatus - Google Patents

Motor control apparatus Download PDF

Info

Publication number
TW201436448A
TW201436448A TW102146099A TW102146099A TW201436448A TW 201436448 A TW201436448 A TW 201436448A TW 102146099 A TW102146099 A TW 102146099A TW 102146099 A TW102146099 A TW 102146099A TW 201436448 A TW201436448 A TW 201436448A
Authority
TW
Taiwan
Prior art keywords
command
magnetic flux
motor
calculator
torque
Prior art date
Application number
TW102146099A
Other languages
Chinese (zh)
Other versions
TWI632767B (en
Inventor
Yuji Ide
Satoshi Yamazaki
Original Assignee
Sanyo Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co filed Critical Sanyo Electric Co
Publication of TW201436448A publication Critical patent/TW201436448A/en
Application granted granted Critical
Publication of TWI632767B publication Critical patent/TWI632767B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/02Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for optimising the efficiency at low load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference

Abstract

Implementing broader definite output field. Excitation current instruction exerciser uses torque current command and motor rotational speed to recognize rotational load condition of the motor and calculate excitation current instruction corresponding to the rotational load condition. Motor driving part (q axis current controller, d axis current controller, coordinate transformer, PWM controller, power converter) uses torque current command and calculated excitation current instruction to drive the motor.

Description

馬達控制裝置 Motor control unit 發明領域 Field of invention

本發明是有關於可實現較廣之定輸出領域之馬達控制裝置。 The present invention relates to a motor control device that can achieve a wider range of output fields.

發明背景 Background of the invention

工具機之主軸被期望能兼顧低速重切削與高速切削。因此,使用根據磁場減弱(field weakening)之定輸出控制來實現低速旋轉時之高扭矩化與高速旋轉化。進行定輸出控制之馬達控制裝置舉例來說是如以下之構成。 The spindle of the machine tool is expected to combine low speed heavy cutting and high speed cutting. Therefore, high torque and high speed rotation at the time of low speed rotation are achieved using the output control according to field weakening. The motor control device that performs the constant output control is as follows, for example.

圖10是習知之馬達控制裝置的方塊圖。該馬達控制裝置是進行如以下之動作。 Figure 10 is a block diagram of a conventional motor control device. The motor control device performs the following operations.

首先,將速度指令與來自速度演算器15之馬達旋轉速度ωm比較,藉由速度控制器20求出q軸電流指令IqC。速度演算器15輸出之馬達旋轉速度ωm是使用由編碼器10檢測出之位置回饋而演算。將q軸電流指令IqC與來自座標轉換器25之q軸電流回饋IqF比較,藉由q軸電流控制器30求出q軸電壓指令VqC。 First, the speed command is compared with the motor rotation speed ωm from the speed calculator 15, and the q-axis current command IqC is obtained by the speed controller 20. The motor rotation speed ωm output from the speed calculator 15 is calculated using the position feedback detected by the encoder 10. The q-axis current command IqC is compared with the q-axis current feedback IqF from the coordinate converter 25, and the q-axis voltage command VqC is obtained by the q-axis current controller 30.

另一方面,參考馬達旋轉速度ωm而以d軸電流指令IdC下達必要之激磁電流。將d軸電流指令IdC與來自 座標轉換器25之d軸電流回饋IdF比較,藉由d軸電流控制器45求出d軸電壓指令VdC。 On the other hand, the necessary exciting current is given by the d-axis current command IdC with reference to the motor rotation speed ωm. The d-axis current command IdC comes from The d-axis current feedback IdF of the coordinate converter 25 is compared, and the d-axis current command VdC is obtained by the d-axis current controller 45.

轉差頻率演算器50由q軸電流指令IqC與d軸電流指令IdC算出轉差頻率指令ωs。轉差頻率指令ωs是與速度演算器15輸出之馬達旋轉速度ωm相加。以轉差頻率指令ωs與馬達旋轉速度ωm求出一次頻率指令ω1。以積分器55將一次頻率指令ω1積分而求出定子位置指令θmc。 The slip frequency calculator 50 calculates the slip frequency command ωs from the q-axis current command IqC and the d-axis current command IdC. The slip frequency command ωs is added to the motor rotational speed ωm output from the speed calculator 15. The primary frequency command ω1 is obtained by the slip frequency command ωs and the motor rotational speed ωm. The stator position command θmc is obtained by integrating the primary frequency command ω1 with the integrator 55.

座標轉換器60是基於定子位置指令θmc對q軸電壓指令VqC、d軸電壓指令VdC進行座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。三相電壓指令Vuc、Vvc、Vwc是透過PWM控制器65、功率轉換器70而供給至馬達80,馬達80因應三相電壓指令Vuc、Vvc、Vwc而驅動。 The coordinate converter 60 performs coordinate conversion on the q-axis voltage command VqC and the d-axis voltage command VdC based on the stator position command θmc, and obtains three-phase voltage commands Vuc, Vvc, and Vwc. The three-phase voltage commands Vuc, Vvc, and Vwc are supplied to the motor 80 through the PWM controller 65 and the power converter 70, and the motor 80 is driven in response to the three-phase voltage commands Vuc, Vvc, and Vwc.

q軸電流回饋IqF與d軸電流回饋IdF是由座標轉換器25基於定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。 The q-axis current feedback IqF and the d-axis current feedback IdF are obtained by coordinate conversion of the motor currents Iu and Iv by the coordinate converter 25 based on the stator position command θmc.

激磁電流指令IdC是如圖面所示,在定扭矩領域是一定,在定輸出領域是與馬達80之旋轉速度之上昇成反比例而減少。藉由使激磁電流指令IdC與馬達80之旋轉速度之上昇成反比例而降低,來進行磁場減弱控制。 The excitation current command IdC is constant in the constant torque field as shown in the figure, and is reduced in inverse proportion to the increase in the rotational speed of the motor 80 in the fixed output field. The field weakening control is performed by reducing the exciting current command IdC in inverse proportion to the increase in the rotational speed of the motor 80.

附帶一提,作為與上述習知技術類似之技術,下述專利文獻1顯示有一種技術,是檢測換流器(inverter)之直流電壓、且以與馬達之旋轉速度之均衡而自動地進行磁通量控制之例子。 Incidentally, as a technique similar to the above-described conventional technique, the following Patent Document 1 shows a technique of detecting a DC voltage of an inverter and automatically performing magnetic flux at a balance with a rotational speed of the motor. An example of control.

先行技術文獻 Advanced technical literature 專利文獻 Patent literature

專利文獻1 日本特開昭59-149785號公報 Patent Document 1 Japanese Patent Laid-Open No. 59-149785

發明概要 Summary of invention

近年來,要求改善在低速重切削之更進一步高扭矩化、在高速切削之旋轉速度提升之雙方特性。為了回應該要求,而期望能將定輸出範圍變廣。 In recent years, it has been demanded to improve both of the characteristics of further high torque at low speed heavy cutting and increased rotational speed at high speed cutting. In order to respond to the request, it is expected to broaden the range of output.

然而,一般而言,若藉由磁場減弱來取寬廣之定輸出領域,則高速旋轉時之磁通量會減少。馬達之感應電壓是以磁通量與旋轉速度的積來表示。因此,若取寬廣之定輸出領域,則高速旋轉時相對地磁通量成分變小而旋轉速度成分變大,馬達之感應電壓變成易於受馬達之旋轉速度變動所影響。 However, in general, if a wide field of output is obtained by weakening the magnetic field, the magnetic flux at the time of high-speed rotation is reduced. The induced voltage of the motor is expressed as the product of the magnetic flux and the rotational speed. Therefore, when a wide range of output fields is obtained, the relative magnetic flux component becomes small at the time of high-speed rotation, and the rotational speed component becomes large, and the induced voltage of the motor is easily affected by the fluctuation of the rotational speed of the motor.

馬達具有因為將旋轉軸固定之軸承所造成之轉子之芯偏移與編碼器之芯偏移。當該等芯偏移大時,馬達之感應電壓變動、在馬達之旋轉速度之檢測出現1旋轉變動,令高速輕負載旋轉時之馬達電流變得不安定。 The motor has a core offset of the rotor caused by the bearing that holds the rotating shaft offset from the core of the encoder. When the core offset is large, the induced voltage of the motor fluctuates, and the rotation of the motor is detected as a rotation change, so that the motor current at the time of high-speed light load rotation becomes unstable.

為了對此進行改善,可以考慮的是使高速旋轉時之磁通量增加。然而,使高速旋轉時之磁通量增加的情況下,馬達之感應電壓變高,在高速重負載旋轉時,控制馬達之動作之換流器之輸出電壓飽和,令馬達之旋轉速度變得不安定。 In order to improve this, it is conceivable to increase the magnetic flux when rotating at a high speed. However, when the magnetic flux at the time of high-speed rotation is increased, the induced voltage of the motor becomes high, and when the high-speed heavy load rotates, the output voltage of the inverter that controls the operation of the motor is saturated, and the rotational speed of the motor becomes unstable.

如此,習知之馬達控制裝置無法兼顧高速輕負 載旋轉時之對馬達之芯偏移與編碼器之芯偏移之安定性、高速重負載時之源於換流器之輸出電壓之飽和之安定性,無法將馬達之定輸出領域變廣。 Thus, the conventional motor control device cannot balance the high speed and light weight The stability of the core offset of the motor during rotation and the stability of the core offset of the encoder and the saturation of the output voltage of the inverter at high speed and heavy load cannot broaden the output field of the motor.

另外,如專利文獻1之揭示,可以考慮設檢測直流電源之電壓之電壓檢測器及檢測感應電動機之速度之速度檢測器,控制感應電動機之一次電流以成為與以速度訊號除電壓訊號所獲得之值對應之磁通量,抑制換流器之輸出電壓之飽和。然而,即便專利文獻1所揭示之技術可進行在直流電源之電壓會變化的情況下之磁通量之最佳化,其並非可同時實現高速輕負載旋轉時之馬達電流之安定性之提昇與高速重負載旋轉時之電壓飽和之抑制。 In addition, as disclosed in Patent Document 1, a voltage detector for detecting the voltage of the DC power source and a speed detector for detecting the speed of the induction motor can be considered, and the primary current of the induction motor is controlled to be obtained by dividing the voltage signal by the speed signal. The value corresponds to the magnetic flux, which suppresses the saturation of the output voltage of the inverter. However, even if the technique disclosed in Patent Document 1 can optimize the magnetic flux in the case where the voltage of the DC power source changes, it is not possible to simultaneously achieve the improvement of the stability of the motor current at the time of high-speed light load rotation and the high speed weight. Suppression of voltage saturation when the load is rotating.

本發明是為了解除如上述之習知之馬達控制裝置之問題而建構之發明,其目的在於提供可同時達成高速輕負載旋轉時之具有馬達之芯偏移與編碼器之芯偏移的情況下之安定性之提昇、高速重負載旋轉時之換流器輸出電壓之飽和之抑制、且實現較廣之定輸出領域之馬達控制裝置。 SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the conventional motor control device as described above, and an object thereof is to provide a core offset of a motor and a core offset of an encoder when high speed light load rotation can be simultaneously achieved. The stability of the stability, the suppression of the saturation of the output voltage of the inverter during high-speed heavy-duty rotation, and the realization of a motor control device in a wide range of output fields.

為了達成上述目的,與本發明相關之馬達控制裝置具有激磁電流指令演算器及馬達驅動部。 In order to achieve the above object, a motor control device according to the present invention includes an excitation current command calculator and a motor drive unit.

激磁電流指令演算器是使用扭矩電流指令與馬達旋轉速度而認識馬達之旋轉負載狀態,演算與該旋轉負載狀態對應之激磁電流指令。馬達驅動部是使用扭矩電流指令與演算出之激磁電流指令而驅動馬達。 The excitation current command calculator recognizes the rotational load state of the motor using the torque current command and the motor rotational speed, and calculates an excitation current command corresponding to the rotational load state. The motor drive unit drives the motor using a torque current command and a calculated excitation current command.

根據如以上地構成之與本發明相關之馬達控制裝置,可兼顧高速輕負載旋轉時之具有馬達之芯偏移與編碼器之芯偏移的情況下之安定性之提昇、高速重負載旋轉時之換流器輸出電壓之飽和之抑制,可實現較廣之定輸出領域。 According to the motor control device according to the present invention configured as described above, it is possible to achieve both the improvement of the stability of the core offset of the motor and the core offset of the encoder when the high-speed light load is rotated, and the high-speed heavy load rotation. The suppression of the saturation of the output voltage of the inverter enables a wider range of output fields.

10、110、210、310‧‧‧編碼器 10, 110, 210, 310‧‧ ‧ encoder

15、115、215、315‧‧‧速度演算器 15, 115, 215, 315‧‧‧ speed calculator

20‧‧‧速度控制器 20‧‧‧Speed controller

25、125、225、325‧‧‧座標轉換器 25, 125, 225, 325‧‧‧ coordinate converters

30、130、230、330‧‧‧q軸電流控制器 30, 130, 230, 330‧‧‧q axis current controller

45、145、245、345‧‧‧d軸電流控制器 45, 145, 245, 345 ‧ ‧ d axis current controller

50、150、250、350‧‧‧轉差頻率演算器 50, 150, 250, 350‧‧‧ slip frequency calculator

55、155、255、355‧‧‧積分器 55, 155, 255, 355‧‧ ‧ integrator

60、160、260、360‧‧‧座標轉換器 60, 160, 260, 360‧‧‧ coordinate converters

65、165、265、365‧‧‧PWM控制器 65, 165, 265, 365‧‧‧ PWM controller

70、170、270、370‧‧‧功率轉換器 70, 170, 270, 370‧‧‧ power converters

80、180、280、380‧‧‧馬達 80, 180, 280, 380‧ ‧ motor

100、200、300‧‧‧馬達控制裝置 100, 200, 300‧‧‧ motor control unit

135‧‧‧激磁電流指令演算器 135‧‧‧Excitation current command calculator

157、257、357‧‧‧OSC 157, 257, 357‧‧‧ OSC

220、320‧‧‧磁通量指令演算器 220, 320‧‧‧ magnetic flux command calculator

235、335‧‧‧磁通量演算器 235, 335‧‧ ‧ magnetic flux calculator

240、340‧‧‧磁通量控制器 240, 340‧‧‧ magnetic flux controller

375‧‧‧最大一次電流指令算出器 375‧‧‧Maximum current command calculator

385‧‧‧扭矩限制值演算器 385‧‧‧torque limit value calculator

390‧‧‧限制器 390‧‧‧Restrictor

395‧‧‧q軸電流演算器 395‧‧‧q-axis current calculator

圖1是與實施形態1相關之馬達控制裝置的方塊圖。 Fig. 1 is a block diagram showing a motor control device according to a first embodiment.

圖2是顯示圖1之激磁電流指令演算器中之馬達旋轉速度ωm與磁場減弱前之激磁電流指令IdCB之關係的圖。 Fig. 2 is a view showing the relationship between the motor rotational speed ωm in the excitation current command calculator of Fig. 1 and the excitation current command IdCB before the magnetic field is weakened.

圖3是顯示圖1之激磁電流指令演算器中之馬達旋轉速度ωm與激磁電流指令IdC之關係的圖。 Fig. 3 is a view showing the relationship between the motor rotational speed ωm and the exciting current command IdC in the exciting current command calculator of Fig. 1.

圖4是與實施形態2相關之馬達控制裝置的方塊圖。 Fig. 4 is a block diagram showing a motor control device according to a second embodiment.

圖5是顯示圖4之磁通量指令演算器中之馬達旋轉速度ωm與磁場減弱前之磁通量指令φ2CB之關係的圖。 Fig. 5 is a view showing the relationship between the motor rotational speed ωm in the magnetic flux command calculator of Fig. 4 and the magnetic flux command φ2CB before the magnetic field is weakened.

圖6試顯示圖4之磁通量指令演算器中之馬達旋轉速度ωm與磁通量指令φ2C之關係的圖。 Fig. 6 is a graph showing the relationship between the motor rotational speed ωm and the magnetic flux command φ2C in the magnetic flux command calculator of Fig. 4.

圖7是與實施形態3相關之馬達控制裝置的方塊圖。 Fig. 7 is a block diagram showing a motor control device according to a third embodiment.

圖8是顯示圖7之磁通量指令演算器中之馬達旋轉速度ωm與磁場減弱前之磁通量指令φ2CB之關係的圖。 Fig. 8 is a view showing the relationship between the motor rotational speed ωm in the magnetic flux command calculator of Fig. 7 and the magnetic flux command φ2CB before the magnetic field is weakened.

圖9是顯示圖7之磁通量指令演算器中之馬達旋轉速度ωm與磁通量指令φ2C之關係的圖。 Fig. 9 is a view showing the relationship between the motor rotational speed ωm and the magnetic flux command φ2C in the magnetic flux command calculator of Fig. 7.

圖10是顯示習知之馬達控制裝置之一例的方塊圖。 Fig. 10 is a block diagram showing an example of a conventional motor control device.

用以實施發明之形態 Form for implementing the invention

與本發明相關之馬達控制裝置是可取寬廣之定輸出領域並實現馬達之高速輕負載旋轉時之安定性、高速重負載旋轉時之源於換流器之輸出電壓之飽和之安定性、及低速旋轉時之高扭矩化。亦即,與本發明相關之馬達控制裝置兼顧低速重切削與高速切削。 The motor control device related to the present invention is capable of taking a wide range of output fields and realizing the stability of the high-speed light load rotation of the motor, the stability of the saturation of the output voltage of the inverter when the high-speed heavy load is rotated, and the low speed. High torque during rotation. That is, the motor control device related to the present invention has both low-speed heavy cutting and high-speed cutting.

接著,一面參考圖面一面將發揮如上述之特性之與本發明相關之馬達控制裝置之實施形態分作[實施形態1]至[實施形態3]來說明。 Next, an embodiment of the motor control device according to the present invention which exhibits the above-described characteristics will be described with reference to the drawings, and will be described as [Embodiment 1] to [Embodiment 3].

[實施形態1] [Embodiment 1]

[馬達控制裝置100之整體構成] [Overall Configuration of Motor Control Device 100]

圖1是與實施形態1相關之馬達控制裝置100的方塊圖。 Fig. 1 is a block diagram showing a motor control device 100 according to the first embodiment.

馬達控制裝置100具有q軸電流控制器130作為下達q軸電壓指令VqC之系統。 The motor control device 100 has a q-axis current controller 130 as a system for issuing the q-axis voltage command VqC.

q軸電流控制器130是將從輸入之扭矩電流指令IqC減去q軸電流回饋IqF而獲得之電流偏差輸入,算出q軸電壓指令VqC。q軸電流回饋IqF是由座標轉換器125輸出。q軸電流回饋IqF是座標轉換器125基於後述之定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。q軸電流控制器130是以比例積分控制器構成。 The q-axis current controller 130 is a current deviation input obtained by subtracting the q-axis current feedback IqF from the input torque current command IqC, and calculates a q-axis voltage command VqC. The q-axis current feedback IqF is output by the coordinate converter 125. The q-axis current feedback IqF is obtained by coordinate conversion of the motor currents Iu and Iv by the coordinate converter 125 based on the stator position command θmc to be described later. The q-axis current controller 130 is constructed with a proportional integral controller.

另外,馬達控制裝置100具有激磁電流指令演算器135、d軸電流控制器145作為下達d軸電壓指令VdC之系 統。 In addition, the motor control device 100 has an excitation current command calculator 135 and a d-axis current controller 145 as a system for issuing the d-axis voltage command VdC. System.

激磁電流指令演算器135是將扭矩電流指令Iqc與馬達旋轉速度ωm輸入,演算用於取寬廣之定輸出領域之最佳之激磁電流指令IdC。馬達旋轉速度ωm是由速度演算器115輸出。速度演算器115是使用編碼器110所檢測之位置回饋而演算馬達旋轉速度ωm。附帶一提,激磁電流指令演算器135之詳細動作是在後面陳述。 The excitation current command calculator 135 inputs the torque current command Iqc and the motor rotation speed ωm, and calculates an optimum excitation current command IdC for widening the output field. The motor rotation speed ωm is output by the speed calculator 115. The speed calculator 115 calculates the motor rotational speed ωm using the position feedback detected by the encoder 110. Incidentally, the detailed action of the exciting current command calculator 135 is described later.

d軸電流控制器145是將從激磁電流指令演算器135所輸出之d軸電流指令IdC減去d軸電流回饋IdF而獲得之電流偏差輸入,算出d軸電壓指令VdC。d軸電流回饋IdF是由座標轉換器125輸出。d軸電流回饋IdF是座標轉換器125基於後述之定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。d軸電流控制器145是以比例積分控制器構成。 The d-axis current controller 145 is a current deviation input obtained by subtracting the d-axis current feedback IdF from the d-axis current command IdC output from the excitation current command calculator 135, and calculates a d-axis voltage command VdC. The d-axis current feedback IdF is output by the coordinate converter 125. The d-axis current feedback IdF is obtained by coordinate conversion of the motor currents Iu and Iv by the coordinate converter 125 based on the stator position command θmc to be described later. The d-axis current controller 145 is constructed with a proportional integral controller.

再者,馬達控制裝置100具有轉差頻率演算器150、積分器155、OSC157、座標轉換器125、160作為用於進行座標轉換之系統。 Further, the motor control device 100 has a slip frequency calculator 150, an integrator 155, an OSC 157, and coordinate converters 125 and 160 as a system for performing coordinate conversion.

轉差頻率演算器150是將扭矩電流指令IqC與由激磁電流指令演算器135輸出之激磁電流指令IdC輸入,算出轉差頻率指令ωs。附帶一提,轉差頻率演算器150之詳細動作是在後面陳述。 The slip frequency calculator 150 inputs the torque current command IqC and the excitation current command IdC output from the excitation current command calculator 135, and calculates the slip frequency command ωs. Incidentally, the detailed action of the slip frequency calculator 150 is stated later.

積分器155是將由轉差頻率演算器150輸出之轉差頻率指令ωs與由速度演算器115輸出之馬達旋轉速度ωm相加而獲得之一次頻率指令ω1輸入,將一次頻率指令ω1 積分而求出定子位置指令θmc。定子位置指令θmc是透過OSC157而朝座標轉換器125、160輸出。 The integrator 155 is a primary frequency command ω1 input obtained by adding the slip frequency command ωs outputted by the slip frequency calculator 150 to the motor rotational speed ωm outputted by the speed calculator 115, and sets the primary frequency command ω1. The stator position command θmc is obtained by integration. The stator position command θmc is output to the coordinate converters 125 and 160 through the OSC 157.

座標轉換器160是基於輸入之定子位置指令θmc而對q軸電壓指令VqC、d軸電壓指令VdC進行座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。 The coordinate converter 160 performs coordinate conversion on the q-axis voltage command VqC and the d-axis voltage command VdC based on the input stator position command θmc, and obtains three-phase voltage commands Vuc, Vvc, and Vwc.

座標轉換器125是基於輸入之定子位置指令θmc而對馬達電流Iu、Iv進行座標轉換,求出q軸電流回饋IqF、d軸電流回饋IdF。 The coordinate converter 125 performs coordinate conversion on the motor currents Iu and Iv based on the input stator position command θmc, and obtains the q-axis current feedback IqF and the d-axis current feedback IdF.

再者,馬達控制裝置100是具有PWM控制器165、功率轉換器170作為用於使馬達180驅動之系統。附帶一提,藉由PWM控制器165、功率轉換器170、q軸電流控制器130、d軸電流控制器145、座標轉換器160而形成馬達驅動部。 Furthermore, the motor control device 100 has a PWM controller 165 and a power converter 170 as a system for driving the motor 180. Incidentally, the motor drive unit is formed by the PWM controller 165, the power converter 170, the q-axis current controller 130, the d-axis current controller 145, and the coordinate converter 160.

PWM控制器165是將由座標轉換器160輸出之三相電壓指令Vuc、Vvc、Vwc輸入,基於輸入之三相電壓指令Vuc、Vvc、Vwc而輸出用於使功率轉換器170開關之PWM訊號。 The PWM controller 165 inputs the three-phase voltage commands Vuc, Vvc, and Vwc output from the coordinate converter 160, and outputs a PWM signal for switching the power converter 170 based on the input three-phase voltage commands Vuc, Vvc, and Vwc.

功率轉換器170是將由PWM控制器165輸出之PWM訊號輸入而將在內部具有之半導體開關元件予以開關,將馬達180驅動。 The power converter 170 is a PWM signal output from the PWM controller 165, and switches the semiconductor switching element provided therein to drive the motor 180.

[激磁電流指令演算器135之動作] [Action of the excitation current command calculator 135]

如前述,激磁電流指令演算器135是演算用於取寬廣之定輸出領域之最佳之激磁電流指令IdC。 As described above, the excitation current command calculator 135 is an optimum excitation current command IdC for calculating a wide range of output fields.

圖2是顯示圖1之激磁電流指令演算器135中之馬 達旋轉速度ωm與磁場減弱前之激磁電流指令IdCB之關係的圖。激磁電流指令演算器135是演算與馬達旋轉速度ωm對應之磁場減弱前之激磁電流指令IdCB。另外,圖3是顯示圖1之激磁電流指令演算器135中之馬達旋轉速度ωm與激磁電流指令IdC之關係的圖。激磁電流指令演算器135是演算與馬達旋轉速度ωm對應之激磁電流指令IdC。 Figure 2 is a view showing the horse in the exciting current command calculator 135 of Figure 1. A graph showing the relationship between the rotational speed ωm and the excitation current command IdCB before the magnetic field is weakened. The excitation current command calculator 135 is an excitation current command IdcC before the magnetic field attenuation corresponding to the motor rotation speed ωm. 3 is a diagram showing the relationship between the motor rotational speed ωm and the exciting current command IdC in the exciting current command calculator 135 of FIG. 1. The excitation current command calculator 135 is an excitation current command Idc corresponding to the motor rotation speed ωm.

圖2及圖3是顯示扭矩電流指令IqC為0(IqC0)、額定(IqCR)、最大(IqCmax)時之相對於馬達旋轉速度ωm之激磁電流指令特性。圖2是顯示磁場減弱前之激磁電流指令IdCB,圖3是顯示激磁電流指令IdC。 2 and 3 show the magnetizing current command characteristics with respect to the motor rotational speed ωm when the torque current command IqC is 0 (IqC0), rated (IqCR), and maximum (IqCmax). 2 is a view showing an exciting current command IdCB before the magnetic field is weakened, and FIG. 3 is a view showing an exciting current command IdC.

如圖2所示,磁場減弱前之激磁電流指令IdCB在馬達旋轉速度ωm從0至ω0是維持電流I0而不變。若馬達旋轉速度超過ω0,則當扭矩電流指令IqC為0(IqC0)時,激磁電流指令IdCB是從電流I0以一定斜率上昇。當扭矩電流指令IqC為額定(IqCR)時,其上昇的程度是比扭矩電流指令IqC為0(IqC0)時還小。當扭矩電流指令IqC為最大(IqCmax)時,無關於馬達旋轉速度ωm,扭矩電流指令IqC是維持電流I0而不變。 As shown in FIG. 2, the exciting current command IdCB before the field weakening does not change when the motor rotational speed ωm is from 0 to ω0. When the motor rotation speed exceeds ω0, when the torque current command IqC is 0 (IqC0), the excitation current command IdCB rises from the current I0 with a constant slope. When the torque current command IqC is rated (IqCR), the degree of rise is smaller than when the torque current command IqC is 0 (IqC0). When the torque current command IqC is maximum (IqCmax), regardless of the motor rotation speed ωm, the torque current command IqC is the maintenance current I0.

另外,如圖3所示,激磁電流指令IdC在馬達旋轉速度ωm從0至ω0是維持電流I0而不變。若馬達旋轉速度超過ω0,則當扭矩電流指令IqC為最大(IqCmax)時,激磁電流指令IdC是從電流I0與馬達旋轉速度ωm成反比例而下降。當扭矩電流指令IqC為額定(IqCR)時,其下降的程度比扭矩電流指令IqC為最大(IqCmax)時還小。當扭矩電流 指令IqC為0(IqC0)時,其下降的程度比扭矩電流指令IqC為額定(IqCR)時還更小。 Further, as shown in FIG. 3, the exciting current command IdC does not change when the motor rotational speed ωm is from 0 to ω0. When the motor rotation speed exceeds ω0, when the torque current command IqC is maximum (IqCmax), the excitation current command IdC is decreased in inverse proportion to the motor rotation speed ωm from the current I0. When the torque current command IqC is rated (IqCR), the degree of decrease is smaller than when the torque current command IqC is maximum (IqCmax). Torque current When the command IqC is 0 (IqC0), the degree of decrease is smaller than when the torque current command IqC is rated (IqCR).

激磁電流指令演算器135是藉由下面之式子來求出磁場減弱前之激磁電流指令IdCB。 The excitation current command calculator 135 obtains the excitation current command IdCB before the magnetic field is weakened by the following equation.

IdCB=I0(0≦|ωm|≦ω0時)IdCB={I0+K0.(1-KIqC.|Iqc|)}.(|ωm|-ω0)(ω0<|ωm|時)...(1) IdCB=I0(0≦|ωm|≦ω0) IdCB={I0+K0. (1-KIqC.|Iqc|)}. (|ωm|-ω0)(ω0<|ωm|)...(1)

在此,ω0:基底速度 Here, ω0: substrate speed

I0:基底速度下之激磁電流 I0: excitation current at the substrate speed

K0:使高速旋轉時之激磁電流上昇之係數 K0: coefficient of increasing the exciting current when rotating at high speed

KIqC:因應扭矩電流指令而使激磁電流減少之係數 KIqC: coefficient of reduction of excitation current in response to torque current command

若將馬達旋轉速度ωm代入上述之式子(1)而將磁場減弱前之激磁電流指令IdCB可視化,則成為如圖2之圖表。 When the motor rotational speed ωm is substituted into the above equation (1) and the excitation current command IdCB before the magnetic field is weakened is visualized, the graph is as shown in FIG. 2 .

可藉由使高速旋轉時之激磁電流上昇之係數K0而將高速輕負載旋轉時之磁場減弱前之激磁電流指令IdCB的值增大,可改善高速輕負載旋轉時之馬達電流之安定性。關於K0之最佳值,可藉由嘗試錯誤法之實驗來求出,或是藉由模擬來求出。 The value of the exciting current command IdCB before the magnetic field is weakened when the high-speed light load is rotated can be increased by the coefficient K0 at which the exciting current is increased at the time of high-speed rotation, and the stability of the motor current at the time of high-speed light load rotation can be improved. The optimal value of K0 can be obtained by experimenting with an error method or by simulation.

另外,藉由因應扭矩電流指令Iqc之增加而使磁通量φ0減少之係數KIqC,若扭矩電流指令Iqc變大則將磁場減弱前之激磁電流指令IdCB變小,可抑制高速重負載旋轉時之換流器輸出電壓之飽和。 In addition, when the torque current command Iqc is increased, the excitation current command IdcC before the magnetic field is weakened is reduced by the coefficient KIqC in which the magnetic flux φ0 is decreased in response to the increase in the torque current command Iqc, and the commutation at the time of high-speed heavy load rotation can be suppressed. The saturation of the output voltage of the device.

激磁電流指令演算器135在如上述地求出磁場減 弱前之激磁電流指令IdCB後,藉由下面之式子求出激磁電流指令IdC。 The excitation current command calculator 135 obtains the magnetic field subtraction as described above. After the weak excitation current command IdCB, the excitation current command Idc is obtained by the following equation.

IdC=IdCB(0≦|ωm|≦ω0時)IdC=IdCB.ω0/|ωm|(ω0<|ωm|時)...(2) IdC=IdCB(0≦|ωm|≦ω0) IdC=IdCB. Ω0/|ωm|(ω0<|ωm|)...(2)

若將馬達旋轉速度ωm代入上述之式子(2)而將激磁電流指令IdC可視化,則成為如圖3之圖表。 When the motor rotation speed ωm is substituted into the above equation (2) and the excitation current command IdC is visualized, the graph is as shown in FIG.

激磁電流指令演算器135是因應馬達旋轉速度ωm,在進行式子(1)之演算而求出磁場減弱前之激磁電流指令IdCB後,對磁場減弱前之激磁電流指令IdCB進行式子(2)之演算,將激磁電流指令IdC往d軸電流控制器145輸出。 The excitation current command calculator 135 determines the excitation current command IdcC before the magnetic field is weakened by performing the calculation of the equation (1) in response to the motor rotation speed ωm, and then performs the equation (2) on the excitation current command IdcC before the magnetic field is weakened. In the calculation, the excitation current command IdC is output to the d-axis current controller 145.

[轉差頻率演算器150之動作] [Action of Slip Frequency Calculator 150]

轉差頻率演算器150是如下述之式子所示,由扭矩電流指令IqC與激磁電流指令IdC算出轉差頻率指令ωs。轉差頻率指令ωs是藉由下面之式子而求出。 The slip frequency calculator 150 calculates the slip frequency command ωs from the torque current command IqC and the exciting current command Idc as shown in the following equation. The slip frequency command ωs is obtained by the following equation.

ωs=R2/L2.(IqC/IdC)...(3) Ωs=R2/L2. (IqC/IdC)...(3)

R2:二次電阻 R2: secondary resistance

L2:二次電感 L2: secondary inductance

[馬達控制裝置100之動作] [Operation of Motor Control Device 100]

首先,將輸入之扭矩電流指令IqC與來自座標轉換器125之q軸電流回饋IqF比較,藉由q軸電流控制器130求出q軸電壓指令VqC。 First, the input torque current command IqC is compared with the q-axis current feedback IqF from the coordinate converter 125, and the q-axis voltage command VqC is obtained by the q-axis current controller 130.

另一方面,將激磁電流指令演算器135使用上述之式子(1)及式子(2)而由馬達旋轉速度ωm與扭矩電流指令IqC所求出之激磁電流指令IdC與來自座標轉換器125之d軸電流回饋IdF比較,藉由d軸電流控制器145求出d軸電壓指令VdC。 On the other hand, the excitation current command calculator 135 uses the above-described equations (1) and (2) to generate the excitation current command IdC and the coordinate converter 125 from the motor rotation speed ωm and the torque current command IqC. The d-axis current feedback IdF is compared, and the d-axis current command 145 is used to obtain the d-axis voltage command VdC.

轉差頻率演算器150使用上述之式子(3)而由扭矩電流指令IqC與激磁電.流指令IdC算出轉差頻率指令ωs。轉差頻率指令ωs是與速度演算器115輸出之馬達旋轉速度ωm相加。以轉差頻率指令ωs與馬達旋轉速度ωm求出一次頻率指令ω1。以積分器155將一次頻率指令ω1積分而求出定子位置指令θmc。 The slip frequency calculator 150 calculates the slip frequency command ωs from the torque current command IqC and the excitation power flow instruction IdC using the above equation (3). The slip frequency command ωs is added to the motor rotation speed ωm output from the speed calculator 115. The primary frequency command ω1 is obtained by the slip frequency command ωs and the motor rotational speed ωm. The stator position command θmc is obtained by integrating the primary frequency command ω1 with the integrator 155.

座標轉換器160是基於定子位置指令θmc對q軸電壓指令VqC、d軸電壓指令VdC進行座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。三相電壓指令Vuc、Vvc、Vwc是透過PWM控制器165、功率轉換器170而供給至馬達180,馬達180因應三相電壓指令Vuc、Vvc、Vwc而驅動。 The coordinate converter 160 performs coordinate conversion on the q-axis voltage command VqC and the d-axis voltage command VdC based on the stator position command θmc, and obtains three-phase voltage commands Vuc, Vvc, and Vwc. The three-phase voltage commands Vuc, Vvc, and Vwc are supplied to the motor 180 through the PWM controller 165 and the power converter 170, and the motor 180 is driven in response to the three-phase voltage commands Vuc, Vvc, and Vwc.

q軸電流回饋IqF與d軸電流回饋IdF是由座標轉換器125基於定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。 The q-axis current feedback IqF and the d-axis current feedback IdF are obtained by coordinate conversion of the motor currents Iu and Iv by the coordinate converter 125 based on the stator position command θmc.

如以上所說明,激磁電流指令演算器135是求出與馬達旋轉速度和基底速度之差成比例地使激磁電流增加之值,基於該值實施磁場減弱,再者,在磁場減弱領域是與扭矩電流指令Iqc成比例地將磁通量降低。亦即,激磁電流指令演算器135是在低速重負載旋轉時、高速輕負載 旋轉時、高速重負載旋轉時皆輸出最佳之激磁電流指令IdC。 As described above, the excitation current command calculator 135 obtains a value that increases the excitation current in proportion to the difference between the motor rotation speed and the base speed, and performs field weakening based on the value. Further, in the field of field weakening, torque is applied. The current command Iqc proportionally reduces the magnetic flux. That is, the excitation current command calculator 135 is a high speed light load when rotating at a low speed and heavy load. The optimum excitation current command Idc is output during rotation and high speed heavy load rotation.

因此,根據與實施形態1相關之馬達控制裝置100,可兼顧高速輕負載旋轉時之對馬達之芯偏移與編碼器之芯偏移之安定性、高速重負載旋轉時之源於換流器輸出電壓飽和之安定性。所以,變成可兼顧高速輕負載旋轉時之安定性與高速重負載旋轉時之安定性,可實現將寬廣之定輸出領域實現而兼顧低速重切削與高速切削之工具機。 Therefore, according to the motor control device 100 according to the first embodiment, the stability of the core of the motor and the core offset of the encoder at the time of high-speed light load rotation can be achieved, and the inverter is derived from the high-speed heavy load rotation. The stability of the output voltage saturation. Therefore, it is possible to achieve both the stability at the time of high-speed light-load rotation and the stability at the time of high-speed heavy-duty rotation, and it is possible to realize a machine tool that realizes a wide range of fixed output fields and combines low-speed heavy cutting and high-speed cutting.

附帶一提,與實施形態1相關之馬達控制裝置100亦可於將q軸電壓指令VqC、d軸電壓指令VdC輸出之系統設非干渉控制器,控制d軸及q軸之干渉。另外,亦可藉由三相電流控制系統構成d軸及q軸之電流控制系統之內部。 Incidentally, the motor control device 100 according to the first embodiment may be provided with a non-dry controller for the system that outputs the q-axis voltage command VqC and the d-axis voltage command VdC, and controls the d-axis and the q-axis to dry. In addition, the inside of the d-axis and q-axis current control system can also be constructed by a three-phase current control system.

[實施形態2] [Embodiment 2]

[馬達控制裝置200之整體構成] [Overall Configuration of Motor Control Device 200]

圖4是與實施形態2相關之馬達控制裝置200的方塊圖。與實施形態2相關之馬達控制裝置200是在與實施形態1相關之馬達控制裝置100之構成加上磁通量控制器與磁通量演算器,取代激磁電流指令演算器135而設有磁通量指令演算器。 Fig. 4 is a block diagram showing a motor control device 200 according to the second embodiment. The motor control device 200 according to the second embodiment is provided with a magnetic flux controller and a magnetic flux calculator in the configuration of the motor control device 100 according to the first embodiment, and a magnetic flux command calculator is provided instead of the excitation current command calculator 135.

馬達控制裝置200具有q軸電流控制器230作為下達q軸電壓指令VqC之系統。q軸電流控制器230是與實施形態1之q軸電流控制器130相同。 The motor control device 200 has a q-axis current controller 230 as a system for issuing the q-axis voltage command VqC. The q-axis current controller 230 is the same as the q-axis current controller 130 of the first embodiment.

另外,馬達控制裝置200具有磁通量指令演算器220、磁通量控制器240、d軸電流控制器245作為下達d軸電壓指令VdC之系統。 Further, the motor control device 200 has a magnetic flux command calculator 220, a magnetic flux controller 240, and a d-axis current controller 245 as a system for issuing the d-axis voltage command VdC.

磁通量指令演算器220是將輸入之扭矩電流指令IqC與馬達旋轉速度ωm輸入,演算用於取寬廣之定輸出領域之最佳之磁通量指令φ2C。附帶一提,磁通量指令演算器220之詳細動作是在後面陳述。 The magnetic flux command calculator 220 inputs the input torque current command IqC and the motor rotational speed ωm, and calculates an optimum magnetic flux command φ2C for widening the output field. Incidentally, the detailed operation of the magnetic flux command calculator 220 is described later.

磁通量控制器240是將從磁通量指令演算器220所輸出之磁通量指令φ2C減去磁通量φ2而獲得之磁通量偏差輸入,算出d軸電流指令IdC。磁通量φ2是由磁通量演算器235輸出。磁通量控制器240是以比例積分控制器構成。 The magnetic flux controller 240 is a magnetic flux deviation input obtained by subtracting the magnetic flux φ2 from the magnetic flux command φ2C output from the magnetic flux command calculator 220, and calculates a d-axis current command Idc. The magnetic flux φ2 is output by the magnetic flux calculator 235. The magnetic flux controller 240 is constructed with a proportional integral controller.

磁通量演算器235是使用座標轉換器225輸出之d軸電流回饋IdF而演算磁通量φ2。磁通量演算器235之詳細動作是在後面陳述。 The magnetic flux calculator 235 calculates the magnetic flux φ2 by using the d-axis current feedback IdF output from the coordinate converter 225. The detailed action of the magnetic flux calculator 235 is stated later.

d軸電流控制器245是將從磁通量控制器240所輸出之d軸電流指令Idc減去d軸電流回饋IdF而獲得之電流偏差輸入,算出d軸電壓指令VdC。d軸電流回饋IdF是由座標轉換器225輸出。d軸電流回饋IdF是座標轉換器225基於後述之定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。d軸電流控制器245是以比例積分控制器構成。 The d-axis current controller 245 is a current deviation input obtained by subtracting the d-axis current feedback IdF from the d-axis current command Id output from the magnetic flux controller 240, and calculates a d-axis voltage command VdC. The d-axis current feedback IdF is output by the coordinate converter 225. The d-axis current feedback IdF is obtained by coordinate conversion of the motor currents Iu and Iv by the coordinate converter 225 based on the stator position command θmc to be described later. The d-axis current controller 245 is constructed with a proportional integral controller.

再者,馬達控制裝置200具有轉差頻率演算器250、積分器255、OSC257、座標轉換器225、260作為用於進行座標轉換之系統。 Further, the motor control device 200 has a slip frequency calculator 250, an integrator 255, an OSC 257, and coordinate converters 225 and 260 as a system for performing coordinate conversion.

轉差頻率演算器250是將輸入之扭矩電流指令 IqC與由磁通量演算器235輸出之磁通量φ2輸入,算出轉差頻率指令ωs。附帶一提,轉差頻率演算器250之詳細動作是在後面陳述。 Slip frequency calculator 250 is the input torque current command The IqC is input to the magnetic flux φ2 outputted from the magnetic flux calculator 235, and the slip frequency command ωs is calculated. Incidentally, the detailed action of the slip frequency calculator 250 is described later.

積分器255、OSC257、座標轉換器225、260是與實施形態1之積分器155、OSC157、座標轉換器125、160相同。 The integrator 255, the OSC 257, and the coordinate converters 225 and 260 are the same as the integrator 155, the OSC 157, and the coordinate converters 125 and 160 of the first embodiment.

再者,馬達控制裝置200具有PWM控制器265、功率轉換器270作為用於使馬達280驅動之系統。PWM控制器265、功率轉換器270是與實施形態1之PWM控制器165、功率轉換器170相同。附帶一提,藉由PWM控制器265、功率轉換器270、q軸電流控制器230、d軸電流控制器245、座標轉換器260而形成馬達驅動部。 Furthermore, the motor control device 200 has a PWM controller 265 and a power converter 270 as a system for driving the motor 280. The PWM controller 265 and the power converter 270 are the same as the PWM controller 165 and the power converter 170 of the first embodiment. Incidentally, the motor drive unit is formed by the PWM controller 265, the power converter 270, the q-axis current controller 230, the d-axis current controller 245, and the coordinate converter 260.

[磁通量指令演算器220之動作] [Operation of Magnetic Flux Command Controller 220]

如前述,磁通量指令演算器220是演算用於取寬廣之定輸出領域之最佳之磁通量指令φ2C。 As described above, the magnetic flux command calculator 220 is the best magnetic flux command φ2C for calculating the widened output field.

圖5是顯示圖4之磁通量指令演算器220中之馬達旋轉速度ωm與磁場減弱前之磁通量指令φ2CB之關係的圖。磁通量指令演算器220是演算與馬達旋轉速度ωm對應之磁場減弱前之磁通量指令φ2CB。另外,圖6是顯示圖4之磁通量指令演算器220中之馬達旋轉速度ωm與磁通量指令φ2C之關係的圖。磁通量指令演算器220是演算與馬達旋轉速度ωm對應之磁通量指令φ2C。 Fig. 5 is a view showing the relationship between the motor rotational speed ωm in the magnetic flux command calculator 220 of Fig. 4 and the magnetic flux command φ2CB before the magnetic field is weakened. The magnetic flux command calculator 220 is a magnetic flux command φ2CB before the magnetic field weakening corresponding to the motor rotational speed ωm. In addition, FIG. 6 is a view showing a relationship between the motor rotational speed ωm and the magnetic flux command φ2C in the magnetic flux command calculator 220 of FIG. The magnetic flux command calculator 220 is a magnetic flux command φ2C corresponding to the motor rotational speed ωm.

圖5及圖6是顯示扭矩電流指令IqC為0(IqC0)、額定(IqCR)、最大(IqCmax)時之相對於馬達旋轉速度ωm之 磁通量φ0之磁通量指令特性。圖5是顯示磁場減弱前之磁通量指令φ2CB,圖6是顯示磁通量指令φ2C。 5 and 6 show the torque rotation command ωm with respect to the motor rotation speed ωm when the torque current command IqC is 0 (IqC0), rated (IqCR), and maximum (IqCmax). Magnetic flux command characteristic of magnetic flux φ0. Fig. 5 is a view showing a magnetic flux command φ2CB before the magnetic field is weakened, and Fig. 6 is a view showing a magnetic flux command φ2C.

如圖5所示,磁場減弱前之磁通量指令φ2CB在馬達旋轉速度ωm從0至ω0是維持磁通量φ0而不變。若馬達旋轉速度超過ω0,則當扭矩電流指令IqC為0(IqC0)時,磁通量指令φ2CB是從磁通量φ0以一定斜率上昇。當扭矩電流指令IqC為額定(IqCR)時,其上昇的程度是比扭矩電流指令IqC為0(IqC0)時還小。當扭矩電流指令IqC為最大(IqCmax)時,無關於馬達旋轉速度ωm,磁通量指令φ2CB是維持磁通量φ0而不變。 As shown in FIG. 5, the magnetic flux command φ2CB before the magnetic field is weakened is not changed by the magnetic flux φ0 from 0 to ω0. When the motor rotation speed exceeds ω0, when the torque current command IqC is 0 (IqC0), the magnetic flux command φ2CB rises from the magnetic flux φ0 with a constant slope. When the torque current command IqC is rated (IqCR), the degree of rise is smaller than when the torque current command IqC is 0 (IqC0). When the torque current command IqC is maximum (IqCmax), regardless of the motor rotation speed ωm, the magnetic flux command φ2CB is maintained without changing the magnetic flux φ0.

另外,如圖6所示,磁通量指令φ2C在馬達旋轉速度ωm從0至ω0是維持磁通量φ0而不變。若馬達旋轉速度超過ω0,則當扭矩電流指令IqC為最大(IqCmax)時,磁通量指令φ2C是從磁通量φ0與馬達旋轉速度ωm成反比例而下降。當扭矩電流指令IqC為額定(IqCR)時,其下降的程度比扭矩電流指令IqC為最大(IqCmax)時還小。當扭矩電流指令IqC為0(IqC0)時,其下降的程度比扭矩電流指令IqC為額定(IqCR)時還更小。 Further, as shown in FIG. 6, the magnetic flux command φ2C does not change the motor rotational speed ωm from 0 to ω0 while maintaining the magnetic flux φ0. When the motor rotation speed exceeds ω0, when the torque current command IqC is maximum (IqCmax), the magnetic flux command φ2C is decreased in inverse proportion to the motor rotation speed ωm from the magnetic flux φ0. When the torque current command IqC is rated (IqCR), the degree of decrease is smaller than when the torque current command IqC is maximum (IqCmax). When the torque current command IqC is 0 (IqC0), the degree of decrease is smaller than when the torque current command IqC is rated (IqCR).

磁通量指令演算器220是藉由下面之式子來求出磁場減弱前之磁通量指令φ2CB。 The magnetic flux command calculator 220 obtains the magnetic flux command φ2CB before the magnetic field is weakened by the following equation.

φ2CB=φ0(0≦|ωm|≦ω0時)φ2CB={φ0+K0.(1-KIqC.|Iqc|)}.(|ωm|-ω0)(ω0<|ωm|時)...(4) φ2CB=φ0(0≦|ωm|≦ω0)φ2CB={φ0+K0. (1-KIqC.|Iqc|)}. (|ωm|-ω0)(ω0<|ωm|)...(4)

在此,ω0:基底速度 Here, ω0: substrate speed

φ0:基底速度下之磁通量 Φ0: magnetic flux at the substrate speed

K0:使高速旋轉時之磁通量上昇之係數 K0: coefficient of increase in magnetic flux when rotating at high speed

KIqC:因應扭矩電流指令而使磁通量減少之係數 KIqC: Coefficient of magnetic flux reduction in response to torque current command

若將馬達旋轉速度ωm代入上述之式子(1)而將磁通量指令φ2CB可視化,則成為如圖5之圖表。 When the motor rotation speed ωm is substituted into the above equation (1) and the magnetic flux command φ2CB is visualized, the graph is as shown in FIG.

可藉由使高速旋轉時之磁通量上昇之係數K0而將高速輕負載旋轉時之磁通量指令φ2CB的值增大,可改善高速輕負載旋轉時之馬達電流之安定性。關於K0之最佳值,可藉由嘗試錯誤法之實驗來求出,或是藉由模擬來求出。 The value of the magnetic flux command φ2CB when the high-speed light load is rotated can be increased by the coefficient K0 at which the magnetic flux is increased at the time of high-speed rotation, and the stability of the motor current at the time of high-speed light load rotation can be improved. The optimal value of K0 can be obtained by experimenting with an error method or by simulation.

另外,藉由因應扭矩電流指令Iqc之增加而使磁通量φ0減少之係數KIqC,若扭矩電流指令Iqc變大則將磁通量指令φ2CB變小,可抑制高速重負載旋轉時之換流器輸出電壓之飽和。 In addition, when the torque current command Iqc is increased, the magnetic flux command φ2CB is made smaller by the coefficient KIqC in which the magnetic flux φ0 is decreased in response to the increase in the torque current command Iqc, and the saturation of the inverter output voltage during high-speed heavy load rotation can be suppressed. .

磁通量指令演算器220在如上述地求出磁場減弱前之磁通量指令後,藉由下面之式子求出磁通量指令φ2C。 The magnetic flux command calculator 220 obtains the magnetic flux command φ2C by the following equation after obtaining the magnetic flux command before the magnetic field weakening as described above.

φ2C=φ2CB(0≦|ωm|≦ω0時)φ2C=φ2CB.ω0/|ωm|(ω0<|ωm|時)...(5) φ2C=φ2CB (when 0≦|ωm|≦ω0) φ2C=φ2CB. Ω0/|ωm|(ω0<|ωm|)...(5)

若將馬達旋轉速度ωm代入上述之式子(4)而將磁通量指令φ2C可視化,則成為如圖6之圖表。 When the motor rotation speed ωm is substituted into the above equation (4) and the magnetic flux command φ2C is visualized, the graph is as shown in FIG.

磁通量指令演算器220是因應馬達旋轉速度ωm,在進行式子(4)之演算而求出磁場減弱前之磁通量指令φ2CB後,對磁通量指令φ2CB進行式子(5)之演算,將磁通量指令φ2C往磁通量控制器240輸出。 The magnetic flux command calculation unit 220 calculates the magnetic flux command φ2CB before the magnetic field is weakened by performing the calculation of the equation (4) in response to the motor rotation speed ωm, and then calculates the magnetic flux command φ2CB by the equation (5), and the magnetic flux command φ2C. Output to the magnetic flux controller 240.

[轉差頻率演算器250之動作] [The action of the slip frequency calculator 250]

轉差頻率演算器250是如下述之式子所示,由扭矩電流指令IqC與磁通量φ2C算出轉差頻率指令ωs。轉差頻率指令ωs是藉由下面之式子而求出。 The slip frequency calculator 250 calculates the slip frequency command ωs from the torque current command IqC and the magnetic flux φ2C as shown by the following equation. The slip frequency command ωs is obtained by the following equation.

ωs=M.R2/L2.(Iqc/φ2)...(6) Ωs=M. R2/L2. (Iqc/φ2)...(6)

R2:二次電阻 R2: secondary resistance

φ2:二次磁通量 Φ2: secondary magnetic flux

L2:二次電感 L2: secondary inductance

M:互感 M: mutual inductance

[磁通量演算器235之動作] [Operation of Magnetic Flux Calculator 235]

磁通量演算器235是如下述之式子所示,由d軸電流回饋IdF求出磁通量φ2。 The magnetic flux calculator 235 obtains the magnetic flux φ2 from the d-axis current feedback IdF as shown by the following equation.

φ2=1/(1+L2/R2.S).M.IdF...(7) Φ2=1/(1+L2/R2.S). M. IdF...(7)

S:轉差 S: slip

IdF:q軸電流回饋 IdF: q-axis current feedback

[馬達控制裝置200之動作] [Operation of Motor Control Device 200]

首先,將輸入之扭矩電流指令IqC與來自座標轉換器225之q軸電流回饋IqF比較,藉由q軸電流控制器230求出q軸電壓指令VqC。 First, the input torque current command IqC is compared with the q-axis current feedback IqF from the coordinate converter 225, and the q-axis voltage command VqC is obtained by the q-axis current controller 230.

另一方面,以磁通量指令φ2C下達磁通量指令 演算器220使用上述之式子(4)及式子(5)而由馬達旋轉速度ωm與扭矩電流指令IqC所算出之磁通量,與磁通量演算器235使用上述之式子(7)所算出之磁通量φ2比較,藉由磁通量控制器240求出d軸電流指令IdC。將d軸電流指令IdC與來自座標轉換器225之d軸電流回饋IdF比較,藉由d軸電流控制器245求出d軸電壓指令VdC。 On the other hand, the magnetic flux command is issued with the magnetic flux command φ2C. The magnetic flux calculated by the motor rotation speed ωm and the torque current command IqC by the calculator 220 using the above equations (4) and (5), and the magnetic flux calculated by the magnetic flux calculator 235 using the above equation (7). The φ2 comparison is obtained by the magnetic flux controller 240 to obtain the d-axis current command IdC. The d-axis current command IdC is compared with the d-axis current feedback IdF from the coordinate converter 225, and the d-axis current command 245 is used to obtain the d-axis voltage command VdC.

轉差頻率演算器250使用上述之式子(6)而由扭矩電流指令IqC與磁通量φ2算出轉差頻率指令ωs。轉差頻率指令ωs是與速度演算器215輸出之馬達旋轉速度ωm相加。以轉差頻率指令ωs與馬達旋轉速度ωm求出一次頻率指令ω1。以積分器255將一次頻率指令ω1積分而求出定子位置指令θmc。 The slip frequency calculator 250 calculates the slip frequency command ωs from the torque current command IqC and the magnetic flux φ2 using the above equation (6). The slip frequency command ωs is added to the motor rotational speed ωm output from the speed calculator 215. The primary frequency command ω1 is obtained by the slip frequency command ωs and the motor rotational speed ωm. The stator position command θmc is obtained by integrating the primary frequency command ω1 with the integrator 255.

座標轉換器260是基於定子位置指令θmc對q軸電壓指令VqC、d軸電壓指令VdC進行座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。三相電壓指令Vuc、Vvc、Vwc是透過PWM控制器265、功率轉換器270而供給至馬達280,馬達280因應三相電壓指令Vuc、Vvc、Vwc而驅動。 The coordinate converter 260 performs coordinate conversion on the q-axis voltage command VqC and the d-axis voltage command VdC based on the stator position command θmc, and obtains three-phase voltage commands Vuc, Vvc, and Vwc. The three-phase voltage commands Vuc, Vvc, and Vwc are supplied to the motor 280 through the PWM controller 265 and the power converter 270, and the motor 280 is driven in response to the three-phase voltage commands Vuc, Vvc, and Vwc.

q軸電流回饋IqF與d軸電流回饋IdF是由座標轉換器225基於定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。 The q-axis current feedback IqF and the d-axis current feedback IdF are obtained by coordinate conversion of the motor currents Iu and Iv by the coordinate converter 225 based on the stator position command θmc.

如以上所說明,磁通量指令演算器220是求出與馬達旋轉速度和基底速度之差成比例地使磁通量增加之值,基於該值實施磁場減弱,再者,在磁場減弱領域是與扭矩電流指令Iqc成比例地將磁通量降低。亦即,磁通量 指令演算器220是在低速重負載旋轉時、高速輕負載旋轉時、高速重負載旋轉時皆輸出最佳之磁通量指令φ2C。 As described above, the magnetic flux command calculator 220 obtains a value that increases the magnetic flux in proportion to the difference between the motor rotational speed and the base speed, and performs magnetic field weakening based on the value. Further, in the field of magnetic field weakening, the torque current command is used. Iqc proportionally reduces the magnetic flux. That is, the magnetic flux The command calculator 220 outputs an optimum magnetic flux command φ2C at the time of low speed heavy load rotation, high speed light load rotation, and high speed heavy load rotation.

因此,根據與實施形態2相關之馬達控制裝置200,可得到與實施形態1相關之馬達控制裝置100相同之效果。 Therefore, according to the motor control device 200 according to the second embodiment, the same effects as those of the motor control device 100 according to the first embodiment can be obtained.

附帶一提,與實施形態2相關之馬達控制裝置200亦可於將q軸電壓指令VqC、d軸電壓指令VdC輸出之系統設非干渉控制器,控制d軸及q軸之干渉。另外,亦可藉由三相電流控制系統構成d軸及q軸之電流控制系統之內部。 Incidentally, the motor control device 200 according to the second embodiment may be configured to provide a non-dry controller for the system that outputs the q-axis voltage command VqC and the d-axis voltage command VdC, and controls the d-axis and the q-axis to dry. In addition, the inside of the d-axis and q-axis current control system can also be constructed by a three-phase current control system.

[實施形態3] [Embodiment 3]

[馬達控制裝置300之整體構成] [Overall Configuration of Motor Control Device 300]

圖7是與實施形態3相關之馬達控制裝置300的方塊圖。與實施形態3相關之馬達控制裝置300是在與實施形態2相關之馬達控制裝置200之構成加上最大一次電流指令算出器、扭矩限制值演算器、限制器及q軸電流演算器。 Fig. 7 is a block diagram showing a motor control device 300 according to the third embodiment. The motor control device 300 according to the third embodiment is configured by adding a maximum primary current command calculator, a torque limit value calculator, a limiter, and a q-axis current calculator to the configuration of the motor control device 200 according to the second embodiment.

馬達控制裝置300具有q軸電流控制器330、最大一次電流指令算出器375、扭矩限制值演算器385、限制器390及q軸電流演算器395作為下達q軸電壓指令VqC之系統。q軸電流控制器330是與實施形態2之q軸電流控制器230相同。 The motor control device 300 has a q-axis current controller 330, a maximum primary current command calculator 375, a torque limit value calculator 385, a limiter 390, and a q-axis current calculator 395 as a system for issuing the q-axis voltage command VqC. The q-axis current controller 330 is the same as the q-axis current controller 230 of the second embodiment.

最大一次電流指令算出器375是算出朝馬達380供給之一次電流指令的最大值,以最大一次電流指令IPC朝扭矩限制值演算器385輸出。 The maximum primary current command calculator 375 calculates the maximum value of the primary current command supplied to the motor 380, and outputs it to the torque limit value calculator 385 with the maximum primary current command IPC.

扭矩限制值演算器385是由磁通量控制器340輸出之d軸電流指令IdC與最大一次電流指令IPC演算扭矩限制值TLIM。附帶一提,扭矩限制值演算器385之詳細動作是在後面陳述。 The torque limit value calculator 385 is a d-axis current command IdC outputted by the magnetic flux controller 340 and a maximum primary current command IPC calculation torque limit value TLIM. Incidentally, the detailed action of the torque limit value calculator 385 is described later.

限制器390是將扭矩限制值演算器385所演算出之扭矩限制值TLIM輸入,將扭矩指令TCB之值限制在±TLIM內。 The limiter 390 inputs the torque limit value TLIM calculated by the torque limit value calculator 385, and limits the value of the torque command TCB to ±TLIM.

q軸電流演算器395是使用透過限制器390而輸入之扭矩指令TCB來演算q軸電流IqC。 The q-axis current calculator 395 calculates the q-axis current IqC using the torque command TCB input through the limiter 390.

另外,馬達控制裝置300具有磁通量指令演算器320、磁通量控制器340、d軸電流控制器345作為下達d軸電壓指令VdC之系統。 Further, the motor control device 300 has a magnetic flux command calculator 320, a magnetic flux controller 340, and a d-axis current controller 345 as a system for issuing the d-axis voltage command VdC.

磁通量指令演算器320是將扭矩指令TCB之絕對值除以最大扭矩TCBm所求出之扭矩指令比TCC、及馬達旋轉速度ωm輸入,演算用於取寬廣之定輸出領域之最佳之磁通量指令φ2C。最大扭矩TCBm是由速度演算器315輸出之馬達旋轉速度ωm求出。最大扭矩TCBm是與基底速度ω0以上之旋轉速度成反比例地使最大扭矩Tm減少而求出之扭矩。附帶一提,磁通量指令演算器320之詳細動作是在後面陳述。 The magnetic flux command calculator 320 inputs the torque command ratio TCC and the motor rotational speed ωm obtained by dividing the absolute value of the torque command TCB by the maximum torque TCBm, and calculates the optimum magnetic flux command φ2C for widening the output field. . The maximum torque TCBm is obtained from the motor rotational speed ωm output from the speed calculator 315. The maximum torque TCBm is a torque obtained by reducing the maximum torque Tm in inverse proportion to the rotational speed of the base speed ω0 or more. Incidentally, the detailed operation of the magnetic flux command calculator 320 is described later.

磁通量控制器340及d軸電流控制器345是與實施形態2之磁通量控制器240及d軸電流控制器245相同。 The magnetic flux controller 340 and the d-axis current controller 345 are the same as the magnetic flux controller 240 and the d-axis current controller 245 of the second embodiment.

再者,馬達控制裝置300具有轉差頻率演算器350、積分器355、OSC357、座標轉換器325、360作為用 於進行座標轉換之系統。轉差頻率演算器350、積分器355、OSC357、座標轉換器325、360是與實施形態2之轉差頻率演算器250、積分器255、OSC257、座標轉換器225、260相同。 Furthermore, the motor control device 300 has a slip frequency calculator 350, an integrator 355, an OSC 357, and coordinate converters 325 and 360. For the system of coordinate conversion. The slip frequency calculator 350, the integrator 355, the OSC 357, and the coordinate converters 325 and 360 are the same as the slip frequency calculator 250, the integrator 255, the OSC 257, and the coordinate converters 225 and 260 of the second embodiment.

再者,馬達控制裝置300具有PWM控制器365、功率轉換器370作為用於使馬達380驅動之系統。PWM控制器365、功率轉換器370是與實施形態2之PWM控制器265、功率轉換器270相同。附帶一提,藉由PWM控制器365、功率轉換器370、q軸電流控制器330、d軸電流控制器345、座標轉換器360而形成馬達驅動部。 Furthermore, the motor control device 300 has a PWM controller 365 and a power converter 370 as a system for driving the motor 380. The PWM controller 365 and the power converter 370 are the same as the PWM controller 265 and the power converter 270 of the second embodiment. Incidentally, the motor drive unit is formed by the PWM controller 365, the power converter 370, the q-axis current controller 330, the d-axis current controller 345, and the coordinate converter 360.

[磁通量指令演算器320之動作] [Operation of Magnetic Flux Command Calculator 320]

如前述,磁通量指令演算器320是演算用於取寬廣之定輸出領域之最佳之磁通量指令φ2C。 As described above, the magnetic flux command calculator 320 is the best magnetic flux command φ2C for calculating the wide range of output fields.

圖8是顯示圖7之磁通量指令演算器320中之馬達旋轉速度ωm與磁場減弱前之磁通量指令φ2CB之關係的圖。磁通量指令演算器320是演算與馬達旋轉速度ωm對應之磁場減弱前之磁通量指令φ2CB。另外,圖9是顯示圖7之磁通量指令演算器320中之馬達旋轉速度ωm與磁通量指令φ2C之關係的圖。磁通量指令演算器320是演算與馬達旋轉速度ωm對應之磁通量指令φ2C。 Fig. 8 is a view showing the relationship between the motor rotational speed ωm in the magnetic flux command calculator 320 of Fig. 7 and the magnetic flux command φ2CB before the magnetic field is weakened. The magnetic flux command calculator 320 is a magnetic flux command φ2CB before the magnetic field weakening corresponding to the motor rotational speed ωm. In addition, FIG. 9 is a view showing the relationship between the motor rotational speed ωm and the magnetic flux command φ2C in the magnetic flux command calculator 320 of FIG. The magnetic flux command calculator 320 is a magnetic flux command φ2C corresponding to the motor rotational speed ωm.

圖8及圖9是顯示扭矩指令比TCC為0(TCC0)、額定(TCCR)、最大(TCCmax)時之相對於馬達旋轉速度ωm之磁通量φ0之磁通量指令特性。圖8是顯示磁場減弱前之磁通量指令φ2CB,圖9是顯示磁通量指令φ2C。 8 and 9 are magnetic flux command characteristics showing the magnetic flux φ0 with respect to the motor rotational speed ωm when the torque command ratio is 0 (TCC0), rated (TCCR), and maximum (TCCmax). Fig. 8 is a view showing a magnetic flux command φ2CB before the magnetic field is weakened, and Fig. 9 is a view showing a magnetic flux command φ2C.

如圖8所示,磁場減弱前之磁通量指令φ2CB在馬達旋轉速度ωm從0至ω0是維持磁通量φ0而不變。若馬達旋轉速度超過ω0,則當扭矩指令比TCC為0(TCC0)時,磁通量指令φ2CB是從磁通量φ0以一定斜率上昇。當扭矩指令比TCC為額定(TCCR)時,其上昇的程度是比扭矩指令比TCC為0(TCC0)時還小。當扭矩指令比TCC為最大(TCCmax)時,無關於馬達旋轉速度ωm,磁通量指令φ2CB是維持磁通量φ0而不變。 As shown in Fig. 8, the magnetic flux command φ2CB before the magnetic field is attenuated is maintained at the motor rotational speed ωm from 0 to ω0 while maintaining the magnetic flux φ0. When the motor rotation speed exceeds ω0, when the torque command ratio TCC is 0 (TCC0), the magnetic flux command φ2CB rises from the magnetic flux φ0 with a constant slope. When the torque command ratio TCC is rated (TCCR), the degree of rise is smaller than when the torque command ratio TCC is 0 (TCC0). When the torque command ratio TCC is maximum (TCCmax), the motor rotation speed ωm is not related, and the magnetic flux command φ2CB is maintained without changing the magnetic flux φ0.

另外,如圖9所示,磁通量指令φ2C在馬達旋轉速度ωm從0至ω0是維持磁通量φ0而不變。若馬達旋轉速度超過ω0,則當扭矩指令比TCC為最大(TCCmax)時,磁通量指令φ2C是從磁通量φ0與馬達旋轉速度ωm成反比例而下降。當扭矩指令比TCC為額定(TCCR)時,其下降的程度比扭矩指令比TCC為最大(TCCmax)時還小。當扭矩指令比TCC為0(TCC0)時,其下降的程度比扭矩指令比TCC為額定(TCCR)時還更小。 Further, as shown in FIG. 9, the magnetic flux command φ2C does not change when the motor rotational speed ωm is from 0 to ω0 while maintaining the magnetic flux φ0. When the motor rotation speed exceeds ω0, when the torque command ratio TCC is maximum (TCCmax), the magnetic flux command φ2C is decreased in inverse proportion to the motor rotation speed ωm from the magnetic flux φ0. When the torque command is rated (TCCR), the degree of decrease is smaller than when the torque command is greater than TCC (TCCmax). When the torque command ratio TCC is 0 (TCC0), the degree of decrease is smaller than when the torque command is TCC rated (TCCR).

首先,磁通量指令演算器320輸入之扭矩指令比TCC是如以下地求出。 First, the torque command input from the magnetic flux command calculator 320 is obtained as follows.

使用由速度演算器315輸出之馬達旋轉速度ωm而求出最大扭矩TCBm。 The maximum torque TCBm is obtained using the motor rotational speed ωm output from the speed calculator 315.

TCBm=Tm(0≦|ωm|≦ω0時)TCBm=Tm.ω0/|ωm|(ω0<|ωm|時)...(8) TCBm=Tm(0≦|ωm|≦ω0)TCBm=Tm. Ω0/|ωm|(ω0<|ωm|)...(8)

接著,求出扭矩指令比TCC。 Next, the torque command ratio TCC is obtained.

TCC=|TCB|/TCBm TCC=|TCB|/TCBm

磁通量指令演算器320是藉由下面之式子來求出磁場減弱前之磁通量指令φ2CB。 The magnetic flux command calculator 320 obtains the magnetic flux command φ2CB before the magnetic field is weakened by the following equation.

φ2CB=φ0(0≦|ωm|≦ω0時)φ2CB={φ0+K0.(1-KTC.TCC)}.(|ωm|-ω0)(ω0<|ωm|時)...(9) φ2CB=φ0(0≦|ωm|≦ω0)φ2CB={φ0+K0. (1-KTC.TCC)}. (|ωm|-ω0)(ω0<|ωm|)...(9)

在此,ω0:基底速度 Here, ω0: substrate speed

φ0:基底速度下之磁通量 Φ0: magnetic flux at the substrate speed

K0:使高速旋轉時之磁通量上昇之係數 K0: coefficient of increase in magnetic flux when rotating at high speed

KTC:因應扭矩指令比而使磁通量減少之係數 KTC: coefficient of magnetic flux reduction in response to torque command ratio

若將馬達旋轉速度ωm代入上述之式子(9)而將磁通量指令φ2CB可視化,則成為如圖8之圖表。 When the motor rotation speed ωm is substituted into the above equation (9) and the magnetic flux command φ2CB is visualized, the graph is as shown in FIG.

可藉由使高速旋轉時之磁通量上昇之係數K0而將高速輕負載旋轉時之磁通量指令φ2CB的值增大,可改善高速輕負載旋轉時之馬達電流之安定性。關於K0之最佳值,可藉由嘗試錯誤法之實驗來求出,或是藉由模擬來求出。 The value of the magnetic flux command φ2CB when the high-speed light load is rotated can be increased by the coefficient K0 at which the magnetic flux is increased at the time of high-speed rotation, and the stability of the motor current at the time of high-speed light load rotation can be improved. The optimal value of K0 can be obtained by experimenting with an error method or by simulation.

另外,藉由因應扭矩指令比TCC之增加而使磁通量φ0減少之係數KTC,若扭矩指令比TCC變大則將磁通量指令φ2CB變小,可抑制高速重負載旋轉時之換流器輸出電壓之飽和。 Further, by the coefficient KTC which reduces the magnetic flux φ0 in response to the increase in the torque command ratio TCC, if the torque command becomes larger than the TCC, the magnetic flux command φ2CB is made smaller, and the saturation of the inverter output voltage at the time of high-speed heavy load rotation can be suppressed. .

磁通量指令演算器320在如上述地求出磁場減弱 前之磁通量指令後,藉由下面之式子求出磁通量指令φ2C。 The magnetic flux command calculator 320 obtains the weakening of the magnetic field as described above. After the previous magnetic flux command, the magnetic flux command φ2C is obtained by the following equation.

φ2C=φ2CB(0≦|ωm|≦ω0時)φ2C=φ2CB.ω0/|ωm|(ω0<|ωm|時)...(10) φ2C=φ2CB (when 0≦|ωm|≦ω0) φ2C=φ2CB. Ω0/|ωm|(ω0<|ωm|)...(10)

若將馬達旋轉速度ωm代入上述之式子(10)而將磁通量指令φ2C可視化,則成為如圖9之圖表。 When the motor rotation speed ωm is substituted into the above equation (10) and the magnetic flux command φ2C is visualized, the graph is as shown in FIG.

磁通量指令演算器320是因應馬達旋轉速度ωm,在進行式子(9)之演算而求出磁場減弱前之磁通量指令φ2CB後,對磁通量指令φ2CB進行式子(10)之演算,將磁通量指令φ2C往磁通量控制器340輸出。 The magnetic flux command calculation unit 320 calculates the magnetic flux command φ2CB before the magnetic field is weakened by performing the calculation of the equation (9) in response to the motor rotation speed ωm, and then calculates the magnetic flux command φ2CB by the equation (10), and the magnetic flux command φ2C. Output to the magnetic flux controller 340.

[轉差頻率演算器350之動作] [Action of Slip Frequency Calculator 350]

轉差頻率演算器350是與實施形態2之轉差頻率演算器250相同地使用上述之式子(6)而由扭矩電流指令Iqc與磁通量φ2C算出轉差頻率指令ωs。 The slip frequency calculator 350 calculates the slip frequency command ωs from the torque current command Iqc and the magnetic flux φ2C using the above equation (6) in the same manner as the slip frequency calculator 250 of the second embodiment.

[磁通量演算器335之動作] [Operation of Magnetic Flux Calculator 335]

磁通量演算器335是與實施形態2之磁通量演算器235相同地使用上述之式子(7)而由d軸電流回饋IdF求出磁通量φ2。 Similarly to the magnetic flux calculator 235 of the second embodiment, the magnetic flux calculator 335 obtains the magnetic flux φ2 from the d-axis current feedback IdF using the above equation (7).

[扭矩限制值演算器385之動作] [Operation of Torque Limit Value Calculator 385]

扭矩限制值演算器385是使用下面之式子而由d軸電流指令IdC與最大一次電流指令IPC演算扭矩限制值TLIM。 The torque limit value calculator 385 calculates the torque limit value TLIM from the d-axis current command IdC and the maximum primary current command IPC using the following equation.

TLIM=Pm.M/L2.φ2.(IPC2-IdC2)1/2...(11) TLIM=Pm. M/L2. Φ2. (IPC2-IdC2)1/2...(11)

在此,Pm是馬達380之極對數 Here, Pm is the pole number of the motor 380

[q軸電流演算器395之動作] [Action of q-axis current calculator 395]

q軸電流演算器395是透過限制器390而求出經扭矩限制後之扭矩指令,使用下面之式子而求出q軸電流指令IqC。 The q-axis current calculator 395 obtains the torque command after the torque limit through the limiter 390, and obtains the q-axis current command IqC using the following equation.

IqC=L2/(Pm.M.φ2).(經扭矩限制後之扭矩指令)...(12) IqC=L2/(Pm.M.φ2). (Torque command after torque limitation)...(12)

[馬達控制裝置300之動作] [Operation of Motor Control Device 300]

輸入之扭矩指令TCB是被限制器390限制在扭矩限制值TLIM內,朝q軸電流演算器395輸出。q軸電流演算器395是基於扭矩限制後之扭矩指令TCB而求出q軸電流指令IqC。將q軸電流指令IqC與來自座標轉換器325之q軸電流回饋IqF比較,藉由q軸電流控制器330求出q軸電壓指令VqC。附帶一提,用於讓限制器390對扭矩指令TCB之值進行限制之扭矩限制值TLIM是扭矩限制值演算器385使用上述之式子(11)而算出。 The input torque command TCB is limited by the limiter 390 within the torque limit value TLIM and is output to the q-axis current calculator 395. The q-axis current calculator 395 calculates the q-axis current command IqC based on the torque command TCB after the torque limit. The q-axis current command IqC is compared with the q-axis current feedback IqF from the coordinate converter 325, and the q-axis voltage command VqC is obtained by the q-axis current controller 330. Incidentally, the torque limit value TLIM for limiting the value of the torque command TCB by the limiter 390 is calculated by the torque limit value calculator 385 using the above equation (11).

另一方面,以磁通量指令φ2C下達磁通量指令演算器320使用上述之式子(9)及式子(10)而由馬達旋轉速度ωm與扭矩指令比TCC所算出之磁通量,與磁通量演算器335使用上述之式子(7)所算出之磁通量φ2比較,藉由磁通量控制器340求出d軸電流指令IdC。將d軸電流指令IdC與來自座標轉換器325之d軸電流回饋IdF比較,藉由d軸電流控制器345求出d軸電壓指令VdC。 On the other hand, the magnetic flux command φ2C is used to generate the magnetic flux calculated by the motor rotation speed ωm and the torque command ratio TCC using the above equations (9) and (10), and the magnetic flux calculator 335 is used. The magnetic flux controller 340 obtains the d-axis current command IdC by comparing the magnetic flux φ2 calculated by the above equation (7). The d-axis current command IdC is compared with the d-axis current feedback IdF from the coordinate converter 325, and the d-axis current command 345 is used to determine the d-axis voltage command VdC.

轉差頻率演算器350使用上述之式子(6)而由扭 矩電流指令IqC與磁通量φ2算出轉差頻率指令ωs。轉差頻率指令ωs是與速度演算器315輸出之馬達旋轉速度ωm相加。以轉差頻率指令ωs與馬達旋轉速度ωm求出一次頻率指令ω1。以積分器355將一次頻率指令ω1積分而求出定子位置指令θmc。 The slip frequency calculator 350 is twisted using the above equation (6) The slip current command IqC and the magnetic flux φ2 calculate the slip frequency command ωs. The slip frequency command ωs is added to the motor rotational speed ωm output from the speed calculator 315. The primary frequency command ω1 is obtained by the slip frequency command ωs and the motor rotational speed ωm. The stator position command θmc is obtained by integrating the primary frequency command ω1 with the integrator 355.

座標轉換器360是基於定子位置指令θmc對q軸電壓指令VqC、d軸電壓指令VdC進行座標轉換,求出三相電壓指令Vuc、Vvc、Vwc。三相電壓指令Vuc、Vvc、Vwc是透過PWM控制器365、功率轉換器370而供給至馬達380,馬達380因應三相電壓指令Vuc、Vvc、Vwc而驅動。 The coordinate converter 360 performs coordinate conversion on the q-axis voltage command VqC and the d-axis voltage command VdC based on the stator position command θmc, and obtains three-phase voltage commands Vuc, Vvc, and Vwc. The three-phase voltage commands Vuc, Vvc, and Vwc are supplied to the motor 380 through the PWM controller 365 and the power converter 370, and the motor 380 is driven in response to the three-phase voltage commands Vuc, Vvc, and Vwc.

q軸電流回饋IqF與d軸電流回饋IdF是由座標轉換器325基於定子位置指令θmc對馬達電流Iu、Iv進行座標轉換而求出。 The q-axis current feedback IqF and the d-axis current feedback IdF are obtained by coordinate conversion of the motor currents Iu and Iv by the coordinate converter 325 based on the stator position command θmc.

如以上所說明,磁通量指令演算器320是求出與馬達旋轉速度和基底速度之差成比例地使磁通量增加之值,基於該值實施磁場減弱,再者,在磁場減弱領域是與扭矩電流指令Iqc成比例地將磁通量降低。亦即,磁通量指令演算器320是在低速重負載旋轉時、高速輕負載旋轉時、高速重負載旋轉時皆輸出最佳之磁通量指令φ2C。 As described above, the magnetic flux command calculator 320 obtains a value that increases the magnetic flux in proportion to the difference between the motor rotational speed and the base speed, and performs magnetic field weakening based on the value. Further, in the field of magnetic field weakening, the torque current command is used. Iqc proportionally reduces the magnetic flux. That is, the magnetic flux command calculator 320 outputs the optimum magnetic flux command φ2C at the time of low speed heavy load rotation, high speed light load rotation, and high speed heavy load rotation.

因此,根據與實施形態3相關之馬達控制裝置300,可得到與實施形態1、2相關之馬達控制裝置100相同之效果。 Therefore, according to the motor control device 300 according to the third embodiment, the same effects as those of the motor control device 100 according to the first and second embodiments can be obtained.

附帶一提,與實施形態3相關之馬達控制裝置300亦可於將q軸電壓指令VqC、d軸電壓指令VdC輸出之系 統設非干渉控制器,控制d軸及q軸之干渉。另外,亦可藉由三相電流控制系統構成d軸及q軸之電流控制系統之內部。 Incidentally, the motor control device 300 according to the third embodiment may also output the q-axis voltage command VqC and the d-axis voltage command VdC. Set up a non-dry controller to control the d-axis and q-axis dry. In addition, the inside of the d-axis and q-axis current control system can also be constructed by a three-phase current control system.

100‧‧‧馬達控制裝置 100‧‧‧Motor control unit

110‧‧‧編碼器 110‧‧‧Encoder

115‧‧‧速度演算器 115‧‧‧Speed Calculator

125‧‧‧座標轉換器 125‧‧‧Coordinate Converter

130‧‧‧q軸電流控制器 130‧‧‧q axis current controller

135‧‧‧激磁電流指令演算器 135‧‧‧Excitation current command calculator

145‧‧‧d軸電流控制器 145‧‧‧d axis current controller

150‧‧‧轉差頻率演算器 150‧‧‧ slip frequency calculator

155‧‧‧積分器 155‧‧‧ integrator

157‧‧‧OSC 157‧‧‧OSC

160‧‧‧座標轉換器 160‧‧‧Coordinate converter

165‧‧‧PWM控制器 165‧‧‧PWM controller

170‧‧‧功率轉換器 170‧‧‧Power Converter

180‧‧‧馬達 180‧‧‧ motor

Claims (18)

一種馬達控制裝置,具有:激磁電流指令演算器,使用扭矩電流指令與馬達旋轉速度而認識馬達之旋轉負載狀態,演算與該旋轉負載狀態對應之激磁電流指令;馬達驅動部,使用前述扭矩電流指令與演算出之激磁電流指令而驅動前述馬達。 A motor control device includes: an excitation current command calculator that recognizes a rotational load state of a motor using a torque current command and a motor rotational speed, calculates an excitation current command corresponding to the rotational load state; and a motor drive unit that uses the torque current command The motor is driven by a calculated excitation current command. 如請求項1之馬達控制裝置,其中前述激磁電流指令演算器具有與前述馬達旋轉速度之增加成反比例而將激磁電流指令變小之磁場減弱機能,在前述馬達以小的扭矩電流指令高速旋轉時是使激磁電流指令大於前述磁場減弱機能作用下之激磁電流指令,另一方面,在前述馬達以大的扭矩電流指令高速旋轉時是使激磁電流指令相當於前述磁場減弱機能作用下之激磁電流指令。 The motor control device of claim 1, wherein the excitation current command calculator has a magnetic field weakening function that is inversely proportional to an increase in a rotational speed of the motor to reduce an excitation current command, and the motor is commanded to rotate at a high speed with a small torque current. The excitation current command is greater than the excitation current command under the magnetic field weakening function. On the other hand, when the motor is rotated at a high torque with a large torque current command, the excitation current command is equivalent to the excitation current command under the magnetic field attenuation function. . 如請求項1或2之馬達控制裝置,更具有藉由對朝前述馬達供給之電流進行座標轉換而求出q軸電流回饋及d軸電流回饋之座標轉換器,前述馬達驅動部是使用從前述扭矩電流指令減去前述q軸電流回饋後之值及從前述激磁電流指令減去前述d軸電流回饋後之值而求出驅動前述馬達之功率。 The motor control device according to claim 1 or 2 further includes a coordinate converter that obtains q-axis current feedback and d-axis current feedback by coordinate conversion of a current supplied to the motor, wherein the motor drive unit is used from the foregoing The torque current command subtracts the value of the q-axis current feedback and subtracts the value of the d-axis current feedback from the excitation current command to determine the power for driving the motor. 如請求項3之馬達控制裝置,更具有由前述扭矩電流指令與前述激磁電流指令演算器所演算出之激磁電流指令而演算轉差頻率指令之轉差頻率演算器,前述座標轉 換器是使用前述轉差頻率演算器所演算出之轉差頻率指令而對朝前述馬達供給之電流進行座標轉換。 The motor control device of claim 3, further comprising a slip frequency calculator for calculating a slip frequency command by the torque current command and the excitation current command calculated by the excitation current command calculator, wherein the coordinates are rotated The converter performs coordinate conversion on the current supplied to the motor using the slip frequency command calculated by the slip frequency calculator. 如請求項4之馬達控制裝置,其中前述激磁電流指令演算器是先藉由下面的式子而求出磁場減弱前之激磁電流指令IdCB:IdCB=I0(0≦|ωm|≦ω0時)IdCB={I0+K0‧(1-KIqC‧|Iqc|)}‧(|ωm|-ω0)(ω0<|ωm|時)在此,ω0:基底速度I0:基底速度下之激磁電流K0:使高速旋轉時之激磁電流上昇之係數KIqC:因應扭矩電流指令而使激磁電流減少之係數接著,在求出磁場減弱前之激磁電流指令IdCB之後,藉由下面的式子求出激磁電流指令IdC:IdC=IdCB(0≦|ωm|≦ω0時)IdC=IdCB‧ω00/|ωm|(ω0<|ωm|時)藉由進行以上之演算而求出激磁電流指令IdC。 The motor control device according to claim 4, wherein the excitation current command calculator first obtains an excitation current command IdCB before the magnetic field is weakened by the following formula: IdCB=I0 (when 0≦|ωm|≦ω0) IdcB ={I0+K0‧(1-KIqC‧|Iqc|)}‧(|ωm|-ω0)(ω0<|ωm|) Here, ω0: substrate speed I0: excitation current K0 at the base speed: Coefficient of increase in excitation current during high-speed rotation KIqC: Coefficient of reduction of excitation current in response to torque current command. Next, after obtaining the excitation current command IdCB before the magnetic field is weakened, the excitation current command Idc is obtained by the following equation: IdC=IdCB (when 0 ≦|ωm|≦ω0) IdC=IdCB‧ω00/|ωm|(ω0<|ωm|) The excitation current command IdC is obtained by performing the above calculation. 一種馬達控制裝置,具有:磁通量指令演算器,使用扭矩電流指令與馬達旋轉速度而認識馬達之旋轉負載狀態,演算與該旋轉負載狀態對應之磁通量指令; 磁通量控制器,使用由朝馬達供給之電流所求出之磁通量與前述磁通量指令演算器所演算出之磁通量指令而求出激磁電流指令;馬達驅動部,使用前述扭矩電流指令與求出之激磁電流指令而驅動前述馬達。 A motor control device includes: a magnetic flux command calculator that recognizes a rotational load state of a motor using a torque current command and a motor rotational speed, and calculates a magnetic flux command corresponding to the rotational load state; The magnetic flux controller obtains an excitation current command using a magnetic flux calculated from a current supplied to the motor and a magnetic flux command calculated by the magnetic flux command calculator, and the motor drive unit uses the torque current command and the obtained excitation current. The aforementioned motor is driven by an instruction. 如請求項6之馬達控制裝置,其中前述磁通量指令演算器具有與前述馬達旋轉速度之增加成反比例而將磁通量指令變小之磁場減弱機能,在前述馬達以小的扭矩電流指令高速旋轉時是使磁通量指令大於前述磁場減弱機能作用下之磁通量指令,另一方面,在前述馬達以大的扭矩電流指令高速旋轉時是使磁通量指令相當於前述磁場減弱機能作用下之磁通量指令。 The motor control device of claim 6, wherein the magnetic flux command calculator has a magnetic field weakening function that is inversely proportional to an increase in a rotational speed of the motor to reduce a magnetic flux command, and the motor is caused to rotate at a high speed with a small torque current command. The magnetic flux command is larger than the magnetic flux command under the magnetic field weakening function. On the other hand, when the motor is rotated at a high speed with a large torque current command, the magnetic flux command is equivalent to the magnetic flux command under the magnetic field weakening function. 如請求項6或7之馬達控制裝置,其中前述由朝馬達供給之電流所求出之磁通量是磁通量演算器從對朝前述馬達供給之電流進行座標轉換所求出之d軸電流回饋求出。 The motor control device according to claim 6 or 7, wherein the magnetic flux obtained by the current supplied to the motor is obtained by a magnetic flux calculator that returns a d-axis current obtained by coordinate-converting a current supplied to the motor. 如請求項8之馬達控制裝置,更具有由前述扭矩電流指令與前述磁通量演算器所演算出之磁通量而演算轉差頻率指令之轉差頻率演算器。 The motor control device of claim 8 further includes a slip frequency calculator for calculating a slip frequency command by the torque current command and the magnetic flux calculated by the magnetic flux calculator. 如請求項8之馬達控制裝置,其中前述d軸電流回饋是由對朝前述馬達供給之電流進行座標轉換之座標轉換器求出,前述座標轉換器是對朝前述馬達供給之電流進行座標轉換而亦求出q軸電流回饋。 A motor control device according to claim 8, wherein said d-axis current feedback is obtained by a coordinate converter that performs coordinate conversion on a current supplied to said motor, said coordinate converter performing coordinate conversion on a current supplied to said motor The q-axis current feedback is also obtained. 如請求項10之馬達控制裝置,其中前述馬達驅動部是使 用從前述扭矩電流指令減去前述q軸電流回饋後之值及從前述激磁電流指令減去前述d軸電流回饋後之值而求出驅動前述馬達之功率。 The motor control device of claim 10, wherein the motor drive unit is The power for driving the motor is obtained by subtracting the value of the q-axis current feedback from the torque current command and subtracting the value of the d-axis current feedback from the excitation current command. 如請求項11之馬達控制裝置,其中前述磁通量指令演算器是先藉由下面的式子而求出磁場減弱前之磁通量指令φ2CB:φ2CB=φ0(0≦|ωm|≦ω0時)φ2CB={φ0+K0‧(1-KIqC‧|Iqc|)}‧(|ωm|-ω0)(ω0<|ωm|時)在此,ω0:基底速度φ0:基底速度下之磁通量K0:使高速旋轉時之磁通量上昇之係數KIqC:因應扭矩電流指令而使磁通量減少之係數接著,在求出磁場減弱前之磁通量指令φ2CB之後,藉由下面的式子求出磁通量指令φ2C:φ2C=φ2CB(0≦|ωm|≦ω0時)φ2C=φ2CB.ω0/|ωm|(ω0<|ωm|時)藉由進行以上之演算而求出磁通量指令φ2C。 The motor control device according to claim 11, wherein the magnetic flux command calculator first obtains a magnetic flux command φ2CB before the magnetic field is weakened by the following formula: φ2CB=φ0 (when 0≦|ωm|≦ω0) φ2CB={ Φ0+K0‧(1-KIqC‧|Iqc|)}‧(|ωm|-ω0)(ω0<|ωm|) Here, ω0: base velocity φ0: magnetic flux K0 at the base speed: when rotating at high speed The coefficient of the magnetic flux increase KIqC: the coefficient of the magnetic flux reduction in response to the torque current command. Then, after obtaining the magnetic flux command φ2CB before the magnetic field is weakened, the magnetic flux command φ2C is obtained by the following equation: φ2C=φ2CB (0≦| Ωm|≦ω0) φ2C=φ2CB. When ω0/|ωm|(ω0<|ωm|), the magnetic flux command φ2C is obtained by performing the above calculation. 一種馬達控制裝置,具有:磁通量指令演算器,使用將所下達之扭矩電流指令除以使用馬達旋轉速度所求出之最大扭矩來獲得之扭 矩指令比、與前述馬達旋轉速度,認識馬達之旋轉負載狀態,演算與該旋轉負載狀態對應之磁通量指令;磁通量控制器,使用由朝馬達供給之電流所求出之磁通量與前述磁通量指令演算器所演算出之磁通量指令而求出激磁電流指令;馬達驅動部,使用前述扭矩電流指令與求出之激磁電流指令而驅動前述馬達。 A motor control device having a magnetic flux command calculator obtained by dividing a torque torque command issued by a maximum torque obtained by using a motor rotational speed a torque command ratio, a rotational speed of the motor, a rotational load state of the motor, and a magnetic flux command corresponding to the rotational load state; and a magnetic flux controller that uses a magnetic flux obtained from a current supplied to the motor and the magnetic flux command calculator The excitation current command is obtained from the calculated magnetic flux command, and the motor drive unit drives the motor using the torque current command and the obtained excitation current command. 如請求項13之馬達控制裝置,其中前述磁通量指令演算器具有與前述馬達旋轉速度之增加成反比例而將磁通量指令變小之磁場減弱機能,在前述馬達以小的扭矩電流指令高速旋轉時是使磁通量指令大於前述磁場減弱機能作用下之磁通量指令,另一方面,在前述馬達以大的扭矩電流指令高速旋轉時是使磁通量指令相當於前述磁場減弱機能作用下之磁通量指令。 The motor control device of claim 13, wherein the magnetic flux command calculator has a magnetic field weakening function that is inversely proportional to an increase in a rotational speed of the motor to reduce a magnetic flux command, and the motor is caused to rotate at a high speed with a small torque current command. The magnetic flux command is larger than the magnetic flux command under the magnetic field weakening function. On the other hand, when the motor is rotated at a high speed with a large torque current command, the magnetic flux command is equivalent to the magnetic flux command under the magnetic field weakening function. 如請求項13或14之馬達控制裝置,其中前述由朝馬達供給之電流所求出之磁通量是磁通量演算器從對朝前述馬達供給之電流進行座標轉換所求出之d軸電流回饋求出。 The motor control device according to claim 13 or 14, wherein the magnetic flux obtained by the current supplied to the motor is obtained by a magnetic flux calculator that returns a d-axis current obtained by coordinate-converting a current supplied to the motor. 如請求項15之馬達控制裝置,更具有將前述扭矩指令限制於一定之值之限制器、及將受前述限制器所限制之扭矩指令輸入而輸出前述q軸電流指令之q軸電流演算器,前述馬達驅動部是使用從前述q軸電流演算器所輸出之q軸電流指令減去前述q軸電流回饋後之值及從前述激磁電流指令減去前述d軸電流回饋後之值而求出驅 動前述馬達之功率。 The motor control device according to claim 15 further comprising: a limiter that limits the torque command to a predetermined value; and a q-axis current calculator that inputs the torque command limited by the limiter and outputs the q-axis current command. The motor driving unit obtains a value obtained by subtracting the q-axis current feedback from a q-axis current command output from the q-axis current calculator and subtracting the value of the d-axis current feedback from the excitation current command. The power of the aforementioned motor. 如請求項16之馬達控制裝置,更具有使用前述磁通量控制器輸出之激磁電流指令、最大一次電流指令算出器輸出之最大一次電流指令、及磁通量演算器輸出之磁通量而算出在前述限制器設定之扭矩限制值之扭矩限制值演算器,前述限制器是使用前述扭矩限制值演算器輸出之扭矩限制值而將輸入前述q軸電流演算器之扭矩指令限制於一定之值。 The motor control device according to claim 16 further includes the excitation current command outputted by the magnetic flux controller, the maximum primary current command outputted by the maximum primary current command calculator, and the magnetic flux output from the magnetic flux calculator, thereby calculating the limiter setting. A torque limit value calculator for torque limit value, wherein the limiter limits a torque command input to the q-axis current calculator to a constant value using a torque limit value output by the torque limit value calculator. 如請求項17之馬達控制裝置,其中前述磁通量指令演算器輸入之扭矩指令比TCC是如以下地求出:TCBm=Tm(0≦|ωm|≦ω0時)TCBm=Tm.ω0/|ωm|(ω0<|ωm|時)接著,求出扭矩指令比TCC:TCC=|TCB|/TCBm前述磁通量指令演算器是藉由下面的式子而求出磁場減弱前之磁通量指令φ2CB:φ2CB=φ0(0≦|ωm|≦ω0時)φ2CB={φ0+K0.(1-KTC.TCC)}.(|ωm|-ω0)(ω0<|ωm|時)在此,ω0:基底速度φ0:基底速度下之磁通量 K0:使高速旋轉時之磁通量上昇之係數KTC:因應扭矩指令比而使磁通量減少之係數接著,在求出磁場減弱前之磁通量指令φ2CB之後,藉由下面的式子求出磁通量指令φ2C:φ2C=φ2CB(0≦|ωm|≦ω0時)φ2C=φ2CB.ω0/|ωm|(ω0<|ωm|時)藉由進行以上之演算而求出磁通量指令φ2C。 The motor control device according to claim 17, wherein the torque command input TTC of the magnetic flux command calculator is obtained as follows: TCBm = Tm (0 ≦ | ωm | ≦ ω 0) TCBm = Tm. Ω0/|ωm|(ω0<|ωm|) Next, the torque command ratio TCC:TCC=|TCB|/TCBm is obtained. The magnetic flux command calculator obtains the magnetic flux command before the magnetic field weakening by the following equation. φ2CB: φ2CB=φ0 (when 0≦|ωm|≦ω0) φ2CB={φ0+K0. (1-KTC.TCC)}. (|ωm|-ω0)(ω0<|ωm|) Here, ω0: substrate velocity φ0: magnetic flux at the substrate speed K0: coefficient KTC for increasing the magnetic flux at the time of high-speed rotation: a coefficient for reducing the magnetic flux in response to the torque command ratio. Then, after obtaining the magnetic flux command φ2CB before the magnetic field is weakened, the magnetic flux command φ2C: φ2C is obtained by the following equation. =φ2CB(0≦|ωm|≦ω0)φ2C=φ2CB. When ω0/|ωm|(ω0<|ωm|), the magnetic flux command φ2C is obtained by performing the above calculation.
TW102146099A 2013-02-05 2013-12-13 Motor control TWI632767B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013020644A JP5620526B2 (en) 2013-02-05 2013-02-05 Motor control device
JP2013-020644 2013-02-05

Publications (2)

Publication Number Publication Date
TW201436448A true TW201436448A (en) 2014-09-16
TWI632767B TWI632767B (en) 2018-08-11

Family

ID=51242319

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102146099A TWI632767B (en) 2013-02-05 2013-12-13 Motor control

Country Status (4)

Country Link
JP (1) JP5620526B2 (en)
KR (1) KR20140099821A (en)
CN (1) CN103973187B (en)
TW (1) TWI632767B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110720176A (en) * 2018-04-24 2020-01-21 苏州宝时得电动工具有限公司 Self-moving equipment
CN110445439A (en) * 2018-05-04 2019-11-12 美的集团股份有限公司 The control method and device of permanent magnet synchronous motor
CN109649186B (en) * 2018-12-10 2022-03-29 无锡华宸控制技术有限公司 Direct current power estimation method and device and electronic equipment
CN111030540B (en) * 2019-12-24 2023-05-26 新风光电子科技股份有限公司 Seamless switching method for current source and noninductive vector control of permanent magnet synchronous motor
CN112097987B (en) * 2020-09-04 2022-03-25 江苏理工学院 Stepping motor magnetic force and friction force ratio detection device and detection method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331734B2 (en) * 1993-05-18 2002-10-07 株式会社明電舎 Control method of rotating electric machine
JPH07308100A (en) * 1994-03-14 1995-11-21 Meidensha Corp Control device for induction motor
JP3755424B2 (en) * 2001-05-31 2006-03-15 トヨタ自動車株式会社 AC motor drive control device
WO2008004294A1 (en) * 2006-07-06 2008-01-10 Mitsubishi Electric Corporation Induction motor vector control device, induction motor vector control method, and induction motor drive control device
JP4770639B2 (en) * 2006-08-17 2011-09-14 アイシン・エィ・ダブリュ株式会社 Electric motor drive control method and apparatus
JP5506534B2 (en) * 2010-05-17 2014-05-28 三菱重工業株式会社 Motor drive mechanism and motor control device
CN102098000B (en) * 2011-01-27 2012-11-07 华中科技大学 Weak magnetic speed regulating method for induction motor
CN102403950B (en) * 2011-11-14 2013-06-12 电子科技大学 Exciting current given device of induction motor of electric vehicle
CN102412778A (en) * 2011-11-18 2012-04-11 华中科技大学 Full speed domain torque maximizing vector control current distribution method for induction motor

Also Published As

Publication number Publication date
JP5620526B2 (en) 2014-11-05
KR20140099821A (en) 2014-08-13
CN103973187B (en) 2018-06-01
CN103973187A (en) 2014-08-06
JP2014155254A (en) 2014-08-25
TWI632767B (en) 2018-08-11

Similar Documents

Publication Publication Date Title
JP5540041B2 (en) Drive device for interior permanent magnet synchronous motor
JP5620527B2 (en) Motor control device
JP5120670B2 (en) Control device for motor drive device
JP5120669B2 (en) Control device for motor drive device
JP4205157B1 (en) Electric motor control device
JP4737087B2 (en) Control device for permanent magnet synchronous motor
JP6118157B2 (en) Motor speed control device
TWI581556B (en) Motor control device
JP2008167566A (en) High-response control device of permanent magnet motor
TWI632767B (en) Motor control
JP6059285B2 (en) Induction motor controller
JP5994355B2 (en) Control device for permanent magnet type synchronous motor
JP5131725B2 (en) Control device for power converter
JP2018057077A (en) Motor control device and drive system
JP2008167630A (en) Control unit for electric power converter
JP2009072006A (en) Controller for induction motor
TW201440412A (en) Control device of permanent magnet type motor
JP4144446B2 (en) Power converter
JP2011050217A (en) Controller for induction motor
JP2020058231A5 (en)
JP5634016B2 (en) Induction motor control device
JP2002320400A (en) Synchronous motor control method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees