JP2011050217A - Controller for induction motor - Google Patents

Controller for induction motor Download PDF

Info

Publication number
JP2011050217A
JP2011050217A JP2009198592A JP2009198592A JP2011050217A JP 2011050217 A JP2011050217 A JP 2011050217A JP 2009198592 A JP2009198592 A JP 2009198592A JP 2009198592 A JP2009198592 A JP 2009198592A JP 2011050217 A JP2011050217 A JP 2011050217A
Authority
JP
Japan
Prior art keywords
current
induction motor
torque
command value
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009198592A
Other languages
Japanese (ja)
Other versions
JP5368216B2 (en
Inventor
Sotetsu Yoshida
聡哲 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2009198592A priority Critical patent/JP5368216B2/en
Publication of JP2011050217A publication Critical patent/JP2011050217A/en
Application granted granted Critical
Publication of JP5368216B2 publication Critical patent/JP5368216B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller for an induction motor which can switch a control method in any output state by smoothly changing an exciting current and a torque current of the induction motor. <P>SOLUTION: The controller for an induction motor calculates a current command value according to a torque command value and a rotating speed of an induction motor IM and drives the induction motor using a three-phase AC current corresponding to the calculated current command value. The controller for the induction motor comprises a vector control current component command calculating unit 11-1 for calculating a current that makes a target magnetic flux of the induction motor constant at a given torque command value, a maximum efficiency control current component command calculating unit 11-2 for calculating a current that minimizes a loss of the induction motor at a given torque command value, a current component command calculating unit 11-3 on switching a control method for calculating a current when switching the current command value, and a motor driving unit (12, 13, 14) that makes the current in the induction motor follow the current command value. The controller for the induction motor controls the output torque of the induction motor so that it may have a value corresponding to the torque command value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は誘導モータの制御装置に関する。   The present invention relates to an induction motor control apparatus.

フォークリフト等の産業車両の走行動力源として用いられている誘導モータの制御手法として、一次電流I(固定子に流れる電流)を励磁電流Idとトルク電流Iqに分解して制御し、かつPG(パルスジェネレータ)を速度検出に用いるPGベクトル制御が広く採用されている。周知のように、PGベクトル制御は、後述されるベクトル制御とは意義が異なる。 As a method for controlling an induction motor used as a driving power source for an industrial vehicle such as a forklift, a primary current I 1 (current flowing through a stator) is divided into an excitation current Id and a torque current Iq and controlled, and PG ( PG vector control using a pulse generator for speed detection is widely adopted. As is well known, the PG vector control has a different meaning from the vector control described later.

図5(a)のId−Iq特性図上の太線が示すのは、誘導モータの制御手法として広く用いられているベクトル制御(Id=一定)と最大効率制御(Id:Iq=任意)の一例である。   A thick line on the Id-Iq characteristic diagram of FIG. 5A shows an example of vector control (Id = constant) and maximum efficiency control (Id: Iq = arbitrary) widely used as a control method of the induction motor. It is.

ベクトル制御(Id=一定)は、既定の滑り速度で励磁電流Idを一定とすることにより磁束Φdを一定とし、所望のトルクに比例してトルク電流Iqを変化させる。この制御手法はモータの応答性・安定性で優れており、フォークリフトの操作性能に有利と考えられる。   Vector control (Id = constant) makes the magnetic flux Φd constant by making the excitation current Id constant at a predetermined slip speed, and changes the torque current Iq in proportion to the desired torque. This control method is excellent in the response and stability of the motor, and is considered advantageous for the operation performance of the forklift.

一方、最大効率制御(Id:Iq=任意)は、Id:Iqの比率を適切に設定することにより励磁電流Idと磁束Φdを小さくすることで、銅損や鉄損を抑制しようとする制御手法である。   On the other hand, the maximum efficiency control (Id: Iq = arbitrary) is a control method for suppressing copper loss and iron loss by reducing the excitation current Id and the magnetic flux Φd by appropriately setting the ratio of Id: Iq. It is.

図5(b)に示すのは、最大効率制御のひとつの手法であり、低トルク領域でId:Iqの比率を適切な一定値に制御するものである。   FIG. 5B shows one method of maximum efficiency control, in which the ratio of Id: Iq is controlled to an appropriate constant value in the low torque region.

図5(b)に示すように、同一のトルク出力であっても、Id:Iqを実質上1:1とすれば、モータ1次側の銅損P1Loss=I ×Rが最小となるように、励磁電流Idを小さくすることで銅損を抑制することが可能である。Rは一次側抵抗値である。また、励磁電流Idを小さくすることは磁束Φdを小さくすることになり、鉄損を抑制することができる。 As shown in FIG. 5 (b), even for the same torque output, Id: substantially the Iq 1: If 1, copper loss P 1Loss = I 1 2 × R 1 of the motor primary side is a minimum Thus, the copper loss can be suppressed by reducing the excitation current Id. R 1 is the primary resistance value. Further, reducing the exciting current Id reduces the magnetic flux Φd, and can suppress iron loss.

ところで、フォークリフトは、走行路面の摩擦係数μや段差や荒れなどにより路面状態が頻繁に変化する中で加速、減速を頻繁に繰り返すため、走行用モータの応答性と安定性の劣化が、車両の操作性や安全性の低下につながる可能性がある。よって、応答性と安定性を劣化させずに、高効率化を実現することが求められる。   By the way, forklifts frequently accelerate and decelerate while the road surface condition frequently changes due to the friction coefficient μ of the traveling road surface, steps, roughness, etc., so the responsiveness and stability of the traveling motor deteriorates. It may lead to a decrease in operability and safety. Therefore, it is required to achieve high efficiency without deteriorating responsiveness and stability.

これまで、最大効率制御を適用しつつ、応答性や安定性を補償するような手法がいくつか提案されている。その手法は、以下のように、大きく2つに分かれる。   So far, several methods have been proposed to compensate for responsiveness and stability while applying maximum efficiency control. The method is roughly divided into two as follows.

第1の手法:最大効率制御の応答性や安定性を改善する手法
第2の手法:制御方式を切り替えて使い分ける手法
第1の手法の顕著な例として、特許文献1に記載された誘導モータ制御装置がある。この例は、ローパスフィルター特性を用いて磁束を変化させ、電流ピーク値を抑えつつトルク応答を改善する手法として用いられている。
First method: Method for improving the responsiveness and stability of maximum efficiency control Second method: A method for switching and selectively using the control method As a remarkable example of the first method, the induction motor control described in Patent Document 1 There is a device. This example is used as a technique for improving the torque response while changing the magnetic flux by using a low-pass filter characteristic and suppressing the current peak value.

第2の手法としては、産業用途では装置が止まっている時に制御方式を切り替える方式があったが、頻繁に環境や動作状況の変わる車両には適さない。例えば、特許文献2には、エレベータの駆動を対象とし、乗員のいない時や乗員のいる定常運転時は最大効率制御で運転し、乗員のいる加速、減速時はベクトル制御(Id=一定)で運転するベクトル制御装置について記載されている。エレベータ等では、装置が止まっている時に制御方式を切り替えたり、あらかじめ決められた動作において緩やかに制御方式を切り替えたりすることで十分であった。しかしこれは、頻繁に環境や動作状況の変わる車両には適さない。   As a second method, there is a method of switching the control method when the device is stopped for industrial use, but it is not suitable for a vehicle in which the environment and the operating condition frequently change. For example, Patent Document 2 targets the driving of an elevator, operates with maximum efficiency control when there is no occupant or during steady operation with the occupant, and vector control (Id = constant) during acceleration and deceleration with the occupant. A vector control device to be operated is described. In an elevator or the like, it is sufficient to switch the control method when the apparatus is stopped or to switch the control method gently in a predetermined operation. However, this is not suitable for vehicles whose environment and operating conditions frequently change.

一方、特許文献3には、第2の手法の別の例として車両向けに提案されたもので、Id−Iq特性図上のある点で制御方式を切替える誘導モータの制御装置が記載されている。この制御装置は、簡単に言えば、低トルク領域では滑り速度一定で励磁電流Idとトルク電流Iqでトルクを制御し(最大効率制御)、高トルク領域では滑りでトルクを制御する方式に切替える手法であるが、低トルク領域と高トルク領域、すなわち制約された出力状態に対してのみ制御方式の使い分けを可能とするものであった。   On the other hand, Patent Document 3 proposes a control device for an induction motor that is proposed for a vehicle as another example of the second method and switches a control method at a certain point on the Id-Iq characteristic diagram. . Briefly speaking, this control device is a method of switching to a method of controlling torque by excitation current Id and torque current Iq with a constant sliding speed in the low torque region (maximum efficiency control), and controlling torque by slipping in the high torque region. However, the control method can be selectively used only for the low torque region and the high torque region, that is, the restricted output state.

特許2914106号公報Japanese Patent No. 2914106 特開2000−184800号公報JP 2000-184800 A 特開平10−210800号公報JP-A-10-210800

定常状態において最大効率制御で運転中に、環境や動作状況が変化した場合などに素早くベクトル制御に切り替えを行うことができれば、銅損や鉄損等の損失を抑制しつつ応答性や安定性を確保することができる。   If switching to vector control can be performed quickly when the environment or operating conditions change during operation with maximum efficiency control in steady state, the response and stability can be improved while suppressing losses such as copper loss and iron loss. Can be secured.

しかし、図5(b)の2つの矢印先端に示すように、同一トルクであってもId−Iq特性図上で2つの制御方式による励磁電流Idとトルク電流Iqを示す点が近接していない場合、ベクトル制御(Id=一定)と最大効率制御(Id:Iq=任意)を交互に急激に切替えようとすると、大きな電流が急激に流れ正常動作ができない可能性がある。   However, as shown at the tip of two arrows in FIG. 5B, the points indicating the excitation current Id and the torque current Iq by the two control methods are not close to each other on the Id-Iq characteristic diagram even if the torque is the same. In this case, if the vector control (Id = constant) and the maximum efficiency control (Id: Iq = arbitrary) are to be switched alternately and suddenly, a large current may flow rapidly and normal operation may not be possible.

本発明の課題は、上記第2の手法である制御方式を切り替える手法であって、新規な手段で誘導モータの励磁電流Idとトルク電流Iqを円滑に変更し、任意の出力状態での制御方式の切替えを可能にする誘導モータの制御装置を提供することにある。   An object of the present invention is a method of switching the control method as the second method, and smoothly changes the excitation current Id and the torque current Iq of the induction motor by a new means, and the control method in an arbitrary output state It is an object of the present invention to provide a control device for an induction motor that can be switched.

本発明の態様による誘導モータ制御装置は、トルク指令値と誘導モータの回転速度とに応じて電流指令値を算出し、算出された電流指令値に対応した三相交流電流で誘導モータを駆動するものであり、与えられたトルク指令値において誘導モータの目標磁束を一定とする電流を演算する第一の電流演算部と、与えられたトルク指令値において誘導モータの損失を最小とする電流を演算する第二の電流演算部と、前記第一の電流演算部と前記第二の電流演算部との切替え時、すなわち電流指令値の切替え時の電流を演算する第三の電流演算部と、前記誘導モータに流れる電流を前記電流指令値に追従させるモータ駆動部と、を備え、前記誘導モータの出力トルクを前記トルク指令値に対応した値とするように制御する。   An induction motor control device according to an aspect of the present invention calculates a current command value according to a torque command value and a rotation speed of the induction motor, and drives the induction motor with a three-phase alternating current corresponding to the calculated current command value. A first current calculation unit that calculates a current that makes the target magnetic flux of the induction motor constant at a given torque command value, and calculates a current that minimizes the loss of the induction motor at a given torque command value A second current calculation unit, a third current calculation unit for calculating a current at the time of switching between the first current calculation unit and the second current calculation unit, that is, a current command value switching, and A motor drive unit that causes the current flowing through the induction motor to follow the current command value, and controls the output torque of the induction motor to be a value corresponding to the torque command value.

なお、前記第三の電流演算部は、当該誘導モータの励磁電流Id、トルク電流Iqについてあらかじめ計測された、Id×Iq=一定で規定されるトルク一定曲線を複数種類、トルク一定曲線マップとして記憶装置に記憶しており、該トルク一定曲線マップに記憶されたトルク値に基づいて、一定のトルク指令に対して前記誘導モータの出力トルクが一定となるよう励磁電流とトルク電流の組合せを変化させる演算を行なうことが好ましい。前記第三の電流演算部はまた、前記誘導モータの出力トルクが更新して与えられた際には、更新されたトルク指令値に追従するようトルク電流を更新する電流演算を行なうことが好ましい。   The third current calculation unit stores a plurality of types of constant torque curves that are preliminarily measured with respect to the excitation current Id and the torque current Iq of the induction motor and are defined as a constant torque curve defined by Id × Iq = constant. Based on the torque value stored in the constant torque curve map, the combination of the excitation current and the torque current is changed so that the output torque of the induction motor is constant with respect to a constant torque command. It is preferable to perform an operation. The third current calculation unit preferably performs current calculation for updating the torque current so as to follow the updated torque command value when the output torque of the induction motor is updated and applied.

本発明によれば、誘導モータの励磁電流Idとトルク電流Iqを円滑に変更し、任意の出力状態での制御方式の切替え可能な制御装置を提供することができる。   According to the present invention, it is possible to provide a control device capable of smoothly changing the excitation current Id and the torque current Iq of the induction motor and switching the control method in an arbitrary output state.

このような誘導モータ制御装置を、フォークリフト等の産業車両の走行動力源として用いられている誘導モータに適用した場合には、如何なる状態からでも、車両からの要求に応じて制御方式の切替えが可能である。例えば、車両を最大効率制御により省エネ運転中に、急加速指令が入る、あるいはタイヤがスリップにより空回りし車両のトラクション制御(スリップ防止制御)が始動する、等の状況においてベクトル制御(Id=一定)に円滑に切替えることが可能となる。その結果、車両の省エネルギー化と操作性の容易さの両立を実現させることができる。   When such an induction motor control device is applied to an induction motor used as a driving power source for an industrial vehicle such as a forklift, the control method can be switched according to a request from the vehicle from any state. It is. For example, vector control (Id = constant) in situations such as when a sudden acceleration command is input or the tire is idling due to slipping and the vehicle's traction control (slip prevention control) is started during energy saving operation by maximum efficiency control Can be switched smoothly. As a result, it is possible to realize both the energy saving of the vehicle and the ease of operability.

本発明による誘導モータ制御装置の実施形態のブロック構成図である。It is a block block diagram of embodiment of the induction motor control apparatus by this invention. 図1に示された誘導モータ制御装置の第1の動作例を説明するためのId−Iq特性図を示す。The Id-Iq characteristic figure for demonstrating the 1st operation example of the induction motor control apparatus shown by FIG. 図1に示された誘導モータ制御装置の第2の動作例を説明するためのId−Iq特性図を示す。The Id-Iq characteristic figure for demonstrating the 2nd operation example of the induction motor control apparatus shown by FIG. 図1に示された誘導モータ制御装置の第3の動作例を説明するためのId−Iq特性図を示す。The Id-Iq characteristic figure for demonstrating the 3rd operation example of the induction motor control apparatus shown by FIG. これまでのベクトル制御と最大効率制御の一例を説明するためのId−Iq特性図を示す。The Id-Iq characteristic figure for demonstrating an example of the conventional vector control and maximum efficiency control is shown.

[発明の構成及び動作]
前述のように、図5(b)の2つの矢印先端に示すように、同一トルクであってもId−Iq特性図上で2つの制御方式による励磁電流Idとトルク電流Iqを示す点が近接していない場合、ベクトル制御(Id=一定)と最大効率制御(Id:Iq=任意)を交互に急激に切替えようとすると、大きな電流が急激に流れ正常動作ができない可能性がある。
[Configuration and operation of the invention]
As described above, as shown at the tips of the two arrows in FIG. 5B, the points indicating the excitation current Id and the torque current Iq according to the two control methods are close to each other on the Id-Iq characteristic diagram even when the torque is the same. If not, when trying to switch the vector control (Id = constant) and the maximum efficiency control (Id: Iq = arbitrary) alternately and suddenly, a large current may flow rapidly and normal operation may not be possible.

図1は、本発明による誘導モータ制御装置の実施形態のブロック構成を示す。本誘導モータ制御装置は、本発明の特徴部とも言える電流成分指令演算部11のほか、電流成分指令演算部11からの励磁電流指令値Ids、トルク電流指令値Iqsを入力とする電流成分制御回路12、電流成分制御回路12からのd軸電圧指令値Vds、q軸電圧指令値Vqsを入力とする電圧指令演算回路13、電圧指令演算回路13からのU相電圧指令値Vus、V相電圧指令値Vvs、W相電圧指令値Vwsを入力としU相電圧Vus、V相電圧Vvs、W相電圧Vwsを出力するPWMインバータ14を含む。電流成分制御回路12、電圧指令演算回路13、PWMインバータ14は、まとめて誘導モータIMに流れる電流を前記電流指令値に追従させるモータ駆動部として機能する。 FIG. 1 shows a block configuration of an embodiment of an induction motor control apparatus according to the present invention. In addition to the current component command calculation unit 11 that can be said to be a characteristic part of the present invention, the present induction motor control device has a current component with an excitation current command value Ids * and a torque current command value Iqs * from the current component command calculation unit 11 as inputs. Control circuit 12, voltage command calculation circuit 13 that receives d-axis voltage command value Vds * and q-axis voltage command value Vqs * from current component control circuit 12, and U-phase voltage command value Vus * from voltage command calculation circuit 13 , including V-phase voltage command value Vvs *, W-phase voltage command value Vws * a as an input U-phase voltage Vus, V-phase voltage Vvs, the PWM inverter 14 to output a W-phase voltage Vws. The current component control circuit 12, the voltage command calculation circuit 13, and the PWM inverter 14 function as a motor driving unit that collectively causes the current flowing through the induction motor IM to follow the current command value.

本誘導モータ制御装置はまた、U相電流検出器15−1からのU相電流検出値Ius、V相電流検出器15−2からのV相電流検出値Ivsを入力とする電流成分演算回路16、電流成分演算回路16からの励磁電流演算値Ids、トルク電流演算値Iqsを入力とするすべり周波数演算回路17、すべり周波数演算回路17からのすべり周波数演算値ωs’と誘導モータIMの速度検出器18からの速度(角周波数)検出値ωrとを加算する加算部19、加算部19からの加算結果(角周波数)ωを積分して角度θを算出する積分器20を含む。算出された角度θは電圧指令演算回路13、電流成分演算回路16に入力される。また、電流成分演算回路16からの励磁電流演算値Ids、トルク電流演算値Iqsは電流成分制御回路12にも入力される。   The induction motor control device also includes a current component calculation circuit 16 that receives the U-phase current detection value Ius from the U-phase current detector 15-1 and the V-phase current detection value Ivs from the V-phase current detector 15-2 as inputs. The slip frequency calculation circuit 17 receives the excitation current calculation value Ids and the torque current calculation value Iqs from the current component calculation circuit 16, the slip frequency calculation value ωs ′ from the slip frequency calculation circuit 17, and the speed detector of the induction motor IM. 18 includes an adding unit 19 that adds the detected value ωr from the speed (angular frequency) 18 and an integrator 20 that calculates the angle θ by integrating the addition result (angular frequency) ω from the adding unit 19. The calculated angle θ is input to the voltage command calculation circuit 13 and the current component calculation circuit 16. The excitation current calculation value Ids and the torque current calculation value Iqs from the current component calculation circuit 16 are also input to the current component control circuit 12.

本誘導モータ制御装置は更に、速度検出値ωrを入力とする電流比マップデータテーブル21を有する。電流比マップデータテーブル21には、あらかじめ測定された励磁電流指令値Idsに対するトルク電流指令値Iqsの比の組み合わせがマップデータとして登録されており、速度検出値ωrに基づいてテーブルを参照して電流比Iqs/Idsを出力する。 The induction motor control device further includes a current ratio map data table 21 that receives the speed detection value ωr. In the current ratio map data table 21, a combination of the ratio of the torque current command value Iqs * to the excitation current command value Ids * measured in advance is registered as map data, and the table is referred to based on the speed detection value ωr. Current ratio Iqs * / Ids * .

本発明による誘導モータ制御装置の要部である電流成分指令演算部11は、図示しない上位装置からトルク指令、励磁電流指令を受けるほか、電流比マップデータテーブル21から電流比Iqs/Idsを受ける。電流成分指令演算部11は、励磁電流指令を受けてベクトル制御を受け持つベクトル制御電流成分指令演算部11−1、電流比Iqs/Idsを受けて最大効率制御を受け持つ最大効率制御電流成分指令演算部11−2、ベクトル制御、最大効率制御の切り替えを受け持つ制御方式切り替え時電流成分指令演算部11−3からなる。 The current component command calculation unit 11 which is a main part of the induction motor control device according to the present invention receives a torque command and an excitation current command from a host device (not shown), and obtains a current ratio Iqs * / Ids * from the current ratio map data table 21. receive. The current component command calculation unit 11 is a vector control current component command calculation unit 11-1 that receives an excitation current command and is responsible for vector control, and a maximum efficiency control current component command that is responsible for maximum efficiency control upon receiving a current ratio Iqs * / Ids *. The calculation unit 11-2 includes a control method switching current component command calculation unit 11-3 that is responsible for switching between vector control and maximum efficiency control.

ベクトル制御電流成分指令演算部11−1は与えられたトルク指令値において誘導モータIMの目標磁束を一定とする電流を演算する第一の電流演算部として機能し、最大効率制御電流成分指令演算部11−2は与えられたトルク指令値において誘導モータの損失を最小とする電流を演算する第二の電流演算部として機能する。一方、制御方式切り替え時電流成分指令演算部11−3は前記第一の電流演算部と前記第二の電流演算部との切替え時、すなわち電流指令値の切替え時の電流を演算する第三の電流演算部として機能する。   The vector control current component command calculation unit 11-1 functions as a first current calculation unit that calculates a current that makes the target magnetic flux of the induction motor IM constant at a given torque command value, and a maximum efficiency control current component command calculation unit 11-2 functions as a second current calculation unit that calculates a current that minimizes the loss of the induction motor at a given torque command value. On the other hand, the current component command calculation unit 11-3 at the time of switching the control method calculates a current at the time of switching between the first current calculation unit and the second current calculation unit, that is, at the time of switching the current command value. Functions as a current calculator.

次に、本誘導モータ制御装置における電流成分指令演算部11によって実現される制御方式の切替え手順を説明する。   Next, a control method switching procedure realized by the current component command calculation unit 11 in the induction motor control device will be described.

ステップ1
まず、定常運転から制御方式の異なる同一トルクの定常運転へ移行する場合の、移行前後について説明する。前述したように、制御方式が異なれば同一トルクであっても励磁電流Idとトルク電流Iqの組合せが異なる。トルクTを同一に保つためには、以下の数1よりΦd×Iqを同一にする必要がある。
Step 1
First, before and after the transition in the case of shifting from steady operation to steady operation of the same torque with a different control method will be described. As described above, if the control method is different, the combination of the excitation current Id and the torque current Iq is different even with the same torque. In order to keep the torque T the same, it is necessary to make Φd × Iq the same from Equation 1 below.

Figure 2011050217
但し、pはポール数、Lrは回転子自己インダクタンス、Mは相互インダクタンスで固定値であり、Φdはd軸磁束である。
Figure 2011050217
Here, p is the number of poles, Lr is the rotor self-inductance, M is the mutual inductance, and Φd is the d-axis magnetic flux.

d軸磁束Φdと励磁電流Idが比例関係にあるものとすると、励磁電流Idとトルク電流Iqの積Id×Iqが同一であれば、Φd×Iqも同一となりトルクが同一となる。そこで、Id×Iqを同一としつつ励磁電流Idとトルク電流Iqを増減させることにより、制御方式を切り替えても同一トルクとすることが可能である。その一例を図2に示す。   Assuming that the d-axis magnetic flux Φd and the excitation current Id are in a proportional relationship, if the product Id × Iq of the excitation current Id and the torque current Iq is the same, Φd × Iq is also the same and the torque is the same. Therefore, by increasing or decreasing the excitation current Id and the torque current Iq while keeping the same Id × Iq, the same torque can be obtained even if the control method is switched. An example is shown in FIG.

図2に示すのは、ベクトル制御(Id=一定)と、最大効率制御のひとつの手法であって低トルク領域でId:Iqの比率を適切な一定値に制御するものとを、切り替えて使い分ける手法の例である。トルク一定曲線と各制御方式のId−Iq線の交点である矢印両端が、ある同一トルクでの各制御方式によるIdとIqの組合せを示す。   FIG. 2 shows switching between vector control (Id = constant) and one of maximum efficiency control, which controls the Id: Iq ratio to an appropriate constant value in the low torque region. It is an example of a technique. Both ends of the arrow, which is the intersection of the constant torque curve and the Id-Iq line of each control method, indicate a combination of Id and Iq according to each control method at a certain torque.

ステップ2
次に、上記の動作の移行中について説明する。
Step 2
Next, the transition of the above operation will be described.

励磁電流Idの増減に対し、d軸磁束Φdの応答を表す伝達関数は以下の数2で表される。   The transfer function representing the response of the d-axis magnetic flux Φd with respect to the increase / decrease of the excitation current Id is expressed by the following formula 2.

Figure 2011050217
但し、sはラプラス演算子、Rrは回転子抵抗である。
Figure 2011050217
Here, s is a Laplace operator, and Rr is a rotor resistance.

よって、d軸磁束Φdは励磁電流Idに対して、時定数Lr/Rrで1次遅れ応答となる。励磁電流Idおよびトルク電流Iqの変化量ΔIdおよびΔIqとトルクTの変化量ΔTは、以下の数3で表わせる。   Therefore, the d-axis magnetic flux Φd becomes a first-order lag response with respect to the excitation current Id with a time constant Lr / Rr. The change amounts ΔId and ΔIq of the excitation current Id and the torque current Iq and the change amount ΔT of the torque T can be expressed by the following equation (3).

Figure 2011050217
Figure 2011050217

したがって、励磁電流Idの増加、減少に対して時定数Lr/Rrで1次遅れを与えた上でId×Iqが一定となるようトルク電流Iqを減少、増加させる。これによりΦd×Iqを一定に保ち、トルクを一定に保つことができる。一例を図2および図3に示す。   Therefore, the torque current Iq is decreased and increased so that Id × Iq becomes constant after giving a first-order lag with the time constant Lr / Rr to the increase and decrease of the excitation current Id. Thereby, Φd × Iq can be kept constant and the torque can be kept constant. An example is shown in FIGS.

図2に示すのは、ベクトル制御(Id=一定)と最大効率制御(Id:Iq=任意)を切り替えて使い分ける手法の例である。トルク電流Iqと1次遅れを与えた励磁電流Idを示す点が矢印の線上を移動し、いずれかの端点に到達する。このために、制御方式切り替え時電流成分指令演算部11−3は、複数のトルク一定曲線(Id×Iq=一定)を、トルク一定曲線マップとして登録した記憶部を有する。   FIG. 2 shows an example of a technique for switching between vector control (Id = constant) and maximum efficiency control (Id: Iq = arbitrary). The point indicating the torque current Iq and the excitation current Id giving the first order lag moves on the arrow line and reaches one of the end points. For this purpose, the control method switching current component command calculation unit 11-3 includes a storage unit in which a plurality of constant torque curves (Id × Iq = constant) are registered as a constant torque curve map.

図3に示すのは、ベクトル制御(Id=一定)と最大効率制御(Id:Iqマップ)を切り替えて使い分ける手法の例である。図2の手法と同様に、トルク電流Iqと1次遅れを与えた励磁電流Idを示す点が矢印の線上を移動し、いずれかの端点に到達する。このために、制御方式切り替え時電流成分指令演算部11−3は、上記のトルク一定曲線マップに記憶されたトルク値に基づいて、一定のトルク指令に対して誘導モータIMの出力トルクが一定となるよう励磁電流Idとトルク電流Iqの組合せを変化させる演算を行ない、励磁電流指令値Ids、トルク電流指令値Iqsを出力する。なお、図3において斜線で示す領域におけるId:Iqが最大効率制御のための電流比マップデータとして電流比マップデータテーブル21に登録されている。 FIG. 3 shows an example of a technique for selectively using vector control (Id = constant) and maximum efficiency control (Id: Iq map). Similar to the method of FIG. 2, the point indicating the torque current Iq and the excitation current Id giving the first order lag moves on the line of the arrow and reaches one of the end points. For this reason, the control component switching current component command calculation unit 11-3 determines that the output torque of the induction motor IM is constant with respect to a constant torque command based on the torque value stored in the constant torque curve map. The calculation is performed to change the combination of the excitation current Id and the torque current Iq so that the excitation current command value Ids * and the torque current command value Iqs * are output. In FIG. 3, Id: Iq in the shaded area is registered in the current ratio map data table 21 as current ratio map data for maximum efficiency control.

ステップ3
次に、上記の動作の移行中に、トルク指令が更新されたケースについて説明する。
Step 3
Next, a case where the torque command is updated during the transition of the above operation will be described.

トルク指令が更新された時点のd軸磁束Φdを基準に、電流成分指令演算部11でトルク電流Iqの指令値を更新する。更新後のトルクおよびd軸磁束Φdとトルク電流Iqを新たな基準に、Φd×Iqを一定に保つように上記ステップ2の手続きで励磁電流Idとトルク電流Iqを演算する。一例を図4に示す。   Based on the d-axis magnetic flux Φd at the time when the torque command is updated, the current component command calculation unit 11 updates the command value of the torque current Iq. Based on the updated torque, d-axis magnetic flux Φd and torque current Iq, the excitation current Id and torque current Iq are calculated in the procedure of step 2 so as to keep Φd × Iq constant. An example is shown in FIG.

図4に示すのは、ベクトル制御(Id=一定)と最大効率制御(Id:Iqマップ)を切り替えて使い分ける手法の例である。トルク電流Iqと1次遅れを与えた励磁電流Idを示す点が矢印の線上を移動し、トルク指令更新後は更新後のトルク一定曲線に沿い、いずれかの端点に到達する。このために、制御方式切り替え時電流成分指令演算部11−3は、誘導モータIMのトルク指令値が更新して与えられた際には、更新されたトルク指令値に追従するようトルク電流指令値Iqsを更新する電流演算を行い、出力する。図4においても、斜線で示す領域におけるId:Iqが最大効率制御のための電流比マップデータとして電流比マップデータテーブル21に登録されている。 FIG. 4 shows an example of a technique for switching between vector control (Id = constant) and maximum efficiency control (Id: Iq map). The point indicating the torque current Iq and the exciting current Id giving the first order lag moves on the line of the arrow, and after updating the torque command, it reaches one of the end points along the updated constant torque curve. For this reason, when the torque command value of the induction motor IM is updated and given, the current component command calculation unit 11-3 at the time of switching the control method changes the torque current command value so as to follow the updated torque command value. Current calculation for updating Iqs * is performed and output. Also in FIG. 4, Id: Iq in the shaded area is registered in the current ratio map data table 21 as current ratio map data for maximum efficiency control.

以上の手法により、出力トルクを一定に保ちつつ円滑に制御方式を切替えることができる。   By the above method, the control method can be smoothly switched while keeping the output torque constant.

以上の実施形態によれば、誘導モータの励磁電流Idとトルク電流Iqを円滑に変更し、任意の出力状態での制御方式の切替えが可能である。   According to the above embodiment, the excitation current Id and the torque current Iq of the induction motor can be smoothly changed, and the control method can be switched in an arbitrary output state.

このような誘導モータ制御装置を、フォークリフト等の産業車両の走行動力源として用いられている誘導モータに適用した場合には、如何なる状態からでも、車両からの要求に応じて制御方式の切替えが可能である。例えば、車両を最大効率制御により省エネ運転中に、急加速指令が入る、あるいはタイヤがスリップにより空回りし車両のトラクション制御(スリップ防止制御)が始動する、等の状況においてベクトル制御(Id=一定)に円滑に切替えることが可能となる。その結果、車両の省エネルギー化と操作性の容易さの両立を実現させることができる。   When such an induction motor control device is applied to an induction motor used as a driving power source for an industrial vehicle such as a forklift, the control method can be switched according to a request from the vehicle from any state. It is. For example, vector control (Id = constant) in situations such as when a sudden acceleration command is input while the vehicle is in energy saving operation by maximum efficiency control, or when a tire is idling due to slipping and traction control (slip prevention control) of the vehicle is started. Can be switched smoothly. As a result, it is possible to realize both the energy saving of the vehicle and the ease of operability.

本発明は、誘導モータを用い、一次電流を励磁電流Idとトルク電流Iqに分解して制御するベクトル制御を適用し、なおかつ応答性・安定性と効率の両立が要求される、あるいは他の目的で制御方式の切替えが要求されるものであれば、応用可能である。   The present invention applies vector control that uses an induction motor and decomposes and controls the primary current into an excitation current Id and a torque current Iq, and is required to satisfy both responsiveness, stability, and efficiency, or other purposes. If the control method is required to be switched, application is possible.

15−1、15−2 電流検出器
18 速度検出器
19 加算器
20 積分器
15-1, 15-2 Current detector 18 Speed detector 19 Adder 20 Integrator

Claims (3)

トルク指令値と誘導モータの回転速度とに応じて電流指令値を算出し、算出された電流指令値に対応した三相交流電流で誘導モータを駆動する誘導モータ制御装置において、
与えられたトルク指令値において誘導モータの目標磁束を一定とする電流を演算する第一の電流演算部と、
与えられたトルク指令値において誘導モータの損失を最小とする電流を演算する第二の電流演算部と、
前記第一の電流演算部と前記第二の電流演算部との切替え時、すなわち電流指令値の切替え時の電流を演算する第三の電流演算部と、
前記誘導モータに流れる電流を前記電流指令値に追従させるモータ駆動部と、を備え、
前記誘導モータの出力トルクを前記トルク指令値に対応した値とするように制御する誘導モータ制御装置。
In the induction motor control device that calculates the current command value according to the torque command value and the rotation speed of the induction motor, and drives the induction motor with a three-phase alternating current corresponding to the calculated current command value,
A first current calculation unit that calculates a current that makes the target magnetic flux of the induction motor constant at a given torque command value;
A second current calculation unit for calculating a current that minimizes the loss of the induction motor at a given torque command value;
A third current calculation unit that calculates a current at the time of switching between the first current calculation unit and the second current calculation unit, that is, a current command value;
A motor drive unit that causes the current flowing through the induction motor to follow the current command value;
An induction motor control device that controls the output torque of the induction motor to be a value corresponding to the torque command value.
前記第三の電流演算部は、当該誘導モータの励磁電流Id、トルク電流Iqについてあらかじめ計測された、Id×Iq=一定で規定されるトルク一定曲線を複数種類、トルク一定曲線マップとして記憶装置に記憶しており、該トルク一定曲線マップに記憶されたトルク値に基づいて、一定のトルク指令に対して前記誘導モータの出力トルクが一定となるよう励磁電流とトルク電流の組合せを変化させる演算を行なうことを特徴とする請求項1に記載の誘導モータ制御装置。   The third current calculation unit stores in the storage device a plurality of types of constant torque curves that are preliminarily measured with respect to the excitation current Id and torque current Iq of the induction motor and are defined as Id × Iq = constant, and a constant torque curve map. Based on the torque value stored in the torque constant curve map, an operation for changing the combination of the excitation current and the torque current so that the output torque of the induction motor is constant with respect to a constant torque command is performed. The induction motor control device according to claim 1, wherein the induction motor control device is performed. 前記第三の電流演算部は、前記誘導モータの出力トルクが更新して与えられた際には、更新されたトルク指令値に追従するようトルク電流を更新する電流演算を行なうことを特徴とする請求項2に記載の誘導モータ制御装置。   When the output torque of the induction motor is updated and given, the third current calculation unit performs a current calculation for updating the torque current so as to follow the updated torque command value. The induction motor control device according to claim 2.
JP2009198592A 2009-08-28 2009-08-28 Induction motor controller Expired - Fee Related JP5368216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198592A JP5368216B2 (en) 2009-08-28 2009-08-28 Induction motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198592A JP5368216B2 (en) 2009-08-28 2009-08-28 Induction motor controller

Publications (2)

Publication Number Publication Date
JP2011050217A true JP2011050217A (en) 2011-03-10
JP5368216B2 JP5368216B2 (en) 2013-12-18

Family

ID=43835974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198592A Expired - Fee Related JP5368216B2 (en) 2009-08-28 2009-08-28 Induction motor controller

Country Status (1)

Country Link
JP (1) JP5368216B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076333A (en) * 2011-09-29 2013-04-25 Daikin Industries Ltd Hydraulic unit
JP2019134630A (en) * 2018-02-01 2019-08-08 日産自動車株式会社 Control method and control apparatus of motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490602B (en) * 2016-01-04 2018-09-18 珠海格力电器股份有限公司 Control method, device and the servo-driver of motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236302A (en) * 1986-04-03 1987-10-16 Toyota Motor Corp Controlling method for induction motor of electric vehicle
JPH01270789A (en) * 1988-04-20 1989-10-30 Toyota Motor Corp Controller for ac induction motor
JP2914106B2 (en) * 1993-07-06 1999-06-28 日産自動車株式会社 Induction motor control device
JP2000184800A (en) * 1998-12-16 2000-06-30 Meidensha Corp Vector controller of induction motor for elevator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236302A (en) * 1986-04-03 1987-10-16 Toyota Motor Corp Controlling method for induction motor of electric vehicle
JPH01270789A (en) * 1988-04-20 1989-10-30 Toyota Motor Corp Controller for ac induction motor
JP2914106B2 (en) * 1993-07-06 1999-06-28 日産自動車株式会社 Induction motor control device
JP2000184800A (en) * 1998-12-16 2000-06-30 Meidensha Corp Vector controller of induction motor for elevator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076333A (en) * 2011-09-29 2013-04-25 Daikin Industries Ltd Hydraulic unit
JP2019134630A (en) * 2018-02-01 2019-08-08 日産自動車株式会社 Control method and control apparatus of motor
JP7020150B2 (en) 2018-02-01 2022-02-16 日産自動車株式会社 Motor control method and control device

Also Published As

Publication number Publication date
JP5368216B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP4712638B2 (en) Electric motor control device
JP4205157B1 (en) Electric motor control device
KR101738670B1 (en) Motor Control System
US8779702B2 (en) Motor control system implementing field weakening
JPWO2014181463A1 (en) Electric power steering control device and steering control method
WO2015080021A1 (en) Control device for electric vehicle
JP2008043135A (en) Controller of motor for vehicle
JP6059285B2 (en) Induction motor controller
CN111869092B (en) Control device for permanent magnet synchronous motor, electric power steering device, and electric vehicle
JP2010178546A (en) Motor control device
JP5368216B2 (en) Induction motor controller
TWI632767B (en) Motor control
JP4800154B2 (en) Electric motor control device
JP5329801B2 (en) Variable magnetic flux drive system
JP5908205B2 (en) Rotation sensorless control device
JP2016073061A (en) Control device for electric vehicle
JP2018196172A (en) Control method of permanent magnet synchronous motor for electric automobile and device thereof
KR101203911B1 (en) Method and apparatus for controlling induction motor, steel and nonferrous equipment, railway vehicle, winder, ship, machine tool, paper machine, and conveyance facilities
JP7368176B2 (en) Induction motor control device and control system
JP3840030B2 (en) Electric vehicle drive control device
JP6766487B2 (en) Electric vehicle control device
JP3474730B2 (en) Vector control device for linear induction motor
JP4670746B2 (en) Generator control device
JPH11235075A (en) Flat linear induction motor
JPH08172800A (en) Induction motor controlling system for electric car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

R150 Certificate of patent or registration of utility model

Ref document number: 5368216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees