JP2000184800A - Vector controller of induction motor for elevator - Google Patents

Vector controller of induction motor for elevator

Info

Publication number
JP2000184800A
JP2000184800A JP10357061A JP35706198A JP2000184800A JP 2000184800 A JP2000184800 A JP 2000184800A JP 10357061 A JP10357061 A JP 10357061A JP 35706198 A JP35706198 A JP 35706198A JP 2000184800 A JP2000184800 A JP 2000184800A
Authority
JP
Japan
Prior art keywords
command
current command
torque
elevator
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10357061A
Other languages
Japanese (ja)
Inventor
Katashige Yamada
堅滋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10357061A priority Critical patent/JP2000184800A/en
Publication of JP2000184800A publication Critical patent/JP2000184800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Elevator Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vector controller which can prevent degradation of ride comfort because of low followability of torque with a vector controller using maximal efficient control. SOLUTION: Switching is performed between the following cases: where a torque current command iq* and an exciting current command id* are obtained by a flux/current command computing part 13 from a torque command sent from a speed control computing part 12, and where maximal efficiency operation is obtained by changing a ratio of the exciting current command to the torque current command according to a load by a maximal efficiency control part 18. A control switching command generator 19, when a speed command from a position controller 11 is within a control switching speed setting value with a small load change, switches it to the exciting current command and the torque current command from the maximal efficiency control part, and in any other case than the above, switches it to the exciting current command and the torque current command from the flux/current command computing part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エレベータ用誘導
電動機のベクトル制御装置に係り、特に効率を高めるた
めの電流制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vector control apparatus for an induction motor for an elevator, and more particularly to a current control for improving efficiency.

【0002】[0002]

【従来の技術】エレベータの駆動源を誘導電動機とする
場合、エレベータかごの着床精度や乗り心地の要求を満
たすため、誘導電動機は一般的にはベクトル制御方式が
採用される。
2. Description of the Related Art When an induction motor is used as a drive source of an elevator, a vector control system is generally employed for the induction motor in order to satisfy the requirements of landing accuracy and riding comfort of the elevator car.

【0003】図5は、エレベータ用誘導電動機のベクト
ル制御装置のブロック図を示す。誘導電動機1を駆動す
るインバータ2は、制御電流源電圧形にされてPWM制
御され、励磁電流指令id*とトルク電流指令iq*につ
いて電流制御部3によるディジタル演算結果で電圧制御
信号vu,vv,vwが与えられる。
FIG. 5 is a block diagram of a vector control device for an induction motor for an elevator. Inverter 2 to drive the induction motor 1 is controlled current source is a voltage-controlled by PWM exciting current command i d * and the torque current command i q * voltage control signal by a digital calculation result of the current control unit 3 for v u , V v , v w .

【0004】この電流制御部3を中枢部とする電流制御
系は、フィードバック信号には誘導電動機1の2相の電
流iu,iwの検出信号から減算部4により電流ivの信
号も得、これら3相電流信号から3相/2相変換部5に
よりd,q軸の2相電流に変換し、さらに座標変換部6
により誘導電動機1の回転位相θに合わせた電流検出信
号id,iqへの固定/回転座標変換を行う。
[0004] The current control system for the current control section 3 and the central portion is obtained even if the signal current i v currents i u two-phase induction motor 1 is in the feedback signal, the subtraction unit 4 from the detection signal of the i w These three-phase current signals are converted into d- and q-axis two-phase currents by a three-phase / two-phase converter 5, and further converted into coordinate converters 6.
Rotational phase θ in the combined current detection signal i d of the induction motor 1, a fixed / rotating coordinate conversion to i q performed by.

【0005】電流制御部3の演算結果は、d,qの2軸
の電圧指令vd,vqになり、これら電圧指令を座標変換
部7により位相θに合わせた回転/固定座標変換を行
い、さらに2相/3相変換部8により3相の電圧制御信
号vu,vv,vwに変換する。
The operation result of the current control unit 3 becomes two-axis voltage commands v d and v q of d and q . These voltage commands are subjected to rotation / fixed coordinate conversion by the coordinate conversion unit 7 in accordance with the phase θ. Are further converted into three-phase voltage control signals v u , v v , v w by a two-phase / three-phase converter 8.

【0006】誘導電動機1の速度制御系は、パルスピッ
クアップ9と速度検出回路10による速度検出部を有し
てフィードバック制御を行う。位置制御器11は、エレ
ベータかごの呼び階や着床階に応じた加速と定速及び減
速領域からなるパターンとした速度指令の他、昇降開始
時の加速度指令及び乗員数(重量計測)に応じた荷重指
令を発生する。速度制御部12は、位置制御器11から
の速度指令と加速度指令及び荷重指令から速度設定値を
ディジタル演算で求め、この速度設定値と速度検出信号
ωrの偏差を比例積分(PI)演算した結果をトルク指
令T*として得る。
[0006] The speed control system of the induction motor 1 has a speed detection unit including a pulse pickup 9 and a speed detection circuit 10 to perform feedback control. The position controller 11 responds to not only the acceleration command according to the elevator car floor or the landing floor, but also the speed command in a pattern consisting of a constant speed and a deceleration area, as well as the acceleration command at the start of elevating and the number of occupants (weight measurement). Generates a load command. Speed control unit 12 obtains a digital calculating the speed setting value from the speed command and the acceleration command and the load command from the position controller 11, proportional integral (PI) calculation for the deviation of the speed setting value and the speed detection signal omega r The result is obtained as a torque command T *.

【0007】磁束・電流指令演算部13は、トルク指令
T*を二次磁束指令λ*とトルク電流指令iq*に分離
し、トルク電流指令iq*は直接に電流制御部3への指
令とし、二次磁束指令λ*には速度検出信号ωrによる
補正をする。励磁電流演算部14は、二次磁束指令λ*
から励磁電流指令id*を求めて電流制御部3への指令
とする。
The magnetic flux / current command calculator 13 separates the torque command T * into a secondary magnetic flux command λ * and a torque current command iq *, and the torque current command iq * is directly sent to the current controller 3. and then, the correction by the speed detection signal ω r in the secondary flux command λ *. The exciting current calculation unit 14 outputs the secondary magnetic flux command λ *
, An excitation current command id * is obtained as a command to the current control unit 3.

【0008】滑り角周波数演算部15は、励磁電流演算
部14で求めた磁束λ(又は励磁電流指令id*)とト
ルク電流指令iq*及び電動機の二次時定数τ2から滑
り角周波数ωsを求める。加算器16は、滑り角周波数
ωsと速度検出信号ωrを加算して一次角周波数ωを求め
る。積分器17は、一次角周波数ωを積分して回転位相
θを求める。
[0008] Slip angular frequency arithmetic unit 15, flux lambda (or excitation current command i d *) and the torque current command iq * and the slip angular frequency from the secondary time constant tau 2 of the motor ω determined by the excitation current calculation unit 14 Ask for s . The adder 16 obtains the primary angular frequency omega by adding the slip angular frequency omega s and the speed detection signal omega r. The integrator 17 calculates the rotational phase θ by integrating the primary angular frequency ω.

【0009】[0009]

【発明が解決しようとする課題】従来のベクトル制御装
置は、過渡状態でのトルク変動を防止するために、磁束
・電流指令演算部13では、定出力運転領域を除いて、
二次磁束指令λ*(励磁電流指令id*)を運転状態に
関係なく常に一定にする。このため、負荷が軽い(エレ
ベータでは、かごの重さとカウンタ・ウエイトの重さが
釣り合った状態での一定速度運転中)においても、負荷
が重いときと同じ励磁電流を流すことになり、軽負荷時
には鉄損の割合が大きくなり、電動機での電気−機械変
換効率が低下する。
In the conventional vector control apparatus, in order to prevent torque fluctuation in a transient state, the magnetic flux / current command calculation unit 13 excludes a constant output operation region except for a constant output operation region.
The secondary magnetic flux command λ * (excitation current command id *) is always kept constant regardless of the operation state. For this reason, even when the load is light (in an elevator, the vehicle is operating at a constant speed with the weight of the car and the weight of the counterweight balanced), the same exciting current flows as when the load is heavy, and the light load is reduced. At times, the ratio of iron loss increases, and the electric-mechanical conversion efficiency of the motor decreases.

【0010】この課題を解決するため、電気自動車用誘
導電動機のベクトル制御装置では、負荷に応じて励磁電
流を変化させることで効率を最大限に高めようとする方
式が提案されている。この方式は、鉄損を考慮したベク
トル制御時の電動機等価回路より、励磁分電流とトルク
分電流の電流比に着目し、任意の負荷に対して効率を最
大とする簡素な条件式を導き、この条件式に基づいて最
大効率制御を得るもので、以下に最大効率制御方式を原
理的に説明する。
In order to solve this problem, in a vector control device for an induction motor for an electric vehicle, there has been proposed a method of maximizing the efficiency by changing an exciting current according to a load. This method focuses on the current ratio between the exciting component current and the torque component current from the motor equivalent circuit at the time of vector control taking into account iron loss, and derives a simple conditional expression that maximizes the efficiency for any load. The maximum efficiency control is obtained based on this conditional expression. The maximum efficiency control method will be described below in principle.

【0011】誘導電動機をベクトル制御した場合の等価
回路は図6で表すことができる。ここでの各部定数は、
通常のT型等価回路の定数になる、L1を一次自己イン
ダクタンス、L2を二次自己インダクタンス、Rmを等価
鉄損抵抗、Mを相互インダクタンス、R1を一次抵抗、
2を二次抵抗とすると、下記式の関係になる。
FIG. 6 shows an equivalent circuit when the induction motor is controlled by the vector. Each part constant here is
It becomes constant in a normal T-type equivalent circuit, L 1 the primary self-inductance, L 2 a secondary self-inductance, equivalent iron loss resistance R m, mutual inductance, primary resistance R 1 to M,
Assuming that R 2 is a secondary resistance, the following equation is obtained.

【0012】[0012]

【数1】Lσ=(L12−M2)/L2 RC=α{(ωM)2/Rm} …(1) R2’=α22 M’=αM α=M/L2 ω:電源角周波数 上記の等価回路において、励磁分電流id、トルク分電
流iqとして、鉄損を考慮したベクトル制御を行うと、
一次電流I1及び滑り角周波数ωSは次式になる。
Lσ = (L 1 L 2 −M 2 ) / L 2 RC = α {(ωM) 2 / R m } (1) R 2 ′ = α 2 R 2 M ′ = αM α = M / L 2 omega: in power supply angular frequency above the equivalent circuit, the exciting component current i d, as torque current i q, Doing vector control in consideration of iron loss,
The primary current I 1 and the slip angle frequency ω S are given by the following equations.

【0013】[0013]

【数2】 (Equation 2)

【0014】ここで、icは鉄損分電流であり、次式に
なる。
Here, ic is the iron loss current, and is given by the following equation.

【0015】[0015]

【数3】 ic=ωM’id/Rc=Rmd/(ωM) …(4) また、発生トルクTは、極対数pとすると、次式にな
る。
Equation 3] i c = ωM'i d / R c = R m i d / (ωM) ... (4) In addition, the torque T, when the pole pairs p, becomes the following equation.

【0016】[0016]

【数4】T=3pM’idq …(5) 励磁電流idは、定出力範囲を考慮し、基底速度ω0以下
では一定の値idmaxに、それ以上の速度では電動機の端
子電圧がほぼ一定になるように、次式で弱め界磁制御を
行う。
Equation 4] T = 3pM'i d i q ... ( 5) exciting current i d takes into account the constant output range, a constant value i dmax in the base speed omega 0 or less, the terminal of the motor at higher speed Field weakening control is performed by the following equation so that the voltage becomes substantially constant.

【0017】[0017]

【数5】id=idmax×ω0/ωr …(6) ωr:回転子角速度 また、誘導電動機の全損失Wtotalについては、図6の
等価回路及び前記の(2)式と(4)式より、次の
(7)式で表される。ただし、Rm 2≪(ωM)2と仮定
している。
Equation 5] i d = i dmax × ω 0 / ω r ... (6) ω r: rotor speed also for total loss W total of the induction motor, equivalent circuits above and (2) of FIG. 6 expression and From the expression (4), it is expressed by the following expression (7). However, it is assumed that R m 2 ≪ (ωM) 2 .

【0018】[0018]

【数6】 Wtotal=3R11 2+3R2’iq 2+3RCc 2+Wm =3〔(R1+R2’)iq 2+(R1+Rm’)id 2 +2{Rm/(ωM)}R1dq〕+Wm …(7) Wm:機械損 Rm’=αRm なお、等価鉄損抵抗Rmは、電源周波数により変化し、
電源周波数fの1.6乗に比例するものとし、定格周波
数f0における鉄損抵抗Rm0とすると、次式の関係にな
る。
[6] W total = 3R 1 I 1 2 + 3R 2 'i q 2 + 3R C i c 2 + W m = 3 [(R 1 + R 2') i q 2 + (R 1 + R m ') i d 2 +2 {R m / (ωM)} R 1 i d i q ] + W m ... (7) W m: mechanical loss R m '= [alpha] R m Incidentally, the equivalent iron loss resistance R m will vary by power frequency,
Assuming that the power loss frequency is proportional to the 1.6th power and the iron loss resistance R m0 at the rated frequency f 0 , the following relationship is obtained.

【0019】[0019]

【数7】Rm=Rm0×(f/f01・6 …(8) また、機械損は、次式のように回転子角速度の2乗に比
例すると仮定する。
R m = R m0 × (f / f 0 ) 1 · 6 (8) Further, it is assumed that the mechanical loss is proportional to the square of the rotor angular velocity as in the following equation.

【0020】[0020]

【数8】Wm=Km×ωr 2 …(9) これらの関係と図6の等価回路から、任意の速度及び負
荷トルクに対して、電動機の損失を求めることができ
る。
W m = K m × ω r 2 (9) From these relationships and the equivalent circuit of FIG. 6, the loss of the motor can be obtained for an arbitrary speed and load torque.

【0021】一方、電動機の軸出力Poutは、次式にな
る。
On the other hand, the shaft output P out of the motor is given by the following equation.

【0022】[0022]

【数9】Pout=ωr×T−Wm …(10) したがって、電動機の効率η(%)は、次式になる。P out = ω r × T−W m (10) Accordingly, the efficiency η (%) of the motor is given by the following equation.

【0023】[0023]

【数10】 η=100×Pout/(Pout+Wtotal) …(11) ここで、トルク分電流と励磁分電流の比をAとおくと、Η = 100 × P out / (P out + W total ) (11) Here, assuming that the ratio between the torque component current and the excitation component current is A,

【0024】[0024]

【数11】A=(iq/id) …(12) 前記の(5)式のトルクより、次式が得られる。A = ( iq / id ) (12) From the torque of the above equation (5), the following equation is obtained.

【0025】[0025]

【数12】idq=T/3pM’ …(13) iq 2=(T/3pM’)A …(14) id 2=T/(3pM’A) …(15) これらを前記の(7)式に代入すると、電動機損失W
totalを比Aの関数として表すことができる。
Equation 12] i d i q = T / 3pM '... (13) i q 2 = (T / 3pM') A ... (14) i d 2 = T / (3pM'A) ... (15) wherein these Substituting into equation (7), the motor loss W
total can be expressed as a function of the ratio A.

【0026】[0026]

【数13】 Wtotal=(R1+R2’)(T/3pM’)A +(R1+Rm’)T/(3pM’A) +2{Rm/(ωM)}R1T/(pM’)+Wm …(16) ここで、任意の負荷状態において、電動機の効率を最大
とするには、その運転状態における損失を最小とすれば
よい。したがって、∂Wtotal/∂A=0として、A
(=iq/id)について解くことによって効率を最大と
する条件を求めることができ、次式で表される。
W total = (R 1 + R 2 ') (T / 3 pM') A + (R 1 + R m ') T / (3 pM'A) +2 {R m / (ωM)} R 1 T / ( pM ′) + W m (16) Here, in order to maximize the efficiency of the electric motor in an arbitrary load state, it is sufficient to minimize the loss in the operating state. Therefore, assuming that ∂W total / ∂A = 0, A
By solving for (= iq / id ), a condition that maximizes the efficiency can be obtained, and is expressed by the following equation.

【0027】[0027]

【数14】 [Equation 14]

【0028】ただし、上記の(17)式の導出におい
て、厳密にはω及びRmもAの関数になり、微分の影響
を受けるが、回転数を固定した場合にはこれらの値はほ
ぼ一定の値と考えられる。
However, in the derivation of the above equation (17), strictly speaking, ω and R m also become functions of A and are affected by the differentiation. However, when the rotation speed is fixed, these values are almost constant. Value.

【0029】したがって、トルク電流iqと励磁電流id
の比Aを前記の(17)式で決定でき、与えられたトル
ク指令Tに対して、最大効率になる電流指令値iq,id
が次式で求められる。
Therefore, the torque current iq and the exciting current id
The ratio A can be determined by the above equation (17) of, for a given torque command T, becomes maximum efficiency current command value i q, i d
Is obtained by the following equation.

【0030】[0030]

【数15】 (Equation 15)

【0031】図7は、最大効率制御を行うためのエレベ
ータ用ベクトル制御装置のブロック図であり、同図が図
5と異なる部分は、磁束・電流指令演算部13に代えて
最大効率制御部18を設け、この最大効率制御部18に
よってトルク指令T*に対して前記の(18)、(1
9)式の演算を行う(励磁電流idについてはそれに代
えて磁束λを求める)ことで、常に最大効率にしたベク
トル制御を行う。
FIG. 7 is a block diagram of an elevator vector control device for performing maximum efficiency control. In FIG. 7, a portion different from FIG. 5 is a maximum efficiency control portion 18 instead of the magnetic flux / current command calculation portion 13. The maximum efficiency control unit 18 provides the torque command T * with the above (18), (1)
9) For the performs computation (exciting current i d seek flux λ Alternatively) that is, always perform vector control in the maximum efficiency.

【0032】また、図7では、図5の励磁電流演算部1
4に代えて、高速磁束制御部14Aを設ける。この制御
部14Aは、励磁電流変化に対するトルクの応答遅れを
改善するものである。
In FIG. 7, the exciting current calculator 1 shown in FIG.
4 is provided with a high-speed magnetic flux control section 14A. The control section 14A improves the response delay of the torque with respect to the change in the exciting current.

【0033】すなわち、励磁電流の変化に対して二次磁
束の応答が遅れ、結果的にトルクの応答遅れが生じる。
この二次磁束の応答遅れを改善するため、高速磁束制御
部14Aは、磁束指令λ*を疑似微分して励磁電流指令
d*を得る。
That is, the response of the secondary magnetic flux to the change of the exciting current is delayed, and as a result, the response of the torque is delayed.
In order to improve the response delay of the secondary magnetic flux, the high-speed magnetic flux controller 14A pseudo-differentiates the magnetic flux command λ * to obtain an excitation current command id *.

【0034】例えば、高速磁束制御部14Aは、図8に
示す演算ブロックに構成する。同図において、磁束指令
λ*と磁束推定値λeの関係は次式になる。
For example, the high-speed magnetic flux control unit 14A is configured as an operation block shown in FIG. In the figure, the relationship between the magnetic flux command λ * and the magnetic flux estimation value λe is as follows.

【0035】[0035]

【数16】 (Equation 16)

【0036】この式で比例ゲインGの値を適当に選ぶこ
とによって、二次磁束応答の時定数を二次時定数τ2
1/(1+G)にすることができ、トルクの応答性が改
善される。
By appropriately selecting the value of the proportional gain G in this equation, the time constant of the secondary magnetic flux response can be set to 1 / (1 + G) of the secondary time constant τ 2 , thereby improving the torque response. Is done.

【0037】以上のように、従来装置は、最大効率制御
部18に高速磁束制御部14Aを設けることでトルクの
追従遅れを改善しようとするが、トルクの追従遅れを零
にすることはできない。このトルクの追従遅れの発生
は、エレベータ用ベクトル制御装置に最大効率制御を採
用した場合、乗り心地を悪くすることがある。
As described above, the conventional device attempts to improve the torque tracking delay by providing the high-speed magnetic flux controller 14A in the maximum efficiency controller 18, but cannot reduce the torque tracking delay to zero. The occurrence of the delay in following the torque may deteriorate ride comfort when the maximum efficiency control is employed in the vector control device for the elevator.

【0038】本発明の目的は、最大効率制御を採用した
ベクトル制御装置におけるトルクの追従遅れによる乗り
心地の悪化を防止したベクトル制御装置を提供すること
にある。
[0038] It is an object of the present invention to provide a vector control device that employs maximum efficiency control and prevents a deterioration in ride quality due to a delay in following a torque.

【0039】[0039]

【課題を解決するための手段】本発明は、ベクトル制御
でトルク追従遅れが問題となるのは、電動機の負荷が急
速にかつ大きく変化する場合であり、それ以外では問題
とならないことに着目し、エレベータの定速運転状態な
ど負荷の変動が比較的小さい状態では通常のベクトル制
御から最大効率制御に切換えるようにしたものである。
負荷の変動が小さい状態は、速度指令又は速度検出値が
加速または減速領域を過ぎた定速運転領域の高い速度に
あるとき、又は加速度指令が零に近いときとして判定で
きる。
The present invention focuses on the fact that the delay in following the torque in the vector control is a problem when the load of the motor is rapidly and largely changed, and is not a problem in other cases. In a state where load fluctuation is relatively small, such as a constant speed operation state of an elevator, the normal vector control is switched to the maximum efficiency control.
A state in which the load fluctuation is small can be determined as a case where the speed command or the detected speed value is at a high speed in the constant speed operation region past the acceleration or deceleration region, or as a case where the acceleration command is close to zero.

【0040】また、本発明は、エレベータの乗り心地が
問題となるのは、エレベータかごに乗員がいる場合であ
ることから、エレベータかごに人が乗っていない場合に
はエレベータの加速・定速・減速の全運転領域で最大効
率制御を行うようにし、さらには上記の負荷状態による
制御切換えと組み合わせたものである。エレベータかご
に乗員がいない状態は、位置制御器からの荷重指令等か
ら判定できる。
Also, according to the present invention, the ride comfort of the elevator becomes a problem when there is an occupant in the elevator car. Therefore, when no person is on the elevator car, the acceleration, constant speed, The maximum efficiency control is performed in the entire deceleration operation range, and further combined with the above-described control switching based on the load state. The state where there is no occupant in the elevator car can be determined from a load command or the like from the position controller.

【0041】以上のことから、本発明は、以下の構成を
特徴とする。
As described above, the present invention has the following features.

【0042】(第1の発明)エレベータの駆動源を誘導
電動機とし、速度制御系に得るトルク指令から磁束・電
流指令演算手段によってトルク電流指令と励磁電流指令
を得て前記誘導電動機をベクトル制御するエレベータ用
誘導電動機のベクトル制御装置において、前記トルク指
令から得る前記励磁電流指令とトルク電流指令の比を負
荷に応じて変化させることで最大効率運転を得ることが
できる最大効率制御手段と、前記速度制御系の速度指令
が負荷変動の小さい範囲にあるときに前記最大効率制御
手段からの励磁電流指令とトルク電流指令に切換え、前
記範囲以外のときに前記磁束・電流指令演算手段からの
励磁電流指令とトルク電流指令に切換える制御切換指令
発生手段と、を備えたことを特徴とする。
(First Invention) An induction motor is used as a drive source of an elevator, and a torque current command and an excitation current command are obtained by a magnetic flux / current command calculating means from a torque command obtained in a speed control system, and the induction motor is vector-controlled. A vector control device for an induction motor for an elevator, wherein a maximum efficiency control means capable of obtaining a maximum efficiency operation by changing a ratio of the excitation current command and the torque current command obtained from the torque command according to a load; and When the speed command of the control system is in a range where the load variation is small, the excitation current command and the torque current command are switched from the maximum efficiency control means. And a control switching command generating means for switching to a torque current command.

【0043】(第2の発明)前記制御切換指令発生手段
は、誘導電動機の速度検出信号が負荷変動の小さい範囲
にあるときに前記最大効率制御手段からの励磁電流指令
とトルク電流指令に切換え、前記範囲以外のときに前記
磁束・電流指令演算手段からの励磁電流指令とトルク電
流指令に切換えることを特徴とする。
(Second invention) The control switching command generating means switches between an exciting current command and a torque current command from the maximum efficiency control means when the speed detection signal of the induction motor is in a range where the load variation is small. When the value is out of the range, the magnetic flux / current command calculation means switches between the excitation current command and the torque current command.

【0044】(第3の発明)前記制御切換指令発生手段
は、速度制御系の加速度指令が零に近い範囲のときに前
記最大効率制御手段からの励磁電流指令とトルク電流指
令に切換え、前記範囲以外のときに前記磁束・電流指令
演算手段からの励磁電流指令とトルク電流指令に切換え
ることを特徴とする。
(Third invention) The control switching command generating means switches between an exciting current command and a torque current command from the maximum efficiency control means when an acceleration command of a speed control system is in a range close to zero. At other times, the switching between the excitation current command and the torque current command from the magnetic flux / current command calculation means is performed.

【0045】(第4の発明)前記制御切換指令発生手段
は、エレベータかご内に乗員がいないときに前記最大効
率制御手段からの励磁電流指令とトルク電流指令に切換
え、エレベータかご内に乗員がいるときに前記磁束・電
流指令演算手段からの励磁電流指令とトルク電流指令に
切換えることを特徴とする。
(Fourth Invention) The control switching command generation means switches between the excitation current command and the torque current command from the maximum efficiency control means when there is no occupant in the elevator car, and the occupant is in the elevator car. It is characterized in that at the time, switching is made between an excitation current command and a torque current command from the magnetic flux / current command calculation means.

【0046】[0046]

【発明の実施の形態】(第1の実施形態)図1は、本発
明の実施形態を示すベクトル制御装置のブロック図であ
る。同図が図7と異なる部分は、図5の磁束・電流指令
演算部13を最大効率制御部18に並列的に設け、ま
た、励磁電流演算部14を高速磁束演算部14Aに並列
的に設け、これらの出力を制御切換指令発生器19で切
換える点にある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 is a block diagram of a vector control device showing an embodiment of the present invention. 7 is different from FIG. 7 in that the magnetic flux / current command calculation unit 13 in FIG. 5 is provided in parallel with the maximum efficiency control unit 18 and the excitation current calculation unit 14 is provided in parallel with the high-speed magnetic flux calculation unit 14A. These outputs are switched by the control switching command generator 19.

【0047】制御切換指令発生器19は、位置制御器1
1からの速度指令と制御切換速度設定値との大小を比較
し、速度指令が設定値以下のときには演算部13と励磁
電流演算部14を組み合わせた磁束・電流指令演算手段
による通常のベクトル制御(図5の構成)にし、速度指
令が設定値を越えた状態では制御部18と高速磁束制御
部14Aを組み合わせた最大効率制御手段による最大効
率制御(図7の構成)に切換える。なお、滑り角周波数
演算部15への入力になる磁束λ(又は励磁電流指令i
d*)も切換える。
The control switching command generator 19 is provided with the position controller 1
The magnitude of the speed command from No. 1 and the control switching speed set value are compared, and when the speed command is equal to or less than the set value, normal vector control by magnetic flux / current command calculation means combining the calculation unit 13 and the excitation current calculation unit 14 ( When the speed command exceeds the set value, the control is switched to the maximum efficiency control (the configuration of FIG. 7) by the maximum efficiency control means combining the control unit 18 and the high-speed magnetic flux control unit 14A. Note that the magnetic flux λ (or the excitation current command i) to be input to the slip angle frequency calculation unit 15
d *) is also switched.

【0048】ここで、制御切換指令発生器19の設定値
は、エレベータの定速運転状態の速度に近い値、すなわ
ち、加速運転から定速運転に移行する直前の速度、又は
定速運転から減速運転に移行する直前の速度に相当する
値にする。
Here, the set value of the control switching command generator 19 is a value close to the speed in the constant speed operation state of the elevator, that is, the speed immediately before shifting from the acceleration operation to the constant speed operation, or the deceleration from the constant speed operation. Set a value that corresponds to the speed immediately before shifting to operation.

【0049】本実施形態によれば、エレベータが定速運
転状態など負荷変動の小さいときのみ最大効率制御を行
い、その他の加速・減速運転時など負荷変動の大きいと
きには通常のベクトル制御を行うことにより、運転効率
を高めながら乗り心地の悪化を防止することができる。
According to this embodiment, the maximum efficiency control is performed only when the load fluctuation is small such as when the elevator is operating at a constant speed, and the normal vector control is performed when the load fluctuation is large such as during other acceleration / deceleration operations. In addition, it is possible to prevent the ride comfort from deteriorating while increasing the driving efficiency.

【0050】(第2の実施形態)前記の第1の実施形態
では、位置制御器11からの速度指令によってエレベー
タの定速運転状態を判定するため、何らかの要因で速度
指令に対する実際の速度の追従が遅れた場合には、負荷
の変動が大きい場合にも最大効率制御で運転してしま
う。
(Second Embodiment) In the first embodiment, since the constant speed operation state of the elevator is determined by the speed command from the position controller 11, the actual speed follows the speed command for some reason. Is delayed, the vehicle is operated under the maximum efficiency control even when the load fluctuates greatly.

【0051】そこで、本実施形態では、図2に要部構成
図を示すように、制御切換指令発生器19では速度検出
信号ωrと制御切換速度設定値とを比較し、速度検出信
号ωrが設定値以下のときには演算部13と励磁電流演
算部14の組み合わせによる通常のベクトル制御にし、
速度検出信号が設定値を越えた状態では制御部18と高
速磁束制御部14Aの組み合わせによる最大効率制御に
切換える。
[0051] Therefore, in this embodiment, as showing a main configuration diagram in FIG. 2, compared with the control switching speed set value and control switching command generator 19 in the speed detection signal omega r, the speed detection signal omega r Is less than or equal to the set value, normal vector control is performed by a combination of the calculation unit 13 and the excitation current calculation unit 14,
When the speed detection signal exceeds the set value, the control is switched to the maximum efficiency control by the combination of the control unit 18 and the high-speed magnetic flux control unit 14A.

【0052】本実施形態によれば、第1の実施形態の作
用効果に加えて、負荷の変動が大きい状態で最大効率制
御に切換えるのを確実に防止できる。
According to the present embodiment, in addition to the operation and effect of the first embodiment, it is possible to reliably prevent switching to the maximum efficiency control in a state where the load fluctuates greatly.

【0053】(第3の実施形態)エレベータ用ベクトル
制御装置では、乗り心地をよくするため、位置制御器1
1は速度指令の他に、加速度指令を発生する。この加速
度指令が零の場合には、エレベータを加減速しないため
負荷トルクの変動が小さい。
(Third Embodiment) In the elevator vector control device, the position controller 1 is used to improve the riding comfort.
1 generates an acceleration command in addition to a speed command. When the acceleration command is zero, the load torque does not fluctuate because the elevator is not accelerated or decelerated.

【0054】そこで、本実施形態では、図3に要部構成
図を示すように、制御切換指令発生器19では加速度指
令が零に近いか否かを判定し、加速度指令が零に近い場
合には制御部18と高速磁束制御部14Aの組み合わせ
による最大効率制御にし、それ以外の場合には演算部1
3と励磁電流演算部14の組み合わせによる通常のベク
トル制御に切換える。
In this embodiment, as shown in FIG. 3, the control switching command generator 19 determines whether or not the acceleration command is close to zero. Is the maximum efficiency control by the combination of the control unit 18 and the high-speed magnetic flux control unit 14A.
The control is switched to the normal vector control by the combination of No. 3 and the exciting current calculation unit 14.

【0055】本実施形態においても、乗り心地の悪化を
防ぎながら効率の向上を図ることができる。
Also in the present embodiment, it is possible to improve the efficiency while preventing the ride comfort from deteriorating.

【0056】なお、本実施形態は、前記の第1又は第2
の実施形態との組み合わせで最大効率制御と通常のベク
トル制御に切換えることもできる。
The present embodiment is different from the first or second embodiment described above.
It is also possible to switch between maximum efficiency control and normal vector control in combination with the embodiment.

【0057】(第4の実施形態)エレベータ用ベクトル
制御装置では、かご内に人が乗っていない場合には、加
速・定速・減速の全運転領域において最大効率制御で運
転しても乗り心地には無関係になる。
(Fourth Embodiment) In the elevator vector control device, when no person is in the car, the ride comfort is maintained even when the vehicle is operated under the maximum efficiency control in all the acceleration, constant speed, and deceleration operation regions. Become irrelevant.

【0058】そこで、本実施形態では、エレベータかご
に人が乗っていないという情報を得たときには、全運転
領域において最大効率制御で運転するようにしたもので
ある。
Therefore, in this embodiment, when the information that no person is on the elevator car is obtained, the operation is performed with the maximum efficiency control in the entire operation range.

【0059】位置制御器11ではエレベータかごに人が
乗っているか否かによってトルク指令を変えるよう、荷
重指令を発生する。本実施形態では、図4に要部構成図
を示すように、制御切換指令発生器19は位置制御器1
1からの荷重指令を取り込み、この荷重指令が乗員なし
の場合には最大効率制御にし、荷重指令が乗員ありの場
合には通常のベクトル制御に切換える。
The position controller 11 generates a load command so as to change the torque command depending on whether or not a person is on the elevator car. In the present embodiment, as shown in the main part configuration diagram of FIG.
The load command from No. 1 is fetched, and when the load command does not include the occupant, the maximum efficiency control is performed. When the load command includes the occupant, the control is switched to the normal vector control.

【0060】なお、エレベータかごに人が乗っているか
否かの判定は、荷重指令から得るに限らず、例えば、エ
レベータかごの入口に設けたセンサーによって人の乗り
降りを検出すること、さらには昇降開始時の電動機電流
の大きさから検出することでもよい。
The determination as to whether or not a person is riding in the elevator car is not limited to being obtained from the load command. For example, a sensor provided at the entrance of the elevator car may be used to detect the getting on and off of the person, It may be detected from the magnitude of the motor current at the time.

【0061】また、本実施形態は、前記の各実施形態と
組み合わせることができる。例えば、荷重指令が乗員あ
りの場合であっても、速度指令が制御切換速度設定値を
越えた状態では最大効率制御に切換えるようにする。こ
のような組み合わせにより、乗り心地を悪化させること
なく効率を最大限にした運転が可能となる。
This embodiment can be combined with the above embodiments. For example, even when the load command is for an occupant, the control is switched to the maximum efficiency control when the speed command exceeds the control switching speed set value. With such a combination, it is possible to drive with maximum efficiency without deteriorating the riding comfort.

【0062】以上までの各実施形態における最大効率制
御と通常のベクトル制御の切換えは、値の急激な変化で
トルクショックが発生するのを避けるため、徐々に切換
えるのが好ましい。例えば、トルク電流指令iq*を演
算部13の出力から最大効率制御部18の出力に切換え
るのに、演算部13の出力から制御部18の出力に向け
て一定の傾斜や時定数を持たせて徐々に変化させる。
The switching between the maximum efficiency control and the normal vector control in each of the above embodiments is preferably performed gradually in order to avoid the occurrence of torque shock due to a rapid change in the value. For example, in order to switch the torque current command iq * from the output of the calculation unit 13 to the output of the maximum efficiency control unit 18, a constant slope or a time constant is provided from the output of the calculation unit 13 to the output of the control unit 18. And gradually change it.

【0063】[0063]

【発明の効果】以上のとおり、本発明によれば、負荷の
変動が比較的小さい状態では通常のベクトル制御から最
大効率制御に切換えるようにし、さらにエレベータかご
に人が乗っていない場合にはエレベータの全運転領域で
最大効率制御を行うようにしたため、エレベータの乗り
心地を悪化させることなく、効率のよいベクトル制御が
できる。
As described above, according to the present invention, the normal vector control is switched to the maximum efficiency control when the load fluctuation is relatively small, and the elevator is controlled when no person is on the elevator car. Since the maximum efficiency control is performed in the entire operation range of, the efficient vector control can be performed without deteriorating the riding comfort of the elevator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示すベクトル制御装
置のブロック図。
FIG. 1 is a block diagram of a vector control device according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態を示す要部ブロック
図。
FIG. 2 is a main part block diagram showing a second embodiment of the present invention.

【図3】本発明の第3の実施形態を示す要部ブロック
図。
FIG. 3 is a main part block diagram showing a third embodiment of the present invention.

【図4】本発明の第4の実施形態を示す要部ブロック
図。
FIG. 4 is a main part block diagram showing a fourth embodiment of the present invention.

【図5】従来の一般的なエレベータ用ベクトル制御装置
のブロック図。
FIG. 5 is a block diagram of a conventional general elevator vector control device.

【図6】ベクトル制御時の誘導電動機の等価回路。FIG. 6 is an equivalent circuit of an induction motor at the time of vector control.

【図7】従来の最大効率制御を用いたエレベータ用ベク
トル制御装置のブロック図。
FIG. 7 is a block diagram of a conventional elevator vector control device using maximum efficiency control.

【図8】図7における高速磁束制御部のブロック図。FIG. 8 is a block diagram of a high-speed magnetic flux controller in FIG. 7;

【符号の説明】[Explanation of symbols]

1…誘導電動機 2…インバータ 3…電流制御部 11…位置制御器 12…速度制御部 13…磁束・電流指令演算部 14…励磁電流演算部 18…最大効率制御部 19…制御切換指令発生器 DESCRIPTION OF SYMBOLS 1 ... Induction motor 2 ... Inverter 3 ... Current control unit 11 ... Position controller 12 ... Speed control unit 13 ... Magnetic flux / current command calculation unit 14 ... Excitation current calculation unit 18 ... Maximum efficiency control unit 19 ... Control switching command generator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 エレベータの駆動源を誘導電動機とし、
速度制御系に得るトルク指令から磁束・電流指令演算手
段によってトルク電流指令と励磁電流指令を得て前記誘
導電動機をベクトル制御するエレベータ用誘導電動機の
ベクトル制御装置において、 前記トルク指令から得る前記励磁電流指令とトルク電流
指令の比を負荷に応じて変化させることで最大効率運転
を得ることができる最大効率制御手段と、 前記速度制御系の速度指令が負荷変動の小さい範囲にあ
るときに前記最大効率制御手段からの励磁電流指令とト
ルク電流指令に切換え、前記範囲以外のときに前記磁束
・電流指令演算手段からの励磁電流指令とトルク電流指
令に切換える制御切換指令発生手段と、を備えたことを
特徴とするエレベータ用誘導電動機のベクトル制御装
置。
1. A drive source for an elevator is an induction motor,
A vector control device for an induction motor for an elevator that vector-controls the induction motor by obtaining a torque current command and an excitation current command by a magnetic flux / current command calculation unit from a torque command obtained in a speed control system, wherein the excitation current obtained from the torque command A maximum efficiency control means capable of obtaining a maximum efficiency operation by changing a ratio between the command and the torque current command in accordance with the load; and the maximum efficiency when the speed command of the speed control system is within a small load variation range. Control switching command generation means for switching between the excitation current command and the torque current command from the control means and switching between the excitation current command and the torque current command from the magnetic flux / current command calculation means when the value is out of the range. A vector control device for induction motors for elevators.
【請求項2】 エレベータの駆動源を誘導電動機とし、
速度制御系に得るトルク指令から磁束・電流指令演算手
段によってトルク電流指令と励磁電流指令を得て前記誘
導電動機をベクトル制御するエレベータ用誘導電動機の
ベクトル制御装置において、 前記トルク指令から得る前記励磁電流指令とトルク電流
指令の比を負荷に応じて変化させることで最大効率運転
を得ることができる最大効率制御手段と、 誘導電動機の速度検出信号が負荷変動の小さい範囲にあ
るときに前記最大効率制御手段からの励磁電流指令とト
ルク電流指令に切換え、前記範囲以外のときに前記磁束
・電流指令演算手段からの励磁電流指令とトルク電流指
令に切換える制御切換指令発生手段と、を備えたことを
特徴とするエレベータ用誘導電動機のベクトル制御装
置。
2. An elevator driving source is an induction motor,
A vector control device for an induction motor for an elevator that vector-controls the induction motor by obtaining a torque current command and an excitation current command by a magnetic flux / current command calculation unit from a torque command obtained in a speed control system, wherein the excitation current obtained from the torque command A maximum efficiency control means capable of obtaining a maximum efficiency operation by changing a ratio of a command to a torque current command according to a load; and the maximum efficiency control when the speed detection signal of the induction motor is within a small load variation range. Control switching command generation means for switching between an excitation current command and a torque current command from the means, and switching to an excitation current command and a torque current command from the magnetic flux / current command calculation means when the value is out of the range. A vector control device for an elevator induction motor.
【請求項3】 エレベータの駆動源を誘導電動機とし、
速度制御系に得るトルク指令から磁束・電流指令演算手
段によってトルク電流指令と励磁電流指令を得て前記誘
導電動機をベクトル制御するエレベータ用誘導電動機の
ベクトル制御装置において、 前記トルク指令から得る前記励磁電流指令とトルク電流
指令の比を負荷に応じて変化させることで最大効率運転
を得ることができる最大効率制御手段と、 速度制御系の加速度指令が零に近い範囲のときに前記最
大効率制御手段からの励磁電流指令とトルク電流指令に
切換え、前記範囲以外のときに前記磁束・電流指令演算
手段からの励磁電流指令とトルク電流指令に切換える制
御切換指令発生手段と、を備えたことを特徴とするエレ
ベータ用誘導電動機のベクトル制御装置。
3. An induction motor is used as a drive source of the elevator,
A vector control device for an induction motor for an elevator that vector-controls the induction motor by obtaining a torque current command and an excitation current command by a magnetic flux / current command calculation unit from a torque command obtained in a speed control system, wherein the excitation current obtained from the torque command A maximum efficiency control means capable of obtaining a maximum efficiency operation by changing a ratio between the command and the torque current command in accordance with the load; and the maximum efficiency control means when the acceleration command of the speed control system is in a range close to zero. And a control switching command generating means for switching between the exciting current command and the torque current command from the magnetic flux / current command calculating means when the value is out of the range. Vector control device for elevator induction motors.
【請求項4】 エレベータの駆動源を誘導電動機とし、
速度制御系に得るトルク指令から磁束・電流指令演算手
段によってトルク電流指令と励磁電流指令を得て前記誘
導電動機をベクトル制御するエレベータ用誘導電動機の
ベクトル制御装置において、 前記トルク指令から得る前記励磁電流指令とトルク電流
指令の比を負荷に応じて変化させることで最大効率運転
を得ることができる最大効率制御手段と、 エレベータかご内に乗員がいないときに前記最大効率制
御手段からの励磁電流指令とトルク電流指令に切換え、
エレベータかご内に乗員がいるときに前記磁束・電流指
令演算手段からの励磁電流指令とトルク電流指令に切換
える制御切換指令発生手段と、を備えたことを特徴とす
るエレベータ用誘導電動機のベクトル制御装置。
4. An induction motor is used as a drive source of the elevator,
A vector control device for an induction motor for an elevator, which obtains a torque current command and an excitation current command from a torque command obtained in a speed control system by a magnetic flux / current command calculation means and vector-controls the induction motor, wherein the excitation current obtained from the torque command A maximum efficiency control means capable of obtaining a maximum efficiency operation by changing the ratio of the command and the torque current command according to the load; and an excitation current command from the maximum efficiency control means when there is no occupant in the elevator car. Switch to torque current command,
A vector control device for an induction motor for an elevator, comprising: control switching command generation means for switching between an excitation current command and a torque current command from the magnetic flux / current command calculation means when an occupant is in an elevator car. .
JP10357061A 1998-12-16 1998-12-16 Vector controller of induction motor for elevator Pending JP2000184800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10357061A JP2000184800A (en) 1998-12-16 1998-12-16 Vector controller of induction motor for elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10357061A JP2000184800A (en) 1998-12-16 1998-12-16 Vector controller of induction motor for elevator

Publications (1)

Publication Number Publication Date
JP2000184800A true JP2000184800A (en) 2000-06-30

Family

ID=18452190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10357061A Pending JP2000184800A (en) 1998-12-16 1998-12-16 Vector controller of induction motor for elevator

Country Status (1)

Country Link
JP (1) JP2000184800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050217A (en) * 2009-08-28 2011-03-10 Sumitomo Heavy Ind Ltd Controller for induction motor
JP2015130739A (en) * 2014-01-07 2015-07-16 ファナック株式会社 Motor controller capable of switching presence or absence of flux control application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050217A (en) * 2009-08-28 2011-03-10 Sumitomo Heavy Ind Ltd Controller for induction motor
JP2015130739A (en) * 2014-01-07 2015-07-16 ファナック株式会社 Motor controller capable of switching presence or absence of flux control application

Similar Documents

Publication Publication Date Title
KR100850415B1 (en) Vector controller of induction motor
US7902790B2 (en) Induction motor drive unit, motor drive system, and elevating system
EP1729407B1 (en) Controller of permanent magnet synchronous motor
JP3420146B2 (en) Leveling control device for elevator system
JPWO2009040884A1 (en) Electric motor control device
JPH07107772A (en) Drive control circuit of permanent magnet-type synchronous motor
JPH11299297A (en) Controller for permanent magnet synchronous motor
JP3731060B2 (en) Inertia calculation method and motor drive device
JP2001008486A (en) Controller for permanent magnet synchronous motor
JP2000308400A (en) Vector controller for induction motor of elevator
JP2003088194A (en) Motor drive system
JP4666354B2 (en) AC / AC power converter controller
JP4111599B2 (en) Control device for permanent magnet synchronous motor
JP3946689B2 (en) Electric vehicle control device
JPH10136699A (en) Motor control equipment
JPH09215115A (en) Operation controller of pole change motor
JP2000184800A (en) Vector controller of induction motor for elevator
JP2000095453A (en) Control device for elevator
CN114629408A (en) Motor driving method
JP3474730B2 (en) Vector control device for linear induction motor
JP4730493B2 (en) Synchronous motor controller
JP3472662B2 (en) Inverter device
JPH09233899A (en) Number-of-pole changing and driving device for motor
JP4120503B2 (en) Induction motor control method
JP4325090B2 (en) Vector controller for induction linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520