TW201436254A - Single-piece photovoltaic structure - Google Patents

Single-piece photovoltaic structure Download PDF

Info

Publication number
TW201436254A
TW201436254A TW102119713A TW102119713A TW201436254A TW 201436254 A TW201436254 A TW 201436254A TW 102119713 A TW102119713 A TW 102119713A TW 102119713 A TW102119713 A TW 102119713A TW 201436254 A TW201436254 A TW 201436254A
Authority
TW
Taiwan
Prior art keywords
layer
single piece
semiconductor material
large substrate
photovoltaic
Prior art date
Application number
TW102119713A
Other languages
Chinese (zh)
Inventor
Jose Briceno
Koji Matsumaru
Original Assignee
Nusola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/844,298 external-priority patent/US8952246B2/en
Application filed by Nusola Inc filed Critical Nusola Inc
Publication of TW201436254A publication Critical patent/TW201436254A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A material is manufactured from a single piece of semiconductor material. The semiconductor material can be an n-type semiconductor. Such a manufactured material may have a top layer with a crystalline structure, transitioning into a transition layer, further transitioning into an intermediate layer, and further transitioning to the bulk substrate layer. The orientation of the crystalline pores of the crystalline structure align in layers of the material. The transition layer or intermediate layer includes a material that is substantially equivalent to intrinsic semiconductor. Also described is a method for manufacturing a material from a single piece of semiconductor material by exposing a top surface to an energy source until the transformation of the top surface occurs, while the bulk of the material remains unaltered. The material may exhibit photovoltaic properties.

Description

單件光電伏打結構 Single piece photovoltaic structure 【優先權主張】[Priority claim]

本發明主張美國專利申請案號13/844,298的優先權,其於2013年3月15日申請。 The present invention claims priority from U.S. Patent Application Serial No. 13/844,298, filed on March 15, 2013.

本發明涉及一種自一半導體製造之光電伏打材料,更具體地說,本發明涉及一種自一單件半導體材料製造之新穎材料。 This invention relates to photovoltaic materials made from a semiconductor, and more particularly to novel materials made from a single piece of semiconductor material.

於此節所描述之方法係可被實現,但不必然為已經預先構想或實現的方法。因此除非有特別描述,不應該假設任何描述於此節的方法,經由此節之內容物的效力,而限定為先前技術。 The methods described in this section can be implemented, but are not necessarily a method that has been previously conceived or implemented. Therefore, unless specifically stated otherwise, any method described in this section should not be assumed to be limited to the prior art by the effectiveness of the contents of this section.

傳統上,製造光電伏打材料的方法一般需要許多添加於半導體之添加物。此添加物包含砷化鎵(GaAs),其毒性高並具有致癌性。當使用添加物於製造光電伏打材料之製程中時,將增加傷害健康及影響環境的風險。因此,對於減少使用 添加物之光電伏打材料製程的需求很高。 Traditionally, methods of making photovoltaic materials generally require many additives added to the semiconductor. This additive contains gallium arsenide (GaAs), which is highly toxic and carcinogenic. When using additives in the manufacturing process of photovoltaic materials, it will increase the risk of harm to health and environmental impact. Therefore, for reduced use There is a high demand for the process of adding photovoltaic materials.

傳統製造光電伏打材料的製造方法也需要許多步驟或不同製程,其中每一步驟係於不同裝置在不同時間內實施,這需要裝置本身的管理及資源。舉例而言,不同的摻雜步驟係用於製造不同的半導體晶圓,不同型的晶圓係經由特定方式一齊黏封而形成一光電伏打材料。摻雜步驟的目的及晶圓的組裝在於創造一pn接面(p-n junction)或p-i-n接面於晶圓之間而達成組裝材料的整體光電伏打效應。每一製造過程皆需成本,因此對於可節省必要製程或步驟來節省成本的光電伏打製程的需求係很高的。 Traditional methods of manufacturing photovoltaic voltaic materials also require many steps or different processes, each of which is implemented at different times in different devices, which requires management and resources of the device itself. For example, different doping steps are used to fabricate different semiconductor wafers, and different types of wafers are bonded together in a specific manner to form a photovoltaic cell. The purpose of the doping step and the assembly of the wafer is to create a p-n junction or p-i-n junction between the wafers to achieve the overall photovoltaic effect of the assembled material. Every manufacturing process requires cost, so the need for a photovoltaic process that saves the necessary processes or steps to save costs is high.

自單件半導體材料所製造的新材料將被描述。而許多技術亦用來提供給自單件半導體材料製造新材料。在許多實施例中,材料的製造不需要多重地用到毒性添加物及許多摻雜步驟,也不需要將不同型的半導體晶圓經由多重步驟及製程來組裝。 New materials made from a single piece of semiconductor material will be described. Many techniques are also used to make new materials from a single piece of semiconductor material. In many embodiments, the fabrication of the material does not require multiple use of toxic additives and many doping steps, nor does it require assembly of different types of semiconductor wafers through multiple steps and processes.

100‧‧‧新材料 100‧‧‧New materials

102‧‧‧頂面 102‧‧‧ top surface

104‧‧‧頂層 104‧‧‧ top

106‧‧‧過渡層 106‧‧‧Transition layer

108‧‧‧中間層 108‧‧‧Intermediate

112‧‧‧大基板層 112‧‧‧large substrate layer

116‧‧‧經 116‧‧‧

118‧‧‧緯 118‧‧‧ weft

200‧‧‧俯視圖 200‧‧‧ top view

202‧‧‧結晶狀細孔 202‧‧‧ Crystalline pores

204‧‧‧結晶狀細孔 204‧‧‧ Crystalline pores

208‧‧‧方格輪廓圖 208‧‧‧square outline

210‧‧‧結晶狀細孔 210‧‧‧ Crystalline pores

212‧‧‧結晶狀細孔 212‧‧‧ Crystalline pores

214‧‧‧剖面 214‧‧‧ profile

215‧‧‧部分 Section 215‧‧‧

216‧‧‧斜切面 216‧‧‧ Oblique cut surface

218‧‧‧圖式 218‧‧‧ schema

300‧‧‧製程 300‧‧‧ Process

302‧‧‧步驟 302‧‧‧Steps

304‧‧‧步驟 304‧‧‧Steps

306‧‧‧步驟 306‧‧‧Steps

308‧‧‧步驟 308‧‧‧Steps

400‧‧‧製程 400‧‧‧Process

402‧‧‧步驟 402‧‧‧Steps

404‧‧‧步驟 404‧‧‧Steps

406‧‧‧步驟 406‧‧‧Steps

500‧‧‧構型 500‧‧‧ configuration

501‧‧‧半導體晶圓 501‧‧‧Semiconductor wafer

502‧‧‧能量源 502‧‧‧Energy source

504‧‧‧半導體晶圓 504‧‧‧Semiconductor wafer

506‧‧‧爐底 506‧‧‧ bottom

600‧‧‧流程 600‧‧‧ Process

602‧‧‧階段 602‧‧‧ stage

604‧‧‧階段 604‧‧‧ stage

606‧‧‧階段 606‧‧‧ stage

700‧‧‧應用 700‧‧‧Application

702‧‧‧電磁輻射 702‧‧‧Electromagnetic radiation

704‧‧‧透明電極 704‧‧‧Transparent electrode

706‧‧‧底部電極 706‧‧‧ bottom electrode

本發明之較佳實施例係藉由許多例子的描述而非由例子限制。於圖式中的圖所顯示之編號中,相似的編號代表相似的元件。 The preferred embodiments of the invention are described by way of example and not by way of example. In the numbers shown in the figures in the drawings, like numerals represent like elements.

圖1為一方塊圖,其根據本發明之一實施例而描述自半導體材料所製造之新材料的剖面; 圖2A為照片,其根據本發明之一實施例並經由掃描式電子顯微鏡掃描而顯示自半導體材料所製造之新材料的頂面;圖2B為示意圖,其根據本發明之一實施例顯示結晶結構底部的同調方位(coherent orientation),其分布遍及新材料的頂面;圖2C為一方塊圖及照片,其根據本發明之一實施例並經由掃描式電子顯微鏡掃描而顯示該結晶結構於自半導體材料所製造之新材料中的分布;圖3及圖4為流程圖,其根據本發明之一實施例而描述自半導體材料所製造新材料的例示步驟;圖5為方塊圖,其根據本發明之一實施例而顯示部分元件的構型以供自半導體材料所製造新材料;圖6為示意圖,其描述在冷卻時,半導體材料的變質;及圖7為方塊圖,其顯示一新材料建構於光電伏打電池內。 1 is a block diagram depicting a cross section of a new material fabricated from a semiconductor material in accordance with an embodiment of the present invention; 2A is a photograph showing a top surface of a new material fabricated from a semiconductor material according to an embodiment of the present invention and scanned by a scanning electron microscope; FIG. 2B is a schematic view showing a crystal structure according to an embodiment of the present invention. The coherent orientation of the bottom, which is distributed throughout the top surface of the new material; FIG. 2C is a block diagram and photograph showing the crystal structure from the semiconductor according to an embodiment of the present invention and scanned by a scanning electron microscope FIG. 3 and FIG. 4 are flow diagrams illustrating an exemplary step of fabricating a new material from a semiconductor material in accordance with an embodiment of the present invention; FIG. 5 is a block diagram in accordance with the present invention One embodiment shows a configuration of a portion of a component for a new material from a semiconductor material; FIG. 6 is a schematic diagram depicting deterioration of a semiconductor material upon cooling; and FIG. 7 is a block diagram showing a new material construction In the photovoltaic cell.

根據本發明一實施例,圖1顯示自半導體材料所製造之一新材料100的剖面圖。該新材料100包含一頂層104之一頂面102、一過渡層106、一中間層108及大基板層112。當頂層104、過渡層106、中間層108及大基板層112如圖1所示顯露出同調性並分離的界線,該些層可改變尺寸及形狀。 1 shows a cross-sectional view of a new material 100 fabricated from a semiconductor material, in accordance with an embodiment of the present invention. The new material 100 includes a top surface 102 of a top layer 104, a transition layer 106, an intermediate layer 108, and a large substrate layer 112. When the top layer 104, the transition layer 106, the intermediate layer 108, and the large substrate layer 112 reveal a line of coherence and separation as shown in FIG. 1, the layers can be changed in size and shape.

該新材料係自半導體材料所製造。後述之新材料可以矽作為半導體材料的實施例之一,但其他的半導體材料亦可當作基板來製造新材料。舉例而言,任何具有某些摻雜物之半 導體材料可作為基板。在一實施例中,半導體材料為一n型矽晶圓或一p型矽晶圓,例如那些通常用來製作半導體的類型。在一例子中,n型矽晶圓包含磷的濃度介於10的11次方至10的17次方每毫升之原子量(atoms/cc),雖然其他的摻雜物可用來創造該n型或p型半導體而無須背離本發明較佳實施例之精神。在此實施例中,矽晶圓係自單晶矽的一塊上切下,且摻雜物可加入而自單晶矽創造n型矽晶圓。在其他實施例中,所使用的半導體可包含鍺或化合物半導體。在一些實施例中,多晶半導體或非晶型(amorphous)半導體可作為一種基板。 This new material is manufactured from semiconductor materials. The new material described later can be used as one of the embodiments of the semiconductor material, but other semiconductor materials can also be used as a substrate to manufacture new materials. For example, any half with some dopants The conductor material can serve as a substrate. In one embodiment, the semiconductor material is an n-type germanium wafer or a p-type germanium wafer, such as those typically used to fabricate semiconductors. In one example, the n-type germanium wafer contains a concentration of phosphorus between 10 and 11 to a power of 17 atoms per milliliter (atoms/cc), although other dopants can be used to create the n-type or The p-type semiconductor does not have to depart from the spirit of the preferred embodiment of the invention. In this embodiment, the germanium wafer is cut from one piece of the single crystal germanium, and a dopant can be added to create an n-type germanium wafer from the single crystal germanium. In other embodiments, the semiconductor used may comprise germanium or a compound semiconductor. In some embodiments, a polycrystalline semiconductor or an amorphous semiconductor can be used as a substrate.

在一實施例中,用於製造該新材料之矽晶圓之厚度約為1微米(μm),但是厚度大於1微米之矽晶圓亦可用於製造新材料。在一實施例中,頂層104之厚度約為0.1至10微米之間。 In one embodiment, the germanium wafer used to fabricate the new material has a thickness of about 1 micrometer (μm), but a germanium wafer having a thickness greater than 1 micron can also be used to make new materials. In one embodiment, the top layer 104 has a thickness of between about 0.1 and 10 microns.

當矽材料製造成新材料100後,頂層104具有特殊結構並可由頂面102而觀察。在一實施例中,結晶結構或結晶結構的組成及光明透亮的非結晶材料分布於頂面102,而如同頂層104內的結構。 When the tantalum material is fabricated into a new material 100, the top layer 104 has a special structure and can be viewed by the top surface 102. In one embodiment, the composition of the crystalline or crystalline structure and the bright, translucent amorphous material are distributed over the top surface 102, as is the structure within the top layer 104.

圖2A及圖2B為照片,根據本發明之實施例中,其經由掃描式電子顯微鏡掃描顯示自半導體材料所製造之新材料的頂面。圖2A中,根據本發明之實施例中,新材料經由頂面102之俯視圖200顯示。俯視圖200顯示部分結晶或位於頂層104之結晶狀細孔,其具有結晶結構底部的同調方位(coherent orientation)。俯視圖200進一步藉由表示細孔壁正面的邊緣來顯示結晶或結晶狀細孔的方位明顯地與大基板112之結晶方位對齊。具例而言,結晶狀細孔202及結晶狀細孔204放大並顯 示於方格輪廓圖(grid overlay)208上。結晶狀細孔202及結晶狀細孔204的刻面邊緣如圖2A所示互相對齊於於直角後而顯示出單晶大基板112之相同的結晶方位。如圖2A所示,大基板112之結晶方位之Miller指數為<100>。如圖2B所示,新材料具有結晶狀細孔210及結晶狀細孔212,其以60度角彼此對齊。結晶狀細孔之金字塔形狀相對應於大基板112具有Miller指數為<111>之結晶方位。參照圖2A及圖2B,所顯示結晶狀細孔沿經118及緯116,當自頂面102檢視時,允許相同形式的刻面(facet)或刻面邊緣(facetedge)。 2A and 2B are photographs showing a top surface of a new material produced from a semiconductor material scanned by a scanning electron microscope in accordance with an embodiment of the present invention. In FIG. 2A, new material is shown via top view 200 of top surface 102 in accordance with an embodiment of the present invention. Top view 200 shows a partially crystalline or crystalline pore at the top layer 104 having a coherent orientation at the bottom of the crystalline structure. The top view 200 further shows that the orientation of the crystalline or crystalline pores is clearly aligned with the crystal orientation of the large substrate 112 by indicating the edges of the front side of the pore walls. For example, the crystalline pores 202 and the crystalline pores 204 are enlarged and displayed. Shown on a grid overlay 208. The facet edges of the crystalline pores 202 and the crystalline pores 204 are aligned with each other at right angles as shown in Fig. 2A to exhibit the same crystal orientation of the single crystal large substrate 112. As shown in FIG. 2A, the Miller index of the crystal orientation of the large substrate 112 is <100>. As shown in FIG. 2B, the new material has crystalline pores 210 and crystalline pores 212 which are aligned with each other at an angle of 60 degrees. The pyramid shape of the crystal pores corresponds to the large substrate 112 having a crystal orientation with a Miller index of <111>. Referring to Figures 2A and 2B, the crystalline pores are shown along the 118 and weft 116, allowing the same form of facet or faceted edge when viewed from the top surface 102.

圖2C為方塊圖及照片,根據本發明之一實施例中,其顯示結晶狀細孔於自一半導體材料所製造的新材料內的分布及尺寸。剖面214顯示結晶狀細孔於每一頂層104、過渡層106及中間層108的分布。在一實施例中,結晶結構可由材料之分離部分215所觀察,該材料顯示為具有斜切面216。當部分215被分離後,頂層104、過渡層106、中間層108及大基板層112每一層可自上而下而能夠被觀察。 2C is a block diagram and photograph showing the distribution and size of crystalline pores in a new material fabricated from a semiconductor material in accordance with an embodiment of the present invention. Section 214 shows the distribution of crystalline pores in each of the top layer 104, the transition layer 106, and the intermediate layer 108. In one embodiment, the crystalline structure can be viewed by a discrete portion 215 of material that is shown to have a chamfered surface 216. When the portion 215 is separated, each of the top layer 104, the transition layer 106, the intermediate layer 108, and the large substrate layer 112 can be viewed from top to bottom.

頂層104、過渡層106、中間層108及大基板層112的擴展電阻分析(SRA)可利用新材料100的分離部分215來進行分析並決定頂層104、過渡層106、中間層108及大基板層112每一層的特性。在一些實施例中,各層的擴展電阻分析可顯示出頂層104、過渡層106、中間層108及大基板層112中至少兩層的電阻率(resistivity)差異。具例而言,頂層104、過渡層106、中間層108及大基板層112將有不同範圍的電阻率。根據本發明之一實施例中,圖式218為材料之分離部分215的上視圖, 其經由掃描式電子顯微鏡顯示頂層104、過渡層106、中間層108及大基板層112的每一層。如圖2C所示,頂面102具有多孔狀表面。在本發明之一些實施例中,頂面102亦可只有很少孔或無孔。舉例而言,頂面102係半導體材料無孔的薄層,且頂層104之孔洞位於頂面102之下。 The extended resistance analysis (SRA) of the top layer 104, the transition layer 106, the intermediate layer 108, and the large substrate layer 112 can be analyzed using the separated portion 215 of the new material 100 and determines the top layer 104, the transition layer 106, the intermediate layer 108, and the large substrate layer. 112 characteristics of each layer. In some embodiments, the extended resistance analysis of each layer may exhibit a difference in resistivity of at least two of the top layer 104, the transition layer 106, the intermediate layer 108, and the large substrate layer 112. For example, top layer 104, transition layer 106, intermediate layer 108, and large substrate layer 112 will have different ranges of resistivity. In accordance with an embodiment of the present invention, the drawing 218 is a top view of the separated portion 215 of the material, It shows each of the top layer 104, the transition layer 106, the intermediate layer 108, and the large substrate layer 112 via a scanning electron microscope. As shown in Figure 2C, the top surface 102 has a porous surface. In some embodiments of the invention, the top surface 102 may also have few or no holes. For example, top surface 102 is a thin layer of non-porous semiconductor material with holes in top layer 104 below top surface 102.

參照圖1,在一實施例中,結晶狀孔洞的分布梯度可於頂層104、過渡層106及中間層108內觀察到。在此實施例中,大孔洞分布係隨著接近頂面102而增加。在其他實施例中,結晶狀細孔的分布從頂層104、過渡層106到中間層108可為實質地均勻分布。在一實施例中,有些或全部的材料的每一層(頂層104、過渡層106及中間層108)之結晶狀細孔之間具有大基板層112之同調的單晶結構。 Referring to FIG. 1, in one embodiment, a distribution gradient of crystalline voids can be observed in the top layer 104, the transition layer 106, and the intermediate layer 108. In this embodiment, the large pore distribution increases as it approaches the top surface 102. In other embodiments, the distribution of crystalline pores may be substantially evenly distributed from top layer 104, transition layer 106 to intermediate layer 108. In one embodiment, some or all of the layers of the material (top layer 104, transition layer 106, and intermediate layer 108) have a homogenous single crystal structure with a large substrate layer 112 between the crystalline pores.

在一些實施例中,由矽組成之中間層108具有很少或無摻雜的雜質之特性,因此中間層108具有與n型半導體不同的特性。在一實施例中,中間層108係接近或實質等同於本質矽。在一實施例中,過渡層106及中間層108包含n型矽中大基板層112的同調性的結晶結構。 In some embodiments, the intermediate layer 108 composed of tantalum has the characteristics of little or no impurity, and thus the intermediate layer 108 has characteristics different from those of the n-type semiconductor. In an embodiment, the intermediate layer 108 is nearly or substantially equivalent to the essence. In one embodiment, the transition layer 106 and the intermediate layer 108 comprise a homogenous crystalline structure of the n-type germanium large substrate layer 112.

在一實施例中,過渡層106具有與頂層104相同的特性。如圖1所示,過渡層106具有同調的厚度並假設為平板形狀。但過渡層106之厚度未必為均勻厚度且亦未必為平板形狀。在一實施例中,過渡層106的厚度不超過1微米。 In an embodiment, the transition layer 106 has the same characteristics as the top layer 104. As shown in FIG. 1, the transition layer 106 has a coherent thickness and is assumed to be a flat plate shape. However, the thickness of the transition layer 106 is not necessarily a uniform thickness and is not necessarily a flat plate shape. In an embodiment, the thickness of the transition layer 106 does not exceed 1 micron.

在一實施例中,中間層108具有頂層104、過渡層106及大基板層112等每一層的特性。在一實施例中,中間層108的厚度不超過5微米。 In an embodiment, the intermediate layer 108 has characteristics of each of the top layer 104, the transition layer 106, and the large substrate layer 112. In an embodiment, the thickness of the intermediate layer 108 does not exceed 5 microns.

如圖1所示,中間層108具有同調的厚度並假設為平板形狀。但中間層108之厚度未必為均勻厚度且亦未必為平板形狀。在一實施例中,中間層108標示介於過渡層106及大基板層112之間的界線,且具有很少或無任何厚度。在一些實施例中,中間層108的厚度不超出3微米。 As shown in FIG. 1, the intermediate layer 108 has a coherent thickness and is assumed to be a flat plate shape. However, the thickness of the intermediate layer 108 is not necessarily a uniform thickness and is not necessarily a flat plate shape. In an embodiment, the intermediate layer 108 marks the boundary between the transition layer 106 and the large substrate layer 112 with little or no thickness. In some embodiments, the thickness of the intermediate layer 108 does not exceed 3 microns.

該大基板層112係用來製造新材料100的半導體材料中無變質的部分。相應地,大基板層112具有與原本半導體基板相同的特性。在一實施例中,大基板層112為單晶n型矽。在一實施例中,大基板層112包含磷的濃度介於10的11次方至10的17次方每毫升之原子量,雖然其他摻雜物可用來做成此n型半導體而無需與本發明較佳實施例的精神背馳。在一實施例中,p型半導體也可展現與n型半導體相似的特性。 The large substrate layer 112 is used to make a non-degraded portion of the semiconductor material of the new material 100. Accordingly, the large substrate layer 112 has the same characteristics as the original semiconductor substrate. In one embodiment, the large substrate layer 112 is a single crystal n-type germanium. In one embodiment, the large substrate layer 112 contains a phosphorus concentration of 10 to 11 to 10 atoms per milliliter atomic weight, although other dopants can be used to form the n-type semiconductor without the need for the present invention. The spirit of the preferred embodiment is divergent. In an embodiment, the p-type semiconductor may also exhibit similar characteristics as the n-type semiconductor.

根據本發明之一實施例中,圖3顯示用來製造新材料100的一種製程300的例子。在步驟302中,一半導體晶圓的一表面暴露於一能量源。能量源的例子可為熱源或雷射光源。熱源的例子可為燈爐(lamp furnace),雖然其他爐亦可用來提供必要的能量源。傳導至半導體晶圓的能量足以提升至少頂面及半導體晶圓頂部的溫度。在一實施例中,頂部的溫度超過800K。在一實施例中,半導體晶圓為n型半導體。在一實施例中,p型半導體展現出與n型半導體相同的特性。在一實施例中,半導體晶圓為n型矽。在一實施例中,n型矽包含部分濃度的磷而成為單晶矽的摻雜物。在一實施例中,磷在矽中的濃度介於10的11次方至10的17次方每毫升之原子量。 In accordance with an embodiment of the present invention, FIG. 3 shows an example of a process 300 for making a new material 100. In step 302, a surface of a semiconductor wafer is exposed to an energy source. An example of an energy source can be a heat source or a laser source. An example of a heat source can be a lamp furnace, although other furnaces can be used to provide the necessary energy source. The energy conducted to the semiconductor wafer is sufficient to increase the temperature of at least the top surface and the top of the semiconductor wafer. In one embodiment, the temperature of the top exceeds 800K. In an embodiment, the semiconductor wafer is an n-type semiconductor. In an embodiment, the p-type semiconductor exhibits the same characteristics as the n-type semiconductor. In one embodiment, the semiconductor wafer is an n-type germanium. In one embodiment, the n-type germanium comprises a partial concentration of phosphorus to form a dopant for the single crystal germanium. In one embodiment, the concentration of phosphorus in the crucible ranges from 10 to 11 to 10 and 17 to the atomic weight per milliliter.

在步驟304中,當暴露於能量源時,半導體晶圓係被監控 。為了達成新材料的結構,一部分的半導體晶圓不需要經過任何變質的過程。在一實施例中,沒有經過變質的部分在於晶圓的底部,而位於暴露於能量源半導體晶圓的相異側。相應地,在一實施例中,半導體晶圓經監控而偵測,當晶圓的頂部已經達到想要的階段及溫度,此條件無須轉變半導體晶圓之大基板底部的階段或結構。此能量源可經控制來維持適當的暴露至晶圓的能量。 In step 304, the semiconductor wafer is monitored when exposed to the energy source . In order to achieve the structure of the new material, a part of the semiconductor wafer does not need to undergo any deterioration process. In one embodiment, the portion that has not undergone deterioration is at the bottom of the wafer and is located on a different side of the semiconductor wafer exposed to the energy source. Accordingly, in one embodiment, the semiconductor wafer is monitored for detection when the top of the wafer has reached the desired stage and temperature without the need to transition the stage or structure of the bottom of the large substrate of the semiconductor wafer. This energy source can be controlled to maintain proper exposure to the wafer.

在步驟306中,該晶圓的該頂部是否達到必須的階段或/及溫度是否被決定。若無,則暴露於能量源的時間則繼續。若晶圓之頂部已經達到必要的階段或/及溫度時,能量源的暴露則中止於步驟308。 In step 306, whether the top of the wafer has reached the necessary stage or/and whether the temperature is determined. If not, the time of exposure to the energy source continues. If the top of the wafer has reached the necessary stage or/and temperature, the exposure of the energy source is terminated at step 308.

步驟310,晶圓被允許冷卻。在冷卻後之結構為完成的新材料100結構,其已經描述於圖1、圖2A及圖2B的實施例中。 At step 310, the wafer is allowed to cool. The structure after cooling is a completed new material 100 structure, which has been described in the embodiment of Figures 1, 2A and 2B.

在一些實施例中,在重複或略過步驟300後,新材料100可被做出來。在一些實施例中,在一變質製程實施於矽晶圓上後,新材料100可自一矽晶圓而被做出來。 In some embodiments, new material 100 can be made after repeating or skipping step 300. In some embodiments, after a metamorphic process is performed on the germanium wafer, the new material 100 can be made from a single wafer.

根據本發明之一實施例中,圖4顯示一時間控制製程400來製造新材料100的實施例。在步驟402中,一半導體晶圓之表面係暴露於能量源於時間t=0。在步驟404中,半導體晶圓暴露於能量源係中止於一關鍵時間t。根據一實施例,在關鍵時間t時,矽晶圓的頂部已經變質,當底部仍維持不變。在一實施例中,關鍵時間t係基於熱源的溫度、半導體表面及熱源之間的距離及半導體晶圓的厚度來決定。表1包含可能結合的條件之實施例及條件包含熱源功率、大基板溫度、距離、厚度 、氣氛及使用於步驟400的處理時間來製造新材料100。 In accordance with an embodiment of the present invention, FIG. 4 shows an embodiment of a time control process 400 for fabricating a new material 100. In step 402, the surface of a semiconductor wafer is exposed to energy source at time t=0. In step 404, the semiconductor wafer is exposed to the energy source system for a critical time t. According to an embodiment, at the critical time t, the top of the germanium wafer has deteriorated while the bottom remains unchanged. In one embodiment, the critical time t is determined based on the temperature of the heat source, the distance between the semiconductor surface and the heat source, and the thickness of the semiconductor wafer. Table 1 contains examples of possible combinations of conditions and conditions including heat source power, large substrate temperature, distance, thickness The atmosphere, and the processing time used in step 400, are used to make the new material 100.

在步驟406中,晶圓允許冷卻。在冷卻之後之結構則完成如新材料100的結構,其描述如圖1、圖2A及圖2B的實施例。 In step 406, the wafer is allowed to cool. The structure after cooling completes the structure as new material 100, which is depicted in the embodiment of Figures 1, 2A and 2B.

根據本發明之一實施例,圖5顯示能量源502之製造構型500、半導體晶圓504及爐底506。在一實施例中,半導體晶圓504設置於爐底506。爐底506並不限於單件材料,亦可包含一複合物或許多材料的結構。能量源502傳送能量、熱能及其他以增加晶圓504之溫度。半導體晶圓的熱導特性及爐底506的溫度允許晶圓504的頂部變質,而底部靠近爐底506的特性仍能不變質。在一實施例中,爐底506的溫度係可被控制。 5 shows a fabrication configuration 500 of an energy source 502, a semiconductor wafer 504, and a furnace bottom 506, in accordance with an embodiment of the present invention. In an embodiment, the semiconductor wafer 504 is disposed on the furnace bottom 506. The hearth 506 is not limited to a single piece of material, but may also comprise a composite or a structure of many materials. Energy source 502 transfers energy, thermal energy, and the like to increase the temperature of wafer 504. The thermal conductivity of the semiconductor wafer and the temperature of the furnace bottom 506 allow the top of the wafer 504 to deteriorate, while the characteristics of the bottom near the furnace bottom 506 remain degraded. In an embodiment, the temperature of the hearth 506 can be controlled.

根據本發明之一實施例中,圖6顯示一矽晶圓變成如圖1所述之新材料100的變質流程600。在最高溫度時,在階段602,一晶圓的頂部係部份地變質。在一實施例中,變質過程形成如過渡層106及中間層108(參照圖1所示)所描述之過渡層。在一些實施例中,過渡層之一實質地等同於本質矽。 In accordance with an embodiment of the present invention, FIG. 6 shows a metamorphic process 600 in which a wafer becomes a new material 100 as described in FIG. At the highest temperature, at stage 602, the top of a wafer is partially degraded. In one embodiment, the metamorphic process forms a transition layer as described for the transition layer 106 and the intermediate layer 108 (shown in Figure 1). In some embodiments, one of the transition layers is substantially equivalent to the essence.

在階段604中,溫度係低於階段602之溫度。在此階段中 的晶圓變質過程,雜質梯度則形成。舉例而言,雜質例如磷自上到下面的各過渡層形成一梯度。在階段606中,晶圓完全地冷卻並變質為新材料,例如包含頂面102、頂層104、過渡層106及中間層108之新材料100。 In stage 604, the temperature is below the temperature of stage 602. In this phase During the wafer metamorphism process, an impurity gradient is formed. For example, impurities such as phosphorus form a gradient from top to bottom transition layers. In stage 606, the wafer is completely cooled and metamorphosed into a new material, such as new material 100 including top surface 102, top layer 104, transition layer 106, and intermediate layer 108.

圖7顯示一新材料100之應用700的實施例之方塊圖。應用700利用新材料100之光電伏打特性來展現本發明之一些實施例以形成具有新材料之一光電伏打電池。在此實施例中,新材料100設置於透明電極704及底部電極706之間來形成光電伏打電池。電磁輻射702傳遞至新材料100表面而使電子(electrons)產生。可被用來在新材料100中誘發光電伏打效應的電磁輻射包含但不限於自可視光及紅外光之能量。電子自表面流向大基板層。在一實施例中,中間層靠近本質半導體的極性為正,而n型半導體之大基板層之極性為負。在一實施例中,自半導體晶圓所形成之新材料100之頂層、過渡層及大基板層的不同且各別的特性形成能帶間隙梯度來達成自新材料100之光電伏打效應。 FIG. 7 shows a block diagram of an embodiment of an application 700 for a new material 100. Application 700 utilizes the photovoltaic properties of new material 100 to demonstrate some embodiments of the present invention to form a photovoltaic cell having a new material. In this embodiment, a new material 100 is disposed between the transparent electrode 704 and the bottom electrode 706 to form a photovoltaic cell. Electromagnetic radiation 702 is transmitted to the surface of the new material 100 to cause electrons to be generated. Electromagnetic radiation that can be used to induce a photovoltaic effect in the new material 100 includes, but is not limited to, self-visible light and infrared light energy. Electrons flow from the surface to the large substrate layer. In one embodiment, the polarity of the intermediate layer near the intrinsic semiconductor is positive, and the polarity of the large substrate layer of the n-type semiconductor is negative. In one embodiment, different and individual characteristics of the top layer, transition layer, and large substrate layer of the new material 100 formed from the semiconductor wafer form an energy band gap gradient to achieve the photovoltaic effect of the self-new material 100.

自對各圖及申請專利範圍之一審查可獲得本發明之其他特徵、態樣及目標。應理解,可開發本發明之其他實施例且該等實施例屬於本發明及申請專利範圍之精神及範疇內。 Other features, aspects, and objectives of the present invention are obtained from a review of the drawings and claims. It is to be understood that other embodiments of the invention can be developed and are within the spirit and scope of the invention and the scope of the invention.

已出於圖解及說明之目的提供對本發明之較佳實施例之前述說明。其並非意欲為窮盡性或將本發明限制於所揭示之精確形式。各種添加、刪除及修改係涵蓋為在其範疇內。因此,本發明之範疇係由隨附申請專利範圍而非前述說明來指示。此外,欲將可屬於申請專利範圍以及其要素及特徵之等 效物之意義及範圍內之所有改變包羅於其範疇內。 The foregoing description of the preferred embodiments of the invention has in the It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Various additions, deletions, and modifications are covered as such. Therefore, the scope of the invention is indicated by the scope of the appended claims rather than the foregoing description. In addition, the scope of the patent application, its elements and characteristics, etc. All changes in the meaning and scope of the effect are covered by its scope.

100‧‧‧新材料 100‧‧‧New materials

102‧‧‧頂面 102‧‧‧ top surface

104‧‧‧頂層 104‧‧‧ top

106‧‧‧過渡層 106‧‧‧Transition layer

108‧‧‧中間層 108‧‧‧Intermediate

112‧‧‧大基板層 112‧‧‧large substrate layer

116‧‧‧經 116‧‧‧

118‧‧‧緯 118‧‧‧ weft

Claims (23)

一種單件光電伏打材料,包含:一半導體材料之一大基板層;一中間層設置於該大基板層上,其中該中間層包含該大基板層之一同調結晶結構;一過渡層設置於該中間層上,其中該過渡層包含該大基板層之該同調結晶結構,且若非該中間層則是該過渡層實質等同於本質矽;以及一頂層設置於該過渡層上,其中該頂層包含至少一結晶結構或一非晶型結構,該頂層包含該大基板層之該同調結晶結構;其中該大基板層、該中間層、該過渡層及該頂層係由一單件半導體材料經由變質製程而形成。 A single-piece photovoltaic device comprising: a large substrate layer of a semiconductor material; an intermediate layer disposed on the large substrate layer, wherein the intermediate layer comprises a coherent crystal structure of the large substrate layer; a transition layer is disposed on The intermediate layer, wherein the transition layer comprises the coherent crystal structure of the large substrate layer, and if the intermediate layer is not the intermediate layer, the transition layer is substantially equivalent to the essence; and a top layer is disposed on the transition layer, wherein the top layer comprises At least one crystalline structure or an amorphous structure, the top layer comprising the coherent crystal structure of the large substrate layer; wherein the large substrate layer, the intermediate layer, the transition layer and the top layer are modified by a single piece of semiconductor material And formed. 根據請求項1所述的單件光電伏打材料,其中該變質製成的步驟包含:暴露該單件半導體材料的一頂面至一能量源,其中該能量源加熱該單件半導體材料的一部分;以及中止暴露該單件半導體材料的該頂面於該能量源,其中該暴露步驟及該中止步驟使該該單件半導體材料變質為該結構,該結構包含該大基板層、該中間,層、該過渡層及該頂層。 A single piece of photovoltaic material as claimed in claim 1 wherein the step of modifying comprises: exposing a top surface of the single piece of semiconductor material to an energy source, wherein the energy source heats a portion of the single piece of semiconductor material And discontinuing exposing the top surface of the single piece of semiconductor material to the energy source, wherein the exposing step and the suspending step degrade the single piece of semiconductor material into the structure, the structure comprising the large substrate layer, the middle layer, and the layer The transition layer and the top layer. 根據請求項2所述的單件光電伏打材料,其中該單件半導體材料之該部分加熱至一溫度,該溫度至少800K。 A single piece of photovoltaic material according to claim 2, wherein the portion of the single piece of semiconductor material is heated to a temperature of at least 800K. 根據請求項2所述的單件光電伏打材料,其中該暴露及該中 止步驟於一真空中實施。 A single piece of photovoltaic material according to claim 2, wherein the exposure and the middle The steps are carried out in a vacuum. 根據請求項2所述的單件光電伏打材料,其中該部分的加熱處理時間介於60至80分鐘之間。 A single piece of photovoltaic material as claimed in claim 2, wherein the heat treatment time of the portion is between 60 and 80 minutes. 根據請求項2所述的單件光電伏打材料,其中該暴露步驟一直實施至該單件半導體材料之該頂面達到一預設溫度,並於之後該中止步驟開始。 A single piece of photovoltaic material as claimed in claim 2, wherein the exposing step is performed until the top surface of the single piece of semiconductor material reaches a predetermined temperature, and thereafter the aborting step begins. 根據請求項1所述的單件光電伏打材料,其中該單件半導體材料為n型矽,且該N型矽包含磷之一雜質。 A one-piece photovoltaic device according to claim 1, wherein the single-piece semiconductor material is n-type germanium, and the n-type germanium comprises one of phosphorus. 根據請求項1所述的單件光電伏打材料,其中該單件半導體材料之厚度介於0.1至10微米。 A single piece of photovoltaic material according to claim 1 wherein the single piece of semiconductor material has a thickness of from 0.1 to 10 microns. 根據請求項1所述的單件光電伏打材料,進一步包含一多孔狀頂面。 A single piece of photovoltaic material according to claim 1 further comprising a porous top surface. 根據請求項1所述的單件光電伏打材料,其中當該單件光電伏打材料暴露於光線下將產生光電伏打效應。 A single piece of photovoltaic material as claimed in claim 1 wherein the photovoltaic element is produced when the single piece of photovoltaic material is exposed to light. 根據請求項1所述的單件光電伏打材料,其中該大基板層、該中間層、該過渡層及該頂層具有不同範圍之電阻率。 The single piece photovoltaic cell of claim 1, wherein the large substrate layer, the intermediate layer, the transition layer, and the top layer have different ranges of resistivity. 一種光電伏打裝置使用如請求項1所述的單件光電伏打材料,該光電伏打裝置包含:該單件光電伏打材料;一底部電極設置於該單件光電伏打材料之下;以及一頂部電極設置於該單件光電伏打材料之上。 A photovoltaic device according to claim 1, wherein the photovoltaic device comprises: the single-piece photovoltaic material; a bottom electrode is disposed under the single-piece photovoltaic material; And a top electrode is disposed over the single piece of photovoltaic material. 一種製造一單件光電伏打的方法包含:。變質製程包含步驟:暴露一單件半導體材料的一頂面至一能量源,其中 該能量源加熱該單件半導體材料的一部分;以及中止暴露該單件半導體材料的該頂面於該能量源,其中該暴露步驟及該中止步驟使該該單件半導體材料變質為一結構,該結構包含:該半導體材料之一大基板層;一中間層設置於該大基板層上,其中該中間層包含該大基板層之一同調結晶結構;一過渡層設置於該中間層上,其中該過渡層包含該大基板層之該同調結晶結構,且若非該中間層則是該過渡層實質等同於本質矽;以及一頂層設置於該過渡層上,其中該頂層包含至少一結晶結構或一非晶型結構,該頂層包含該大基板層之該同調結晶結構。 A method of making a single piece of photovoltaic voltaic comprises: The metamorphic process includes the steps of exposing a top surface of a single piece of semiconductor material to an energy source, wherein The energy source heats a portion of the single piece of semiconductor material; and discontinues exposing the top surface of the single piece of semiconductor material to the energy source, wherein the exposing step and the suspending step degrade the single piece of semiconductor material into a structure, The structure comprises: a large substrate layer of the semiconductor material; an intermediate layer disposed on the large substrate layer, wherein the intermediate layer comprises a coherent crystal structure of the large substrate layer; a transition layer is disposed on the intermediate layer, wherein the The transition layer comprises the coherent crystal structure of the large substrate layer, and if the intermediate layer is not the intermediate layer, the transition layer is substantially equivalent to the essence; and a top layer is disposed on the transition layer, wherein the top layer comprises at least one crystalline structure or a non- a crystalline structure, the top layer comprising the coherent crystalline structure of the large substrate layer. 根據請求項13所述的方法,其中該單件半導體材料之該部分加熱至一溫度,該溫度至少800K。 The method of claim 13 wherein the portion of the single piece of semiconductor material is heated to a temperature of at least 800K. 根據請求項13所述的方法,其中該暴露及該中止步驟於一真空中實施。 The method of claim 13, wherein the exposing and the suspending step are performed in a vacuum. 根據請求項13所述的方法,其中該部分的加熱處理時間介於60至80分鐘之間。 The method of claim 13, wherein the heat treatment time of the portion is between 60 and 80 minutes. 根據請求項13所述的方法,其中該暴露步驟一直實施至該單件半導體材料之該頂面達到一預設溫度,並於之後該中止步驟開始。 The method of claim 13 wherein the exposing step is performed until the top surface of the single piece of semiconductor material reaches a predetermined temperature, and thereafter the aborting step begins. 根據請求項13所述的方法,其中該單件半導體材料為n型矽,且該n型矽包含磷之一雜質。 The method of claim 13 wherein the single piece of semiconductor material is n-type germanium and the n-type germanium comprises one of phosphorus. 根據請求項13所述的方法,其中該單件半導體材料之厚度介於0.1至10微米。 The method of claim 13 wherein the single piece of semiconductor material has a thickness of between 0.1 and 10 microns. 根據請求項13所述的方法,進一步包含一多孔狀頂面。 According to the method of claim 13, further comprising a porous top surface. 根據請求項13所述的方法,其中當該單件光電伏打材料暴露於光線下將產生光電伏打效應。 The method of claim 13 wherein the single piece of photovoltaic material is exposed to light to produce a photovoltaic effect. 根據請求項13所述的方法,其中該大基板層、該中間層、該過渡層及該頂層具有不同範圍之電阻率。 The method of claim 13, wherein the large substrate layer, the intermediate layer, the transition layer, and the top layer have different ranges of resistivity. 一種單件光電伏打材料包含:一n型矽晶圓之一大基板層;一中間層設置於該大基板層上,其中該中間層包含該大基板層之一同調結晶結構;一過渡層設置於該中間層上,其中該過渡層包含該大基板層之該同調結晶結構,且若非該中間層則是該過渡層實質等同於本質矽;以及一頂層設置於該過渡層上,其中該頂層包含至少一結晶結構或一非晶型結構,該頂層包含該大基板層之該同調結晶結構;其中該大基板層、該中間層、該過渡層及該頂層係由一變質製程而形成,並包含步驟:暴露一單件半導體材料的一頂面至一能量源,其中該能量源加熱該單件半導體材料的一部分至一溫度至少800K,其中該暴露步驟及中止步驟於一真空中實施;以及中止暴露該單件半導體材料的該頂面於該能量源, 其中該暴露步驟及該中止步驟使該單件半導體材料變質為一結構。 A single-piece photovoltaic device comprises: a large substrate layer of an n-type germanium wafer; an intermediate layer disposed on the large substrate layer, wherein the intermediate layer comprises a coherent crystal structure of the large substrate layer; a transition layer Provided on the intermediate layer, wherein the transition layer comprises the coherent crystal structure of the large substrate layer, and if the intermediate layer is not the intermediate layer, the transition layer is substantially equivalent to the essence; and a top layer is disposed on the transition layer, wherein the transition layer The top layer comprises at least one crystalline structure or an amorphous structure, the top layer comprising the coherent crystal structure of the large substrate layer; wherein the large substrate layer, the intermediate layer, the transition layer and the top layer are formed by a metamorphic process, And including the steps of: exposing a top surface of the single piece of semiconductor material to an energy source, wherein the energy source heats a portion of the single piece of semiconductor material to a temperature of at least 800K, wherein the exposing step and the stopping step are performed in a vacuum; And discontinuing exposing the top surface of the single piece of semiconductor material to the energy source, The exposing step and the suspending step degrade the single piece of semiconductor material into a structure.
TW102119713A 2013-03-15 2013-06-04 Single-piece photovoltaic structure TW201436254A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/844,298 US8952246B2 (en) 2012-04-02 2013-03-15 Single-piece photovoltaic structure
PCT/US2013/035041 WO2013152053A1 (en) 2012-04-02 2013-04-02 Single-piece photovoltaic structure

Publications (1)

Publication Number Publication Date
TW201436254A true TW201436254A (en) 2014-09-16

Family

ID=51945577

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102119713A TW201436254A (en) 2013-03-15 2013-06-04 Single-piece photovoltaic structure

Country Status (1)

Country Link
TW (1) TW201436254A (en)

Similar Documents

Publication Publication Date Title
CN104781918B (en) Manufacturing method, the manufacturing method of semiconductor epitaxial wafer and solid-state imager of semiconductor epitaxial wafer
US20080026550A1 (en) Laser doping of solid bodies using a linear-focussed laser beam and production of solar-cell emitters based on said method
US20120125416A1 (en) Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
KR20180126566A (en) Polycrystalline SiC substrate and its manufacturing method
US20090205705A1 (en) Method for Fabricating a Semiconductor Component With a Specifically Doped Surface Region Using Out-Diffusion, and Corresponding Semiconductor Component
US20240136464A1 (en) Method for manufacturing substrate for solar cell and substrate for solar cell
Li et al. Defect annealing in ultra-thin polycrystalline silicon films on glass: rapid thermal versus laser processing
Reber et al. High-throughput zone-melting recrystallization for crystalline silicon thin-film solar cells
US20140290737A1 (en) Thin film vls semiconductor growth process
US20220325438A1 (en) Wafer with regions of low oxygen concentration
US8659023B2 (en) Monocrystalline substrate including lattice matching atoms in a near surface region and a monocrystalline layer disposed on the substrate
TW201436254A (en) Single-piece photovoltaic structure
JP2015142079A (en) photoelectric conversion device
CN108630778B (en) Preparation method of inclined table top and preparation method of detector
US8952246B2 (en) Single-piece photovoltaic structure
Kieliba Zone-melting recrystallization for crystalline silicon thin-film solar cells
US7972942B1 (en) Method of reducing metal impurities of upgraded metallurgical grade silicon wafer by using epitaxial silicon film
CN105702797A (en) Manufacturing method of double-face battery
US20130255774A1 (en) Photovoltaic cell and process of manufacture
US10510830B2 (en) N-type polysilicon crystal, manufacturing method thereof, and N-type polysilicon wafer
CN103456834A (en) System and method for processing a backside illuminated photodiode
CN109166788A (en) A method of direct epitaxial growth Ge virtual substrate on a silicon substrate
Rahimi et al. GaSb thermophotovoltaics: current challenges and solutions
Bigbee-Hansen Cadmium Telluride: A Study on the Effects of Iodine Doping
Köhler et al. Numerical modelling of pulsed laser doping of crystalline silicon solar cells